Release

Massive Stars Moving around in Star Clusters

A research group at the University of Tokyo has performed a simulation of star cluster formation using a newly developed simulation code. The simulation revealed that some massive stars formed in the star cluster center were ejected to the outskirts of the cluster and ionized the molecular cloud there. These processes caused the formation of off-centered ionized bubbles seen in the Orion Nebula.

Stellar “Ashfall” Could Help Distant Planets Grow

The world’s first 3D simulation simultaneously considering dust motion and growth in a disk around a young star has shown that large dust from the central region can be entrained by and then ejected by gas outflows, and eventually fall back onto the outer regions of the disk where it may enable planetesimal formation. This process can be likened to volcanic “ashfall” where ash carried up by gas during an eruption falls back on the area around the volcano. These results help to explain observed dust structures around young protostars.

Simulations Provide Clue to Missing Planets Mystery

Forming planets are one possible explanation for the rings and gaps observed in disks of gas and dust around young stars. But this theory has trouble explaining why it is rare to find planets associated with rings. New supercomputer simulations show that after creating a ring, a planet can move away and leave the ring behind. Not only does this bolster the planet theory for ring formation, the simulations show that a migrating planet can produce a variety of patterns matching those actually observed in disks.

Observation, Simulation, and AI Join Forces to Reveal a Clear Universe

Japanese astronomers have developed a new artificial intelligence (AI) technique to remove noise in astronomical data due to random variations in galaxy shapes. After extensive training and testing on large mock data created by supercomputer simulations, they then applied this new tool to actual data from Japan’s Subaru Telescope and found that the mass distribution derived from using this method is consistent with the currently accepted models of the Universe. This is a powerful new tool for analyzing big data from current and planned astronomy surveys.

A New Window to See Hidden Side of the Magnetized Universe

Summary

An international team including astronomers at the National Astronomical Observatory of Japan (NAOJ) discovered an interaction between astrophysical jets and intracluster magnetic fields. This result provides a new window to explore the hidden side of the magnetized Universe.
Astronomers used MeerKAT telescope, the state-of-the-art radio interferometer located in South Africa, to unveil the origin of unusual jets in the merging galaxy cluster Abell 3376.

Telescopes Unite in Unprecedented Observations of Famous Black Hole

In April 2019, scientists released the first image of a black hole in the galaxy M87 using the Event Horizon Telescope (EHT). However, that remarkable achievement was just the beginning of the science story to be told.

Data from 19 observatories are being released that promise to give unparalleled insight into this black hole and the system it powers, and to improve tests of Einstein’s General Theory of Relativity.

American Astronomers Find Secrets of Japanese Universes

Astronomers have played a game of guess-the-numbers with cosmological implications. Working from a mock catalog of galaxies prepared by a Japanese team, two American teams correctly guessed the cosmological parameters used to generate the catalog to within 1% accuracy. This gives us confidence that their methods will be able to determine the correct parameters of the real Universe when applied to observational data.

Supercomputer Turns Back Cosmic Clock

Astronomers have tested a method for reconstructing the state of the early Universe by applying it to 4000 simulated universes using the ATERUI II supercomputer at the National Astronomical Observatory of Japan (NAOJ). They found that together with new observations the method can set better constraints on inflation, one of the most enigmatic events in the history of the Universe. The method can shorten the observation time required to distinguish between various inflation theories.

These results appeared as Masato Shirasaki et. al. “Constraining Primordial Non-Gaussianity with Post-reconstructed Galaxy Bispectrum in Redshift Space,” in Physical Review D on January 4, 2021.

(February 16, 2021)