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Preface／序文

2001年度の天体力学N体力学研究会（通称箱根N体）は、 2002年3月11日から 13日に

かけてまだ温泉の温かさがうれしい早春の箱根温泉静雲荘にて滞在型研究会の形で開催さ

れました。口頭発表が 14件、ポスター発表が 17件あり、参加者は大学生からシニア研究

者までの47名を数えました。

箱根N体のメインテーマは、 DynamicalFriction Strikes Back—いまさら力学的摩擦？ーとい

うことで、恒星系力学の基礎の 1つである力学的摩擦でした。力学的摩擦は銀河団から惑

星系までさまざまなスケールの天体現象の中で重要な役割を果たしています。例えば、銀

河中心における巨大ブラックホール形成、球状星団での恒星の質量分離、惑星系形成時の

惑星の移動や軌道の円軌道化などをあげることができます。今回は力学的摩擦について2

つの招待講演を企画しました。まず恒星系、特に球状の系での力学的摩擦についての基礎

的な理論について東京大学の牧野淳一郎氏にレビューしていただきました。そして惑星系、

つまり円盤系に適応した場合の力学的摩擦について東京工業大学の田中秀和氏にレビュー

をしてもらいました。興味深くわかりやすいレビューをしていただいた両氏にはこの場を借

りて感謝したいと思います。力学的摩擦の奥の深さを感じてもらえましたでしょうか。「い

まこそ力学的摩擦！」ということを感じていただけたなら世話人としてうれいし限りです。

研究会運営にあたっては静雲荘の職員の方々に大変お世話になりました。厚くお礼申し

上げます。また、国立天文台の木下宙氏、谷川清隆氏、福島登志夫氏には集録の出版費用

を提供していただきました。厚くお礼申し上げます。

平成 14年初秋世話人代表小久保英一郎

Editors／世話人

小久保英一郎 (Kokubo,Eiichiro) 国立天文台理論天文学研究系

kokubo@th.nao.ac.jp 

伊藤孝士(Ito,Takashi) 国立天文台天文学データ解析計算センター
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いまさら（いまこそ）力学的摩擦 •Introduction­
井田茂［東工大・地惑］

・カ学的摩擦は銀河ダイナミックス、惑星形成における
Key processのひとつ
—銀河ダイナミックス（牧野／東大）

—銀河中心部巨大ブラックホール形成（松林／東工大、理研）

—惑星落下問題（田中／東工大）

ー地球型惑星形成（小南／東工大）

・「力学的摩擦」はいろんな意味で使われる

-Exotic particleの速度の減衰
—相対的に質量の大きな天体の＊＊速度＊＊の減衰

-Energy eQuipartition ・ 
-Mass segregation,＊＊中心＊＊への落下

—ガス成分との重力相互作用

力学的摩擦はちゃんとわかっているのか？
Chandrasekahr's formula 

2 
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• vmはどこまで減衰？ （equipartition?) 

・直線で飛んでいないとき？媒質E
系統的運動があるとき？ （例ケプフー粒子） 、一

—軌道離心率、軌道長半径の減衰？
• pに比例：媒質の粒子の大きさによらない
—相手がガスでも0k? v =c? m s. 

—粒子描像 vs 流体描像

≫ヽ』3

ーI0 

ー1; 0シ d( ：: 1ヽ1， 



恒星系及び恒星系N体シミュレーションに
おける力学的摩擦
ー現実と虚構

牧野淳一郎

概要

1.イントロダクション

2．力学的摩擦とはなにか？

3. 「現実の」系における力学的摩擦

•サテライト銀河の進化

•プラックホール

4.数値シミュレーションにおける力学的摩擦

• Example by Steimetz and White 

• Numerical heating of thin disk 

5.まとめ

2
 



イントロダクション

この講演ではとりあえずダイナミカルフリクションとはどん

なもので、何故そういうものを考えないといけないかという

話を主に恒星系を例にとってする。

●力学的摩擦とはなにか

•どう計算されるか

•その計算のしかたは「正しい」か

力学的摩擦とはなにか

基本的には、自己重力多体系のなかで、平均の運動エネル

ギーよりも高いエネルギーをもった粒子が受ける抵抗。

抵抗を受ける「理由」： 「熱平衡状態に近づくため」

といってもなんだか分からないので、もうちょっと簡単な場

合を考える。
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もっとも簡単なモデル

今、温度0（だと、本当はジーンズ不安定が起きるわけだが

これはとりあえず考えない）の、無限に一様な物質分布の中

を、適当な大きさを持った球対称なポテンシャルの摂動（質

点によるものでもOK)が動いているとする。

まわりの粒子は質点からの力を受けて速度を得る。

回りの粒子の軌道
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抵抗になる理由

もともとの止まっていた物質分布に固定された座標系で考

える：

散乱されたものは、左向きと中心向きの速度をもらうことに

なり、ネットに加速されている。

エネルギーをもらっている。

まっとうな導出
分布している質点の質量を m、数密度を nとする。テスト粒子が一つの
粒子から距離（インバクトバラメータ） pを相対速度 V= Vt -v,で
通った時に曲がる角度：

tan0 = 
(p/po)2 -1 

2p 

G(mt十町）
Po = v2 

で与えられる。
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回りがとまっている場合(1)

回りはまだ速度 0とすると：

mf 
△Vvert = 

mt+ m1 
Vsin0 = 2V mt p/po 

mt+ mバ＋（p/po)2 
叩 m1

△Vpara = ~V(l -cos0) = -2V f 
mt +mf mt十町1+ (p/po)2 

回りがとまっている場合{2)

単位時間当たりの衝突回数 21rpn1Vdpを掛けて積分すると：

く△v2
2nfr 
-vert >=  V 

く△Vpara> = -(1 + ~)吋
叩 V2

く△v2
nfr 

para >=  VlnA 

ここでrは
r=知 G2叫InA (1) 

である。
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lnAって？

インパクトバラメータpでの積分:P→(X)で形式的に発散
する。

m 1 
△Vpara = -2V f 

加＋mバ＋ （p/po)2 

に21rnpdpをかけて積分するから。 P → 0は（質点粒子で
も）発散しない。

pの上限

•系の「大きさ」＜らい

•密度のスケールハイト

もちろん nのpへの依存性を書き下せればそれを使うべき？

積分の下限(1)

質点粒子：△Vparaをまともに積分すればよい。

実際には△Vparaf"..J 1 / Pとして p=poで積分を打ち切る
のとあんまり変わらない。

ヽ
ヽ
ヽ
ヽ1
,

＇ 

P
o
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積分の下限(2)

粒子が広がっている場合（衛星銀河とか）：

ふVparaを軌道をといてちゃんと計算すればいい。

粒子サイズ＞＞ Poの時は適当な近似ができる。

この場合にも、実際には△Vparar,,...,J 1 / Pとして pが典型的

な半径(half-massradiusとか）で積分を打ち切るので普通

は大丈夫。

力学的摩擦の性質

く△Vpara>= -(1 + ___:__ （四 47rG2叫 lnAn1
mf)v2  

•四に比例 (mt>> m1で）

• mfによらない (p=m戸 f―定なら）

• V2に反比例

割合変な力。重い粒子の△vがその粒子の質量に比例。
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回りが動いているとき

導出は面倒なので結果だけ。速度分布が等方的なら

v 町， n
凡(v)=／。（―)I（町）dvf

V 

恥）＝じ (~)nf（町）d町 (2)

というものを考えると、

く△Vpara> = -41T'I'(1 十~)凡(v)

回りが熱平衡なら

町 一炉／2
fo(V) =(2年）312exp(~)

く△Vpara>= -4叫＋竺）G(x)
が mf

ここで erfは誤差関数であり、

G(x) = 
erf(x) -xerf'(x) 

2x2 

また尤＝巧／（J5グ）。

，
 



回りが止まってるときとの違い

結局、

erf(x) -xerf'(x) 

の分だけ弱くなる。

叫→ 0の極限： Vtに比例

切→ 00の極限：v;に反比例
中間：回りがとまっているときよりファクターで弱い（あんま

り変わらない）

実際の恒星系での力学的摩擦

様々なところに現れる。

基本的には熱平衡でなければ必ず等分配からずれた粒子が

ある。

それは必ず力学的摩擦を受ける／およぽす。

自己重力系は原理的に熱平衡でありえない。
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具体例

•衛星銀河の進化（船渡講演）

•銀河中心の複数プラックホール系

•若い高密度星団

衛星銀河の進化

衛星銀河：親銀河のダークハロー（あれば）の力学的摩擦を受

ける。

Binney & Tremaineに書いてある式

加 c~ 6 X 108 (~『 (100kv三）（5x 1；国。）yr
これは銀河中心の星団用なのでちょっと短い、、、 log Aは 5

くらいをいれたはず。

まあ、質量が親銀河の数バーセント以上あればタイムスケー

ルは結構短い。

11 



LMC-SMC 

古典的計算：村井•藤本

論文読んでもどうやって計算したのかよくわからない、ヽヽヽ
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(Hashimoto, et al. in preparation) 

破線： bmax= Rhal。実線： bmax= Ts（衛星の位置）
破線が村井・藤本によく合う。
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N体との比較(1)
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N-body simulation 
constantA ---

゜゚
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Time 
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bmax = Rhalo 
N体より進化速い軌道丸くなる

N体との比較(2)
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N-body simulation 
varylngA ---

゜゚
10 20 30 

Time 

40 50 

bmax = Ts 
N体とよく合う 軌道丸くならない
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N体との比較まとめ）

lnAの絶対値だけの問題ではないことに注意

軌道が丸くなるかならないか

＝近点で DFがどれくらい有効か

bmax = Tsとすると近点で InAが非常に小さくなる
= circularizationが抑えられる

In Aの問題

DFの公式を使って衛星銀河の進化を調べた論文は無数にあ

るが、、、

これまで発見できたなかでは Tremaine(1976)だけが

bmax = Ts採用。

一番悪い論文： A=MH/Msこれは衛星銀河を質点と仮定
しているのと同じ。

こういう困った論文もいつばいある。

14 



チャンドラセカール公式の限界

•テスト粒子、フィールド粒子共に直線運動をすると仮定

•フィールド粒子同士の自己重力は無視

テスト粒子の近くではそんなに悪くない

親銀河の大きさ（テスト粒子の銀河中心からの距離）＜らい離

れたところではまったくなりたたない仮定。

（楽観的な期待：現実的な効果は DFを小さくする）

「もっと精密な」計算法

分布関数のグローバルな応答を計算 (Weinberg1989) 

.~tcllite orbital decay 
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「もっと精密な」計算法(2)

精密にしたらよくあうというものでもない？

この不一致の理由は結局よくわかってない(?)

デモンストレーション
サテライト銀河の進化

親銀河： King(Wt。=9)モデル。 Heggie Unit 
衛星銀河： King(Wt。=9)モデル。 質量 1/8,1/16, 1/32 
初期位置 (5,0,0)
初期速度 (0,0.3,0)
粒子数 32768+65536,GRAPE-6 direct method 
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複数ブラックホール系

（単ープラックホールだと中心に落ちて終わりなのでつまら

ない）

2個ではなにが起きるか？

•中心にプラックホールを持つ銀河同士の合体

•中間質量プラックホール???

複数ブラックホール系

中心に沈むのはまあそうなるとして、ヽヽ

それからどうなるか？

＝プラックホール連星系の進化

フィールド粒子と高速回転するプラックホール連星の相互

作用

物理（統計力学）としては力学的摩擦に似ている。

実際の連星系の進化：いろいろ分からないことがある。

17 



N体計算

(Makino 1997) 

理屈ではブラックホール連星の進化タイムスケールは緩和時

間に比例するはず

相互作用できる星を弾き飛ばす。 2体緩和でまた拡散して

くる。

粒子数をかなり広く変えて計算してみた (2k- 256k) 

結果はなんだかよく分からない。

ブラックホール連星：計算結果

゜
占ー．1

-.2 

゜
20 40 60 
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成長率

.05 

.02 
lP\q~p 

.01 

.005 

.002103 

白丸：

黒丸：

最初のほう

後のほう

Timescale: 

初期：

収束？

後期：

ex N1/3r!？? 

3x10 
3 104 3x104 

N 
10 
5 
3x10 
5 

BH3個

(SC2001 proceedings paper) 

0.1 

0.01 

10―3 

10―4 

10―50 

軌道長半径と離心率の進

化

近点での距離は極めて小

さくなれる一割合簡単

に重力波で合体？
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「現実」の系での力学的摩擦

•割合いろんなところにでてくる

• （正しく使えば）チャンドラセカールの公式はかなり正確

•重要なのは InAの推定

N体計算における数値的な力学的摩擦

これがいろんなところにでてきては本当はいけない。

が、、、

というわけで、ちょっとそういう方面の話。

20 



どういう場合に問題になるか

主に「現実」は無衝突系の場合。

•シミュレーションは粒子数がずっと少ない

•粒子が等質量とは限らない

注意していないと2体緩和や力学的摩擦の影響が極めて大き

いことがある

例：円盤銀河

質量の 90％以上がダークハロー

ディスクは 10%以下

バルジは1％程度

ディスク、バルジに分解能をもたせるにはハローに使う粒子

数を節約したいような気がする。

これをやるとなかなか楽しいことが起きる。

21 



Steinmetz and Whiteによるデモンス

トレーション
Steinmetz and White 1996 

N=4000 N=250 N=4000/250 
1.000 

0.100 

l 
o.o,o t ヽ 1[ 、

0.001 

10 100 10 100 10 100 
r [KpC] r [kpc] r {kpc] 

ハロー、ガス共に球状。 40および 80億年後

ハローに 4000粒子もあればまあまあ、、、

Thin diskの場合

一昨日急いで作った例なのであんまりよくないですが、ヽヽ

ダークハロー： Plummermodel, heggie unit 

厚さ、温度 0の（ほぼ）テスト粒子ディスク。 8192体

半径 0.4,一様分布、（ほぽ）つりあった回転を与える。

ハロー粒子 1024-131072体
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わかること

10万体くらい使ってもディスクはすぐに膨らむ。

数千体では全く論外。

ディスク粒子が z方向の速度を得る時間
スケール
緩和時間： z方向の速度が回転速度とコンバラ。既にディス

クではない

緩和時間の 1/10: z方向の速度が回転速度の 1/3。

緩和時間の 1/100: z方向の速度が回転速度の 1/10。

緩和時間の 1/1000: z方向の速度が回転速度の 1/30。

ディスク数回転の間厚さを 3％くらいに保つためにはハロー

に 10万粒子以上必要。
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まとめ

数値的な力学的摩擦

•主に問題になるのは高温（ランダム）な部分系によっては
低温（規則運動）部分系が加熱されること。

•薄いディスクを作ろうと思うとハロー（のディスクがある
あたり）だけに数十万粒子

全体のまとめ

•現実の系での力学的摩擦はどこにでもある。

•古典的なチャンドラセカール公式は正しく使えばば十分
使える。

•数値的なものはもっとどこにでもある。
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Dynamical Friction in Gravitating Disk Systems 

and Radial Migration 

円盤重力系における力学的摩擦と動径方向移動

Hidekazu TANAKA 

Dept. of Ea州hand Planetary Sciences, Tokyo Institute of Technology 

田中秀和

東京工業大学大学院理工学研究科地球惑星科学専攻

Abstract 

Studies on dynamical friction in gravitating particle disks are reviewed. Dynamical fric-
tion plays an important role in "the velocity relaxation process" and "radial migration". In 
disk systems, the velocity relaxation can be considered as a local relaxation process and its 
characteristic time is given by "Chandrasekhar's relaxation time". On the other hand, radial 
migration in disk systems is considered as global evolution of disks and the evolution time 
is much longer than Chandrasekhar's relaxation time. The gravitational interaction between 
a particle and a gaseous disk is also described. the interaction with gaseous disks is very 
similar to that with particle disks. The relaxation time in gaseous disks is given by the same 
formula as particle disks if the sound velocity is taken as the relative velocity. 

0.はじめに

粒子系の重力緩和過程や動径方向移動は，

銀河，惑星形成，惑星リングなどを考える上

で重要な素過程であり，今日まで多くの研究

がなされてきた．これら重力緩和過程と動径

方向移動は，広い意味での力学的摩擦による

ものと説明されている．

一方，（原始）惑星系や銀河では，構成粒子

は円盤状に分布しているが，この円盤重力系

の重力緩和過程は，重力多体系に見られるい

わゆる長距離相互作用による困難を含まず，

比較的簡単に理論化すること可能であった

今日では，円盤系での局所的な重力緩和過程

については，理論的に良く理解されていると

言えるであろう．
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本稿では，「円盤重力系における力学的摩

擦」に関連した従来の研究を，まとめた上で

紹介していこう．取り上げる内容は，以下の

ようなものである

1.力学的摩擦とは何か？

2.円盤系の特徴

3.円盤系での粒子の速度進化

4.円盤系での粒子の動径方向移動

ガス円盤と惑星の間の重力相互作用は，惑

星を落下させるなどの効果を持ち，粒子同士

の重力相互作用と共に惑星形成過程において

重要な働きをする．一見，ガス円盤との重力

相互作用は，粒子同士の重力相互作用とは全



く別のものと思われるが，これら 2つの重力

相互作用は多くの共通点を持っている．本稿

ではこれらの共通点についても議論していく．

1.力学的摩擦とは何か？

力学的摩擦といっても，研究者によって色

々な意味で用いられているその点をまず整

理しておこう．

1つの粒子が流体の中をある相対速度で運

動する場合，その粒子は流体から抵抗力を受

ける．チャンドラセカールは，流体中ではなく

粒子集団の中を粒子が運動する際にも，重力

相互作用によって同様な抵抗力が発生するこ

とを示し，この効果を「力学的摩擦(dynam-

ical friction)」と命名した (Chandrasekhar

1943ab)．これが通常の定義である．

力学的摩擦による抵抗力で粒子が減速する

時間は，「チャンドラセカールの緩和時間」で

与えられるこの「緩和時間」は，重力多体

系のより一般的な緩和過程を記述している．

例えば，重力多体系の速度分布は，マクスウ

ェル分布に緩和していくが，これに要する時

間も「緩和時間」で与えられるまた，異な

る粒子質量を持つ2つの粒子系が混ざりあっ

ている場合，「緩和時間」程度で2つの粒子

系は，エネルギー等分配の状態に近づいてい

＜．惑星科学の分野では，力学的摩擦をより

広い意味で捉えて，「エネルギー等分配に近

づけるもの」という意味で用いる場合が多い

(e.g., Hornung et al. 1985; Ida 1990). 

ここで，「チャンドラセカールの緩和時間，

Trelax」の表式について説明しておこう．質

量M をもつ粒子が，質量 m の粒子の集団に

対して相対速度 vで運動している場合，チャ

ンドラセカールの緩和時間は次式で与えられ

る：

T 
MI  

relax = ---. （1) 
m nav 

ここで， nは，集団の粒子数密度であるまた，
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重力散乱の断面積 oは

u = 1r(GM/v叩In( 
Lv2 

司 (2) 

で与えられる．上式で， Gは重力定数， Lは

系の特徴的な長さである． 円盤系において

は，特徴的長さ Lは円盤の厚さである．（1）式

では，粒子集団の熱速度（速度分散の平方根），

％が相対速度 vに比べて小さいことが仮定

されている．逆に， Vmの方が大きい場合には，

上の表式で vの代わりに Vm を用いれば良

い．この様に表された緩和時間によって，多

くの重力緩和過程を理解することができるの

である．

銀河や（原始）惑星系のような粒子円盤系

において，大きな粒子は他の粒子との重力相

互作用により，（多くの場合）円盤中心に向

かって落下していく．この粒子の動径方向移

動を重い粒子が重カポテンシャルのより低い

所に向かうために起こると考えれば，これを

重力緩和過程の 1つと解釈できるであろう．

多くの研究者は，この「円盤系での動径方向

移動」も力学的摩擦による効果と解釈してい

る (e.g.,Donner & Sundelius 1993; Wahde 

et al. 1996)．しかし，円盤系においてはすべ

ての粒子達が同じ回転速度で運動しているの

で，平均的に見るとそれらは相対速度を持た

ない．そのため，回転方向には通常の意味で

の力学的摩擦による抵抗力は働かないのであ

る．円盤系における動径方向移動を考える場

合には，このことを気をつける必要があるで

あろう．

以上のように，力学的摩擦には， 「抵抗力

」， 「速度分布を緩和させるもの」， 「動径

方向移動させるもの」という 3つの意味があ

る以下では，力学的摩擦が引き起こすとさ

れている「速度緩和」と「動径方向移動」の

2つについて着目し，両者の比較を通じてこ

れらを理解していこう．



2.円盤系の特徴

円盤重力系には，銀河，惑星系円盤，惑星リ

ングなどがあり，これらは(1)「薄い」，（2)「

粒子はほぼ円運動をしている」という特徴を

持っている．又，惑星系や惑星リングでは，粒

子は中心天体の周りをほぼケプラー運動をし

ている．上の(1),(2)の特徴は，軌道の離心率

eや傾斜角 iが小さいことを意味している．

相互作用する 2粒子間の相対速度は， eと

iで決まりこれらとともに大きくなる．（この

粒子相対速度はランダム速度とも呼ばれる．）

よって，速度緩和は， eやiの分布の緩和であ

るといえる一方，粒子の動径方向移動は，回

転速度のエネルギー変化と関係している

円盤系では， e,iが小さいため，相対速度

（又はランダム速度）のエネルギーは回転速度

のエネルギーに比べ圧倒的に小さい．このた

め，エネルギーの小さいランダム速度の緩和

に比べ，「動径方向の移動」は長時間で進行

する． 「速度緩和」と「動径方向の移動」が

異なる時間スケールで進行することは，円盤

系の進化における重要な特徴である．円盤系

では，局所的な速度緩和が円盤の各部分で達

成された後に，粒子の動径方向の大幅な移動

という系全体の進化がゆっくりと進んでいく

のである．

3.円盤系での粒子の速度進化

局所的緩和である速度分布の緩和を，惑星

系円盤の場合を例にとり具体的に見ていこう．

ランダム速度のもととなる eや iの進化

は，次の3つの素過程で決まる． 1つ目は，カ

学的摩擦であり，各粒子をエネルギー等分配

（又は熱平衡）の状態へ向かわせる． 2つ目は，

粘性加熱であるこれは，差動回転円盤内で

粒子が相互作用することにより，回転運動の

エネルギーをランダム運動（熱運動）のエネ

ルギーヘと変換する効果であり， e,iを増加

させる 3つ目は，粒子に働くガス抵抗であ
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り，これはランダム運動を抑える働きをする．

e, iの大きさは，粘性加熱とガス抵抗の釣り

合いによって決まる．

これら 3つの素過程が働く時間は，どれも

チャンドラセカールの緩和時間で与えられ，

局所的な緩和はこの緩和時間で進行してい

＜．惑星系円盤において，チャンドラセカー

ルの緩和時間は惑星形成時間に比べ短いため，

惑星形成時において「速度の平衡」は常に実

現されていると考えて良い．

0.4 

0.2 

-0.2 

-0.4 

0.8 0.9 1.0 1.1 1.2 

r Ir p 

図1：惑星がガス円盤にたてる密度波の面密
度等高線惑星は図の中心に位置する．惑星

軌道の内側と外側に一本ずつ腕状の波が作ら

れている．惑星は内側の腕からは正のトルク，

外側の腕からは負のトルクを受け，正味とし

ては負のトルクを受ける(Tanakaet al. 2002 

より）．惑星がガス円盤から密度波の励起を

通して受ける抵抗力は，粒子円盤から力学的

摩擦により受ける抵抗力と非常に良く似てい

る．



粒子に働くガス抵抗についてもう少し詳し

＜述べておこう．惑星系円盤の場合，月程度

より小さい天体は，流体力学的な通常のガス

抵抗を受ける一方，月より大きい天体では，

ガス円盤との重力による相互作用が卓越す

るこの場合のガス抵抗力は，惑星がガス円

盤に密度波を励起することにより発生する

（図 1参照）．惑星のランダム運動のエネルギ

ーが，密度波のエネルギーに変換されるため，

「抵抗力」が働くのである (e.g.,Goldreich & 

Tremaine 1980, Artymowicz 1993, Tanaka et 

al. 2000). 

興味深いことに，密度波励起による抵抗力

というメカニズムの違いにもかかわらず，こ

の抵抗力は相対速度を音速とした場合の力学

的摩擦の公式で大体説明することができる．

このような粒子円盤とガス円盤の間の類似性

は，速度緩和の場合だけでなく，後で述べる

「動径方向移動」においても成り立っている

4．円盤系での粒子の動径方向移動

「動径方向の移動」は，粒子が円盤からト

ルクを受けることにより起こるもし円盤か

ら正のトルクを受ければ，粒子は角運動量を

得て外側に移動することになるこの円盤と

粒子のトルクのやりとりは，ガス円盤の場合

に対しては Goldreich& Tremaine (1979)に

始まり，詳しく調べられている．そこで先ず，

ガス円盤との相互作用を説明しよう．粒子円

盤の場合に対しては，ガス円盤の場合の類推

により，移動速度の見積りをすることができ

る．

4.1.ガス円盤の場合

一般に，粒子は，その軌道に対し円盤の内

側部分からと外側部分からは反対のトルクを

受けるこのため，粒子が受ける正味のトル

クは，内側部分と外側部分との非対称性から

生まれる．ガス円盤との相互作用の場合，粒

子は図1にみられる密度波からトルクをうけ

28 

る．粒子軌道に対し内側の腕は粒子回転を加

速させ正のトルクを，外側の腕は負のトルク

をおよぼすこれらの打ち消し合いの結果，

正味のトルクが決まる．

正味のトルクを生む非対称には，（1）円盤の

曲率の効果と，（2）面密度，圧力，温度の動径

方向の変化とがある．このような非対称性に

より天体に働く正味のトルクは，Ward(1986) 

によって見積もられていた彼の結果による

と，（l）の曲率の効果は粒子に負のトルクを

およぼすまた (2)の効果については，通常

のガス円盤で面密度，圧力，温度は，負の動径

方向の勾配を持っており，その場合やはり負

のトルクを粒子に与える従って，通常のガ

ス円盤に対して粒子は常に中心へ落下してい

＜． 

おおよその移動時間は，「チャンドラセカ

ールの緩和時間」 Trelaxを用いて表すことが

できる．密度波の特徴的な長さは，ガス円盤

の厚さ hで与えられる．今，トルクの打ち消

し合いを考えず，外側の円盤からのトルクだ

けで粒子が移動するとすると，ガス円盤の厚

さ h程度移動するのにかかる時間は， Trelax

で与えられる．実際には，正味のトルクは打

ち消し合いの結果ファクター h/r(rは粒子

の軌道半径）程度小さくなるので，粒子が軌

道半径程度を移動する時間， Tmigrationは，

T migration r-v'.fx.elax X (r / h) 2 (3) 

で与えられることになる．

地球が原始惑星系円盤内にあった場合，こ

の移動時間は10万年程度になる．この移動

時間は惑星形成時間にくらべて短く，惑星形

成理論において重大な問題となっている

4.2.粒子円盤の場合

粒子円盤においても，同様な方法で移動時

間を見積もることができる実際に，粒子円

盤の場合も，粒子は円盤の内側部分からと外

側部分からは反対のトルクを受け，正味のト



ルクは，内側部分と外側部分との非対称性か

ら生まれる．粒子円盤の場合，相互作用する

範囲の特徴的長さは， exrで，与えられる．こ

れより，粒子円盤での移動時間の見積りにお

いては，ガス円盤での厚さ hの代わりに er

を用いれば良い．即ち，粒子円盤での移動時

間に対して次式を得る：

T migration "" Trelax X (1 / e) 2. (4) 

前に述べたように，円盤系では離心率 eは

1に比べて小さいため，移動時間はTrelaxに

比べて長くなるこのように得られた移動時

間に含まれるファクター1/＆は，緩和に必要
なエネルギー変化量からも理解することがで

きる．粒子軌道が移動する際には，その軌道

エネルギーが大きく変化する． eや iに関係

したランダム速度のエネルギーに比べて，粒

子の軌道エネルギーは，ファクター 1/＆だ
け大きいため，これを変化させるためにはそ

の分長い時間を要するそのため移動時間に

は，ファクター1/＆が含まれるのである．
以上では簡単な議論によりおおよその移動

時間を見積もったが，移動方向の決定は簡単

ではない．移動方向は粒子円盤の様子に依存

し変わり得るからである例えば，粒子円盤

の面密度が半径とともに増加する場合は，粒

子が外側に移動することもあり得る方向に

ついての詳細なことは，粒子円盤での「曲率

の効果」が調べられていないため，まだ明ら

かになっていないというのが現状である円

盤系においては，「重い粒子が中心に落ち込

み，軽い粒子が外側に移動する」のが当然と

いうところまでには至っていないのである

5.まとめ

本稿では，粒子円盤とガス円盤に対して，重

力緩和過程としての「粒子速度進化」と「動

径方向の移動」を論じた．

速度進化である e,iの進化は，円盤での局
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所的緩和と考えることができ，その緩和過程

は「チャンドラセカールの緩和時間」で進行

する一方，「粒子の動径方向の移動」は，系

全体での進化と考えることができるこの系

全体の進化は，それに伴うエネルギー変化の

大きさゆえに，「チャンドラセカールの緩和

時間」 Trelaxに比べて，ファクター 1/＆だけ

長くなる

又，ガス円盤と粒子の重力相互作用は，粒

子円盤との重力相互作用と非常に似通ってお

り，力学的摩擦やチャンドラセカールの緩和

時間でおよそ説明することができる．

粒子円盤での「粒子の動径方向の移動」の

研究は，本稿での大雑把な見積りより正確な

ものはほとんどない．また，移動の方向を決

めるには，曲率の効果などの詳細な研究が必

要があるこれらの研究は，今後なされてい

くべきものであろう．
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ABSTRACT 
We investigated the orbital evolution of satellite galaxies using numerical simulations. It 
has been long believed that the orbit suffers circularization due to the dynamical friction from 
the galactic halo during orbital decay. This circularization was confirmed by numerous simula— 
tions where dynamical friction is added as external force. However, some of the resent N -body 
simulations demonstrated that circularization is much slower than expected from approximate 
calculations. In this study we will show that 

(1) The discrepancy really exists, in other words, it is not any of error caused during numerical 
simulations. 

(2) The dominant re邸 onfor the discrepancy is the邸 sumptionthat Coulomb logarithm log A 
is constant, which h邸 beenused in practically all recent calculations. 

Since the size of the satellite is relatively large, accurate determination of the outer cutoff 
radius is crucial to obtain good estimate for the dynamical friction. An excellent agreement 
between N-body simulations and approximate calculations was observed when the outer 
cutoff radius is taken to be the distance of the satellite to the center of the galaxy. When 
satellite is at the periastron, the distance to the center is smaller and therefore log A becomes 
smaller. As a result, the dynamical friction becomes less effective. 

(3) Applying our result to orbital evolution of the L紅geMagell皿 iccloud, the expected lifetime 
of the LMC is twice邸 long邸 thatwould be predicted with previous calculations. 

Previous study predicts that the LMC will merge into the Milky Way after 7 G years, while 
we found that the merging will talce place after 14 G years from now. Our result suggests 
that generally satellites formed around a galaxy have longer lifetime than previous estimates. 

Subject headings: celestial mechanics, stellar dynamics —Galaxy:kinematics and dynamics —galaxies: 
Magellanic Clouds —Local Group -methods: numerical 

1. Introduction 

Recent observations have revealed that there 
are many satellite galaxies around the M韮yWay.
In the hierarchical clustering scenario, it is ex-
pected many of such dwarf satellites are formed. 
In fact, one of the most serious problems with the 
present hierarchical clustering scenario is that it 
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predict too many satellite galaxies, about a factor 
of 10 more than the number observed in the Local 
group (e.g., Moore et al., 1999). A number of ex-
planations, including exotic theories which relies 
on hot or self-interacting dark matter, have been 
proposed. 

In this paper, we go back to the basic problem: 
how long are the satellites lives ? In other words, 



how do the orbits of satellites evolve through in-
teraction with the gravitational field of its par-
ent galaxy ? The dominant driving force of the 
evolution is the dynamical friction. For satel-
lites like the LMC-SMC pair and the Sagittarius 
dwarf, there are many detailed studies of their or-
bital evolution, in which the dynamical friction 
is included as the external force operating on the 
center-of-mass motion of the satellite. Well known 
works include Murai and Fujimoto (MCs) and 
Ibata and Lewis (Sagittarius). In both of these 
studies, and in all other studies where the dynam-
ical friction formula is used, significant circulariza-
tion of the orbit of the satellite is observed. This 
circularization is the natural result of the fact that 
the dynamical friction is proportional to the local 
density of the background stars, and therefore the 
strongest at the periastron. 

However, recent N-body simulations of the 
orbital evolution of satellites resulted in rather 
counter-intuitive result. Van den Bosch et al 
(1999, hereafter BLLS) performed the N-body 
simulation of the satellite, where the parent galaxy 
is modeled directly as self-consistent N-body sys-
tem. The satellite is modeled as one massive 
particle with spline potential softening used in 
PKDG恥 V(Dikaiakos & Stadel, 1996). They 
investigated the evolution of the orbit for wide 
variety of model parameters such as the mass of 
the satellite and initial orbital eccentricity. They 
observed practically no circularization in any of 
their simulations. 

Jiang and Binney {2000, hereafter JB) per-
formed fully self-consistent simulation of the satel-
lite, where both the parent galaxy and the satel-
lite are modeled as self—consistent N-body sys-
tems. They compared their result with the result 
of approximate model in which the usual dynam-
ical friction formula is used. Though they argued 
that the agreement is good, from their figure 3 it 
is clear that approximate models suffer strong cir-
cularization and evolve faster than their N-body 
counterpart. 

Neither of above two papers discussed the rea— 
son of this rather serious discrepancy between the 
result of N-body simulations and previous ana— 
lytic prediction. The purpose of this paper is to 
understand its cause. In section 2, we describe our 
model experiment designed to reproduce the dis-
crepancy observed by BLLS and JB. In section 3 
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we show our result. Our result is consistent with 
both of the previous works. N-body simulation 
showed only marginal circularization but approxi— 
mate calculation using dynamical friction formula 
showed strong circularization. In section 4, we in-
vestigate the re邸on.There are several possible 
candidates for the reason. We consider a few of 
them, and found that a simple modification of the 
conventional form of the dynamical friction for-
mula results in a quite remarkable improvement of 
the agreement between N-body and approximate 
calculations. In section 5 we apply our formal— 
ism to the LMC. In this cases, orbital evolution 
becomes significantly slower than prediction by 
previous calculations using conventional formula. 
The lifetime of LMC was 7 Gyr with conventional 
formula, but is 14 Gyr with our formalism. We 
also discuss the implication of our result to the 
so-called "dwarf problem". 

2. Numerical Simulation 

We carried out a set of numerical simulations to 
see whether the results obtained by BLLS and JB 
are really true or not. In this section, we describe 
the models we used. 

2.1. N-body simulation 

We performed N-body simulations of the evo-
lution of a satellite orbiting in a massive dark halo 
of a galaxy. 

The massive halo is composed by N equal m邸s
particles, while the satellite dwarf is modeled by 
a single particle with a certain softening length. 
The softening is used to miinic the finite size of 
the satellite. 

We adopted a King model of the concentration 
ratio'1t O = 9 as a model of the galactic halo. The 
system of units is the Heggie unit (Heggie and 
Mathieu {1986)) where the gravitational constant 
G is 1, them邸sand the binding energy are 1 and 
0.25, respectively. 

JB used a composite clisk+halo model in which 
the halo is expressed by particles and the disk is 
assumed to be rigid. BLLS used a single spherical 
halo. In both works, the halo density profile has 
the form 

p=po 
r~ exp[-(r/ro)り

r~ +r2' 
(1) 



where r c and rt are the core radius and the outer 
scale radius of the halo and{JOis the central den-
sity of the halo. BLLS adopted k = 2 while JB 
adopted k = 1. 
We did not follow the models in their works. 
The standard dynamical friction formula is de-
rived for the case of field stars with the Maxwell 
distribution. However, the distribution function 
邸sociatedwith eq. {1) is rather different from 
the Maxwell distribution. This may cause dif— 
ference in the effect of the dynamical friction. 
Also, the distribution function would relax to the 
Maxwellian through two-body relaxation, causing 
a small change in both the distribution function 
and the density profile. 

In addition, the range of radius for which the 
density slope is approximately -2 is rather nar-
row with this model, since the slope is noticeably 
shallower than -2 for r ~ lOrc・

The distribution function of the King model 
is a simple lowered Maxwellian. Therefore the 
agreement with the true Maxwellian is very good 
within the half-m邸sradius. Also, since the distri-
bution function is practically as close as the true 
Maxwellian as we can make, thermal relaxation is 
minimized, though it still present (see e.g., Quin-
lan 1996?). Also, the King model with Wt。=9 
h邸 fairlywide range of radius in which the slope 
of the density is approximately -2. So it is a fairly 
good model for a spherical halo with flat rotation. 

The satellite galaxy is modeled by a single par-
ticle with mass Ms and softening length es-The 
force on the satellite from a particle in the halo is 
calculated邸 follows

GmMs(rsat -rha10) 

(lrsat -rha1ol2国＋ €talo)2 
["・ (2) F = 

Here fhal。isthe softening length for the particle 
in the galactic halo. The value of the gravitational 
constant G is 1 in the standard units. 

In our simulations, equations of motions of all 
particles in a dark halo and the satellite, i.e., N +1 
particles, are integrated self-consistently. In other 
words, the dynamical friction effect from halo par-
ticles to the satellite is included naturally. 

We used GRAPE6 to calculate the acceler-
ation. We adopted simple O(Nりdirectsum-
mation, to avoid any possible numerical artifact 
caused by the approximations made in force cal-
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culation. BLLS used the treecode and JB used a 
composite grid-based code. We do not think the 
numerical method caused the difference, but we 
want to be absolutely sure that our N -body sim-
ulation is as accurate邸 possible.The number of 
particles N used in the simulations shown in this 
paper is 32768. We varied N from 8192 to 32768, 
and found any noticeable difference in the orbit of 
the satellite. We integrated the orbits of the satel-
lites and halo particles using the standard leapfrog 
scheme. 

2.2. Semi-analytic Integration 

We performed semi-analytic calculations to fol-
low the evolution of satellite orbits. 

In these calculations, the model of the satellite 
is the same as in the N-body simulations, i.e., 
a single particle with mass Ms and the softening 
length e8. 

Instead of being represented by N particles, the 
potential of the galactic halo is evaluated by using 
the gravitational potential of King 9 model with 
the same mass and scales as those adopted in N-
body simulations. 

In this integration, the force to the satellite due 
to the dynamical friction from the halo is evalu-
ated by using an analytical formula, too. 

For the dynamical friction formula, we follow 
JB (and also Murai and Fujimoto) to use the 
standard "Chandrasekhar's dynamical friction for-
mula". It is expressed as 

dv JUmo冥J(V)dv
- ＝ -16T炉m(Ms+m)lnA~i)
dt lvl3 

where M H and Msat are the masses of host galaxy 
and its satellite galaxy {Chandrasekhar 1943; Bin-
ney and Tremaine 1987). Here ln A is the Coulomb 
logarithm 

lnA = ln（凡alo/c8が），（4)

where Rhalo is the scale length of the galactic halo. 
This formula has been adopted by many semi-
analytic studies of the orbital evolution of satellite 
galaxies (e.g., Murai and Fujimoto 1980; Helmi 
and W血 e,1999; Johnston et al.., 1995). It is 
also used in cosmological studies of galaxy forma-
tion in order to estimate the merging time scale of 
satellite galaxies (e.g., Kauffmann, et al.., 1994). 



3. Result 

Figure 1 shows the orbital evolution of a model 
satellite galaxy. The ordinate and abscissa are 
the distance of the satellite from the center of the 
galaxy and time in the N-body units. The solid 
and dashed curves correspond to result of N-body 
simulation and that of semi-analytic model with 
standard dynamical friction formula {3). 

In Figure 1 two curves are in good agreement 
only for a first few dynamical times. After a few 
orbits, two curves deviate from each other. Figure 
1 shows that the orbital decay calculated with for-
mula (3) is faster than that obtained by N-body 
simulation. If one measure the orbital eccentricity, 
it is clear that N-body result shows only a small 
change in the eccentricity, while semi-analytic re-
sult shows significant circularization. 

Thus, even though we used completely differ-
ent initial models and numerical method, we con-
firmed previous results by BLLS and JB that N-
body simulation shows little circularization while 
semi-analytical calculation with standard dynam-
ical friction formula shows strong circularization. 
In the next section, we discuss the possible causes 
of this discrepancy. 

4. Possible causes of discrepancy 

Since we have obtained quite different results 
with N-body and semi-analytic models, at least 
one of them must be wrong. Since N-body cal— 
culation can suffer many numerical problems due 
to limited resolution and particle noise, one might 
think N-body result is probably wrong. However, 
additional tests with different number of particles 
and different sizes of timestep showed very good 
agreement (Hashimoto et al., 2002). Therefore it 
seems our N-body result is sound. In addition, 
as we stated in the previous section, our N-body 
result is in good agreement with BLLS and JB. 
Though it is not impossible, it is certainly unlikely 
that all of these three works are wrong. 

So let us now consider the possibility that the 
standard dynamical friction formula is wrong. 

The standard dynamical friction formula is ob-
tained under the assumption that the massive ob-
ject moves straight in a uniform and isotropic dis-
tribution of field particles. Field particles are also 
assumed to be moving straight, and any interac-
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tion between field particles is ignored. Clearly, the 
satellite does not move straight, but circle around 
the center of the parent galaxy. The distribution 
of field stars within the parent galaxy is far from 
uniform, and field stars also circle around in the 
parent galaxy. Thus, it is not really surprising 
that the naive use of the dynamical friction for-
mula gives rather bad result. 

One obvious way to improve the accuracy of 
the dynamical friction formula is to calculate the 
linear response of the global distribution function 
of the parent galaxy to the presence and the orbit 
of the satellite (Weinberg, 1995). This approach 
would certainly give accurate and reliable result 
which agrees well with N-body result (Hernquist 
and Weinberg 1989). However, since the global 
response depends on the distribution function it-
self, the result cannot be expressed in a compact 
and form. So here we consider the possibility to 
improve the standard formula. 

As we noted above, there are at least two prob-
lems with the standard formula. First, it as-
sumes that both the satellite and field stars move 
straight. Second, it assumes that the density of 
the field star is the same everywhere. 

The first assumption is clearly wrong, but its 
effect is difficult to estimate. Let us consider the 
effect of the second assumption, which is much 
easier to evaluate. In previous works, the outer 
cutoff radius of the Coulomb logarithm is taken to 
be the scale length of the halo, while the repre— 

sentative density of the field stars is taken to be 
the local density around the satellite. This would 
clearly cause an overestimate of the Coulomb inte-
gral, for the case of the singular isothermal sphere 
(or the King model we used), since the stellar den-
sity drops off as fast as l/r2. This means the log-
arithmic divergence of the Coulomb integral does 
not actually occur if we takes into account the ef— 
feet of the density gradient. 

To correctly take into account the effect of the 
density gradient is a tricky problem, since for en-
counters with impact parameter comparable or 
larger than Rs, the distance to the center of the 
galaxy, we cannot really use the straight line ap-
proximation. On the other hand, just to ignore 
any encounter with impact parameters Rs might 
not be too bad assumption, since density drops off 
rapidly and realistic effect is unlikely to enhance 
the effect of the encounter (except for the small 



fraction of the orbits in resonance with the orbit 
of satellite). 

Thus, it might be more sensible to use Ra as 
the outer cutoff radius for the Coulomb logarithm, 
that to use the traditional Rhalo• In fact, this use 
of R8 is first proposed by a pioneering work by 
Tremaine {1976) on the effect of the dynamical 
friction to the orbit of LMC-SMC pair. 

To use f8 as the inner cutoff is okay as an order-
of-magnitude estimate, but can be improved by 
actually integrating the effect of all encounters 
with small impact parameters for Plummer poten-
tial, following the treatment by W出te{1976). For 
Plummer model, the integration can be performed 
analytically and the result is that inner cutoff ra-
dius is Tin= 1.4ら・

Figure 2 is the same as Figure 1 but for the 
above discussed choice of the Coulomb logarithm 

lnA = 1n（金）． (5) 

When the R8 becomes smaller than 1.4e8, we sim-
ply put the dynamical friction term to be zero, 
since it is clearly unphysical to apply dynamical 
"acceleration". 

The agreement between the N-body result and 
semi-analytic treatment is quite remarkable. 

Figure 3 shows evolution of eccentricities. In 
Figure 3, solid, thin dashed and thick dashed 
curves corresponds to the result of N-body simu-
lation, that of semianalytic formula with constant 
A and that with varying A, respectively. The re-
sults of N-body simulation and that obtained us-
ing varying A formula demonstrate good agree-
ment, while the result of calculation using a con-
stant A does not. 

In Figure 4, evolution of eccentricities are plot-
ted against that of apogalactic distance Rm紅• In 
Figure 4, curves are the same邸 thosein Figure 
3. The results of N-body simulation and that ob-
tained using varying A formula demonstrate good 
agreement, while the result of calculation using 
a constant A does not. Figure 4 shows that quick 
circularization appearing in result of semi-analytic 
integration using constant A is not a matter of 
time-scale of orbital evolution. Instead, there is 
a qualitative difference in the understanding and 
use of dynamical friction. 

Figures 2 and 3 show that the discrepancy 
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Fig. 1.-Time evolution of radius of satellite po-
sition from the galaxy center. Solid: result of N-
body simulation. Dashed: semi-analytical integra— 
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Fig. 2.—Same as Figure 1, but for the variable 
A. 
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Fig. 4.-Evolution of eccentricites are plotted 
against that of apogalactic distance. Result of 
semi-analytic integration using varying A is in 
good agreement with that of N-body simulation, 
while that using constant A is not. 

shown in Figure 1 is caused by an inadequate es-
timate of A. Figure 4 shows that the difference 
between Figure 1 and Figure 2 and the reason for 
the discrepancy in Figure 1 are never a matter 
of time-scale of orbital evolution. Other possi-
ble reasons, such as the effect of the global re-
sponse of the distribution function, might still be 
important, but they are clearly not the prime rea— 
son of the discrepancy between N-body and semi-
analytic works which we discussed in the introduc-
tion and section 3. 

The improved agreement with the N-body re-
sult is explained as follows. With bma:i: = Rcut, 
the semi-analytical treatment causes strong circu-
larization and faster orbital evolution. This im-
plies that the the semi-analytical treatment over-
estimated the dynamical friction around the pe-
r坤tron.Around the apoastron, the error might 
exist, but relatively small compared to that at the 
perigalacticon The use of variable bmaェreducesthe 
value of 1n A both at perigalacticon and apogalac-
ticon, but by a much larger factor at the peri-
galacticon simply because Rs is smaller. Thus, ef— 
fectively we reduced the dynamical friction around 
the peri邸tron,which resulted in the improvement 
in the agreement with the N-body result. 

In hindsight, it looks too obvious that the tra— 
ditional use of the dynamical friction formula was 
inappropriate. Theoretically, it is clearly not justi-
fiable to assume that the stellar density is the same 
up to the outer cutoff radius of the halo. From 
comparison between the N-body result and those 
of semi-analytic treatment, it also is clear that pre-
vious semi-analytic treatment overestimates decel-
eration due to the dynamical friction around the 
perigalacticon. 

To summarize our result, the orbital decay of 
satellites is slower than ever estimated, the eccen-
tricity of orbit of revolution of a satellite around 
the host galaxy is almost constant. The re邸on
why previous estimates are wrong is that previ— 
ous studies overestimated the effect of dynamical 
friction at the perigalacticon. 

5. Summary and Applications 

We performed N-body simulations of satellite 
orbits. We found that the circularization of the 
orbit due to the dynamical friction is much slower 
than commonly believed. This discrepancy was 

35 



9
ー

，

ヽ

0

0

5

0

0

0

5

0

 

2

1

1

 

一~
d
>
t
)

S
n
!
P
B
H
 

varyingA -
constant A ・・・・・・・・・・・ 

゜-10 -5 0 

Time (Gyr) 

5
 

10 

Fig. 5.-Radial Evolution of LMC. From -10 G 
years to 10 G years. 

also reported by BLLS, and we can see the same 
tendency from the numerical result reported by 
JB. 

Previous studies of satellite orbits used the 
outer cutoff radius of the dark halo as bma;i;• We 
found that the effective bmaェshouldbe of the or-
der of Rs, the distnce of the satellite from the cen-
ter of the galaxy, which varies as the satellite or-
bits around the galaxy. Our formula results in a 
greatly improved agreement with the N-body re-
suit. 

5.1. Application to the Milky Way 

We investigated the orbital evolution of the 
Large Magellanic Cloud and the Sagittarius; two 
of the most famous satellites of the MW. 

5.1.1. the Large Magellanic Cloud 

The Large Magellanic Cloud is the most fa-
mous satellite of Milley Way. Its orbit has been 
investigated from both observation and numerical 
simulations (e.g., Toomre, 1970; Tremaine, 1976; 
Lin and Lynden-Bell, 1977; Murai and Fujimoto, 
1980). The importance of the effect of dynamical 
friction from the galactic halo on the orbit evolu-
tion LMC is first emphasized by Tremaine {1976). 

By using numerical simulation, Murai and Fuji-
moto {1980) {hereafter MFSO) determined the or-
bital elements and the present phase of the LMC. 
They performed a number of backward numerical 
integrations of the orbits of the LMC and SMC 
from various initial conditions, and integrated or-

bits of test particles in the LMC and SMC for each 
condition. Comparing the result of distribution of 
test particles and the observed Magellanic stream, 
they choosed the initial condition which gives the 
best fit. 

In their numerical integration, they assumed 
a halo expressed by a singular isotermal sphere, 
which is a simple flat-rotation halo. In their pa-
per, it is not clear what邸sumptionis used for 
ln A, since there is no discussion on how they de-
termined 1n A though it appeared in their equa-
tion (13). However, the fact that the orbit of 
the LMC obtained in their calculation shows sig-
nificant circularization strongly suggest that they 
treated lnA邸 constant.

In order to see the effect of changing ln A, we in-
tegated the orbit of LMC both forward and back-
ward in time, using both the constant A and vari-
ableA (bmaz= Ra)．In this study, we express 
LMC邸 asingle Plummer-softened particle with 
m邸 s2 x 1010 M0 and softening length 5 kpc. The 
rotation velocity of the halo is 250 km/s, same邸
what is used by MF. We simulated the orbit of the 
LMC only, since our purpose here is to demostrate 
the effect of A and not the accurate determination 
of the orbits of the Clouds. 

The solid curve in Figure 5 corresponds to the 
orbit obtained when the dynamical friction is cal-
culated using equation (5). The d邸hedcurve in 
Figure 5 correspond to the orbit obtained using 
the formula (3). The backward part of this d邸bed
curve is in very good agreement with the result of 
MF, indicating that what MF used is indeed a 
constant A. 

Figure 5 shows that real evolution of the orbit of 
LMC (with variable A) is significantly smaller than 
what is obtained by MF. 10 Gyrs ago, the "true" 
apocenter w邸 only160 kpc, while the solution by 
MFw邸 180kpc. 

A more remarkable difference is in the future of 
the LMC. With the constant A. The LMC will fall 
to the galactic center in only 7 Gyrs with constant 
A, while our result suggests that it will t吐emore
than 14 G years for the LMC to fall to the galactic 
center. 

5.2. Eccentricity Distribution of Satellites 

Our study shows that the time evolution of the 
eccentricity of satellites is rather small. Thus, we 
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may邸sumethat the distribution of eccentricities 
of satellite galaxies at present directly reflects that 
at the formation epoch of the Galaxy. Therefore 
the distribution of eccentricities of satellites galax-
ies can be an important clue to the formation of 
the Galaxy. 

5.3. Number Evolution of Faint Galaxies 

Cosmological studies on galaxy formation are 
b邸edon this estimate and discuss the number 
evolution of galaxies. 

The lifetime of the satellite is estimated using 
the dynamical friction timescale with 1n A t吐ento 
be Mn/Ms (Lacey and Cole 1993; Kauffmann et 
al. 1994). This would cause a quite serious over-
estimate in the dynamical friction timescale, since 
the factor one should use is the ratio between the 
size of the halo and the size of the satellite. If 
we assume M ex:が， wehave R ex: M112. Thus, 
there is at least a factor of two difference in the 
value of 1n A. Since there are too many other un-
certainities in the semi-analytic modelling of the 
galaxy number evolution, how serious this differ-
ence is is not clear. However, it certainly affects 
the estimate of presently observed satellites rather 
strongly. A more detailed study on this邸 pectis 
clearly necessary. 
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ABSTRACT 

We set new limits on the mass of the Milky Way, making use of the 

latest kinematic information for Galactic satellites and halo objects. Our 

sample consists of 11 satellite galaxies, 137 globular clusters, and 413 field 

horizontal-branch stars at large distances from the sun. Roughly half of the 

objects in this sample have measured proper motions, permitting the use of their 

full space motions in our analysis. Two alternative methods of m邸 sestimation 

are explored in this paper. First, the constraint that rest-frame velocities of the 

sample objects be lower than their escape velocities at their estimated distances, 

provided by prescribed Galactic potentials, provides a lower limit on the total 

mass of the Galaxy of 1.3 rv 1.4 x 1012 M。.Wedemonstrate that this m邸 s
estimate is basically determined by the motions of seven high-velocity objects 

(Leo I, Pal 3, Draco, and four horizontal-branch stars), not by a single object 

alone (such as Leo I), as h邸 oftenbeen the c邸 ein p邸 tanalyses. We also 

find that a gravitational potential that gives rise to a declining rotation curve 

is insufficient to bind many of our sample objects to the Galaxy. Second, for 

a family of phase-space distributions in a potential with a flat rotation curve, 

a Bayesian likelihood approach is used to reproduce the observed distribution 

of current positions and motions of the sample. This method enables a search 

for the most likely total m邸 sof the Galaxy, without suffering a large influence 

in the final result due to the presence or absence of Leo I, provided that both 

radial velocities and proper motions are used. Although the best m邸 sestimate 

depends somewhat on the model assumptions, such as the unknown prior 
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probabilities for the model parameters, the resultant systematic change in the 

mass estimate is confined to a relatively narrow range of a few times 1011.M;。•

The most likely total mass derived from this method is 2.5:t~ x 1012.M;。
(including Leo I), and 1.8ざ屯1X 1012 M。(excludingLeo I). The mass estimate 
within the distance to the Large Magellanic Cloud (rv 50 kpc) is essentially 

+o.o independent of the model parameters, yielding 5.5~t~ x 1011 M。(including
Leo I) and 5.4:糾X 1011 M。(excludingLeo I). Implications for the origin of 
halo microlensing events (e.g., the possibility of brown dwarfs as the origin of the 

microlensing events toward the LMC may be excluded by our lower mass limit) 

and prospects for more accurate estimates of the total mass are also discussed. 

Subject headings: Galaxy: halo - Galaxy: fundamental parameters - Galaxy: 

kinematics and dynamics - stars: horizontal-branch 

1. INTRODUCTION 

Over the past decades, various lines of evidence have revealed that the mass density in 

the Milky Way is largely dominated by unseen dark matter, from the solar neighborhood 

to the outer reaches of the halo (e.g., Fich & Tremaine 1991). Moreover, the presence 

of a dark component similar to that found in our own Galaxy appears to be a generic 

feature in external galaxies, as inferred from, e.g., flat rotation curves in their outer 

parts, the presence of (a gravitationally bound) hot plasma in early-type galaxies, and the 

observed gravitational lensing of background sources (e.g., Binney & Tremaine 1987). A 

determination of the extent over which such dark-matter-dominated mass distributions 

apply for most galaxies, including our own, is of great importance for understanding the 

role of dark matter in galaxy formation and dynamical evolution. In particular, the mass 

estimate of the Galaxy is closely relevant to understanding the origin of the microlensing 

events toward the Large Magellanic Cloud (LMC) (e.g., Alcock et al. 2000; Alcock et al. 

2001). 

While mass estimates of external galaxies can (in principle) be obtained in a relatively 

straightforward fashion using various dynamical probes, the total mass of the Galaxy 

remains rather uncertain, primarily due to the lack of accurate observational information 

for its outer regions, where the dark matter dominates. The precise shape of the outer 

rotation curve, as deduced from H II regions and/or H I gas clouds (e.g., Honma & Sofue 

1997), is still uncertain because its determination requires knowledge of accurate distances 

to these tracers (Fich & Tremaine 1991). Also, interstellar gas can be traced only up to 
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"-J 20 kpc from the Galactic Center, and hence provides no information concerning the large 

amount of dark matter beyond this distance. 

The most suitable tracers for determination of the m邸 sdistribution in the outer halo 

of the Galaxy are the distant luminous objects, such邸 satellitegalaxies, globular clusters, 

and halo stars on orbits that explore its farthest reaches (e.g., Miyamoto, Satoh, & Oh邸 hi

1980; Little & Tremaine 1987; Zaritsky et al. 1989; Kochanek 1996; Wilkinson & Evans 

1999, hereafter WE99). However, the limited amount of data presently available on the full 

space motions of these tracers, and the small size of the available samples, have stymied 

their use for an accurate determination of the Galaxy's mass. In particular, most previous 

mass estimates (except for WE99, see below) depend quite sensitively on whether or not a 

distant satellite, Leo I, is bound to the Galaxy. Leo I h邸 oneof the largest radial velocities 

of the known satellites, despite its being the second most distant from the Galaxy (Mateo 

1998; Held et al. 2001). As a consequence, estimates of the total mass of the Galaxy are 

much more uncertain (by as much as an order of magnitude) than, for instance, the value of 

the circular speed in the solar neighborhood (Kerr & Lynden-Bell 1986; Fich & Tremaine 

1991; Miyamoto & Zhu 1998; Mendez et al. 1999). 

Recently, by making use of both the observed radial velocities and proper motions of 

six distant objects, WE99 demonstrated that the use of full space motions can provide 

a reliable m邸 sestimate of the Galaxy without being largely affected by the presence or 

absence of Leo I. They also argued that the primary uncertainties in their mass estimate 

arose from the small size of the data and the measurement errors in the full space motions, 

especially the proper motions. This work motivated us to investigate a much larger data 

set, with more accurate kinematic information, to set tighter limits ~n the mass of the 
Galaxy. _Specifically, as we show below, there are two objects among the WE99 sample 

(Draco and Pal 3) that have relatively large velocity errors, yet still play crucial roles in a 

determination of the Galaxy's mass, so the addition of more (and better data) is important. 

Over the past few years, the number of distant satellite galaxies and globular clusters 

with available proper motions has gradually increased (e.g., Mateo 1998; Dinescu, Gerard, 

& van Altena 1999; Dinescu et al. 2000; Dinescu et al. 2001). In addition, another tracer 

population that is suitable for exploring mass estimates of the Galaxy has become available 

from the extensive compilation of A-type metal-poor stars by Wilhelm et al. (1999b), which 

provided radial velocity measurements, as well as estimates of the physical parameters of 

these stars (e.g., [Fe/H], Te//, log g). Among the Wilhelm et al. sample, the luminous 

field horizontal-branch (FHB) stars are the most useful mass tracers, both because of their 

intrinsic brightness, and the fact that accurate distance determinations can be inferred from 

their absolute magnitudes on the horizontal branch (e.g., Carretta et al. 2000). Moreover, 
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there exist proper-motion measurements for many of these stars, provided by both ground-

and space-based proper-motion catalogs (Klemola, Hanson, & Jones 1994; Rふser1996; 

Platais et al. 1998; Hog et al. 2000), from which full space motions may be derived. 

In this paper we re-visit the mass determination of the Galaxy, based on a sample 

of 11 satellite galaxies, 137 globular clusters, and 413 FHB stars, out of which 5 satellite 

galaxies, 41 globular clusters, and 211 FHB stars have measured proper motions. We 

adopt two different methods for obtaining this mass estimate: (1) A method based on the 

requirement that the rest-frame velocities of observed samples objects be less than their 

escape velocities at their present distance from the Galactic center (e.g., Miyamoto et al. 

1980; Carney, Laird, & Latham 1988), and (2) A method, based on a Bayesian likelihood 

analysis, that seeks to reproduce both the current positions and velocities of the sample 

objects (e.g., Little & Tremaine 1987; Kochanek 1996; WE99). Because our present sample 

of tracers is, by far, the largest and most accurate one available, it is possible to place more 

reliable limits on the total mass of the Galaxy. In § 2 we describe our sample objects and 

the assembly of their kinematic data. In § 3 and § 4 the results on the mass estimates of 

the Galaxy are presented. § 3 is devoted to the method of mass estimation based on escape 

velocities; in § 4 we adopt a Bayesian likelihood method to obtain the most likely total mass 

of the Galaxy. In § 5 we discuss implications for the origin of the halo microlensing events 

toward the LMC and the mass estimate of the Local Group, and consider the prospects for 

more obtaining more accurate estimates of the total mass of the Galaxy in the near future. 

2. DATA 

We consider a sample of objects that serve as tracers of the Galactic mass distribution 

consisting of 11 satellite galaxies, 137 globular clusters, and 413 FHB stars. In the case of 

the satellite galaxies, all of the basic information for our kinematic analysis, i.e., positions, 

heliocentric distances, and heliocentric radial velocities, are taken from the compilation 

of Mateo (1998). For the globular clusters, we adopt the information provided by Harris 

(1996), including their positions and heliocentric radial velocities, their metal abundances, 

[Fe/H], and the apparent magnitude of the clusters'horizontal branch (HB). The catalog of 

Wilhelm et al. (1999b) is our source of similar information for the FHB stars. We derive an 

internally consistent set of distance estimates for the globular clusters and the FHB stars 

from the recently derived relationship between the absolute magnitude of the HB, Mv(HB), 

and [Fe/H], by Carretta et al. (2000), 

Mv(HB) = (0.18士0.09)([Fe/H]+ 1.5) + (0.63土0.07). (1) 
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Clearly, we have assumed that there is no large offset between the absolute magnitudes of 

FHB stars and their counterpart HB stars in the globular clusters (a view also supported 

by the recent work of Carretta, Gratton, & Clemintini 2000). Figure 1 shows the spatial 

distribution of the globular clusters, satellite galaxies, and FHB stars on the plane 

perpendicular to the Galactic disk, where X axis connects the Galactic center (X =0) and 

the sun (X =8.0 kpc). The filled and open symbols denote the objects with and without 

proper-motion measurements, respectively. Satellite galaxies are the most distant tracers, 

with Galactocentric distances r greater than 50 kpc. The globular clusters extend out to 

almost r = 40 kpc, while the present sample of FHB stars are confined to locations within 

10 kpc of the sun. Thus, our sample objects are widely, though not uniformly, distributed 

throughout the volume of the Galaxy. 

Among these sample objects there exist proper-motion measurements for 5 of the 

satellite galaxies, 41 of the globular clusters, and 211 of the FHB stars. The proper 

motion data for LMC, Sculptor, and Ursa Minor are taken from WE99, whereas those 

for Sagittarius and Draco.are taken from Irwin et al. (1996) and Scholz & Irwin (1994), 

respectively. The proper motions for most of the globular clusters have been compiled 

by Dinescu et al. (1999). We adopt the data from this source, except for two globular 

clusters with recently revised proper-motion measurements (NGC 6254: Chen et al. 2000; 

NGC 4147: Wang et al. 2000), and for three additional globular clusters compiled recently 

(Pal 13: Siegel et al. 2000; Pal 12: Dinescu et al. 2000; NGC 7006: Dinescu et al. 2001). 

Proper motions for 211 of the FHB stars in the Wilhelm et al. (1999b) sample are available 

from one or more existing proper-motion catalogs. These include the STARNET Catalog 

(Roser 1996), the Yale-San Juan Southern Proper Motion Catalog (SPM 2.0: Platais et 

al. 1998), the Lick Northern Proper Motion Catalog (NPMl: Klemola, Hanson, & Jones 

1994), and the TYCH0-2 Catalog (H~g et al. 2000). Many of these FHB stars have been 
independently measured in two or more catalogs, so that by・ combining all measurements 

one can reduce the statistical errors, as well as minimize any small remaining systematic 

errors in the individual catalogs, as was argued in Martin & Morrison (1998) and Beers et 

al. (2000). 

We estimate average proper motions, < μ >, and their errors,＜叩＞， weightedby the 
inverse variances. as 

n n 

<μ> （Lμi/吐）／（Ll／吐）
i=l i=l 

(2) 

n 

<aμ> （Ll／吐）―1/2,
i=l 

(3) 
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where n denotes the number of measurements. Table 1 lists these compilations, as well 

as the estimated distances to the FHB stars, where r and RV denote the Galactocentric 

distances and heliocentric radial velocities, respectively. Typical errors in the reported 

proper-motion measurements range from 1,-..J 5 mas yr-1 for individual field stars, whereas 

those for satellite galaxies and globular clusters are about 0.3 mas yr―1 and 1 mas yr―l, 

respectively. 

We邸sumea circular speed of VLsR = 220 km s―1 at the location of the sun (i.e. 

恥＝ 8.0kpc along the disk plane) and a solar motion of (U, V, W)= (-9, 12, 7) km s―1 

(Mihalas & Binney 1981), where U is directed outward from the Galactic Center, V is 

positive in the direction of Galactic rotation, and W is positive toward the North Galactic 

Pole. We then calculate the space motions and their errors, fully taking into account the 

reported measurement errors in the radial velocities of the individual satellite galaxies 

(typically a few km s-1), adopting a typical radial-velocity error for other objects (10 

km s―1), the measurement errors assigned to the proper motions of each object (when 

available, adopting a mean error for the source catalog when not), and distance errors for 

the satellite galaxies (10 % relative to the measured ones), or as obtained from eq. 1 for the 

globular clusters and FHB stars. 

It is worth noting that the reported proper motions of the FHB stars in our sample 

may yet contain unknown systematics with respect to their absolute motions in a proper 

reference frame; this caution applies to the globular clusters and satellite galaxies as well. 

It is an important goal to make efforts to reduce the systematic, as well as random, errors 

in the proper motions upon which studies of Galactic structure and kinematic studies are 

based, using much higher precision astrometric observations than have been obtained to 

date. 

3. MASS DETERMINATION BASED ON ESCAPE VELOCITIES 

3.1. Methods and Mass Model 

If we model the Galaxy as an isolated, stationary mass distribution, and assume that 

all of our tracer objects are gravitationally bound to it, then the rest-frame velocities of 

all objects, VnF, must be less than their escape velocities, Vesc =../'.和， whereゆdenotes
the gravitational potential of the Galaxy. A number of previous researchers have adopted 

this method for obtaining mass estimates of the Galaxy (e.g., Fricke 1949; Miyamoto et al. 

1980; Carney et al. 1988; Leonard & Tremaine 1990; Dauphole & Colin 1995). We first 

follow this procedure using the sample described in §2. 
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Here we adopt two different mass models, in order to investigate the difference in 

estimates of the Galaxy's mass obtained by the use of different potentials. Our models, 

hereafter referred to as Model A and B, are the same as those adopted in WE99 and 

Johnston, Spergel, & Hernquist (1995) (and also used by Dinescu et al. 1999), respectively. 

Model A has spherical symmetry, and results in a flat rotation curve in the inner 

regions of the Galaxy. The gravitational potential and mass density are given as 

ゆ(r) ＝芦log(~), M a2 
p(r)＝一
41r r2(r2 + a2)3/2' (4) 

where a is the scale length of the mass distribution, and Mis the total mass of the system. 

The central density of this model is cusped (like戸） andfalls off as r―5 for r ≫ a. As M 
is derived by integrating p(r) from r = 0 to oo, this model contains one free parameter, a. 

Model B consists of realistic axisymmetric potentials with three components (the bulge, 

disk, and dark halo) that reproduce the shape of the Galactic rotation curve (Johnston 

et al. 1995). The bulge and disk components are represented by Hernquist (1990) and 

Miyamoto & Nagai (1975) potentials, respectively. All of the parameters included in these 

potentials are taken from Dinescu et al. (1999) (see their Table 4). In order to obtain a 

finite total mass, we assume the following modified logarithmic potential (corresponding to 

an isothermal-like density distribution) for the dark halo component: 

ゆhalo(r)=｛碕log[1+（r/d)り一心o, at r < rcut 
-2v託巧i-;, at r ~ Tcut, 

(5) 

p(r) = 碕 3+r/d 
位 Gが(1+ r/d)3' 

(6) 

whereゅ。 isdefined as 

ゆo= v5[log(l + c) + 2c/{1 + c)], c = (rcut/d)2, (7) 

and we adopt v。=128km s―1 and d = 12 kpc (Dinescu et al. 1999). This model contains 
one free parameter, namely the cutoff radius of the dark halo, rcut・ Figure 2 shows the 

rotation curves for O ~ R ~ 20 kpc, provided by Model A with a = 200 kpc (thick solid 

line) and Model B with rcut = 170 kpc (thin solid line), where both curves shown at R ~ 20 

kpc remain unchanged as long as a, rcut>>20 kpc. The circular speed at R = R。is220 
km s-1 for both m邸 smodels. Also shown is the declining rotation curve with increasing 

radius, as obtained from Model A with a= 20 kpc (d邸 hedline). 
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3.2. Results 

Figures 3a and 3b show the relationship between the derived escape velocities, Vesc, 

and the rest-frame velocities, VnF, when we adopt Model A with a= 195 kpc and Model B 

with Tcut = 295 kpc, respectively. For the objects without available proper motions (open 

symbols), we adopt the radial velocities alone as measures of Vnp, hence their estimated 

space velocities are only lower limits. The solid line denotes the boundary between the 

objects that are bound (below the line) and unbound (above the line) to the Galaxy, 

respectively. By selecting the smallest scale length, a, that places the sample objects inside 

the bound region it is possible to set lower limits on the total mass of the Galaxy. 

It is worth noting that this mass determination (the enclosed mass) is basically 

provided by the high-velocity objects located near the boundary line at each respective 

radius (or correspondingゆ）． Fordetermination of the total mass, these include Leo I (for 

which only radial velocity information is available), Draco, Pal 3, and four FHB stars 

(shown inside the rectangular region). Table 2 summarizes the basic observational data for 

these particular objects, where columns (6) and (7) list the Galactocentric distances and 

heliocentric radial velocities, respectively, and the other columns are obvious. Inspection of 

Figure 3 highlights the following important properties of the mass determination: (1) If the 

proper motions of all objects are unavailable, then the mass estimate sensitively depends 

on the presence or absence of Leo I, as has been noted in previous studies. (2) Compared 

to case (1), if the available proper motions of the satellite galaxies and globular clusters 

are taken into account, the constraint provided by Draco and Pal 3 is basically the same as 

that provided by Leo I. This may explain the result of WE99, which showed that the mass 

determination is made insensitive to Leo I if the proper motion data of satellite galaxies 

and globular clusters are taken into account. However, as Figure 3 indicates, the velocity 

errors for Draco and Pal 3 are quite large, so these objects place only weak constraints on 

the mass estimate. (3) If we consider the proper motions of FHB stars, then the four FHB 

stars having high velocities (one of which exhibits a rather small velocity error) provide 

the basically the same constraint on the Galaxy's mass as Leo I, Draco, and Pal 3. These 

properties suggest that the inclusion of FHB stars with available proper motions is crucial, 

and provides constraints on the mass limit of the Galaxy that depend on neither the 

inclusion or absence of Leo I nor on the large velocity errors for Draco and Pal 3. 

We compute the boundary line provided by Pal 3, Draco, and the four FHB stars inside 

the re~tangular region in Figure 3, based on a weighted least-squares fitting procedure 
(weights being inversely proportional to the velocity errors). This exercise yields a= 195~閏t°

+335 kpc for Model A, and rcut = 295~1:~ kpc for Model B. Using these values, we arrive at the 
most likely lower limits to the total mass M of the Galaxy as 2.2~i:i x 1012 U。forModel 
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A and 2.2堺 X 1012 M。forModel B, respectively. Thus, the difference in the derived 
mass limits is not significant, as long as the rotation curve at outer radii is approxirnately 

constant at the adopted value of 220 km s―1. It also suggests that the flattened nature 

of the Model B potential, due to the presence of the disk component, does not affect the 

results significantly -the high-velocity tracers are located at large Galactocentric distances 

and/ or their orbits largely deviate from the disk plane. 

We note that this method of mass determination, based on escape velocities, inevitably 

~epends on the selection of a few apparently high-velocity objects from a much larger 
sample of tracers. However, we also point out that the lower mass limit obtained here is 

also influenced by the inclusion of additional FHB stars with VnF rv 500 km s-1, or the 

consideration of Draco alone, which possesses the the highest VnF relative to Vesc• An 
anonymous referee echoed a concern of ours, that mass estimates obtained from tracers that 

exhibit extreme properties, such as high inferred space motions, may simply be reflecting 

the tail of an error distribution in the observables, e.g., the proper motions, possibly 

amplified (particularly in the case of the satellite galaxies) by systematic errors in distance 

estimates. Our principal goal, at present, is not to obtain the exact value of the lower mass 

limit, but to highlight the significance of considering FHB stars, which -set basically the 

same mass limit as can be obtained from Leo I, Draco, and Pal3. The great ad vantage of 

the FHB stars is that their number can be expanded quickly in future studies, while the 

number of satellite galaxies will forever remain small. 

In addition to the above experiments, we also considered a mass model that yields a 

declining rotation curve at outer radii, as was proposed by Honma & Sofue {1997) from 

their H I observations. We adopt Model A with a= 20 kpc, which gives rise to VLsR = 211 

km s―1 at R = R。.Thecorresponding rotation curve, being reminiscent of the result in 
Honma & Sofue {1997), is shown as the dashed line in Figure 2. Figure 4 shows the VnF vs. 

Vesc relationship that follows from adoption of this model. As is evident, the total mass 

obtained from a model that leads to a declining rotation curve is quite insufficient to bind 

many of our sample objects to the Galaxy. 

4. MASS DETERMINATION BASED ON A BAYESIAN LIKELIHOOD 

METHOD 

4.1. Method 

As a second method for mass estimation of the Galaxy, we examine an alternative that 

takes into account all of the positional and kinematic information of the sample objects, 
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in contrast to the use of the high-velocity tracers alone, as in the previous section. In this 

approach, a phase-space distribution function of tracers, F, is prescribed for a specifically 

chosenゅ， andthe model parameters included in F andゆarederived so as to reproduce 
the presently observed positions and velocities of the tracers in the (statistically) most 

significant manner. The optimal deduced parameters relevant toゆthenallow us to estimate 

the total mass of the Galaxy. This method was originally proposed by Little & Tremaine 

(1987), and further developed by Kochanek (1996) and WE99. 

Based on the results presented in the previous section, we take Model A with spherical 

symmetry as the mass distribution of the Galaxy, which is sufficient for the following 

analysis. For the sake of simplicity, and also for ease of comparison with the previous 

studies by Kochanek (1996) and WE99, the phase-space distribution function is taken to 

have the same anisotropic form as that adopted in these studies. That is, it depends on the 

binding energy per unit mass, e（三ゆー炉／2),and the angular momentum per unit mass, l, 

in the following way, 

F(c, l) = z-2!3 J(c), (8) 

where 

J(e) 
2/3-3/2 d 

7r3/2r[m-1/2＋暉［1-尋

x / dゆ
E.  Id叫 2/3Ps(c -1/J)f3-3/2+m 
o dゆm

ゆ）， (9) 

where Ps is the tracer density distribution, r is the gamma function, and m is an integer 
whose value is chosen such that the integral in eq. (9) converges (e.g., Dejonghe 1986; 

Kochanek 1996). In the spherical model, this form of the distribution function yields equal 

velocity dispersions in the orthogonal angular directions, < vi >=< vl >, and a constant 

anisotropy {3 =.1-< vi > / < v; > everywhere in the Galaxy. Our choice of m = 2 in 

eq. (9) (to be in accord with the WE99 work) limits the allowed range for the velocity 

anisotropy to -1.5 ~ {3 ~ 1 when proper motion data are considered, while the use of radial 

velocities alone sets no limit for tangential anisotropy [-oo, l]. 

For Ps, we consider WE99's two models: (a) Shadow tracers following the mass density 

distribution obtained from Model A (eq. 4), and (b) a power-law distribution as a function 

of r. The shadow-tracer model is given as 

Ps(r) ex 
a~ 

r2(r2十叶）3/2'
(10) 
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where a5 is the scale length. The power-law model with index'Y is given as 

1 
Ps(r) ex―. 

r-Y 
(11) 

Here, since shadow tracers may be truncated at the distance below the scale length of the 

mass distribution, the scale length of the tracers, as, is generally different from the scale 

length of the Galaxy's mass, a. 

Using the 27 objects (satellite galaxies and globular clusters) at r > 20 kpc, WE99 
derived a5 = 100 kpc and "Y = 3.4 as the best fitting parameters for their spatial distribution. 
We re-examine a5 and "Y using our sample of all satellite galaxies and globular clusters. 

Note that the FHB stars are excluded in this determination of as and "Y, as they have not 
(yet) been completely surveyed over the Galactic volume. We obtain as = 10 kpc and 
"Y = 3.3 as the best fitting values, based on a simple K-S test of the observed vs. predicted 
distribution functions (see Figure 5). If we exclude the globular clusters at r ~ 10 kpc, for 

which the spherical symmetry assumption may be questionable due to the presence of the 

disk globular clusters, we obtain as = 50 kpc and "Y = 3.4. Thus, as depends sensitively 

on the selected range of radius (or in other words the selection of the sample), whereas "Y 

basically remains unchanged. Therefore, we focus our attention on the results using the 

power-law representation for the tracer population, but the shadow-tracer population is 

also examined for the purpose of comparison with WE99. To see the dependence of the 

mass estimate on these parameters, we obtain estimates for two values of "Y (3.4 and 4.0) 

and as (100 kpc and the scale length of the mass distribution, a), respectively. We note 

that the FHB stars are also expected to follow a power-law form with "Y ~ 3.4, as inferred 
from other halo field stars (e.g., Preston, Shectman, & Beers 1991; Chiba & Beers 2001). 

We calculate the likelihood of a particular set of model parameters (the scale length 

of the mass distribution, a, and the anisotropy parameter, (3) given the positions, ri, and 

radial velocities, Vri, or space velocities, Vi, using Bayes'theorem. The pro~ability that the 
model parameters take the values a and (3, given the data (r砂 (r)i)and prior information I, 
is 

1 N 

P(a, f31r砂 (r)i,I) = -i;,P(a)P(f3) IT P(r砂 (r)ila, f3), 
N i=l 

(12) 

where N is the normalization factor (Kochanek 1996; WE99). The probabilities P(a) 

and P(f3) denote the prior probability distributions in a and {3, respectively. Here, 

P(ri, v(r)ila, {3) corresponds to the probability of finding an object at position ri moving 

with radial velocity Vri or space velocity vi for a particular set of model parameters a and 
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(3. The complete expressions for P(rげ (r)ila,(3) are shown in Table 1 of WE99. To calculate 

this probability for the objects with full space velocities, we take into account their large 

errors relative to radial velocities alone (due to the observed proper-motion errors), by 

multiplying by an error convolution function of the form 

P(rゎ叫a,/3) = j j dv。dvふ (v⑮（匹）P(rゎVi,obs(Vo,VfJ)la,{3), (13) 

where (v0, v6) are the tangential velocities along the right ascension and declination 

coordinates, respectively, and E1 is the Lorentzian error convolution function, defined as 

1 262 
Ei(v) = 1 

¢⑰・1 2叶十(v-V。bs)2' (14) 

where a1 is defined as a1 = 0.477a for the calibrated error estimate, a (see WE99). 

The prior probability in the velocity anisotropy,/3，is taken to be of the form 
P(/3）oc 1/{3 -2/3）叫 wheren = 0 and 2 correspond to a uniform prior and uniform energy 
prior, respectively (Kochanek 1996; WE99). Larger values of n give a larger weight towards 

radial anisotropy. For the prior probability in a, P(a), we adopt 1/a and 1/a2 {WE99). 

Using the routine AMOEBA in Numerical Recipes {Press et al. 1992), we search for 

a set of model parameters, a and/3，that maximize the probability P(a,/3|r砂 (r}i,J).The 
total mass of the Galaxy, M, is then derived from the parameter a. 

4.2. Results 

Initially, we apply the Bayesian likelihood method, making use of only the radial 

velocities of the objects, setting aside for the moment the available proper-motion 

information. Specifically, we focus on the difference in the mass estimate arising from the 

presence or absence of Leo I. Figure 6 shows the likelihood contours in the mass-anisotropy 

(M-/3）plane for the case of a power-law tracer population with, = 3.4, where/3is 
limited to the range of -1. 5 ::;/3::; 1. The solid and dashed lines denote the presence 

and absence of Leo I, respectively. As is evident, the mass estimate sensitively depends 

on whether or not Leo I is bound to the Galaxy, as has been noted in previous studies. 

Inclusion of Leo I yields a likely total mass that is an order of magnitude greater than the 

case without Leo I. Over the range of (J we consider, the most likely value of M with Leo I 

is 21.0 X 1011.M。,correspondingto a scale length a = 185 kpc, whereas excluding Leo I 
yields M = 9.6 x 1011 M。anda= 85 kpc. We note that the role of Leo I in the Galaxy's 
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mass estimate is also understandable from the escape-velocity argument -if only the san1ple 

radial velocities are taken into account, Leo I alone determines the best-fit boundary line 

VnF = Vesc in the VnF vs. Vesc diagram (Figure 3). 

As is seen in Figure 6, the high-probability region is biased toward the line/3 ＝ -1.5. 
This bias arises from the specific form of the phase-space distribution function F(c, l) given 

in equation (8), where the probability P(a,/3|ri, V(r)i, I) is high at large F. We plot F in 

Figure 7 for a set of r and/3（solid and dotted lines for/3 ＝ -1 and 1, respectively). It 
follows that F at high c is larger for smaller/3，where as F at low c is larger for larger/3. 
The range of c corresponding to these two different c邸 esdepends on r，邸 canbe deduced 

from the comparison between panel (a) and (b) in Figure 7. Since our sample objects are 

mainly distributed in the region of higher c (solid histograms for the sample with radial 

velocities), the probability is highest at smallest/3． 

Following the above experiments, we drop the lower bound of -1.5 for/3，and search 
for the maximum probability at smaller/3．No maximum is found up to/3 ＝ -20, although 
the large discrepancy in M between the c邸 eswith and without Leo I remains. When 

we confine ourselves to the sample at r > 10 kpc, there exists a maximum probability at 
/3 ＝ -2.75 (with Leo I), with a corresponding m邸 s32.0 x 1011 M。.Forthe sample at 
r > 20 kpc, we obtain 11.4 x 1011 M。at/3＝0.8. This clearly suggests that the best-fitting 
/3，obtained from the analysis when only radial velocities are considered, is rather sensitive 
to the range of r for the sample selection. This in turn affects the number distribution 

N(c), which is relevant to the likely range of F (Figure 7). 

With these unavoidable limitations of the present sample in mind, Table 3 summarizes 

the likelihood results for the limited range of -1.5 ~ /3 ~ 1, obtained for power-law and 

shadow tracers using a variety of different priors on a and/3．The most likely value of/3is 

-1.5 for all c邸 es,for the reason described above. We note that the current mass estimate 

is rather insensitive to the/3prior. As the/3prior decreases, the estimated mass generally 

increases, and the best-fitting/3decreases, because the small/3prior is biased toward more 

tangentially anisotropic velocity distributions than the large/3prior. However, since most 

of our sample have high c, the best-fitting/3remains -1.5 regardless of whether we adopt 

the uniform prior or the uniform-energy prior for/3．This property makes the mass estimate 
insensitive to the/3prior. 

Now we apply the Bayesian likelihood method to the subsample of objects with both 

radial velocities and proper motions available, and consider the derived space motions. 

In contrast to the above case, where we used radial velocities alone, we find that the 

maximum probability within the range of/3we consider is now bounded (Figure Sa). 

This may be caused by the characteristic distribution of c for the sample with full space 
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motions, as shown in Figure 7 (dotted histogram). This figure shows that there exists a 

larger fraction of low c stars than are found in the sample with radial velocities alone (solid 

histograms), so a larger (3 is pref erred to achieve a larger F. The mass estimate in this case 
is quite insensitive to the presence or absence of Leo I. Figure 8b shows the probabilities 

as a function of M, with a fixed value of (3 = -1.25, for the case of a power-law tracer 

population with'Y = 3.4. Solid and dashed lines denote the probabilities with and without 

Leo I, respectively. As is evident, the agreement between both probabilities is significantly 

improved compared to the case of the radial velocities alone (Figure 6b). When Leo I is 

included, the most likely value of the total mass Mand the scale length a are 25.0 x 1011 M。
and 225 kpc, respectively. Excluding Leo I yields M = 18.0 x 1011 M。anda= 160 kpc. 
Table 4 summarizes the various results obtained when the proper motions of the objects are 

considered. This Table illustrates that, for all cases, the mass of the Galaxy with Leo I is 

in good agreement with that obtained without Leo I. Also, the mass estimate depends only 

weakly on the index'Y, unknown prior probabilities for a and (3, as well as on the range of 

r for the sample selection, resulting in small changes in the mass estimates over a range of 

only a few times 1011 M。•

To estimate the typical errors in this mass determination that are associated with 

the measurement errors of the 561 tracers we have analyzed, we have conducted Monte 

Carlo simulations, adopting the assumptions that typical errors in the distances and 

radial velocities are 10 %, and 10 km s―1, respectively, and that the proper-motion 
errors are 1 mas yr-1 for globular clusters, 0.3 mas yr―1 for satellite galaxies, and 5 

mas yr-1 for the FHB stars. We generated 561 data points (including Leo I) drawn from 

Gaussian distribution functions centered on the observational data, and with dispersions 

set to the above typical errors. Given a true mass M, or scale length a (where we use 

M = 2.3 X 1012恥 witha= 200 kpc), and prior probabilities for a and (3 (1/a2 and the 

uniform-energy prior, respectively), we calculate the most likely mass, M', and compare it 

with an input true mass. Figure 9 shows the distribution of the discrepancy between M' 

and M, 100 x (M'-M)/M, obtained from 1000 realizations. The error distribution in the 

current mass estimate has a mean value shifted downward by 20 %, and a dispersion of 
half-width 20 %. These values suggest that one might adopt an estimate of the systematic 
error on the order of 20 %, and a random error of士20%. Exclusion of Leo I does not 
influence the magnitude of these errors. It is worth noting that WE99 obtained roughly 

r-v 100 % systematic errors, and r-v 90 % random errors in their mass estimate, which was 
based on about 30 data points. The significant improvement of our mass estimate is mainly 

due to our consideration of a much larger data set that includes several hundred FHB stars. 

As shown in Table 4, the most likely estimated total mass depends on model 

assumptions at a level of a few times 1011 M。.Whenthe model is fixed, the current large 
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data set allows us to limit both systematic and random errors to a level of about 20 %. If 
we follow WE99's procedure for the adoption of the most likely total mass, i.e., if we adopt 

the mass estimate that provides the smallest difference between the masses obtained with 

Leo I and without Leo I, we obtain 2.S~t~ x 1012 M。(LeoI included) and 1.8盟1x 1012M。
(Leo I excluded). On the other hand, the mass estimate within the distance of the LMC 

(50 kpc) is quite robust, covering the narrow range 5.4 to 5.5 x 1011 M。•

5. DISCUSSION AND CONCLUDING REMARKS 

We have placed new limits on the mass of the Galaxy, based on a newly assembled set 

of halo objects with the latest available proper-motion data, using two alternative methods 

for mass determination. The first method, based on the escape velocity argument, enables 

us to obtain a lower limit on the total mass of the Galaxy of 1.3 to 1.4 x 1012 M。.Wehave 
shown that this mass estimate depends on neither the presence or absence of Leo I, nor 

on the large velocity errors for Draco and Pal 3. The second method, based on a Bayesian 

likelihood approach that reproduces all of the positions and velocities of the sample, also 

provides a mass estimate that is insensitive to the presence or absence of Leo I, at least 

when proper motions are taken into account. Although the best mass estimate obtained 

from this second approach depends somewhat on model assumptions (prior probabilities 

for a and/3and possibly the shape of F, see below), the resultant systematic change of 

the total mass is confined within a few times 1011 U。.Themost likely total mass of the 
Galaxy we derive is 2.5梵~ X 1012 M。.Thisis in good agreement with the total mass 
obtained by WE99 (l.9~fJ x 1012恥） andthat obtained from other methods (e.g., Peebles 
1995, 2 x 1012 M。)． Sincethe size of our tracer sample is significantly larger than used in 

previous studies, both systematic and random errors are reduced to a great extent. We note 

that consideration of the numerous FHB stars plays a vital role in this mass estimate, as 

demonstrated in § 3. 

It is also worth noting that, if we fix the mass of the Galaxy equal to our most likely 

mass estimate, there is insufficient matter present to gravitationally bind the LMC, if we 

adopt the recent proper-motion measurement by Anguita et al. (2000). These authors 

reported rather high proper motions, (μ。cos8,μ0) = (+1.7士0.2,+2.9士0.2),compared to 
previous measurements, (μ0cos8, μ6) = (+l.94士0.29,-0.14士0.36)(Kroupa & Bastian 
1997). Thus their results need confirmation from other studies. 

The current work also implies that the Galactic rotation curve at outer radii, R > R。9
does not decline out to at least R "'20 kpc (as long as local disturbances to circular motions, 

such as warping motions and/or non-axisymmetric motions, are ignored). As illustrated in 
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Figure 2, a declining rotation curve corresponding to a= 20 kpc and VLsR = 211 km s―1 

fails to bind many sample objects to the Galaxy. The smallest possible value for a to 

bind all objects in the isothermal-like density distribution (eq. 4) is a= 195 kpc, yielding 

VLsR ~ 220 km s―1. 

In a more general context, the detailed shape of the rotation curve at and beyond 

R=R。reflectsthe interplay between the disk and halo mass distributions, as this region 
is located near the boundary of both components. Thus, determining the rotation curve 

at R。~ R ~ 15 kpc will set useful limits on the mass distribution in the inner parts 

of the Galaxy. Indeed, the Japanese project VLBI Exploration of Radio Astrometry 

(VERA) will be able to determine both inner and outer rotation curves from measurement 

of trigonometric parallaxes and proper motions of astronomical maser sources that are 

widely distributed in the Galactic disk (Sasao 1996; Honma, l{awaguchi, & Sasao 2000). 

VERA will reach unprecedented astrometric precision, rv lOμas, and will yield precise 

determinations of the Galactic constants R。andVLSR・ We note that whatever results are 
derived for the rotation curve, the total mass of the Galaxy ought to be larger than 1012 M。9
in order to bind the more distant stellar objects. 

Our estimate for the mass of the Galaxy inside 50 kpc, i.e., within the distance of the 

LMC, is 5.5ざg:gx 1011 M。(LeoI included) and 5.3ざgJx 1011 M。(LeoI excluded). The 
error estimates are calculated from the maximum and minimum values of the total mass. 

Thus, about 24% of the total mass of the Galaxy resides within r ::; 50 kpc. This implies 

that the possibility of brown dwarfs as the origin of the microlensing events toward the LMC 

may be excluded, because it requires a much smaller mass inside 50 kpc, rv 1.3 x 1011 M。
(Honma & Kan-ya 1998). Our result is also in good agreement with the recent statistics of 

the microlensing events obtained from analysis of the 5. 7-year baseline of photometry for 

11.9 million stars in the LMC (Alcock et al. 2000), showing the absence of short-duration 

lensing events by brown dwarfs. However, the most recent work has suggested that perhaps 

one of the microlensing events is actually caused by a nearby low-mass star in the Galactic 

disk (Alcock et al. 2001). More direct observations for identifying lensing objects are 

required to settle this issue. 

Once the total mass of the Galaxy is fixed, it is possible to place a useful constraint 

on the mass of the Local Group. Most of the mass in the Local Group is concentrated 

in M31 and the Galaxy. The total mass of M31 can be estimated from the positions and 

radial velocities of its satellite galaxies, globular clusters, and planetary nebulae (Evans & 

Wilkinson 2000; Cote et al. 2000; Evans et al. 2000). If we take it to be 1.2誌点 X 1012M。
(Evans & Wilkinson 2000), the mass of the Local Group is rv 3.7 x 1012 M。.Thisis in 
good agreement with the estimate by Schmoldt & Saha {1998), (4 -8) x 1012 M。,basedon 
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modified variational principles. 

To set tighter limits on the total mass of the Galaxy we require more accurate 

proper-motion measurements for a greater number of objects at large Galactocentric 

distances. The high-velocity FHB stars in our sample (with apparent magnitudes V < 16) 
that are responsible for setting the minimum mass of the Galaxy have proper-motion errors 

of rv 5 mas yr―1, whereas Draco and Pal 3 have much larger relative errors, comparable 

to their proper motions themselves (see Table 2). Indeed, both the Space Interferometry 

Mission (SIM: Unwin, Boden & Shao 1997) and the Global Astrometry Interferometer for 

Astrophysics (GAIA: Lindegren & Perryman 1996) will be able to provide more accurate 

proper motions for such high-velocity objects, as well as for numerous other distant tracers of 

the Galaxy's mass, up to a precision of a few μas for targets with V ~ 15. This corresponds 

to an error of~ 10 km s―1 in the tangential velocity components for many distant objects, 
i.e., comparable to the error of their (presently determined) radial velocities. Furthermore, 

roughly half of our sample objects lack proper-motion measurements altogether. To a great 

extent, the lack of proper-motion measurements (at least for southern sources) will be 

removed with the completion of the recently re-started Southern Proper Motion survey of 

van Altena and colleagues, as well as other efforts to substantially increase the numbers of 

stars with reasonably well-measured proper motions (e.g., UCACl: Zacharias et al. 2000; 

UCAC2: Zacharias et al. 2001). 

Further assembly of radial velocities for FHB stars, especially th~se at large r (beyond 
distances where accurate ground-based proper motions can be obtained), is also of great 

importance for a number of reasons. First, as Figure 3 demonstrates, large Galactocentric 

regions are characterized by small escape velocities. The current sample of FHB stars 

(because of their locations near the sun) explore distances where the corresponding escape 

velocities are in the range of 500 ~ Yesc ~ 600 km s―1. ivlore remote FHB stars, with 
distances in the range 10 ~ r ~ 50 kpc, will offer a further constraint on the total mass 

of the Galaxy by covering the range 400 ~'Vesc ~ 500 km s―1. Secondly, the assembly 
of samples of more distant FHB stars will enable exploration of the suggested change in 

velocity anisotropy from the inner to the outer halo (e.g., Sommer-Larsen et al. 1997), and 

better constrain its dependence on Galactocentric distance. 

In exploring the Bayesian approach for mass estimates of the Galaxy, we have adopted 

a specific form of the phase-space distribution function F (eq. 8) to facilitate comparison 

with previous studies. This procedure implicitly assumes that the velocity-anisotropy 

parameter, (3, is constant everywhere in the Galactic volume. However, as noted by 

Sommer-Larsen et al. (1997), there is an indication that the velocity anisotropy of the 

halo may be mostly radial at R ~ 20 kpc and tangential at R ~ 20 kpc. If so, many of 
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distant FHB stars, especially those at R > 20 kpc, play a crucial role in the determination 
of the global distribution of velocity anisotropy. Searches for a more realistic form of the 

phase-space distribution function, combined with a more elaborate likelihood method, are 

both worthy pursuits. 

Fortunately, prospects are excellent for obtaining a rapid increase in the observational 

database of FHB stars with the required data. There already exists a substantial body of 

additional spectroscopy for FHB/ A stars observed during the course of the HK survey of 

Beers and colleagues and the Hamburg/ESQ Stellar survey (Christlieb et al. 2001), many of 

which also have available proper motions, or will soon, from completion of the SPM survey 

and/or other ground-based efforts. However, as was noted by Wilhelm, Gray, & Beers 

(1999) (foreshadowed by Norris & Hawkins 1991; Rodgers & Roberts 1993, and references 

therein; Kinman, Suntzeff, & Kraft 1994; Preston, Beers, & Shectman 1994), a substantial 

fraction (perhaps as high as 50%) of high-latitude A-type stars are not FHB, but rather 

some (as yet undetermined) mixture of binaries and high-gravity stars (see Preston & 

Sneden 2000). For some applications, such as estimates of the mass of the Galaxy that 

rely on space motions of tracers (and in turn on reasonably precise distance estimates of 

individual objects), confident separation of bona-fide members of the FHB population from 

possible "contaminants" is crucial 1. In the past, this has required that one obtain either 

Stromgren photometry and/or spectrophotometry (e.g., Kinman et al. 1994), broad-band 

U BV photometry in combination with medium-resolution spectroscopy (e.g., Wilhelm et 

al. 1999a), or reasonably high S/N, high-resolution spectroscopy (e.g., Preston & Sneden 

2000). All such endeavors are rather time intensive. However, Christlieb et al. (2002, in 

preparation) have been exploring means by which adequate separation of FHB stars from 

higher-gravity A-type stars might be accomplished directly from objective-prism spectra, 

such as those in the Hamburg/ESQ stellar survey. Such methods, which look promising, 

would be most helpful in future investigations of this sort. Wide-field stellar surveys, such 

as those presently being carried out with the 6dF facility at the UK Schmidt Telescope, 

are capable of providing large numbers of radial velocities for FHB/ A candidates, and are 

expected to contribute 5,000-10,000 suitable data over the course of the next few years. 
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Figure 1: Spatial distributions of satellite galaxies (squares), globular clusters 
(circles), and FHB stars (triangles) on the plane perpendicular to the Galactic 
disk, where the X axis connects the Galactic center (X =0) and the sun 
(X =8.0 kpc). The filled and open symbols denote the objects with and 

without available proper motions, respectively. The plus sign in panel (b) 
denotes the position of the sun, (X, Y) = (8.0, 0). 
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Fig. 2.-Rotation curves for Model A and Model B, parameterizations of the mass 

distrubutions considered in this paper. See the text for more information on the nature 

of these models. 
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Figure 3: (a) The relation between escape velocities, Vesc, and space veloci-
ties, VnF, for Model A with a = 195 kpc. The symbols are the same as those 
in Figure 1. The solid line denotes the boundary between the gravitationally 
bound and unbound objects -those in the region below the line are bound 
to the Galaxy. For the sake of clarity, velocity errors are plotted for only the 
high velocity objects relevant to the mass estimate. (b) Same as panel (a) 

but for Model B with Tcut = 295 kpc. 

(a) 

800 

700 

600 

宮 500

¥400 

::::::.. 300 

200 

100 

Draco 

・。

q 

゜゚
D 

0゚ 8 

゜

D D o ° o v, ， 0,n, I 
0 100 200 300 400 500 600 700 800 

(b) 

800 

700 

600 

~500 

¥400 

:::=a 300 

200 

100 

Vesc(r)[km/s] 

100 200 300 400 500 600 700 800 

Vesc(R, Z)[km/s] 

63 



Fig. 4.-The relation between escape velocities, ~sc, and space velocities, VnF, for Model 

A with a =20 kpc. In this case, the rotation curve declines with increasing radii, as shown 

in Figure 2 {dashed line). Note that, if this situation were to apply, many of the sample 

objects would be unbound to the Galaxy. 
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Fig. 5.— Cumulative number distribution, N(< r), of the distances of globular clusters 
and satellite galaxies {solid histogram) in comparison with model distributions {continuous 

dashed and solid lines). See the text for additional information. 
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Figure 6: (a) Likelihood contours in the plane of the mass M and velocity 
anisotropy /3, obtained from an analysis using only radial velocities. The 
solid and dashed curves show the results including Leo I and excluding Leo 
I, respectively; the cross and the asterisk show the maxima of the probabilities 
for each case. Contours are plotted at heights of 0.32, 0.1, 0.045, and 0.01 of 
the peak height. The spatial distribution of a tracer population is assumed 
to follow a power-law form with --y = 3.4. (b) Probabilities of the mass A1 at 
/3 = -1.5, including Leo I (solid line) and excluding Leo I (dashed line). 
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Figure 7: The distribution function, F, for/3 ＝ -1 (solid lines) and/3 ＝ 1 
(dotted lines), at r = 10 kpc (panel a) and r = 50 kpc (panel b). Also plotted 
are the number distributions N(c) of the stars when a = 200 kpc, where 
dotted and solid histograms denote the sample with and without available 
proper motions, respectively. The range of r for plotting N (c) (r < 10 kpc 
for panel a and 20 < r < 80 kpc for panel (b) is chosen to approximately 
match that for F. 
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Figure 8: (a) Likelihood contours in the plane of the mass NI and velocity 
anisotropy {3, obtained from an analysis that uses both radial velocities and 
proper motions. Solid and dashed curves show the results including Leo I 
and excluding Leo I, respectively; the cross and the asterisk show the max-
ima of the probabilities for each case. Contours are plotted at heights of 
0.32, 0.1, 0.045, and 0.01 of the peak height. The spatial distribution of a 
tracer population is assumed to follow a power-law form with'Y = 3.4. (b) 
Probabilities of the mass M at the best-fitting {3 of -1.25, including Leo I 
(solid line) and excluding Leo I (dashed line). 
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Fig. 9.-An approximate error distribution of the mass estimate caused by the typical 

measurement errors of the data. The abscissa denotes the relative error in mass, 100 x 

(M'-M)/ M, where M'is the mass calculated by a Monte Carlo method and M is the 

input true value. See text for more details. 
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TABLE 1. Distance Estimates and Proper ~lotions of the FHB stars 

NAMEa RA DEC [Fe/H) r b RVC µa• μ6 
＂ 

Source d 
(2000.0) {kpc) (km/s) (mas/yr) (mas/yr) (km/s) 

228760029 0:01:57.6 -36:40:46 -2.8 8.8 48 -0.8士3.4 -5.6土2.8 148士90 s 
295170031 0:02:09.8 -14:08:55 -2.7 12.4 -314 5士5 -10土5 394士211 N 
295170044 0:03:08.4 -14:24:25 -2.6 10.4 60 -9士5 -1士5 477土 163 N 
228760030 0:05:36.5 -36:41:28 

゜
7.9 50 2.0士2.4 1.7士2.1 244土28 A, S 

295030008 0:06:02.2 -24:37:09 -2 9.3 45 l.4士3.4 -3.0士4.9 156士 120 s 
228760034 0:06:20.7 -35:17:14 -1.2 8.2 -94 3.3士10.0 -6.4士8.9 140士127 s 
228760031 0:08:25.6 -36:09:15 -2.2 8.7 -54 -2.2土2.8 -8.7士2.8 193士62 s 
228760038 0:09:44.7 -34:39:14 -1.9 8.8 -153 4.4士2.2 -5.4士2.3 177士31 s 
295030024 0:10:08.5 -25:33:40 ー1.4 9.7 143 13.2士3.6 -3.7土2.9 347士87 s 
295030029 0:11:19.1 -26:26:39 -2.4 8.6 -49 12.7士2.0 -16.6土 1.8 197土44 A, S 
295270016 0:27:53.9 -18:57:44 -3 9.5 -43 11土5 -3土5 193士125 N 
294970009 0:29:01.7 -23:40:01 -2.1 9.3 -131 15.5士3.9 -2.4士5.1 308士100 s 
295270022 0:32:17.1 -19:26:00 -1.9 8.2 -98 25.0士2.0 -8.l士2.0 168士18 A,N,T 
295270026 0:33:05.0 -21:11:13 -1.8 9.4 -146 6士5 -3士5 176士76 N 
221700002 0:34:37.9 -10:28:50 -2.5 10.0 -270 -4士5 -10士5 321士 102 N 
295270035 0:35:23.2 -21:00:47 -2.2 8.7 -22 13.9士3.8 -11.9士3.8 97士63 A,N 
228820023 0:36:04.3 -30:16:11 -1.8 10.6 -132 -2.3士2.7 -9.1土2.8 291士83 s 
295270031 0:36:39.2 -22:25:44 -2.1 9.1 -19 3.7士2.2 -13.1土2.9 92土51 A, N, S 

己
295270039 0:36:53.8 -19:56:51 -1.1 10.0 -26 2士5 2士5 268士138 N 
294970031 0:38:41.9 -24:26:56 -2 9.3 -24 5.8土2.5 -2.0士2.5 148士57 s 
221790011 0:39:36.1 -04:35:40 -3 9.1 -110 3.0士4.4 -10.0士4.4 95士60 A 
221700009 0:40:52.9 -10:19:31 -2.2 9.9 -125 9土 5 -8士5 105士92 N 
294970033 0:41:08.5 -25:56:31 -1.9 9.2 73 1.6土4.0 -9.4土2.7 124士65 s 
221700013 0:41:21.1 -08:23:19 -2 9.1 -7 16.8士3.3 -30.9士3.3 50土56 A,N 
221700015 0:43:01.6 -08:15:10 

゜
9.6 -22 -11土5 -13士5 362士100 N 

294970038 0:43:47.1 -26:43:50 -3 13.1 -42 0.0士4.8 -6.5土4.1 192士222 s 
221700024 0:43:47.3 ー11:22:15 -2.2 12.0 81 2士5 -6士5 150士105 N 
295270061 0:43:48.6 -20:45:41 -3 9.5 -67 7.0士4.1 -3.9士4.1 118士81 A,N 
221830011 0:52:56.1 -02:52:42 -1.7 8.9 -126 13.9土2.1 -31.5士2.1 187士25 A,T 
295090031 0:52:57.0 -29:54:38 -1.6 9.3 131 13.5土2.4 -11.0士1.9 219士44 s 
295090039 0:54:41.4 -28:13:54 ー1.7 9.0 54 15.8土2.1 -7.4士2.2 186士42 s 
221830014 1:00:15.3 -02:17:29 -3 10.9 85 2士5 16士5 635士127 N 
221830028 1:02:07.6 -07:02:34 -2.2 10.1 -50 2士5 12士5 441士101 N 
221830024 1:02:53.2 -04:44:54 -2.2 8.7 -100 11.2土2.1 -15.5土2.1 70士16 A,T 
295140008 1:05:42.6 -23:58:40 -1.3 9.0 113 4.8土3.0 -8.7土 2.3 129士25 A, S 
295140006 1:06:49.4 -25:01:48 -1 9.8 57 5.5士5.7 -10.2士5.7 77士104 s 
221660032 1:07:33.8 -12:11:01 -2.6 9.5 -128 15.0土3.1 -7.3士3.1 166士41 A,N 
221660034 1:08:03.3 ー12:11:37 -2.2 11.2 128 4士5 13士5 590士149 N 
295140013 1:10:31.3 -25:40:47 -2.7 10.3 -50 0.8士3.8 -12.9土3.7 226土 105 s 
295180028 1:16:44.5 -31:04:58 -2.5 11.7 14 0.5土2.5 -4.2土2.6 127士100 s 
295180035 1:16:58.2 -27:45:57 -2.4 10.7 45 -3.4士4.3 -9.8士4.3 280土 133 s 
295140038 1:22:53.5 -26:17:35 -l.6 9.8 54 5.9士4.6 -14.3士3.1 154士87 s 
221740034 1:25:24.5 -09:36:19 -2.5 9.8 37 1.6士3.4 -10.2土3.4 136士51 A,N,T 
221740042 1:30:19.3 -09:44:57 -2.5 9.0 7 4.3士1.8 -18.6士 1.8 109土 19 A,N,T 



TABLE 1. (continued) 

NAMEa RA DEC [Fe/H] r b RVC µa• μ6 V Source d 
(2000.0) (kpc) (km/s) {m邸／yr) (mas/yr) (km/s) 

221800003 1:30:46.2 -10:25:54 -2.7 10.6 79 9士5 11士5 442士114 N 
295040004 1:31:02.1 -36:38:34 -2.3 10.1 45 8.6士2.4 -5.6士2.6 100士68 s 
221800002 1:31:42.6 -10:05:30 -1.1 9.3 -82 10士5 3士5 232士60 N 
221800006 1:35:19.5 -10:33:20 -2.2 11.0 47 5士5 6士5 350士128 N 
295040028 1:36:12.2 -34:06:08 -2.3 10.0 -56 6.7士3.8 -8.4士3.4 120士32 s 
221800017 1:36:49.9 -12:00:53 -1.5 9.6 34 11.1士3.1 -5.2士3.1 111士50 A,N 
295040035 1:40:51.5 -33:25:36 -2.2 11.1 43 10.6土4.8 -12.0士4.8 310士156 s 
295040045 1:47:30.5 -34:07:23 -2 9.8 189 9.0士3.8 -6.0士2.4 144士49 s 
221710022 2:03:11.7 -08:13:10 -2.2 9.7 -201 -2.4士2.8 -22.7士2.8 310士38 A,N 
221750001 2:13:30.0 -11:37:36 -1.4 9.7 67 5.1土2.9 4.2士2.9 256土41 A,N 
221750003 2:15:32.1 -10:40:28 -1.8 10.7 16 14士5 6土5 335士91 N 
221890005 2:32:29.2 -14:31:48 -1.6 11.4 -120 10土5 -5士5 177土60 N 
221810032 3:01:34.1 -08:56:03 ー1.2 11.5 -126 5土5 2士5 273土96 N 
310640037 3:09:30.0 -67:37:08 -1.5 7.9 277 67.1士2.1 -41.8士2.1 496士22 A,T 
221670008 3:16:28.3 -07:06:46 

゜
15.2 14 1士5 〇土 5 204士209 N 

221670017 3:18:45.7 -03:38:50 -2 11.2 198 14.0土3.9 -21.0士3.9 322士74 A 
221850020 3:27:47.2 -14:06:46 -1.7 9.7 24 19.7士3.1 -22.8士3.1 144士37 A,N 
310750042 3:30:46.9 -66:38:17 -2.1 8.2 145 13.5士4.4 1.0士4.4 86士67 A 
221760020 3:45:49.2 -10:23:13 -1.5 10.9 -6 16士5 -14士5 181士81 N 

コ 221690025 4:16:05.6 -14:34:02 -1.6 12.1 10 17士5 2士5 336士93 N 
310720061 5:27:10.8 -59:05:17 -1.5 8.5 64 -0.5士6.6 -1.0土6.6 188士57 A 
310720068 5:29:20.6 -61:16:28 -2.4 8.2 495 41.8土3.4 -1.8士3.4 369士20 A,T 
156210043 10:09:27.2 +24:50:05 -3 12.5 67 4.5土4.5 -2.0士4.5 245土113 A 
156210039 10:13:50.7 +25:18:24 

゜
10.3 131 -4.5士5.0 -8.0土5.0 113士71 A 

156210070 10:21:56.1 +27:11:19 -1.8 9.6 35 17.0士1.8 -6.5士1.8 304士20 A,T 
156210015 10:26:19.1 +23:30:36 -2.2 9.3 181 -23.7士1.4 -11.4士1.4 246士17 A,T 
156210009 10:28:01.0 +27:32:38 -1.4 11.0 27 -17.7土5.0 -2.0士5.0 373士91 A 
156210010 10:28:06.1 +26:32:51 

゜
10.5 46 0.0土7.2 -28.0士7.2 324士 138 A 

156250026 11:51:50.0 +26:21:56 -1.1 8.3 -3 7.8士1.6 -17.8士1.6 189士10 A,N,T 
160260011 12:16:50.0 +28:56:03 -1.7 9.3 19 -9.7士3.3 -8.5士3.3 70士58 A,N 
160260028 12:23:02.8 +27:27:15 -3 9.6 -81 5.2士3.5 8.9士3.5 467士77 A,N 
160270049 13:12:26.9 +30:21:16 -1.9 8.7 57 -14.4士3.6 -10.3士3.6 143士49 A,N 
228770008 13:12:49.9 -10:32:31 -2.2 7.8 90 〇士 5 -5士5 135士140 N 
160270051 13:13:01.9 +31:01:28 -2.2 11.8 39 -6士5 8士5 557土211 N 
228770012 13:13:32.9 -09:35:18 -2.6 7.4 312 4.0士3.7 0.6士3.7 355士57 A,N 
228770005 13:15:28.5 -11:25:31 -3 8.4 31 2士5 1士5 308士164 N 
228770031 13:17:08.5 -09:40:25 -2.7 7.6 65 -6.8士5.0 2.3士5.0 225土104 A,N 
228770036 13:17:39.4 -11:18:33 -2.3 7.6 202 -8.7士5.0 1.2士5.0 239士99 A,N 
228770038 13:18:01.9 -11:58:46 -2.2 7.2 57 -13.4士5.0 4.3士5.0 270士82 A,N 
228770027 13:18:10.7 -08:51:05 -1.9 8.6 -11 -7.4土5.0 -10.6士5.0 292士147 A,N 
228770030 13:18:26.0 -09:07:12 -3 9.5 136 -7.8士5.0 -1.7士5.0 227土204 A,N 
228770020 13:18:32.8 -07:49:17 -2.2 7.5 -18 -10士5 4士5 277土99 N 
228770026 13:20:55.2 -08:38:48 -2 7.3 161 -10.3士3.3 -23.9士3.3 298土55 A,N 
228770045 13:21:35.2 -11:29:15 -2.1 7.2 42 4.9土5.0 -16.8士5.0 272士75 A,N 



TABLE 1. (continued) 

NAMEa RA 
{2000.0) 

DEC [Fe/H] rb 

(kpc) 
RVC 

(km/s) 
µo• 
(mas/yr) 

μ6 
(mas/yr) ＂ (km/s) 

Source d 

7
2
 

228770046 
228770049 
228890013 
228890023 
228890037 
228890040 
228890060 
228890058 

228890057 
156230001 
228830007 
228830028 
228740025 

228710008 
228740021 
228710003 
228710013 
228710005 
228740036 
228710009 
228740053 
228710045 
228710031 
228710034 
228710077 
228710062 
228710064 
228710052 
228710063 
228710057 
228710085 

228710088 
228710087 
228710092 
228710096 
228710115 
228710109 
228710099 
228710103 
228710113 
228900015 
228900042 
228840015 
228840021 

13:22:24.0 
13:22:52.2 
13:36:32.1 
13:38:14.8 
13:40:14.5 
13:42:53.8 
13:49:13.8 
13:51:13.4 
13:52:21.3 
14:08:30.2 
14:15:34.5 
14:20:47.1 
14:30:24.7 
14:32:03.4 
14:33:17.2 
14:33:57.1 
14:34:14.4 
14:34:30.7 
14:34:57.5 
14:35:30.9 

14:35:37.4 
14:38:12.2 
14:38:47.6 
14:39:20.1 

14:41:17.3 
14:42:05.6 
14:42:22.4 
14:42:53.2 
14:43:00.6 

14:43:10.0 
14:43:51.6 
14:44:26.0 
14:45:16.9 
14:46:08.5 
14:48:02.9 
14:48:35.2 
14:48:42.3 

14:50:24.1 
14:50:52.9 
14:51:26.5 
15:16:10.2 

15:18:53.8 
15:31:46.9 
15:34:44.9 

-11:17:27 
-11:58:37 
-08:15:15 
-12:09:25 
-09:14:04 
-07:49:02 
-10:22:21 
-11:03:31 
-11:07:54 

+23:20:51 
+10:21:43 
+09:15:11 
-24:00:11 
-20:34:17 
-24:32:46 
-21:12:58 
-19:37:26 
-20:50:56 
-24:13:04 
-20:27:53 
-26:31:15 
-21:45:48 
-18:54:01 
-19:16:13 
-18:03:25 
-20:38:44 
-20:31:01 
-22:24:30 
-20:42:53 
-21:11:28 
-18:43:19 
-19:20:25 
-18:58:35 

-20:30:13 
-21:32:53 
-17:37:22 

-18:47:59 
-21:43:10 
-20:53:17 
-19:31:48 

+02:09:16 
+00:45:52 
-09:28:32 
-08:16:39 

3
2
9
9
5
3
1
0
6
8
6
3
1
2
3
5
3
2
9
0
6
3
3
5
7
2
2
3
3
9
2
8
4
4
2
7
6
5
2
8
3
2
1
6
 

2
-
L
L
2
-
L
0
2
2
-
2
-
2
L

＿
2
ー

O
2

—
l

ー
ー
＿

2

一
ー

2
1
2
2

＿
2
2
2

ー

2

一
2
2
l

―

―

―

-

＿

＿

-

＿

-

＿

-

―

―

―

―

―

―

―

―

―

―

―

-

＿

―

―

―

―

―

-

＿

 

3
2
1
2
0
9
9
8
7
1
3
1
0
6
7
5
8
1
0
0
9
4
5
1
1
5
4
5
6
8
4
4
4
3
6
5
3
3
4
3
5
4
9
0
 

7
7
7
7
7
8
6
6
6
8
7
7
6
5
5
5
5
6
6
7
5
5
5
6
6
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
6
6
5
5
 

60 
-7 
32 
_75 

174 
_80 

-107 

65 
8 

-159 
51 
-1 
_27 

83 
91 
78 
-14 

105 
40 
-179 
-94 
-5 

210 
84 
-10 

35 
192 
79 

159 
82 
209 
115 
-107 

57 
-40 
17 
_54 

162 
75 
97 
129 
_78 

223 
-59 

-5.6土 5.0
-10.4土 5.0
-5士5
-11士5
-6士5
〇士 5

-5.9士3.5
6.2士3.2
-11士5
11.0士4.7
-20.5士 1.8
-29.6士7.3
-41.1士6.4
-1士5

-13.7士6.0
-16士5
-8士5

-11土 5

-25.5士6.1
-15.7土 2.1

-25.1士5.8
-11土 5
-12土 5
-14士5
-10土 5

-5士5
4士5
-8士5
-20土 5
-16士 5
-16士5
-9士5
-9士5

-8土 5
-17士5
〇士 5

〇士 5
-3士5

1士5
〇土 5

-25.0士4.3
-21.0士5.0
-4.8士3.3
-13士5

-5.8士5.0
-11.4士5.0
-3土 5

-9士5
-14士5
-4士5
-6.5土 3.5

-24.3士3.2
-2士5

-12.0士4.7
-39.0土 1.8
-14.0士7.3
9.0士6.4
-8士5

-20.0士6.0
-3士5
-9士5
〇士 5

-13.0士6.1
7.7士2.1
0.0土 5.8
-0.2土 5
-7士5
-13士5
3土 5
-5士5
-12土 5
-1士5
-6士5
-8士5
-2士5
3士5
11士5
-5士5
-13士5
6士5
3士5
-9士5
-7土5
-11土 5
-40.0士4.3
-13.0土 5.0
-9.4士3.3
6土 5

37士96
146士78
129土 90
256士 126
173土 97
220士182
206士42
351士46

158士101
431士89
304土35
462士145
585士85
147土 132
278士98
281士113
204士 157
318士168
260士79
333土 15
339士76
226士 112
241土 114
530土 198
354士 148
35士116
352士 121
130士88
259士83

124士71
302土 104
245士105
464士 103
45士105
208士75
353士99
302土 111
190士120
209士 156
270土 135
380士60
130士55
241士32
358土 92

N
N
N
N
N
N
N
N
N
A
T
A
A
N
A
N
N
N
A
T
A
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
A
A
N
N
 

A
 

A

A

A

A

N

N

 

A

A

 



TABLE 1. (continued) 

NAMEa RA 
{2000.0) 

DEC [Fe/H] rb 

(kpc) 
RVC 

{km/s) 
µQ• 
{mas/yr) 

μ6 
{mas/yr) 

V 

(km/s) 
Source d 

7
3
 

228840006 
228840036 
228840047 
228720040 
228720041 
228720071 
228720067 
228780105 
229590022 
229590189 
229390058 
229390167 
228960041 
229390164 
228960086 
229640125 
229640219 
229500023 
229500008 
228850092 
228850125 
229550104 
229550103 
229550099 
228850179 
229550147 
228800061 
228790063 
304920015 
295010036 
304920063 
295010057 
295010102 
229480002 
294930009 
294930012 
295160054 
295160017 
295160011 
303320115 
303320025 
303320016 
295130017 
229410002 

15:35:13.9 
15:37:38.5 
15:41:27.7 
16:21:43. 7 
16:22:40.4 
16:25:40.3 
16:25:51.5 
16:50:04.4 
18:45:25.7 
19:10:50.0 
19:22:28.0 
19:28:43.8 
19:29:22.3 
19:32:31.4 
19:36:45.3 

19:57:17.9 
20:06:29.4 
20:16:20.7 
20:18:25.5 
20:26:02.3 
20:26:53.6 
20:31:35.1 
20:31:54.4 
20:32:47.2 
20:33:41.1 

20:38:35.6 
20:41:28.9 
20:45:08.4 
21:03:42.6 
21:07:15.8 
21:08:33.1 
21:16:13.3 
21:25:59.7 
21:33:50.1 
21:39:43.1 
21:41:20.0 
22:19:58.2 
22:27:58.7 
22:28:36.2 
22:34:19.2 
22:46:15.8 
22:48:46.3 
23:19:16.9 
23:28:24.9 

ー11:40:54
-11:30:38 
-11:28:06 
-03:08:00 
-03:24:38 
-02:57:18 
-03:38:59 
十08:11:15
-65:57:31 
-66:33:16 
-28:09:09 
-28:50:26 
-52:54:06 
-28:41:21 
-57:18:59 
-39:01:18 
-39:03:41 
-14:33:38 
-16:01:17 
-40:44:34 
-37:57:37 
-25:51:22 
-26:06:51 
-26:33:23 
-38:42:26 
-25:48:06 
-21:47:13 
-41:14:00 
-40:23:29 
-36:06:45 
-40:47:28 
-35:09:10 
-36:09:49 
-40:53:38 
-30:53:39 
-29:53:38 

+04:52:34 
+03:59:28 
+06:21:09 
+09:16:19 
+07:51:34 
+10:51:48 
-37:40:48 
-35:56:04 

0
2
1
2
2
3
6
3
7
6
2
2
3
7
0
1
3
3
2
8
1
6
6
1
2
1
5
4
2
2
4
6
6
9
9
6
2
2
6
2
5
5
6
2
 

2

2

1

―
-
2
2
1
1
-

―
-
1
2
0
1
1
1
1
1
1
1
1
1
2
1
-
1
0
1
1
1
0
1
1
2
2
-
1
2
1
-

―
―
―
―
―
-
＿
_
＿
-
―
―
―
―
―
―
―
―
―
―
-
＿
＿
-
＿
-
＿
＿
_
―
―
―
―
―
 

8
6
7
0
6
3
3
7
1
0
2
0
2
3
5
2
6
0
0
6
8
2
7
5
7
2
2
0
4
7
9
7
8
2
4
2
7
7
8
4
0
7
6
4
 

4
5
5
5
6
4
4
5
6
6
3
5
5
5
5
4
4
7
6
4
4
5
7
6
4
5
5
5
5
5
6
5
5
6
6
6
7
7
7
8
8
8
7
8
 

34 
69 
-90 

-65 
-204 
74 
-16 
-179 

304 
-129 

17 
-32 
-122 
-264 
-169 
26 
19 
-13 
-6 

36 
-175 
-122 
-180 
-101 
-28 
10 
-107 ， 
-39 
-151 

15 
-98 
-37 
-56 
1 
-175 

56 
-228 
-14 
-73 
-37 
-180 
94 
-77 

-7士5

-13.7士3.5
-14.1士3.1

2士5
-48.9士3.9
3.0士8.5
1.0士5.8
-4.0士5.2

-22.8士4.3
-0.8土4.8
-2.5土3.3
-2.7土 8.7
-0.6土5.8
13.7士2.8
-11.9士5.7
1.3土2.9
-5.6士2.9
19.3土2.0
-2.9士5.4
-1.1士2.3
1.6士4.1
5.0土 2.7
2.5士3.0
9.4土 2.4
-0.3士2.2
-6.8土 2.0

-3.6士2.1
-5.7士2.2
-5.8士4.7
2.9士2.3
4.4土3.8
19.1士2.6
2.1士1.8
5.3士2.5
-4.5土 3.1

9.8士5.1
-11.3士2.2
-21.0士5.7
13.6士3.4
-8.9士5.1
0.0士5.7
4.9士4.8
9.0士6.3
5.7士 1.9

-6士5

-13.1士3.5
1.6士3.1

3士5
-31.0士3.9
-3.0士8.5
-8.0士5.8
14.0士5.2
14.0士4.3
-9.0土 4.8

3.2土 3.4
3.3土 3.6
-11.0士5.8
-13.8士2.8
-9.0士5.7
3.9土 2.9
-1.1士2.9
-14.4土 2.0
-3.0士5.4
-7.0士2.3
-8.5士4.9
-4.3士2.6
-6.9士3.0
-25.9土 2.6

0.4士2.2
-5.8土2.0

-15.6士2.2
-6.1士2.2
-10.0士3.8
-8.5士2.3
-10.1土3.8
-7.6士2.6
-4.5士1.8
1.7士2.5
-6.4土 2.3

-10.8士5.8
-10.1士2.2
-31.0土 5.4
-7.3士3.4
11.0士5.1
-2.0士5.7
-25.0土 4.8
-9.2士3.1
-3.9士2.0

48士 106
88士49
225士36
295土94
317士33
278士214
180土 134
416士72
481士45
248土54
322土83
277土 71
180士76
336士25
284士83
338土72
230士61
208士12
196士59
60士51
171士59
230士89
268士 139
109土 18
246士65
188土38

300士68
170士47
152士84
151土33
326士171
442士46
112士47
336士81
168士38
278士131
275士15
351士62
186士29
463士78
194士49
386土89
134士68
143士55

N
N
N
N
A
A
A
A
A
A
S
S
A
S
A
S
S
T
A
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
T
A
T
A
A
A
S
S
 

A

N

A

A

 

A

A

 



TABLE 1. (continued) 

NAMEa RA 
(2000.0) 

DEC [Fe/H] rb 

(kpc) 

RVC 

(km/s) 
µ。•

(mas/yr) 
μ6 
(mas/yr) 

V 

{km/s) 

Source d 

7
4
 

229410008 
229410016 

229410022 
229410028 

294990022 
229410037 
294990019 

294990001 

229660029 
294990035 
294990026 

229410054 

229660042 
228940048 
294990040 
229410050 

229660061 
294990036 
295170002 

294960025 
294990042 

295170007 
294990037 

294990038 
229660059 
228760011 

229660065 
229660076 

228760006 

228760010 

229660069 
294990064 

229660071 

228760022 

228760019 

23:28:40.2 

23:31:27.3 
23:33:11.6 
23:35:19.6 

23:38:44.8 
23:38:54.2 
23:39:03.0 

23:39:19.5 

23:41:15.9 
23:43:11.9 
23:43:31.5 

23:44:03.2 
23:44:29.1 
23:45:29.5 
23:46:14.7 

23:46:28.1 

23:46:48.6 
23:46:51.9 
23:47:04.3 

23:47:06.2 
23:47:34.9 

23:47:52.7 

23:49:22.6 
23:49:40.0 

23:49:59.0 
23:51:02.7 

23:51:16.8 
23:51:40.0 

23:52:19.2 

23:53:52.2 
23:54:58.8 
23:55:32.8 

23:55:48.3 
23:58:06.4 

23:59:20.1 

-33:55:22 
-33:57:02 
-35:22:03 
-36:48:25 

-22:31:20 
-35:16:38 

-23:12:36 
-27:24:37 

-30:24:00 
-26:38:47 
-22:57:50 

-33:01:35 

-28:19:21 

-01:57:27 
-25:45:07 

-34:56:01 
-30:00:29 

-26:48:08 

-16:41:01 
-30:02:49 
-24:55:09 
-14:47:59 
-26:35:43 

-26:31:36 
-29:56:11 
-34:04:00 
-31:30:34 
-29:10:16 
-36:03:54 

-33:51:51 
-31:05:53 
-25:32:52 
-30:35:43 

-33:45:11 

-33:17:04 

3
0
7
2
2
2
6
3
5
5
6
2
1
2
3
8
8
7
3
3
9
4
8
4
8
7
9
7
3
2
7
1
3
5
1
 

-
L
-
2
-
1
-
2
2
1
-
.
2
-

―
L
L
2
L
-
1
2
2
2
2
1
2
0
2
2
L
2
-
2
2
 

―
―
―
―
―
―
―
-
＿
―
―
―
―
―
―
―
―
―
-
＿
―
―
―
―
―
 

6
9
0
4
8
7
4
5
1
9
8
3
9
1
3
4
4
7
5
5
5
3
2
9
5
5
3
1
3
0
3
7
5
3
8
 

7
7
9
8
7
7
9
9
8
7
8
9
7
2
9
8
8
9
8
9
8
3
8
8
1
8
1
8
8
9
8
9
1
8
8
 

1

1

1

1

1

 

5
3
5
6
1
9
9
9
0
3
3
5
6
5
6
8
1
8
2
8
9
9
4
3
6
7
8
2
8
6
4
8
5
8
2
 

8

4

2

0

6

6

0

0

7

5

4

3

6

5

3

4

2

0

0

3

2

1

3

3

2

9

1

4

3

3

 

1
2
2
1
1
1
-
3

ー
＿

1
1
2
-

—
ー
＿

＿

＿

ー

一

_

＿

_

-

＿

-

―

―

―

―

―

-5.7士 1.9
8.7士3.7
11.9士1.8
6.1土 3.0

11.2士1.4
2.9士2.6

8.1士4.5
2.0土2.5

17.9士5.9
16.3士2.6
10.5士3.9
6.3士4.1
4.2士3.1
6士5
2.8士3.5

6.2士5.5
-0.9士7.0
11.2士3.3
5士5

-1.7士7.4
7.2士3.6
-2士5
4.5士3.3

13.1士3.5
0.6土3.2
15.5土 4.8
1.5士2.9
-2.5士2.3
7.4士4.0
6.9士2.4
-8.9士3.0
7.5士2.2
2.0士2.8
17.0士2.7
1.5士2.9

-11.7士 1.9
3.5士3.2

-2.5士2.5
-14.3土 3.0

-16.12士1.4
-9.1士2.9

-0.4士4.4
-5.4士2.5
-5.9土 4.3
-19.6士3.0

-6.0士 3.7

-11.1士4.5
-20.3士2.5
-4土 5

-8.7士3.5

-0.6士5.5
-10.5士8.7
-9.9士3.3

6士5
-5.3土 8.0
-4.6士3.8
-7士5
-7.5士4.4
-9.5土 3.4

-5.5土 2.7
-3.5土 4.0
-4.8土 3.7
-1.9土 2.9

-0.2士4.2

-8.3士2.5
-20.0土 1.9
-4.3土 4.2

-6.1土 3.1

-6.1士2.6

-12.9土 2.9

208士26
305士70

342士64
218士89
152 12 11 
102土 35
254土 146

238士44
291土 111
235土 38

183土 101

259士134
129士44

171士203
82士98

207士133
181士106
332土 108
321土 95

171土 264
114士84
376土 220

104士47

264士95
153士81
343土 102

248士67
169士47

217士 101

144土 54

399士54
151士100
125士137
278士58
172士79

S
S
S
S
T
S
S
S
S
S
S
S
S
N
S
S
S
S
N
S
S
N
S
S
S
S
S
S
S
S
S
S
S
S
S
 

A

S

A

A

A

 
z
 

A
 

AThe names of FHB stars follow Wilhelm et al. (1999). 
b.  heliocentric radial velocity 

cGalactocentric distance 
dA, N, S, and T denote the STARNET catalogue, the NPM catalogue, the SPM catalogue and the Tycho-2 catalogue, 
respectively. 



TABLE 2. Basic Data for Seven High Velocity Objects 

Name RA (2000.0) DEC b
 
r 

(kpc) 
RV 

(km/s) 
μCt cos 6 
(mas/yr) 

μ6 

(mas/yr) 

Typea 

Leo I 
Draco 
Pal 3 
160270051 

221660034 
221830014 
228740025 

10:08:27 
17:20:19.0 
10:05:31.4 
13:13:1.90 
01:08:3.30 
01:00:15.3 
14:30:24.7 

+12:18.5:00 
+5 7 :54.8:0.0 
+00:04:17.0 
+31 :01 :28.0 
-12:11:37.0 
-02:17:29.0 
-24:00:11.0 

226 

86 
240 
74 

138 
128 
330 

49 

35 
42 
84 
-75 
-65 
34 

250 
82.0 
96.8 
11.8 
11.2 
10.9 
6.1 

286 
-293.0 

83.4 
39.0 

128 
85.0 
-27.0 

... 
0.60士0.50
0.33士0.23
-6士5

4士5
2士5
-41.1士6.4

... 
1.10士0.50
0.3士0.31
8士5
13士5
16士5
9.0士6.4

s
s
G
F
F
F
F
 

as, G, and F denote satellite galaxies, globular clusters and FHB stars, respectively. 
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TABLE 3. Likelihood Results for Only the Radial Velocities 

as or'"Y a pri． or /3 prior Leo I best/3 best a (kpc} best Ma M(< 50kpct M(< lOOkpct 

Power-law Tracers 

'Y = 3.4 1/a2 Energy Yes -1 160 18.0 5.4 9.6 
No -1 70 7.9 4.6 6.5 

'= 3.4 l/a Energy Yes -1 175 20.0 5.4 9.8 

No -1 75 8.5 4.7 6.8 

"Y = 3.4 1/a2 Uniform Yes -1 160 18.0 5.4 9.6 
No -1 70 7.9 4.6 6.5 

"Y = 4.0 1/a2 Energy Yes -1 170 19.0 5.4 9.7 
No -1 80 9.0 4.8 7.1 

Shadow Tracers 

as = 100 1/a2 Energy Yes -1 180 20.0 5.4 9.8 
No -1 65 7.4 4.5 6.2 

as = 100 1/a Energy Yes -1 205 23.0 5.5 10.0 
No -1 70 7.9 4.6 6.5 

as = 100 1/a2 Uniform Yes -1 180 20.0 5.4 9.8 
No -1 65 7.4 4.5 6.2 

as = ahalo 1/a2 Energy Yes -1 170 19.0 5.4 9.7 
No -1 70 7.9 4.6 6.5 

a All masses are in units of 1011 M。•
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TABLE 4. Likelihood Results for the Full Space Velocities 

as OrT a pri． or /3 prior Leo I best {3 best a (kpc) best Ma M(< 50kpc)a M(< lOOkpc)a 

Power-law Tracers 

'Y = 3.4 1/a2 Energy Yes -1 200 23.0 5.5 10.0 
No -1 150 17.0 5.3 9.4 

'Y = 3.4 1/a Energy Yes -1 230 26.0 5.5 10.0 
No -1 160 18.0 5.4 9.6 

"Y = 3.4 1/a2 Uniform Yes -1 200 23.0 5.5 10.0 
No -1 150 17.0 5.3 9.4 

-y = 4.0 I/a2 Energy Yes -1 225 25.0 5.5 10.0 
No -1 165 19.0 5.4 9.6 

Shadow Tracers 

as= 100 1/a2 Energy Yes -1 275 31.0 5.5 11.0 
No -1 190 21.0 5.4 10.0 

as= 100 1/a Energy Yes -1 330 37.0 5.6 11.0 
No -1 220 25.0 5.5 10.0 

as= 100 1/a2 Uniform Yes -1 275 31.0 5.5 11.0 
No -1 190 21.0 5.4 10.0 

as = ahalo 1/a2 Energy Yes -1 275 31.0 5.5 11.0 
No -1 190 21.0 5.4 10.0 

a All masses are in units of 1011 M。•
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Abstract 

We investigate the thermodynamic properties of stellar self-gravitating system 
arising from the Tsallis generalized entropy. In particular, physical interpretation 
of the thermodynamic instability, as has been revealed by previous study(Taruya & 
Sakagami, Physica A 307 (2002} 185}, is discussed in detail based on the framework 
of non-extensive thermostatistics. Examining the Clausius relation in a quasi-static 
experiment, we obtain the standard result of thermodynamic relation that the physi-
cal temperature of the equilibrium non-extensive system is identified with the inverse 
of the Lagrange multiplier, Tphys = 1/{3．Using this relation, the specific heat of to-
tal system is computed, and confirm the common feature of self-gravitating system 
that the presence of negative specific heat leads to the thermodynarnic instability. 
In addition to the gravothermal instability discovered previously, the specific heat 
shows the curious divergent behavior at the polytrope index n > 3, suggesting an-
other type of thermodynamic instability in the case of the system surrounded by 
the thermal bath. Evaluating the second variation of free energy, we check the 
condition for onset of this instability and find that the zero-eigenvalue problem of 
the second variation of free energy exactly recovers the marginal stability condition 
indicated from the specific heat. Thus, the stellar polytropic syste1n is consistently 
characterized by the non-extensive thermostatistics as a plausible thermal equilib-
rium state. We also clarify the non-trivial scaling behavior appeared in specific heat 
and address the origin of non-extensive nature in stellar polytrope. 

1 Introduction 

Due to its complexity and peculiarity, stellar self-gravitating system has long attracted 

much attention in the subject of astronon1y and astrophysics, and even statistical physics. 

For an isolated stellar system, the dynan1ical equilibrium is rapidly attained after a few 

crossing time and the thermodynan1ic description provides useful information in charac-

terizing the late-time behavior of this system. Even in this sirnplest situation, however, the 

equilibrium state of self-gravitating systen1 shows various interesting phenomena, which 

may offer an opportunity to recast the frarnework of the thermodynarnics and/ or statis-

tical mechanics. 

In earlier study, applying the Tsallis'generalized entropy[l], we have investigated 

the thermodynamic instability of self-gravitating systems[2]. The self-gravitating stel-

lar system confined in a spherical cavity of radius, re, exhibits an instability, so-called 

gravotherrnal catastrophe, which has been widely accepted as a fundarnental physical pro— 

cess and plays an important role for the long-term evolution of globular clusters [3, 4, 5]. 
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The presence of this instability has been long known since the pioneer work by Antonov[6] 
and Lynden-Bell & Wood[7]. Historically, the gravitational catastrophe has been studied 
on the basis of the maxinn1m entropy principle for the phase-space distribution function, 
with a particular attention to the Boltzrnann-Gibbs entropy [8, 9]. 

In contrast to previous work, we have applied the Tsallis-type generalized entropy to 
seek the equilibrium criteria for the first tin1e. Then, the distribution function of Vlassov-
Poisson system can be reduced to a stellar polytropic system[l 0, 11]. Evaluating the 
second variation of entropy around the equilibrium state and solving the zero-eigenvalue 
problem, the criterion for the onset of gravothermal instability is obtained. The main 
results of our previous analysis are surnrnarized as follows: 

(i) Local entropy extremum ceases to exist in cases with polytrope index n > 5 for 
sufficiently larger radius of the wall, re>入critGlvfツ(-E),and for highly density 
contrast, Pc/ Pe > Dcrit, where lvf and E denote the total mass and energy of the 
system, Pc and Pe n1ean the density at center and edge, respectively. 

(ii) The critical values入critand Dcrit depend on the polytrope index, both of which 
respectively approach 0.335 and 709 in the lin1it of n→oo, consistent with the 
well-known result adopting the Boltzmann-Gibbs entropy. 

(iii) The stability /instability criterion obtained from the second variation of Tsallis en-
tropy exactly matches with the result from standard turning-point analysis. 

While the successful results suggest that non-extensive generalization of thermody-
namics will offer various astrophysical applications involving long-range nature of self-
gravitating systems, there still remain some important issues concerning the physical 
interpretation of thermodynamic instability. 
Heuristically, the gravothermal instability is explained by the presence of negative 
specific heat as follows. In a fully relaxed gravitating system with sufficiently larger radius, 
negative specific heat arises at the inner part of the system and we have Cv,innerく 0,
while the specific heat at the outer part remains positive, Cv,outer > 0, since one can 
safely neglect the effect of self-gravity. In this situation, if a tiny heat flow is momentarily 
supplied fron1 inner to outer part, both the inner and the outer parts get hotter after the 

hydrostatic readjustment. Now imagine the case, Cv,outer > ICv,innerl• The outer part has 
so much thermal inertia that it cannot heat up as fast as the inner part, and thereby the 
temperature difference between inner and outer parts increases. As a consequence, the 
heat flow never stops, leading to a catastrophe temperature grow~h. 
While the above thought experin1ent is naive in a sense that we artificially divide the 
system into the inner and the outer part, the argument turns out to capture an essence of 
the thermodynamic instability in cases with the Boltzmann-Gibbs entropy. Evaluating the 
specific heat explicitly, Lynden-Bell and Wood[7] showed that the specific heat of the total 
system should be greater than zero at the onset of instability, although the central part 
of this system still has the negative specific heat. Therefore, one can naively expect that 
the self-gravitating system generally exhibits the thermodynamic instability associated 
with the negative specific heat and this could even hold in the systen1 characterized by 
the non-extensive entropy. 
To address this issue, however, we should remember the following two remarks that 
have been never clarified. First note that there exists a subtle point concerning the concept 
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of temperature in the non-extensive thern1odynamics. Frarnework of the non-extensive 

formalism is forrnally constructed keeping the standard result of thermodynamic relations 

[14, 15, 16], however, the physical temperature, Tphys, n1ight not be simply related to the 

usual one, i.e, the inverse of Lagrange rnultiplier, as has been criticized recently[12, 13]. 

This point is in particular important in evaluating the specific heat. 
Second, as has been mentioned by the pioneer work of Lynden-Bell & VVood[7], self-

gravitating systen1 shows various types of thermodynan1ic instability. While our early 

study deals with the stellar systen1 confined within an adiabatic wall, one n1ay replace 

the adiabatic wall with the thermally conducting wall surrounded by a heat bath. In this 

situation, assuming the Boltzmann-Gibbs entropy, Lynden-Bell &,¥ood showed that no 

equilibrium state exists for sufficiently low ten1perature and high-density contrast. Note 

that even in this case, the presence of negative specific heat plays an essential role for the 

appearance of instability. 
I(eeping the above remarks in mind, in this article, we focus on the thermodynamic 

property of self-gravitating systen1s characterized by Tsallis'generalized entropy. For 

this purpose, we first investigate the thermodynamic ten1perature of the self-gravitating 

system from the Clausius relation. To clarify the physical interpretation of thermodynamic 
instability, the specific heat is computed and a role of negative specific is discussed in 

detail. Then we turn to focus on the thermodynamic instability in a systen1 surrounded 

by the heat bath. The stability /instability criterion is derived from the second variation 

of free energy and a geometrical construction of marginal stability condition is discussed. 

This article is organized as follows. in section 2, we recast the problem that finds 
the most probable state of equilibriurn stellar distribution adopting the Tsallis entropy. 

The main part of this article is section 3, in which the thermodynamic properties of 

stellar polytrope are investigated in detail. After identification of the thermodynamic 
temperature, the explicit expression for specific heat is presented and the marginally 

stability condition for the thermodynarnic instability is investigated in both the adiabatic 

and the isothern1al cases. In section 4, thermodynamic instability in a system surrounded 

by a thermal bath is re-considered by rneans of the free energy and the marginal stability 

condition is re-derived from the second variation of free energy. Furthermore, following 
the preceding results, the origin of the non-extensive nature in stellar polytropic system 

is discussed in section 5. Finally, section 6 is devoted to the summary and conclusion. 

2 Stellar polytrope as an extremum state of Tsallis 

entropy 

In this section, we recast the problem finding the most probable state of equilibrium stellar 

system, based on the maximum entropy principle. In our previous study, the entropy for 

the phase-space distribution function has been introduced without recourse to the correct 

din1ensions. Although this does not alter the stability /instability criterion for the stellar 
equilibrium state, for the sake of the con1pleteness and the later analysis, we repeat the 

same calculation as shown in ref.[2], taking fully account of the correct din1ensions. 
Suppose a systen1 containing N particles which are confined within a hard sphere of 
radius re. For simplicity, each particle is assun1ed to have the san1e mass m。andinteracts 
via Newton gravity. The problen1 considered here is to find an equilibrium state in an 

adiabatic treatment. That is, we investigate the equilibriurn particle distribution in which 
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the particles elastically bounce from the wall, keeping the energy E and the total mass 

M(=Nm。)constant.
For present purpose, it is better to en1ploy the rnean-field treatn1ent that the corre-

lation between particles is sn1eared out and the systen1 can be fully characterized by the 

one-particle distribution function, f (x, v), defined in six-dimensional phase-space (x, v) 
[2, 3][6, 7, 8, 9]. Let us denote the phase-space elen1ent as h3(= l詞） withunit length l。
and unit velocity v。.Sincethe distribution function f (aらv)counts the number of particles 
in a unit cell of phase-space, the energy and the total rnass are respectively expressed as 

follows: 

E K+U三 m。I{i炉＋i知）｝ f（工， V）d%， 
M = m。N 三 m。/f（x, v) d6r, 

with the quantity <I> being the gravitational potential: 

知）＝ーGm。If(Z'，v'）む’.
|エーx'I

In the above expressions, the dimensionless integral measure d6r is introduced: 

d6r = d油d3v
h3 ; h = lo Vo. 

(1) 

(2) 

(3) 

(4) 

Owing to the maximum entropy principle, we explore the most probable state maxi-
mizing the entropy. The entropy quoted here is a quantity defined in the phase-space and 

it counts the number of possible particle state. We are specifically concerned with the 
equilibrium state for the Tsallis entropy (1 ]: 

Sq= —~![（長） q- （長）］む． (5) 

Maximizing the entropy Sq under the constraints reduces to the following mathematical 
problem using Lagrange multipliers a and {3: 

&Sq -a8M -{38E = 0, (6) 

which leads to (2, 10, 11]: 

f(x,v) = A ［①。—知（:c) ーヤ］ 1/(qー I)' (7) 

where the constants A and <I>。arerespectively given by 

A=N{（デ） m。/3}!/(q-1), 屯。＝ 1-(q -l)m。a
(q -l)m。(3. (8) 

The one-particle distribution function (7) is often called stellar polytrope, which sat-
isfies the polytropic equation of state [3][10]. The density profile p(r) and the isotropic 
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pressure P(r) at the radius r = I叫arerespectively given by 

p(r) - m。//(:,;,V)亨

心噌土）
m。A- ｛ <I>。— <I>(r)}1/(q-1)+3/2 
h 3'  

and 

P(r) m。Ji訂（工，v)亨
（土＋］）―Ip(r) {<I>。— <I>(r) ｝，

with B(a, b) being the (3 function. Thus, these two equations lead to the relation 

P(r) = I<n p1+1fn(r), 

with the polytrope index given by 

1 3 
n = ＋ -. 
q-l. 2 

In equation (11), the dimensional constant Kn is introduced: 

1 3 A ―1/n k̀＝｛這B(5三）予｝ • 

(9) 

(10) 

{11) 

(12) 

(13) 

Note that the above quantity is equivalent to the variable (n -3/2)T /(n + 1) defined in 
ref. [2]. 
Once provided the distribution function, the equilibriun1 configurati~n can be com-
pletely specified by solving the Poisson equation. Hereafter, we specifically restrict our 
attention to the spherically symmetric configuration for q > l{or n > 3/2). From the 
gravitational potential (3), it reads 

l d 覆 (r)亨（r2f)= 41rGp(r). (14) 

Combining (14) with (9), we obtain the ordinary differential equation for<I>．Equivalently, 
a set of equations which represent the hydrostatic equilibrium are derived using (9), (10) 
and (14): 

止 Gm(r)
dr ＝ ープp(r),

号＝ 47rp(r)礼

{15) 

{16) 

The quantity m(r) denotes the mass evaluated at the radius r inside the wall. vVe then 
introduce the dimensionless quantities: 

P = Pc [8（く）］n, r= ｛（n贔誓｝1／2(， (17) 
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which yields the following ordinary differential equation: 

2 
011 + ~ ()'+ f)n = 0, 
( 

(18) 

where prime denotes the derivative with respect to ~- The quantities Pc and Pc in (17) 
are the density and the pressure at r = 0, respectively. To obtain the physically relevant 
solution of (18), we put the following boundary condition: 

0(0) = 1, 0'(0) = 0. (19) 

A family of solutions satisfying (19) is referred to as the Emden solution, which is well-
known in the subject of stellar structure (e.g., see Chap.IV of ref.[17]). 
Figure 1 shows the numerical solution of equation (1g) for various polytrope indices, 
where the density profile, p(r)/ Pc is plotted as a function of dimensionless radius, ~­
Clearly, profiles with index n < 5 rapidly fall off and they abruptly terminate at finite 
radius(left-paneり， whilethe n 2:: 5 cases infinitely continue to extend over the outer 
radius(right-paneり． Asalready mentioned in previous study, characteristic feature seen in 
figure 1 plays an essential role for the thermodynamic instability associated with negative 
specific heat. 
For later analysis, it is convenient to introduce the following set of variables, referred 
to as homology invariants (17, 18]: 

U 三：

v 三

dlnm(r) 

dln r 

4王 p(r)
m(r) 

筏n

()'' 

din P(r) p(r) Gm(r)'--, 1 ¥ f.0' 
＝一(n+ 1)一--=  

dlnr P(r) r 〇’

{20) 

(21) 

which reduce the degree of equation (18) from two to one. The derivative of these variables 
with respect to ~ becomes 

du f _ n ¥ u 
疋＝（3-u-二 V)て'

dv I 1 ¥ v 亙＝（ーl+u十二v)r (22) 
Equations (18) can thus be re-written with 

u dv (n + l) (u -l) + v 
--=  
v du -(n + 1)(3 -u) -nv ・ (23) 

The corresponding boundary condition to (19) becomes (u, v) = (3, 0). Using these vari-
ables, the basic thermodynamic quantities such as the energy and the entropy are eval-
uated and the results are summed up in Appendix A, which are subsequently used in 

section 3. 

3 Thermodynamic properties of stellar polytrope 

In this section, we address our rr1ain issue, i.e, the physical interpretation of gravothermal 
instability in stellar polytropes, based on the framework of non-extensive therrnodynarn-
ics. In section 3.1, we first discuss the thermodynamic temperature of stellar polytrope 
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calculating both the heat and the entropy changes in a quasi-static treatment. Then 

we evaluate the specific heat in section 3.2. The connection between the absence of ex-
tremum entropy state and the presence of negative specific heat is discussed in detail. 

Further, we argue that there appears another type of therrnodynan1ic instability, which 

is subsequently analyzed by rneans of the free energy. 

3.1 Thermodynamic temperature from the Clausius relation 

As has been mentioned in section 1, the concept of temperature is non-trivial in non-
extensive thern1ostatistics. This is because the standard framework of thermodynamics 
crucially depends on the assumption of extensivity of entropy. According to the recent 
claim, the definition of physical ten1perature Tphys should be altered depending on the 
choice of energy constraint and is related to the inverse of the Lagrange multiplier, 1/ {3, 
with some correction factors [12, 13]. Note, however, that this discussion heavily relies 
on the extensivity of the energy as well as the thermodynamic zeroth law. In our present 
case, the maximum entropy principle was applied subject to the constraints E and M, 
adopting the standard definition of mean values (see eqs.(1)(2)). As a consequence, the 

resultant energy E becomes non-extensive and we cannot apply the above definition. 
To address the physical temperature in the present case, we therefore consider the rela-
tion between the heat transfer and entropy change and seek the most plausible candidate 
for thermodynamic temperature. That is, we analyze the variation of equilibrium config-
uration under fixing the total mass. Specifically, we deal with the quasi-static variation 
along an equilibrium sequence. 
Let us first write down the heat change. The thermodynarnic first law states that 

d'Q = dE + PedV, (24) 

where the operation d'stands for incomplete differentiation. The subscript e denotes a 
quantity evaluated at the edge. In the spherically symmetric configuration, the second 
term in right-hand side of (24) becomes 4叫 Pedr e・ As for the first term, the energy of the 
stellar polytropic system within the radius乃， iscomputed in Appendix A.l. Introducing 
the dimensionless parameter入， itis expressed in terms of the homology invariants as 
follows: 

reE 13  1 入三一戸＝ーニし{1 -(n + 1)¾} + (n -2)巳］， (25) 

where the quantity with subscript e represents the one evaluated at the boundary r = re. 
Using (25), the heat change d'Q is rewritten as follows: 

入
GM2 

d'Q = d(-―+  4叫 Pedre9

＝亭）｛（疇）ぞ—噂ぞ｝， （26) 

where the relation 41rr!Pe/(GMり＝ U凸 isused in the last line (see definitions (20)(21)). 
In the above expression, derivative of入withrespect to ~e can be computed with a help 
of relation (22) (see eq.(33) of ref.[2]): 

｛ 
d入 n-2 g(ue, Ve) 
e 

d~e n -5 2ve' 
{27) 
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where 

g(u, v) = 4炉＋ 2uv- ｛い（~)}u-土v+3 （円）． (28) 

Next focus on the change of the entropy. From (71) in Appendix A.2, the entropy of 
the extremum state is given by 

S9 = (n- ｝）[二 /3竺｛そ— (n+ 1)い｝＋N]. (29) 

Hence, the variation of entropy dSq under fixing the total mass can be decon1posed into the 
variation of homology invariants (Ue, Ve), radius re and Lagrange n1ultiplier (3 as follows: 

幽＝二？亨［（弓—ぞ）｛そ— (n+ 1)土＋1}
＋｛そ（ぞき）ーぞぞ｝］． （30) 

Among these variations, variation of homology invariants is simply rewritten with d~e, 
through the relation (22). On the other hand, from the mass conservation,'the variation 
of Lagrange multiplier, d(3 is related to both the variations of hon1ology invariants and dre 
as follows. Using the condition of hydrostatic equilibrium at the edge re, one can obtain 
the following relation (see derivation in Appendix A.3): 

n三{(GM)n(m。~r/(n-1) = °'n (uべ）l/{n-1),
rn-3が
e 

where the constant an is given by 

% ＝ { (n -1/2)n-3/21/（n-l) 

16亭 (n+1)nB(3/2,n-1/2)}, 

(31) 

(32) 

which asymptotically approaches unity, in the limit n→ +oo. l(eeping the total mass M 
constant, variation of (31) yields 

n -3/2 dfj n -3 dre 1 (due, __ dve 二了―二て＝＝に＋nて）． (33) 

We then rewrite it with 

d/3 dre 

{3 re 
1 (-2生＋生十 n些．
n -3/2 2 re 叫 Ve)

(34) 

Substituting the relation {34) into equation {30), the dependence of d(3 / (3 can be elimi-
nated. Thus, using the relation {22), the final form of the entropy change is expressed in 
terms of the variations d~e and dre. After some manipulation, we obtain 

dSq ＝翌ど［一皇臼—こ＋ 1 生＿こ」
re n-5 ve ve)乃 n-5 2ve 

x {国+2ueVe-(8 + 3王号）％—三万％＋ 3 （巴号）｝ぞ］ • (35) 
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Now, from the knowledge of the expressions入andら(d入／dら）， onecan easily show 
that the above equation is just identical to 

幽＝亨｛（入＋已）ぞ—＆畠ぞ｝． (36) 

Therefore, comparison between (36) and (26) in1mediately leads to the following relation: 

dSq ={3d'Q ={3（dE + PedV), (37) 

which exactly coincides with the standard result of Clausius relation in a quasi-static 

process. 
The relation (37) strongly suggests that the thermodynamic temperature Tphys is iden-
tified with the inverse of Lagrange n1ultiplier, Tphys = 1/{3. At first glance, the result seems 
somewhat trivial, since one can easily expect this relation from the standard thermody-

namic relation, 8Sq/ BE = {3, which generally holds even in the the non-extensive Tsallis 
formalism [14, 15]. As advocated by many author, however, the relation 8Sq/8E = {3 does 
not simply imply the thermodynamic temperature Tphys = 1/ {3 and it might even con-
tradict with the thermodynamic temperature defined through the thermodynamic zeroth 

low [13]. 
On the other hand, in our case of the self-gravitating system, the thermodynamic 
ten1perature Tphys = 1/ {3 is mathematically verified by the integrable condition of the 
thermodynamic entropy through the Clausius relation. Further, it is remarkably found 
that the relation Tphys = 1/ {3 holds even in the absence of gravity (the limit G→0) and 
can be proven through an alternative route. In Appendix B, as a pedagogical example, 

we demonstrate that the relation Tphys = 1 / {3 is indeed obtained in the classical gas model 
using the Carnot cycle. 

3.2 Negative specific heat and thermodynamic instability 

Once obtained the thermodynamic temperature, Tphys = 1//3，we are in a position to inves-
tigate the thermodynamic instability from the straightforward calculation of the specific 
heat. Let us first discuss the qualitative behavior of the specific heat. By definition, the 
specific heat at constant volun1e is given by 

い（エ）e=国（翡）e=ー炉［言e.
e 

(38) 

Recall that the dimensionless parameters入andTJ are respectively proportional to -E and 
{3(n-l)/(n-3/2) (see eqs. (25) (31)). This irnplies that for a system of a system of constant mass inside a 
fixed wall, the qualitative behavior of (38) can be deduced from the relation between TJ 
and入．
Figure 2 depicts the trajectories of the Emden solutions in the (TJ,入)-planewith various 
polytrope indices. Each point along the trajectory represents an Emden solution for 
different value of the radius re, Fron1 the boundary condition, all the trajectories start 
from (TJ,入） ＝ （0, -oo), corresponding to the origin re = 0. As gradually increasing the 
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radius, the trajectories first move to upper-right direction monotonically, as marked by 
the arrow. At this stage, the kinematic energy dominates the potential energy and the 
system lies in a kinematically thermal state（入＜ 0),indicating the positive specific heat. 
For larger radius, while the curves with index n ~ 3 abruptly terminate, the trajectories 
with n > 3 suddenly change their direction from upper-right to upper-left. Moreover, in 
the case of n > 5, the trajectory progressively changes its direction and it finally spirals 
around a fixed point. 
From these observations, one can roughly infer the existence of the two types of the 
thermodynamic instability as follows. At first inflection point for n > 3, the specific 
heat diverges and the signature of Cv becomes indefinite. Beyond this point, the specific 
heat changes from positive to negative. This means that the potential energy conversely 
dominates the kinetic energy, indicating the system being gravothermal. In this case, 
equilibrium state ceases to exist for a system in contact with a heat bath, but does still 
exist for a system surrounded by an adiabatic wall. However, for the polytrope index 
n > 5, the specific heat of the system turns to increase beyond this inflection point and 
it next reaches at the point d入／d17= 0, i.e, Cv = 0. This means that while the inner 
part of the system still keeps the specific heat negative, the fraction of the outer normal 
part grows up as increasing re and it eventually balances with inner gravothermal part. 
Thus, beyond this critical point, no thermal balance is attainable and the system becomes 
gravothermally unstable. This is true even in the system surrounded by an adiabatic wall. 
Now, let us write down the explicit expression for the specific heat Cv. In equation 
(38), the variation of /3 and E with ~e can be respectively rewritten with 

信）e= —空鵞 (39) 

and 

（竺）＝ n-1ど虹
d~} e --n -3/2 1J d~e ・ 

(40) 

Here, the variable d入／d~e has been already given in (27). As for the derivative of T/ with 
respect to ~e, we obtain 

＆門＝（匹— ~)'T}・
Then the quantity Cv becomes 

Cv = 
(n-3/2)（n-2)竺竺
(n -l)(n -5) re 

2ve 

g（叫，％）

（叫一日）＇

(41) 

with the function g(ue, ve) given by (28). Notice that the above expression is still re-
dundant, since there remains the explicit dependence of the variable fl. Eliminating the 
variable fl by using the relation (31), one finally obtains 

急＝＆n（晶）（3/2)/(n-3/2)~五に匹）1/{n-3/2), (42) 
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where we introduced the new dimensionless constant o:n: 

(n -3/2)(n -2) 
ふ＝％

1/(n-3/2) 
(n-1)（n-5) 

． (43) 

Note that in the limit n→ +oo, equation (42) consistently recovers the well-known result 
of isothermal sphere (e.g, eq.(39) of ref.(20]): 

Cv n土均OO 4硲＋2ue%-llue + 3. 
下 2(Ue-1)

(44) 

Comparing (42) with the isothermal limit, the resultant expression contains a residual 
dimensional parameter h, as well as the quantities M and re・ While the residual depen-
dence can be regarded as a natural consequence of the non-extensive generalization of the 
entropy, it would be helpful to understand the origin of this scaling in more simplified 
manner. This will be discussed in section 5. 
Apart from the residual factor, the expression of specific heat (42) clearly reveals the 
two types of thermodynamic instability seen in Figure 2. The inflection point with the 

infinite specific heat, Cv→士ooleads to the condition 

n-3 
Ue-―=0, 
n-l 

(45) 

which immediately yields the conclusion that this is only possible for the polytrope index 
n > 3, consistent with Figure 2. On the other hand, critical point with the vanishing 
specific heat, Cv = 0 corresponds to the following condition: 

g(Ue, Ve) = 0. (46) 

This is exactly the same condition as obtained from the second variation of entropy (see 
eq.(33) or {53) in ref.[2]). According to the previous analysis, the condition (46) represents 
the marginal stability at which the extremum state of the entropy Sq is neither maximum 
nor minimum. This situation turns out to appear when the polytrope index n > 5. 
Therefore, we reach a fully satisfactory conclusion that the thermodynamic instability 
found from the second variation of entropy is intimately related to the presence of negative 
specific heat and the stability /instability criterion can be exactly recovered from the 

critical point of the thermal balance, Cv = 0, which is also consistent with the analysis 
in the Boltzmann-Gibbs limit, n→oo [7]. The successful result can be regarded as an 
outcome of the correct definition of Tphys・ As for the transition point with Cv→士oo,
it clearly indicates the thermodynamic instability of a system in contact with a thermal 
bath. In next section, by means of the free energy, we confirm that the condition (45) 
indeed represents the marginal stability of the system surrounded by a thermal wall and 
beyond this point the system will be unstable. 
In Figure 3, by varying the radius乃， thenormalized specific heat per particle C~/ N is 
plotted as a function of density contrast, Pc/ Pe around the critical polytrope indices n = 
3(upper-panels) and n = 5(middle-panels). Here, the normalized specific heat c; is defined 
by the specific heat Cv divided by the redundant factor (h2 /GMre/3/2)/(n-3/2). Obviously, 

the transition point Cv→士ooappears when n > 3(crosses), while the existence of critical 
point Cv = 0 is allowed for higher density contrast of n > 5 cases(arrows). The critical 

88 



values Dcrit三 (Pc/Pe)crit indicated by arrows exactly coincide with those obtained from 
the previous analysis (see Table 1 of ref.[2]). Lower-panels of Figure 3 show the specific 
heat with large polytrope indices n = 10 and 30, together with the Boltzn1ann-Gibbs limit 
(n→ +oo, labeled by iso). As incre邸 ingthe polytrope index n, the critical/transition 
points tend to shift to the lower density contrast, while the successive divergent and zero-
crossing points appear at the higher density contrast, corresponding to the behavior seen 
in Figure 2. 

4 Thermodynamic instability from the second varia-

tion of free energy 

Previous section reveals that there exists another type of thermodynamic instability in 
which the marginal stability is deduced from the condition (45). In this section, to check 
the consistency of the non-extensive thermostatistics, we reconsider this issue by means 
of the Helmholtz free energy: 

凡＝ E-Tphys Sq, (47) 

Adopting the relation Tphys = 1/ {3, we re-derive the marginal stability condition (45) from 
the second variation of Fq. 
Consider a system surrounded by the thermally conducting wall in contact with a 
heat bath. Usually, the stable equilibrium state should keep the free energy氏minimum.
Thus the presence of thermodynamic instability implies the absence of minimum free 
energy, which can be deduced from the signature of the second variation炉Fqaround the 
extremum state of free energy. Since the non-extensive formalism still verifies the Legendre 
transform structure leading to the standard result of thermodynamic relation[14, 15], the 
extremum state of the free energy exactly coincides with that of the entropy. One thus 
skips to find the extren1um state of Fq and proceeds to evaluate the second order variation. 
In contrast to the adiabatic treatment, we here deal with the density perturbation 
P →p+8p, surrounded by a thermal wall. To be specific, we evaluate the second variation 
under keeping the radius在， thetotal mass Mand the temperature Tphys constant. Then 
the variation of energy up to the second order leads to 

卵＝ 6 ［J {｝P(x)＋｝p(x)の(X)い］，
J {¾oP+½い＋膚）十 }6層｝心． (48) 

Similarly, using the expression (70) in Appendix A.2, the variation of Tsallis entropy 
becomes 

砥＝ 5 [(n-¾) ｛い f P(x)心｝］，
--(n —¾) f3 j 5 P(x)d油． (49) 

The above expressions include the variation of pressure 6P, which can be expanded with 
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a help of the polytropic equation of state (11): 

籾＝（1 + ｝）長＋； （1 +｝）`向）2. (50) 

Cornbining the above result with equations (48) and (49) and collecting the second order 

tern1s only, the second variation of free energy becomes 

1 rrn+lP 屈＝炉E-Tphys侭＝~/{下戸 (6p)2 + 6層｝心， (51) 

where the relation Tph.ys =1/0 is used in the last line. Now, restrictingour attention to 
the spherical symmetric perturbation, we introduce the following perturbed quantity (see 

refs. [2][8]): 
1 dQ(r) 

8p(r)＝戸ア・ (52) 

Then the mass conservation 6NI = 0 implies the boundary condition Q(O) = Q(re) = 0. 

Substituting (52) into (51) and repeating the integration by part, one finally reaches the 

following quadratic form: 

厄＝—½ ['dr Q(r)［デ羞 {4ら（り蓋｝＋名］ Q(r). (53) 

Thus, the problem just reduces to the eigenvalue problem and the stability of the 

systen1 can be deduced from the signature of the eigenvalue. More specifically, the onset 

of instability corresponds to the n1arginally stability condition，炉ぢ＝0,and it is sufficient 
to analyze the zero-eigenvalue equation: 

L Q(r)三［瓜 {4土げ）羞｝＋土名］ Q(r)= 0, (54) 

with the boundary condition, Q(O) = Q(re) = 0. Equation (54) has quite similar form 
to the zero-eigenvalue equation found in the adiabatic treatment (see eq.(46) of ref.[2]). 

Except for the non-local term, one can utilize the previous knowledge to solve the equation 

(54): 

L (4王 p)
n-3Gm(r) 

n+ 1 r2 
， Lm(r) 

n-1Gm(r) 
=.  
n+ 1 r2 

(55) 

These two equation leads to the ansatz of the solution: 

Q(r) = C｛訳p(r)一日 m(r)}. (56) 

Here, the variable c is an arbitrary constant. The above equation (56) automatically 

satisfies the boundary condition Q(O) = 0, while the remaining condition Q(re) = 0 puts 

the following constraint: 

Q(re) = C (4訂訪ー三やり＝ C（％一圧） M=O. (57) 

Again, we arrive at the satisfactory result that the solution of zero-eigenvalue equation 

exactly recovers the condition (45). 

90 



Now, remaining task is to show that the second variation炉Fqbecon1es negative 
beyond the transition point of Cv→士oo.One can rewrite the expression (53) with 

炉F
1 I TT..  ¥ rre GQ2 

q = 5 (H -1) ／ 7dr, 
゜with the constant H given by 

H 三
干［三匂（り（塁）：
［字dr

(58) 

That is, the condition If > 1 implies stable local minimum state of free energy, while the 
inequality H < 1 represents unstable local maximum state. Integrating by part, equation 
(58) can be regarded as an eigenvalue equation with eigenvalue, H: 

—羞｛二（り詈｝＝ H こ亨· (59) 

Obviously, equation (56) becomes the solution of above equation with the n1inimurn eigen-

value, Hmin = 1, if the condition (57) is fulfilled. In this case, solution (56) can be regarded 
as the ground state of the eigensysten1 (59), since the function (56) does not possess any 
nodes between (0, r』.Therefore,for a suitably smaller radius在 ora smaller density 
contrast Pel Pc below the transition point, the eigenvalue H should be larger than unity. 
Conversely, from continuity, the condition H < l n1ust be satisfied beyond the critical 
radius. 

Finally, using the (u, v)-variables, the geometrical n1eaning of onset of thermodynamic 
instability is briefly discussed in sin1ilar manner to the adiabatic case. In Figure 4, the 
thick solid lines show the En1den trajectories with various polytrope indices in (u, v)-plane. 
The thin-solid lines in Figure 4 represents the straight lines, u -(n -3)/(n -l) = 0. 
Since the equilibrium state only exists along the Emden trajectory, the condition (57) 
is satisfied at the intersection of these two solid lines, which is only possible for n > 3. 
On the other hand, as seen in previous section, the equilibriurn systern surrounded by a 
thermal wall is characterized by the three parameters, re, NI and (3(or Tphys), through the 
relation (31). In other words, the system must lie on the curve: 

v=ピ）（n-1)/nU―1/n, 
an 

(60) 

with some constant value rJ. We have seen in Figure 2 that the constant value rJ is bounded 

from above, rJ ~'f/crit· Thus, the critical curve (60) with rJ ='f/crit n1ust intersect with both 
the Emden trajectory and the straight line u -(n -3)/(n -1) = 0 simultaneously. This 
is clearly shown in Figure 4, where the critical curve is plotted as dashed lines. Since the 
critical curves tangentially intersect with Emden solutions, it always satisfies the condition 

drJ/d~ = 0 at the contact point, leading to the condition (45) consistently. 
Table 1 sun1marizes the din1ensionless quantities'T/crit and Dcrit三 (Pc/叫critevaluated 
at the contact point. As increasing the polytrope index n, these values asyn1ptotically 

approach the well-known results of Boltzrnann-Gibbs lirnit,'T/crit→2.52 and Dcrit→32.1. 
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5 Origin of non-extensive nat non-extensive nature in stellar polytrope 

As has been n1entioned in section 3.2, specific heat of the stellar polytropic system explic-
itly depends on the residual dimensional parameter h, in contrast to the isothermal limit 
(44). In this section, to contact the physical rneaning of the non-extensivity in stellar 
polytrope, we discuss the origin of this residual dependence. Indeed, the appearance of 
the residual factor can be recognized as the breakdown of both the intensivity of tem-

perature and the extensivity of energy and entropy as follows. From equation (18), the 
asymptotic behavior of the Emden solution becon1es 

0 r-J ~-2/{n-l}, P r-J r-2n/(n-l), (~, r→oo) 

so that the mass within a sphere of radius r is given by 

M ~ pr3改 rin-3)/(n-1). (61) 

Then the energy of a virialized stellar system is roughly estimated as 

E 
GM2 
~―改 r~n-5)/(n-1) 改 M(n-5)/(n-3)
re e ,  

and the relation (31) tells 

O改 r;(n-3}/(n-1)/(n-3/2)改 M-1/(n-3/2).

These relations clearly show the breakdown of the intensivity of temperature and the 
extensivity of energy, which lead to the scaling of the specific heat per mass: 

Cv 1 dE (3E 
-＝- ～-exM -3(n-2)/(n-3)/(n-3/2) 
N MdTphys M 

. (62) 

On the other hand, the dimensionless combination hツ(GM和） representsthe ratio of a 
typical scale of the stellar system, G lv/ r f'.J (GM /r)衿～ vデ， tothat of the reference cell, 
h= vol。.Thisbehaves as 

炉 1
~ ex ~ ex M2(n-2)/(n-3). 
GM乃 Mre

(63) 

Thus, these two equations (62) and (63) lead to the scaling relation of (42): 

色～（二 (3/2)/(n-3/2) 
N GMre) 

(64) 

Notice that the Clausius relation (37) suggests that the entropy per unit mass has the 
same scaling relation: 

Sq/3E Cv 
～ ～ 
M M N' 

Therefore, resultant dependence (64) for the stellar polytrope can be a natural outcome 
of the non-extensivity of the entropy. 
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In fact, framework of the thermostatistics generally requires an introduction of the 
scale of the unit cell in order to count the available nun1ber of states in phase spaces. 
This is even true in the case of the isothermal stellar system(n→ +oo or q→1), but, the 
thern1odynamic quantities show somewhat peculiar dependence of the scale h. A typical 
example is the entropy: 

函＝ご｛（加＋Ve-;)-In （門）—託(~)},
where Ue and Ve are the homology invariants for the isothermal system. The above equa-
tion shows that in the Boltzmann-Gibbs limit, h-dependence of the entropy can be rec-
ognized as a matter of choice of an additive constant, so that its derivatives, e.g., specific 
heat, is free from the residual dependence. 
It should be emphasized that the stellar equilibrium systen1 recovers the extensivity 
in the limit n→oo and it behaves as 

E~  M ~ r, Cv ~ M. {65) 

Also, the temperature becon1es intensive in this limit. Thus, we readily understand that 
the scaling behavior shown in (42) or (64) has nothing to do with the long-range nature of 
the gravity. Even in the free polytropic gas model in Appendix B, the residual dependence 
emerges as 

色～｛~}{3/2)/(n-3/2) 
N (P/p)V2/3}・ 

It follows that the explicit dependence of the specific heat on the reference cell scale h 
just originates from the the non-extensive nature of Tsallis entropy. 

6 Summary 

In this article, thermodynamic properties of the stellar self-gravitating system arising from 
Tsallis'non-extensive entropy have been studied in detail. In particular, physical inter-
pretation of the thermodynamic instability previously found from the second variation of 
entropy is discussed in detail within a framework of the non-extensive thermostatistics. 
After briefly reviewing the equilibrium state of Tsallis entropy, we first address the issues 

on thermodynamic temperature in the case of equilibrium stellar polytrope. Analyzing 
the heat transfer and the entropy change in a quasi-static process, standard form of the 
Clausius relation is derived, irrespective of the non-extensivity of entropy. According to 
this result, we explicitly calculate the specific heat and confirm the presence of negative 
specific heat. The onset of instability found in previous work just corresponds to the zero-
crossing point, Cv = 0, supporting the fact that the heuristic explanation of gravothern1al 
catastrophe holds even in the non-extensive thern1ostatistics. 
Further, the analysis of specific heat shows divergent behavior at n > 3, suggesting 
another type of thermodynamic instability, which occurs when the systern is surrounded 
by a thermal wall. We then turn to the stability analysis by means of the Helmholtz free 
energy. Similar to the previous early work, the stability /instability criterion just reduces 
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to the solution of the zero-eigenvalue problern and solving the eigenvalue equation, we 

recover the n1arginal stability condition derived from the divergence of specific heat (45). 

In addition to the therrnostatistic treatrnent, we have also discussed the origin of non-

extensivity in stellar polytrope. The residual dependence of the reference scale h appeared 

in the specific heat (42) naturally arises fron1 the non-extensivity of the entropy and the 

resultant scaling dependence can be sin1ply deduced frorn the asymptotic behavior of the 

Ernden solutions. 
The stability analysis using the free energy in section 4 is consistent with recent 

clairn by Chavanis (21], who has investigated the dynarnical instability of polytropic gas 

sphere. According to his early paper (20], the therrnodynan1ic stability of stellar systen1 

is intirnately related to the dynan1ical stability of gaseous systen1, which has been clearly 

shown in the case of the isothern1al distribution. Thus, the correspondence between 

Chavanis'recent result (21] and a part of our present analysis can be regarded as a 

generalization of his early work to the polytropic systern. Note, however, that starting 

frorn the Tsallis entropy, we extensively discuss the therrnodynamic temperature and the 
specific heat of stellar polytrope. Therefore, at least, fron1 the thermodynan1ic point of 

view, our present analysis provides a valuable insight to the stellar equilibriurn systen1s. 

At present, the results shown in this article seerns fully consistent with the general 

fran1ework of the thern1ostatics. Apart fron1 the therrnodynan1ic instability, the stellar 

polytropic system can be a plausible thermodynarnic equilibriun1 state, as well as the 

isothermal stellar distribution. In the isothern1al case, existence of the thern1odynamic 

lin1it has been discussed by de Vega and Sanchez [19]: 

lvf, V→oo, 晶＝ fixed,
where V rv r3 is a volurne of the systerr1. Recalling the discussion in section 5, the above 

condition merely reflects the extensivity of the isothermal system (65). Thus, similar 
argun1ent can hold for the non-extensive systen1. According to the scaling relation (61), 

the existence of the therrnodynan1ic lirr1it in stellar polytrope yields the condition: 

M, v→oo, 
M 

y(n-3)/(3n-3) = fixed. 

Note, however, that this discussion relies on the non-uniqueness of the Boltzmann-

Gibbs theory, which can be proven only n1athernatically(22]. Indeed, framework of the 

thern1ostatistics cannot answer the question whether the stellar polytropic distribution is 

really achieved as a thermodynan1ic equilibriun1. To address this issue, we must study 

the detailed process of the long-tern1 stellar dynan1ical evolution. In the light of this, the 

analysis using Fokker-Planck model or direct N-body simulation can provide an invaluable 

insight to the non-extensive nature of stellar gravitating systems. This issue is now in 

progress and will be presented elsewhere. 
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Appendix A: Thermodynamic variables in a stellar 
polytropic system 

In this appendix, using the equilibriun1 state of stellar polytrope described in section 2, 

we explicitly evaluate the thermodynamic variables, which have been used in section 3 

and 4. 

A.1 Energy 

Recall that the equilibrium systen1 confined in a spherical container satisfies the following 

vi rial theorem (e.g, p.502 of Ref. [3]): 

21(+ U = 4叫 Pe.

The energy (1) is then expressed as 

3 
E=K+U=4叫 P.-K=4叫 P.-¾ ['P(r)4ゲ dr. (66) 

To evaluate the above integral in the spherically syn1n1etric case, we use the following 

integral formula: 

1r• P(r) 47rr油＝一土 {8叫 P,-(n + 1) 警＋~}, (67) 

which can be derived fron1 the conditions of hydrostatic equilibrium, (15) and (16) (see 

Appendix A of ref.[2]). Thus, the energy of extrernurn state becomes 

E=~[］｛字— (n+1)警｝＋（n-2)4叫P.]. (68) 

In terms of the homology invariants, we obtain 

E＝土字[~ { 1 -(n + 1)¾} + {n -2)巳］． (69) 

A.2 Entropy 

First note the definition of Tsallis entropy (5): 

Sq = -(n -D { j N（長）(n-1/2)/(n-3/2) d6r-N} ・ 
Substituting the distribution function (7) into the above equation, after some n1anipula— 
tion, we obtain 

Sq= -(n -D {/3 f P(x) d3エーN}. (70) 
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Thus, the substitution of integral formula (67) immediately leads to 

ふ＝（n-V［土{8叫P,-(n + 1)警＋字｝,8+ N], 
which can be expressed in terms of the hornology invariants: 

Sq= (n-V ［二°戸｛吃— (n+ 1)い｝＋N］• (71) 

A.3 Radi ius-mass-temperature relation 

The mass-radius-ten1perature relation (31) is derived fron1 the equilibrium stellar poly-
tropic configuration. Using (15), we first write down the condition of hydrostatic equilib-
rium at the boundary在：

GM  1 f dP ァ＝—z に） e.
The right-hand-side of this equation is rewritten with dimensionless quantities in (17): 

GM,...  ¥ u 1 1n { ~ 
＝一r2 (n + 1)Iくnp~/n (~ } 0:. し） (72) 

We wish to express the above equation only in terms of the variables at the edge. To do 
this, we eliminate the residual dependences, Pc and Kn from (72). The definition {17) 
leads to 

丘＝｛~}1/2 = { ~} 1/2 Pin-1)/(2n) 
re l(n+l)凡 (n+ l)}くn

which can be rewritten with 

p竺＝｛二贔｝1/(n-1) (~)2/(n-1) 

Substituting the above relation into (72), the Pc-dependence is first eliminated and we 
obtain 

an/(n-1) M r {(n + 1)氏｝n71/(n-l) ~ = -[~]'l\n-q ~in+l)/(n-1) 0:. 
As for I<n-dependence, the definition (13) together with (8) yields 

(n+1)Iくn=｛這T B(3/2,n-1/2) M}―1/n 
(n-1)n-3/2 戸

(m。0)―(n-3/2)/n.

(73) 

(74) 

Hence, substituting the above expression into (73), the relation between mass M, radius 
re and Lagrange multiplier /3 can be finally obtained. In terms of the homology invariants, 
it follows that 

{ （GM)n(m。(3）n_3/21/（n-1)
炉 h3 } ＝ %（Ue柑）1/(n-l}' (75) 

where the constant an is given by 

(n -1/2)n-3/2 11/(n-1) 

％三 {16亭 (n+1)nB(3/2,n-1/2)｝, 
which asymptotically approaches unity in the limit n→00. 
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Appendix B: Thermodynamic temperature of classical 

gas model from the Carnot cycle 

In a standard framework of therrnodyna1nics, the temperature is defined by means of an 

efficiency of the Carnot cycle. Here we apply the standard procedure to seek the physical 

temperatureTphys for so-called polytropic systemof which distribution function is given 
by the extremization of the Tsallis entropy (see eqs.(5)(6)). For simplicity, we discuss a 

case of the free classical gas without gravity, which corresponds to the G→0 limit of the 
stellar polytropic system. 

From the G→0 limit of the formula (68), free polytropic system of the volume V 
with homogeneous pressure P and density p has an (internal) energy: 

3 3MP 
E = K=  -PV = --_． 2 -. 2 p (76) 

Here we drop the subscript e for the pressure and density, since both are constant within 
the system in absence of gravity. And equation of state (11) becomes 

P = IくnP1+l/n = Kn (-． NJ¥ l+l/n V) (77) 

From equations (8) and (13), the constant I<n is related to the Lagrange multiplier (3 as 

kn (X{3-(n-3/2)/n (78) 

so that this constant can be used as a parameter which characterizes the temperature of 
the system. However, it is not sure whether I<n itself has a role of the physical tempera-
ture, which should be determined through the efficiency of the Carnot cycle. 

The internal energy (76) and the equation of state (77) give the thermodynamic first 
law: 

d'Q = dE+ PdV 

_ Ml+l/n｛彗信＋（n-n3/2)氏』戸｝，
from which adiabatic changes d'Q = 0 is expressed as 

K註1(2/3-l/n)= constant, p v5!3 = constant'. 

(79) 

(80) 

Note that adiabatic lines i~ a P-V plane become steeper than isothermal ones when 
n > 3/2. 
Now, let us consider the Carnot cycle shown in Figure 5. As usual, quasi-static changes 

B →C and D→A are adiabatic. As for the process A→B, the system is in a thermal 
contact with a heat bath which has a higher temperature K;f. Similarly, during the 
change C→D, the system lies in a thermal equilibrium with another heat bath that 
has a lower temperature I<~. The system absorbs amount of heat QH from the higher 
temperature bath and disposes QL to the lower one during the isothermal processes A→ 
Band C→D, respectively. They are easily evaluated from (79): 

QH = (nー告）Ml+1/nk名(vAー1/n_ Vil/n)' 

QL = (n -¾) j¥;fl+l/n K;; (Vil/n -v~l/n). 

97 

(81) 



On the other hand, a relation between the parameters of the cycle can be obtained from 
the equation of state (77) and the adiabatic changes (80): 

（隠）7=闘＝隠；仔] n 3/2. (82) 

Thus, equations (81) and (82) lead to the following efficiency of the Carnot cycle: 

戸 1 —翠＝ 1- （晨）n/(n-3/2)= l _戸， (83) 

where we used the relation (78) in the last line. This clearly shows that the inverse of the 
Lagrange multiplier(Jhas a role of the physical temperature. 
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Table 1: Critical values of the radius-n1ass-temperature relation, 7Jcrit and the density 

contrast between center and edge, Dcrit = (Pc/ Pe)crit in the case of a systen1 in contact 
with a heat bath for given polytrope index n or q. 

I n 

q 

'f/crit Dcrit 

3 

l 4 0.9421 153.5 

5 1.193 88.15 
7 

6 1.22 1.379 68.38 
7 1.18 1.520 58.86 

8 1.15 1.631 53.28 ， 1.13 1.720 49.62 

10 1.12 1.793 47.04 

30 1.04 2.263 35.89 

50 1.02 2.363 34.28 

100 1.01 2.440 33.17 

00 1 2.518 32.13 
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Figure 1: Density profiles of stellar polytrope for n < 5 (left) and n ~ 5(right). 
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Stationary state in N-body System with power law interaction 

Osamu Iguchi* 
Department of Phyaica, Ochanomizu Univeraity, 2-1-1 Oht叫a,Bun切o,Tokyo,112-8610 Japan 

Observations and simulations show many scaling properties in self-gravitating system. In order 
to study the origin of these scaling properties, we consider the stationary state in N-body system 
with inverse power law interaction. As a simple case, we consider the self-similar stationary solution 
in the collisionless Boltzmann equation with power law potential and inv.estigate its stability in the 
term of a linear symplectic perturbation. The stable scaling solution obtained are expressed by the 
power of the potential and the virial ratio of the initial state. The nonextensive system has many 
various stable scaling solution compared with the extensive one. 

I. INTRODUCTION 

There are many self-gravitating system which are char-
acterized by some scaling properties. For example, the 
inter stellar medium show that it's velocity dispersion 
u has scaling relation with the system size L or mass 
M[l]（グ～ L゚．38- M0・2) and isothermal contour are 
characterized by the fractal dimension D -1.36[2]. The 
observations by the Hubble Space Telescope show ellipti-
cal galaxies has a power law density distribution p -r-n 
(At outer region, n -4 and at inner region, n -0.5-1.0 
for the bright elliptical galaxies and n -2 for the faint 
ones [3].). The distribution of the galaxies and the cluster 
of galaxies can be characterized by the fractal dimension 
D -2[4]. In cosmological simulation based on the stan-
dard cold dark matter scenario, the density profile is a 
power law distribution (At outer region, n,._, 3 and at 
inner region, n,._, 1.0 -1.5[5, 6].). 

Recently, in order to study the statistical properties of 
self-gravitating system, we proposed self-gravitating ring 
model[7], where each particles are moving, on a circular 
ring fixed in three-dimensional space, with mutual inter-
action of gravity in three-dimensional space. The numer-
ical simulation shows that the system at the intermediate 
energy scale, where the specific heat becomes negative, 
has some peculiar properties such as non-Gaussian and 
power law velocity distribution(/(v) -v-2), the scaling 
mass distribution, and the self-similar recurrent motion. 
In this model, the halo particles which belong to the in-
termediate energy scale, play an important role in such 
specific characters. 

We are interested in the origin of these scaling prop-
erties. In order to study the statistical properties of 
long range interaction such as gravity, Ising model, and 
spin glass, the model with power law potential has been 
used and revealed anomalous properties[S-10]. For ex-
ample, a gravitational-lilce phase transition[8], reduction 
of mixing[9], and long relaxation[lO] are observed. Using 
a model with an attractive 1/ra potential in general D-
dimensional space, we can control the extensivity of the 
system and the sign of the specific heat by the spatial 

*Electronic address: osmnulllphys. ocha.. ac. jp 
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dimension D and the exponent of inverse power of the 
potential a. 
In this paper, we study the quasi-equilibrium state of 
N-body system with a power law potential. As first step, 
we consider the collisionless Boltzmann equation (CBE) 
in replace of N-body system and derive the self-similar 
stationary solution of CBE which has a scaling property 
appeared in the quasi-equilibrium state and discuss the 
linear stability by use of energy functional analysis[ll-
13]. 
In section II, we show some property in N-body sys-
tem with power law potential. In section III, we de-
rive the self-similar stationary solution of CBE with an 
attractive 1/Ta potential assuming spherical symmetry 
and isotropic or bit case in D-dimensional space. The sta-
bility for the linear perturbation around the self-similar 
stationary solution is investigated in section IV. The dis-
cussion is devoted to section V. 

II. N-BODY SYSTEM WITH POWER LAW 
POTENTIAL 

In this section, we show some character in N-body sys-
tem with power law potential. 
We consider the Hamiltonian in N-body system with 
power law potential can be written in the form. 

N P? N 
H =L~-L Gm2 2m ra, (1) 
i=1 i<i” 

where ri; := lri -r; I and a is a parameta characterized 
potential energy. 
In this system, the virial condition is 

2 < K > +a く~>= 0, (2) 

where < K > is a time averaged kinetic energy and 
< ~ > is a time averaged potential energy. From the 
equation H = K 十~, we have 

2 - a2  -a 
H=―下 <k>＝―く~ >. (3) 

2 

From Eq.(3), the sign of the specific heat is determined 
by the sign of the term -(2 -ct)/ct. 



TABLE I: In the system with an attractive 1/ra potential in 
D-dimensional space, the property of the specific heat and 
the extensivity are shown. 

O<aく2 a> 2 
specific heat negative positive 

a<D a>D 
extensivity nonextensive extensive 

In order to show the extensivity of the system, we use 
the N dependence of the potential energy ~ under the 
fixing the number density N / LD which can be calculated 
as follows(15]. 

屯
N(l/D) 

万～／ drrD-lr―a,.., Nl-a/D. (4) 

If the N dependence of the potential energy per one parti-
cle disappears when N goes to infinity, we call the system 
is extensive. Otherwise, we call the system is nonexten-
sive. In the case of the gravity in D-dimensional space, 
since a= D -2, the system is always nonextensive. We 
summarize the sign of the specific heat of the system and 
the extensivity in Table.I. 

III. SELF-SIMILAR STATIONARY SOLUTION 
IN COLLISIONLESS BOLTZMANN EQUATION 

(CBE) 

In this section, we derive a self-similar stationary so-
lution in collisionless Boltzmann equation (CBE); 

誓＝誓＋［J,H]= o. (5) 

where / = /(z, v, t) is a mass distribution function and 
[A, BJ denotes a Poisson bracket. 
The stationary solution /o satisfies following equation. 

2D 

[fo,H]＝こ珈9i0fo8tれが =0, 
i=l 

(6) 

where wi = {z, v }. 
For the coupled CBE and Poisson equation, R.N. Hen-
riksen and L.M. Widrow[16] studied the self-similar sta— 
tionary solution in CBE with spherical symmetry case in 
three-dimensional space by the systematic method which 
is based on the work ofB. Carter and R.N. Henriksen[17]. 
Following R.N. Henriksen and L.M. Widrow[16], we 
study self-sinrilar stationary solution for spherical sym-
metry and isotropic orbit case in D-dimensional space. 
The case that D = 3 and a = 1 corresponds to the 
work by R.N. Henriksen and L.M. Widrow[16]. By the 
extension of the spatial dimension D and the exponent 
of power of potential a, it is possible to investigate the 
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relation between the extensivity of the system and the 
self-si呻 arity.

From Eq.{6), mass distribution function f(r,v) obeys 

成しf-8厘811/= 0, (7) 

where v:＝り戸口『可 and呑 isa potential. The 
potential ~ satisfies a following equation, 

;ha., (ra+la厘）＝S1,G/ vD-l fdv, (8) 

where SD:= 2~12/r(D/2). In the case of a= D-2, 
the above equation corresponds to Poisson equation. 
A self-similar stationary solution satisfies the following 
equation. 

£,.f = 0, (9) 

where 

ら：＝収＝6r8,,. ＋v哄＋μm8m (10) 

is a Lie derivative with respect to the vector k in phase 
space, and o, v, andμ. are arbitrary constants. 
In a dimensional space of length, velocity, and mass, 
we introduce these vector a= (o,v,μ) and d1. The vec-
tor a = (o, v, μ) describes changes in the logarithms of 
dimensional quantities. Each dimensional quantity/ in 
the problem has its dimension represented by the vector 
d,. Using these vector a and di, the action of k reads 

らf= (dt ・ a)f. (11) 

The dimensional quantities in current problem /, 4>, 
and G have the following dimensional covectors, 

d1 = (-D, -D, 1), 
d全＝（0,2,0),

必＝（a,2,-1).

(12) 

The requirement of the invariance of G under rescaling 
group (10} implies dG ・a= O, 

μ = a6 + 2v. (13) 

The dimensional space is reduced to the subspace of 
(length, velocity), wherein the rescaling group element 
a= (6,v) and 

d1 = (a -D, 2 -D), 
心＝（0,2). (14) 

Here we define the new coordinate R(r) and X in re-
place of the original coordinate r and v such that 

らR=l,

£,.X=O. 

(15) 

(16} 



From Eqs.(15) and (16), we choose 

rl61 = e 
紐 ， 

v = Xe11R. 

(17) 

(18) 

Under the new coordinate, these physical quantities f 
and <J? can be w出tenin the form. 

f(X,R)＝了(X)e―[(D-a)6+(D-2)v]R1 (19) 
<J?(X, R)＝否(X)e2四 (20)

Substituting Eqs.(19) and (20) into Eqs.(7) and (8), 
these equations for a bounded solution yield 

dlnf [D-2 + (D-a)!] X2 
写ァ＝― m+2否 ' (21) 

譴
訊 01D-a-2[2 +弓l否＝ S叫 X吋 dX.(22) 

Without loss of generality, we can set v = 1. 
Solving Eqs.(21) and (22), we have a following solution, 

了＝ C|炉＋2否1ー[(D-a)6+(D-2)]/2 (23) 

where 

The ~. where the virial condition satisfies is 

~. = 2(2a -D) 
a(D-a) ・ 

(32) 

If (D -a)(~ -~.) < 0, the potential energy is dominant 
compared with the virial state. 
The relation between pressure P and mass density p 
can be written in the form. 

P ~ p1十可． (33) 

The above equation of state corresponds to one of Poly-
tropes gas when Polytropes index n equals l+(a-D)6 /2. 
Note that for a = D, there is no self-similar stationary 
solution that corresponds to an isothermal state. 
As for gravity case (a= D-2), the above solution (24) 
and (27) in D = 3 corresponds to the solution derived by 
R.N. Henriksen and L.M. Widrow[16]. For D = 1 and 
D = 2 where a = D -2 5 0, we show the self-siinilar 
stationary solution in Appendix.A. 

IV. LINEAR PERTURBATION ANALYSIS 

C=  
12 + a6I IJID-a-2r(D/2)r(2 + (a -D)J/2) 

, In this section, we investigate the stability of the self-
2呼 G|-活|(a-D)6/2r([4-D + (a -D)6 -D]/2) 

if the following condition satisfies 

(D -a)6 < 4 -D. 

similar stationary solution derived in previous section for 
(24) a symplectic linear perturbation by the energy functional 
analysis[ll-14]. 
As for the linear stability of the stationary solution in 

(25) CBE ofthe gravity in three-dimensional space, there are 
many works [11-14, 18-24]. For the stationary state, as-

Since否<0,from Eq.(22) we obtain the additional con- suming spherical symmetry, characterized by the mass 
dition, distribution function /o specified as a function of the 

a~< -2. 
mean field energy E and the squared angular momentum 

(26) J2, if 8f0/8E <-0 and 8f0/8i2 < 0, then the system is 
If these condition Eqs.(25) and (26) satisfy, we have the 
bounded self-Similar stationary solution (23) and • (24)． 
The mass distribution function /, the mass density p, 
and the velocity distribution / (v) become respectively 

stable to the linear perturbation. 
Following the work by J. Perez and J.J. Aly[13] where 
the stability of stationary solution in the coupled CBE 
and Poisson equation with a spherical symmetry in three-
dimensional space is studied, we study stability of solu-

(27) tio~ o~tained in p~e~ous secti~n. 
At first, we explain a symplectic linear perturbation 

f(T, v) = Cl2E|―[(D-a)6+(D-2)]/2 ， 

p := SD I dvvD-1 f(T, v),.._, Ta-D+2/6, 

f(v) :=SDI drrD-lf(T,v),.._,va6+2-D, 

where E denotes the mean field energy; 

1 
E :＝ー記＋全。・
2 

(28) by the energy functional analysis[ll-14]. In term of the 
mass distribution function / (z, v, t), Hamiltonian H is 

(29) written as follows, 

2 

H = I dr~f(z,v,t) 
2 

(30} G 万／dr/d匹 (12-2'1)/(2, v, t)f(z'ぷ，t),(34)
Since the solution (27) we obtained is a bounded solu-
tion, the specific heat of the self-similar stationary solu- where dr := dD zdD v is a 2D-dimensional phase volume 
tion is always negative. The ratio of the average of the element and the kernel Q satisfies 
kinetic energy to the potential energy is as follows. 

＜函。＞（D-a)6-4
＝ <K> D 

(31) 知）＝ G／d匹 (lz-z'l)f{z',v',t). (35) 
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We consider the small perturbation around some sta— 
tionary solution / o. The distribution function and Hamil-
tonian can be expanded around the stationary solution 
as follows. 

f(z,”,t) ＝ fo + 6(1)f + 6(2)f +..．，（36) 
H = H。+6(1)H+6(2)H+…. (37) 

Here we consider any symplectic perturbation, which 
can be generated from the stationary solution / o by use 
of a canonical transformation. By using some generating 
function K, any symplectic deformation can be expressed 
in the form 

I = e[K,•] lo- (38) 

From the aboye definition (38), f can be also expressed 
as follows. 

1 
I= lo+ [K, lo]＋ー[K,[K, fo]] 

2! 
1 
十一[K,[K, [K, lo]]＋・・・．
3! 

(39) 

In the term of the parameta e which represents the 
amplitude of the perturbation, the generating function 
K is expanded in the form 

K = eK(l) + €2 x(2) + €3 x(3) +…,（40) 

and identifying g(n) = en x<n), the perturbed quantities 
in the Eq.(36) a.re written as follows. 

0(1) / = fg(l)'/o), 

炉）f=砂lo]+｝砂，砂，/o]].

The first order term in Eq.(37) yields 

即 H=/drE[g(1),fo]， 

where Eis the energy of a particle, 

” 
2 

E :＝一＋屯。，
2 

(41) 

(42) 

(43) 

{44) 

where屯。 isthe potential energy generated by /o-Since 
E and /~ are coiiserved quant山es,6(1) H = 0. 
The next order term in Eq.(37) yields 

6(2;H = ／drE砂 fo]＋｝fdrE砂，砂，fo]］

+~ J dr J d匹 (lz-z'|）砂，fo]砂',!&]. (45) 
2 

The first term in Eq.(45) also vanishes and by an inte-
gration by parts, Eq.(45) is rewritten in the form. 

1 
炉 H= -~ I dr[g（1), /o][g（1), E] 

骨Jdr]［匹(|0-Z'|）砂，fo]砂 ',fb]．（46)

Hereafter we consider the case that the stationary so-
lution /o is a function of only the energy E. In this case, 
we obtain 

砂，Jo]＝和[9'1>,E], (47) 

／む砂，Jo]= I dDvae(FEvg<1>), (48) 

where FE:= a計o・
Integrating by parts and using Eqs.(47) and (48), we 
have 

炉 H=
1 G ½ / dr(-FE)I砂，E]l2十ァ／辱(-Fか 9(1))

XI  dr'ae,(-F.如’g(1)＇）g(|Z-Z'|）．（49)

The linear perturbation g<1) has two kind of gauge 
mode. One is the case that g(l) = g<1>(E). In this case, 
the linear perturbation of the mass distribution 0<1> f is 
trivially ze~o. The other is the case that gC1)＝匹 where
a is a constant. This perturbation means the translation 
of the center of mass. In order to consider the physi-
cal perturbation, we investigate the linear perturbation 
except the above gauge mode. 
The stability for the linear perturbation[24, 25] reads 
that 

If o<2) H > 0, then the system is stable. (50) 

A. spherical mode 

Since the first order perturbed potential o<1)~{r) sat-
isfies 

凸(ra+18,.6(1)~{r)) = S匹／む砂',f6]
＝細;ha,(TD-1 I dv,,,F討 ‘g(1)＇）,（ 51)
the spatial derivative of 0<1>~(r) becomes 
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8,,.d(l)~(r) ＝旱／ぷ'F紅',(1)'.

From Eqs.(49) and (52), we have 

26(2)H 

= J dr(-FE)I[g（1),E]l2 

-J dra.,.(-F討gC1))6(1)~(r)

= J dr(-FE)I[g(1), E]l2 -s匹／ dDz ra-D+2 

(52} 

XJふ (-FEvg(1)）／d%'（-F紅 ',(l)').(53) 



Introducing new variables, 

g(l) =: rvrμ(r,v,t), (54) 

and using Schwartz's inequality, we have 

卵 H = I dr(-FE)l[μrvア，E]l2-GSv j ~ 
XJ紗v[-F匂（叫］／紗v'[-F如(v,?)2μ') 

dDz 
> I dr(-FE)l[μrvア，E]l2-GSv j ra-D+2 
x ／紗v[-FEr(v?叩 l/抄v'[-Ff;;r(v'予］
= j dr(-FE)｛伽rv?,E)l2 -GSD(rが）2厨POra-D+2}, 

(55) 

where po is non-perturbed mass density: 

Po:＝／ふfo= j dDv(-F_叫(v,.）2. (56) 

Using the property of the Poisson bracket, and the fact 
that the integral of Poisson bracket over the phase space 
vanishes, the equation (55) can be rewritten in the form. 

副 H ~ f dr(-FE)｛伽rvr'E]l2-GSv(rザ）2厨POra-D+2} 

= J df(-FE) {(rvr)21[μ，El|2 +|μ白[rvr,E]l2
+rvr記，E][rv八E]-

GSv(r炉）2μ2p0
ra-D+2 } 

= J dr(-FE)｛(可|[μ，E]l2+ JμJ2l(rvア，E]l2
+[μ％が[rvア，E］，E]-|μ|％が[[rv',E], E] 

-|μ|2|［rvア，E］|2_ 
GSv(rv')2μ2po 

ra-D+2} 

= J dI'(-FE) {(rvア）加，E]l2
-lμl2ザ [[rv',E], E] -

GSD(rv')2厨PO
ra-D+2}.(57) 

Using the following relation, 

[[rv', El, E] = -rv'(凸 +3竺）
dr2'r dr 

= -rv'(~。翌悶＋午？），（58)
we obtain the final expression in the form. 

炉）H2'. 

~ J dr(-FE)(,炉）2(伽，E］|2+|μ|2亨 ？）（59)

nonextensi ve 

8 
4 

2 

-゚2 

-4 

・ .. 
extensive 

negative 

specil・ic heal 

（飴ふ）

positive 

← specific heat 

FIG. 1: One-dimensional case (D = 1). The dark region 
corresponds to the stable region (62) in the parameta space 
(o, a). The property of the specific heat and the extensivity 
also are shown. 

From Eq.(59), if J(2lH = 0 when FEく 0and a ~ 2, 
J(l) f = 0. Since such a perturbation is a gauge mode, 
we conclude that 

If程 <0and a:::; 2, then o(2)H > 0. (60) 

From the self-similar stationary solution Eq.(23), we 
have 

咋＝ sgn(E)[(a-D)8 + 2 -D]Cl2El[(a-D)o-D]/2.(61) 

As an explicit example, we consider D = 1 case. From 
Eqs.(25), (26), and (60), if the following condition satis-
fies, the self-similar stationary solution Eq.(27) is stable. 

1 2 
-― < 6 < --
a-l a 

6 < -2 
a 

(1 < a :S 2) 

(O<a:Sl) (62) 

In Fig. l, the region of existence of the stable self-similar 
stationary solution in the par am eta space (a, b) is shown. 
Note that in the above calculation, we use the inte-
gration by parts and neglect the surface term. Since the 
self-similar stationary solution obtained in this paper is 
singular at the boundary, the surface term can not be ne-
glected in general. However we hope that the self-similar 
stationary solution can be connected with some regular 
solution near the boundary and the boundary term can 
be neglected. 

B. aspherical mode 

Next, we consider an aspherical mode. Since it is diffi-
cult to analyze a general case, we study the gravity case 
in D-dimensional space (a= D -2). 
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By the integral of Poisson equation over the configu-
ration space and integration by parts, we have 

1 

SD 
I心▽0(1）呼＝ / dr6(1)f6(1)~, (63) 

where 

6噂：＝／d％ g炉）f.

恥 mEqs.(46), (63), and (64), we have 

l f,..,(8(1)が G
炉 H=-/dr -- J心▽8(1)~,2 . (65) 

2 J --FE 2Sv 

(64) 

-2 

-4 

nonextensive 
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Here we introduce &(l) j as follows. 

炉）f＝：F砂（1)全十6(1)j. (66) 

FIG. 2: Gravity case (a = D -2). The dark region corre-
sponds to the stable region (74) in the parameta space (o, D). 
The property of the specific heat and the extensivity also are 
shown. 

Substituting Eq.(66) into Eq.(65), we get 

” =~ に［り〗i)2 十咋（0(1)~)2 _ 2o(l)jo(l)全

羞J心▽：（1）全I29 ] 

= ~ J dI'り］E)2+ 土 J叫Im(1)~12

-SD[!己(-FE)lo(ll~12] }・ (67) 

Moreover, using the new variable w which is defined 
by 

0<1)~ =: w(z, t)o池 O,

we can rewrite the equation (67) in the form. 

炉 H

= ｝ fdr(6:1悶
＋土！吋い）2[1v'wl2-Sv / dDv(-FE)lwl2] 
-1w12aアい。▽塙全。 ｝•
By the straightforward calculation, we obtain 

(68) 

▽切泣o= Sv J dDvF.砂泣o+ (D -1 8厘o- 1)—· r2 (70) 

By using the Wirtinger's inequality (see Appendix B), 
we have 

/ [1▽叶—竺已|wl2] 叩 0, (71) 

where▽ :＝▽ ,. 8 同か・
From Eqs.(69), (70), and (71), we get the final expres-
sion in the form. 

炉）H

= ｝ l fdrり］E戸
D-1 

＋ー
2SD 
Jふ (8厘0)2［協wl2+ I▽心—T1w12]
1 (6(1)が 1
こ5/dr -FE 十声jら（8ふ）叶如uj2. (72) 
From Eq.(72), if &(2)H = 0 when FEく0,&(l) f = 0 or 
砂＝ av.Since such a perturbation is a gauge mode, 
we conclude that 

If FEく 0,then 0<2)H > 0. (73) 

This condition is weaker than the condition (60). In the 
gravity case (et= D-2), from Eqs.(25), (26), and (60), if 
the following condition satisfies, the self-similar station-
ary solution Eq.(27) is stable. 

2 
a<一戸 (2 < D ~ 4) (74) 

In Fig.2, the region of existence of the stable self-similar 
(69) stationary solution in the parameta space (D, 8) is shown. 
This stability condition (60) is consistent with the work 
by J. Perez and J.J. Aly[l3](a = 1, D = 3). 

V. DISCUSSION 

We study the self-similar stationary solution in the col-
lisionless Boltzmann equation with an attractive 1/r0 
potential assuming the spherical symmetric and isotropic 
orbit case in D-dimensional space and investigate the lin-
ear stability of its solution. In the above model, we can 
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control the extensivity of the system and the sign of the 
specific heat by the spatial dimension D and the expo-
nent of inverse power of the potential a. 
The self-similar stationary solution can be expressed in 
the form of the power law of the energy. The exponent of 
the power is determined by the power of the potential a, 
spatial dimension D, and the scaling parameta J. Here 
we interpret J as a para.meta which denotes a virial ratio 
of the initial state. 
By use of the energy functional approach, we investi-
gate the stability of the self-similar stationary solution 
in the term of a symplectic linear perturbation. As for 
the spherical symmetric and isotropic orbit case of the 
gravity in D-dimensional space (a = D -2), if the mass 
distribution function decrease monotonically and the spa— 
tial dimension is less than 4, then the system is stable. 
As for the power-law potential case in one-dimensional 
space (D = 1), if th e mass distribution function decrease 
monotonically and the inverse power of the potential is 
less than 2, then the system is stable. The self-gravitating 
ring model[7] is similar to the case of a = 1 in one-
dimensional space. From the form of the velocity distri-
bution obtained by a numerical simulation, 6,..., -3. This 
case belongs to the stable self-similar stationary solution. 
The stable self-similar stationary solution we obtained 
is a state where the potential energy is dominate com-
pared with the virial equilibrium state. As for the exten-
sivity of the system, the nonextensive system has many 
various stable scaling solution compared with the exten-
sive one in the parameta space (J, a, D). 
In the time evolution of the collisionless system as-
suming the spherical symmetry and isothermal case, 
Larson-Penston solution which shows self-similar collapse 
is attractor[26]. By such a self-similar time evolution of 
system, we hope that the class of the stable self-similar 
stationary solution obtained in this paper plays an im-
portant role as a quasi-equilibrium state of system with 
a long range interaction such as gravity. In a realistic sit-
uation, since the anisotropic velocity space is important, 
we will extend this analysis to the anisotropic case in the 
future work. 

APPENDIX A: STABILITY CONDITION FOR 
GRAVITY CASE IND= 1 AND 2 (a= D-2) 

For the case that the potential否ispositive, Eq.(22) 
is modified as follows. 

2ッ2[2 + (D -2)~] 否＝ SらG£XD-1/dX. (Al) 

By integrating Eq.(Al), we have self-similar solution 
(23) and 

C= 
12 -61 r(6 -1/2)12¥11 

ふGr(6-1)'  
(A3) 

if the following condition satisfies 

6 >1. {A4) 

From Eqs. (A2), (A4), (60) and (73), the stability 
condition for linear perturbation yields 

1 < 5 < 2. (A5) 

The ratio of the average of the kinetic energy to the 
potential energy is same as Eq.(31) in D = 1. However if 
d ~ 2, the integral of the kinetic energy over the velocity 
space diverges. By this reason, there dose not exist the 
stable self-similar stationary solution in D = 1. 

2. D = 2 case 

-． If the potential ~ is negative, the condition that the 
bounded self-similar solution exists is the same one (25) 
and (26). Since this case does not satisfies the condition 
(26), the only case that ~ > 0 is possible. 
In this case, from Eq.(Al), the condition that a 
bounded self-similar solution exists yields 

6 > 
1 
ー，
2 

(A6) 

and the integral constant of (23) is 

C= 
2r(6)12可
1r5l2Gr(6 -1/2). 

(A7) 

From Eqs. (60), (73), and (A6), the stability condition 
for linear perturbation yields 

6 > i. (A8) 

The ratio of the average of the kinetic energy to the 
potential energy is same as Eq.(31} in D = 2. However, 
same as D = 1 case, if o ~ 2, the integral of the kinetic 
energy over the velocity space diverges. Finally, if o > 2, 
the self-similar stationary solution in D = 2 is stable. In 
this case, the specific heat is always positive. 

APPENDIX B: WIRTINGER'S INEQUALITY 

1. D = 1 case Following J.J.Aly and J.P'erez[27], we show simple 
proof of Wirti~ger's ineq~ality (71). Let us consider a -． Since the potential~ is positive, from Eq.(Al), function f(r，が）， whereai denote an angular coordinate 
in (D-1)-sphere and i = 1, 2, • • •, D -I, with zero av-

6 < 2. (A2) erage value over the (D-1)-sphere S.,..Using spherical 
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harmonics Q l.  m• 1 in sD-1, the function / can be written 
as follows. 

oo D-2 

f(r,ai) = L II L c如(r)Q!ri、(ai)
l=l i=l m• 

(Bl) 

where m'denotes the proper mode corresponds to each 
angular coordinate. From the completeness of the spher-
ical harmonics and the following relation 

▽!Q如＝一l(l + D -2),"¥' ~Qが9 {B2} 

where▽、:＝▽ー(;)む wehave 

／ ▽，Q如▽ぶ血D-1
s .. 

l(l+D-2) 
= T2 I心QL、血D-1

s .. 

l(l+D-2 
＝ 

）．  
が！ 6i、6品， (B3) 
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Abstract 

Compact star clusters in the star burst g・alaxies sink toward the galactic center through 
dynamical friction.. If they survive well against the mass loss by the_ stellar ev~l!,ltion_ a~d 
t&e tidal stripping from tlie parent galaxy,-then they convey intermediate mass black holes 
(f'oJ IOOOM0)~ proauced in the cluster-through runaway mergings of the massive stars, into the 
galactic center to form a supermassive black hole (Ebisuzaki et al. 2001}．In the present paper, 
we investigated the condition for surviving of the cluster by means of numerical simulations 
which include stellar evolution and tidal stripping. As stars evolve, they eject their mass, 
which is lost away from the cluster. Furthermore, the tidal force of the parent galaxy stripped 
thestarsinthe outsideofthe cluster. Throughthese <rocesses,both thenumberofthemembers 
and the gravitational binding energy of the cluster ecome smaller as they sink. Finall they 
totallydisrupted, whentheirldentity arelost. WeperformedaseriesofthegravitationalJ-body 
simulations for the star clusters of the star burst galaxy, M82. 
We foun~ that a cluster with an initial cluster_ mass of ¥c ~ 3 x 106 Ali。andthe lower limit 
mass of IMF Mmin s o.5M。.thesurvivin財゚ nditionofthe cluster well survive until it sinks 
down to the cen~er_ of the parent galaxy. We also fQuI!_d !_~at the results depend st~ongly on 
the total mass of cluster and initial mass function, IMF. These results support the formation 
scenario of supermassive black hole described above. 
We adopted Hernquist spherical galaxy model for M82 Galaxy, which is truncated at galactic 
radius rb = 0.5kpc and whose mass is Mb = 2.08 x 109 M。.andKing model for the compact star 
cluster, whose central potential is Wt。=5.0and core radius is ro "'lpc. We used special-purpose 
computer, MDGRAPE-2. 

1 Introduction 

1.1 SMBHs in Galaxies 

There is rapidly growing evidence for supermassive black hole (SMBHs) in the centers of many 
galaxies (Kormendy & Richstone 1995). 
Many authors have pointed out that the mass of the central BH, mBH, correlates with the 

mass of the bulge, Mb. The ratio of mBH to Mb is almost constant at 0.002 (Kormendy & Richstone 
1995), 0.006 (Magorrian et al. 1998) as figure 1. This suggests that the formation of the central 
BH is somehow related to that of the bulge. 

~he forma~ion mechanism of SMBHs is not well understood. In the famous diagram by 
Rees (1978, 1984), there were basically two paths from gas clouds to SMBHs. The first 1s direct 
monolithic collapse; the second is via the formation of a star cluster, with subsequent runaway 
collisions leading to BH formation. Previous numerical studies, however, have demonstrated that 
neither path is likely. In the first, a massive gas cloud is much more likely to fragment into many 
small clumps in which stars then form, so direct formation of a massive BH from a gas cloud seems 
impossible. In the second, stellar dynamics in star clusters does not easily lead to the formation 
of SMBHs. A number of low-mass BHs (masses around 10M0) are formed via the evolution of 
massive stars, and these BHs do indeed sink to the center of the cluster through dynamical friction 
and form binaries by three-body encounters. Taniguchi et al. (2000) argued that intermediate-mass 
BH (IMBHs) could be formed through successive merging of compact objects. However, recent 
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Figure 1: MBH and Ali如lgeproduced by Magorrian et al. {1998) models. Thee filled and open 
circles plot power-law and core galaxies, respectively. The solid line plot MBH,fit as described 
MBH / Mb = 0.006. 

N-body simulations (Portegies Zwart & McMillian 2000) have demonstrated that practically all 
of these BH binaries are ejected from the cluster by recoil of interactions with other BHs (or BH 
binaries) before they merge through gravitational radiation. 

1.2 Discovery of IMBH in M82 and New formation scenario for SMBHs 

Matsumoto et al. (2001) have identified nine bright compact X-ray source in the central region 
of M82 using recent Chandra data. The brightest source, which exist some 200pc away from 
dynamical center of M82, (number 7 in their Table 1) had a luminosity of 9 x 1040ergs-1 in 
2000 January, corresponding to a BH with a minimum m邸 sof 700.M;。.Assumingthe Eddington 
luminosity, the relation MBH and the luminosity of the brightest source is given as 

M卵＞ 770M。( L 
9 X 1040ergs-1) • (1) 

It probably consists of a single compact object, as its X-ray flux shows rapid time variation (Mat-
sumoto et al. 2001). This is first detection of a BH candidate with a mass much greater than 
lOOM0 but much less than 106 U。.Amongthe eight other sources, at least three (5, 8, and 9) 
have Eddington masses freater than 3OM。•
Matsushita et al. {2000) observed the same region with the Nobeyama Millimeter Array and 

found a huge expanding shell of the molecular gas. They estimated the age and kinetic energy of 
the shell to be around 1 Myr and 1055ergsー1,suggesting that a strong star-burst took place a few 
milliyears ago. We show more details about the cluster in §2.3 
We now have two important observational results. The first is that a BH with intermediate 

mass (770 < MBH/M0 < 10りmayhave been found. The second is that it coincides with a young 
compact star cluster. 
Based on these findings, Ebisuzaki et al.(2001) suggest a new formation scenario for SNBHs. 

In this scenario, IMBHs first form in young compact star clusters through runaway merging of 
massive stars. While these IMBHs are forming, the host star clusters sink toward the galactic 
nucleus through dynamical friction and upon evaporation deposit their IMBHs near the galactic 
center. The IMBHs then form binaries and eventually merge via gravitational radiation, forming 
an SMBH. 
In the following, we discuss how IMBHs can be formed in young compact star clusters in 

§1.3, then IMBHs might grow into SMBHs in §1.4. 
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1.3 IMBH formation through runaway growth 

Ebisuzaki et al. (2001) proposed that IMBHs form and grow through successive mergings of 
massiv~ star (an~ !MBHs) in dE:_nse star cl~sters (Fi~.1.4). 
A gas cioud fragments to form many less mas~ive clouds~ it c~o~s by _!_~diation. Many s~~~s 

are formed through this fragmentation, and a star clust~_r co!Iles into being. There are two possible 
evolutionary patlis for this duster depending on its stellar density. 
If the cluster is not dense enough for-mass segregation to occur in 10_ N.1:yr_, Jl!~s_ive_~tars 

evolve into compact stellar remnants such as neutron stars and stellar mas~ BHs {lOM0). Tho_se 
stellar remnants slowly sink to the cluster center since they are heavier than other stars in the 
system and eventually form binaries. Successiv~ three-body interact!ons_mak_e these ~inaries more 
tightly bound, and eventually they are ejected from the cluster by th~ slings~ot mec~anism. 
If the star cluster is so dense that stellar mass segregation is faster than stellar evolution 

for the most massive stars (time-scale 10%）?those stars sink to the cluster core by dynamical 
friction and form a dense inner core of massive stars at the cluster center. In this inner core, 
the massive stars undergo a runaway stellar merging and a very massive star forms, with mass 
exceeding 100.M;。.Thisvery massive star eventually collapses into a BH, which continues to grow 
by swallowing nearby massive stars. More massive stars in star clusters have higher merging rates 
than less mas-sive cluster members (or field stars) because of their larger geometrical cross sections, 
a stronger gravitational focusing and concentration to the central region by mass segregation in 
the cluster.・ In fact, Portegies Zwart et al. (1999) demonstrate N-body simulations that runaway 
merging can take place in systems containing,...., 12,000 stars before stellar evolution eliminates the 
most massive stars. 
Portegies Zwart et al. (1999) found that in one case, the most massive star experienced more 

than 10 collisions and reached a m邸 sof around 2000 before evolving into a supernova. There is 
considerable uncertainty邸 tohow much m邸 swould remain as a star approached within its tidal 
radius, leading to a relatively large merger cross section. 
In order for runaway merging to occur, the dynamical friction time-scale for the most massive 

stars must be short enough that t.hey can sink to the center during their lifetimes of several 
milliyears. The dynamical friction time-scale can be expressed as follows (§A.3): 

0.519 r2vc 

lnA Gm 
t fric 

~ 1.17x107xに） x(而嘉示） x（竺~)yr, (2) 

where lnA is the Coulomb logarithm, G is the gravitational constant, Ve is the circular velocity, 
which value is same order with random velocity, r is the distance from the center of the cluster, 
and m is the mass of the star. Here it is assumed that the background stellar distribution is that 
of the singular isothermal sphere. Eqation(2) is a useful approximation at r rv r0(r0 is the core 
radius~ lpc for compact star cluster). 
In the following, we consider how dynamical friction works in the cluster found in M82. If 

the total~ mass of the cluster has 3 x 1061¼。,about 50% of the・ total mass is included within a 
radius of r = lpc rv re. Then, the dynamical friction time-scale of stars about 25% of the total 
mass, is about 10 Myr. Marchant & Shapiro (1980) performed Monte Carlo simulations of this 
stage for a simplified cluster containing 3 x 105 M。starsand one 50.L¼。 seed BH. They found that 
t~e ~!! mass j_umped to over 103 M0 (0.3% of the cluster mass) almost immediately after they put 
the BH i~to_ the_system. Their result should be regarded as a lower limit on the BH growtli rate 
since realistic e!f e~ts, in partic_ular the presence of a mass spectrum, would greatly e-nhance the 
accretion rate. Taking these effects into account, that it seems safe {even conservative) to suppose 
that o.1% ofthe total cluster mass accretes to form a ~ 1•OOOM。 central BH in a 10 Myr. 
Presently there are more than 100 star clusters dIScovered inM82 galaxy, some of them 

apparently hosting small BHs. Their age is around 10 Myr (T. Harashima et al. 2001, in prepara— 
tion). Also the st~r_bur~t in M8~ is a long-durati~n event, having started at least 200 Myr ago. A 
close encounter with a large galaxy, M81, in the last 100 million years is thought to be the cause 
of the starburst activity (see §2.2). As stated above, we conclude that around 100 clusters similar 
to our host cluster have formed in total and that a considerable fraction of them host IMBHs. 
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1.4 Building up the central SMBH 

We no~ descrihE:_ how IM_B~s ~~r~~~ !n star clu~ters co~bine_to form a central SMBH (Fig.1.4). 
The frowthrate ofthe IMBH in a star cluster slows down once all the massive stars are 

swallowed (after rv 100 Myr). Subsequently, the cluster is subject to two evolutionary processes: 
evaP.ora!io~ !hrough t~~bo4y relB.?Cat!on and orbi~al decay (sinking) via dynamical friction. Evap-
o~at!~!.1-is_ driv:en p~tl:y by ~hermal relaxation and partly -by stellar" mass loss. Portegies Zwart et 
al. (2Q01) estimated that the evaporation time-scale for a -tidally limited compact star cluster is 
around 2~3 half-mass rel立ationtimes,whichis ofthe order ofa few gigayears forour star clusters. 
~ewritif!g equa~io~ (1) u~ing appropriate scaling for this case r>>ro-(§A.3), we find that the 
time-scale on which the cluster sinks to the galactic center via dynamical Jrictfon is 

2 

tJric C:: 1.0 X 109 X （古） x(~)x(~。)yr. (3) 

Clusters initially within 1 kpc of the galactic center can therefore reach the center within a few 
Gyr. 
According to my estimate in §1.3, around 100 compact clusters have formed close to the 

cen_te~ of M82 intl!_e_!ast 200 Myr. If we assun:ie that _half of these clusters contain 1000M;。IMBHs
and that these IMBHs actually merge, then the total BH mass at the center of the galaxy will be 
at least l.o x 105M。.Successive mergings ofIMBHs form an SMBH with a mass o[ 106M。
We have demonstrated that 1000M;。IMBHscan form and reach the galactic center in a 

reasonable time-scale. We now turn to the question of whether the multiple IMBHs at the center 
can merge. Begelman, Blandford, & Rees (1980)_ discussed the evolution of an SMBH binary at 
the center of a galaxy, taking dynamical friction from field stars and energy loss via gravitational 
radiation into account. They found that the merging time-scale depends strongly on mass, and 
for a very massive BH with a mass of 108 M;。inwhich they were interested, merging took much 
longer than a Hubble time. 
For the IMBHs, however, the time-scale for merging through gravitational radiation is many 

orders of magnitude shorter than that for the SMBHs Recent extensive numerical simulations 
(Makino et al. 1993; Makino 1997) have shown that the hardening of the BH binary through 
dynamical friction is in fact several orders of magnitude faster than the prediction from loss cone 
arguments. Although the number of particles employed (up to 256,000) was not large enough to 
model SMBH binaries, it was certainly large enough to model evolution of IMBH binaries. 
Once one BH has become more massive than.typical infalling BHs, it becomes extremely 

unlikely that it will be ejected since the recoil velocity from three-body interactions is inversely 
proportional to the mass (because of momentum conservation). Thus, even though some of the 
infalling BHs might be ejected_ by the slingshot mechanism, the central BH will continue to grow. 
Since we now have the first candidate for IMBHs, it seems natural to expect that SMBHs 

might be formed from them. Thus, IMBHs are created and transported to the center of the galaxy, 
where they eventually merりeto form SMBHs. 
Ebisuzaki et al.（2001 propoge that IMBHs are formed in the cores of young compact star 

clusters through mergings of massive stars and BHs formed from them. These compact young 
clusters sink to the galactic center by dynamical friction. The cluster is dissolved through Stellar 
mass loss, the tidal striping of the parent galaxies, and the thermal relaxation of stars. 
First, FukushigeandHeggie (1995) investigated theeffect ofthe Stellarevolution andgalactic 

tide of globular clusters. Their study included the following realistic effects: the spectrum of stellar 
masses; mass loss arising from stellar evolution; and a tidal cut-off to model the effect of the galactic 
tidal field. They performed an extensive survey of models that differ with regard to the initial mass 
function, the central potential of the cluster, and the distance from the galactic center. For example, 
they obtained the result that the cluster having sufficiently deep central potential survived during 
over 2 x 109yr. They chose the dimensionless central potential of King's model, Wj。=5.0for the 
cluster model. They adopt the parent galaxy model in which the cluster is assumed to move in a 
spherically symmetric galactic potential, taken to be that of a distant point mass. In the region of 
galactic cent-er, the life-time of cluster may be shorter than 2 x 109yr. 
Second, Binney and Tremain(1987) discussed that the evaporation time-scale for the local 

globular cluster is tlife rv 100 X trelax, where trelaェ～ 1010yrfor the typical globular cluster, and 
tlife for the globular cluster f"V 1012yr. However, a globular cluster move under the influence of the 
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mean potential generated by all the other particles. In the core of a globular cluster, therfore, life 
time may be shorter than 10所， andplay a key lole. 
We estimated that the time-scale of Stellar evolution, dissolving by tidal force from the parent 

galaxy, and evapolation is 106 ~ 10%r. In this p.aper!We had takinginto account these effect 
except an evapolation effect, becouse the evapolation time-scale is longer than other two effects, 
Stellar evolution and galactic tidal force. We performed these effects by the simulations using 
N-body integrator assumed in the region of a galactic center. 
The organization of the paper is as follows: The numerical method and more detail the initial 

condition for my simulations is discussed in §2. In §3 the results are presented. Finally, §4 notes 
conclusions. 
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*:Ebisuzaki et al. {2001) 

2 Numerical methods and Initial conditions 

?='he.JY-bod~ in_tegra~ion algorithm_, used in this paper, is described in §2.1. In §2.3.1, we described 
how the evolution of stars is calculated; the tidal ooundary of cluster 1s described in §2.3.3. 
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2.1 The N-body integrator 

:E~e ~-bodi_portion of_ t~e si~u_lation _is _car~r!ed O!Jt using the tree code (Barnes & Hut 1986). 
'_rhe_ Burns-Hut tree code is widely used algorithm that reduces the cost of the force caluculation. 
In this tr~e co~e_, for~~s on _a particle from distant particles are replaced by multipole expansions of 
groups _of_ particles._ More dist~nt particles are organized into larger groups, so tiiat the -truncation 
error of the expansion is similar everywhere. A &iera_rchical tree-structure・ is used to form groups 
efficie~ly. T~e_ ca~~ulation c~st i~ reduced_ from_ O(NりtoO(NlogN). 
E-yen_ w~th this tr~e code, the cost of the force calculation is-still high, and it dominates the 

total calculation cost. In order to accelerate the tree code further, we can use GRAPE(GRavity 
PipE; Sugimoto et al.1990, Makino and Taji 1998). GRAPE is special-purpose hard ware for the 
calculatio!l of the gravitational force between particles. In this paper, we performed all simulations 
with MD5}RAPE-2(Narumi et al. 1999, Susukita et al. 2002). -For the implementation of the tree 
code on GRAPE, see Makino 1991. 
We chose the system of units in which the total mass of each galaxy, the typical velosity 

dispertion, and gravitational constant are both 1 and in which the initial maximum radius of 
galaxy is 1/2. In §??,we described detail. We integrated this system up to Tend = 30.0 with 
constant time-step. In models with N = 114000, the time-step,△t, was 1/4000 = 0.00025, and 
120000 steps took for about 5 days. while for point mass cluster model N = 104000 the time-step, 
△t, was 1/200 = 0.005, and 6000 steps took for a few hour. We took same value for softning 
parameter with the value of△t, becouse of velocity dispartion u ~ 1.0. 

2.2 M82 Galaxy component 

The distance from our Galaxy to M82 is assumed to be 3.25Mpc. The rotation curve of small-mass 
starburst galaxy M82 has a steep nuclear rise, peaking at 500pc radius, which then declines in a 
Keplerian fashion. This rotation curve mimics that for a central bulge of spiral galaxies with a 
high concentration of stellar mass. The declining rotation indicates that its extended disk mass is 
m1ss1ng. 
Sofue (1998) propose that M82 is a surviving central bulge of a much larger disk galaxy, 

whose outer disk was truncated during a close encounter with M81. Through the close encounter 
with MSI, when M82 penetrated the disk of M81, the outer disk of M82 was tidally truncated, 
but the bulge and nuclear disk have survived the tidal disruption. The truncated disk may have 
become the HI envelope and tails in M81-M82 system. The central gas disk of M82 was dense 
enough. This close encounter has caused the high-density molecular disk in M82, and starburst. 

2.2.1 Rotation curve and mass distribution 

G...＝田了
ゃぶ＝：：匹に一-

'” 
i 
＇叶・ ＼ 

．ヽ

•。 ..S I Iヽ 9 2.̀ 3 9.9 ヽ
中 I

Figure 4: Rotation curve of M82. Full line shows observation of HII line by Sofue (1998). Dot point 
shows observation of CO and Na line Gotz et al(1990). Dashed and dotted line shows Hernquist 
model, using our simulations 

In figure 4, we compare the rotation curve of Sofue(1998), Gotz et al(1990), and the simula— 
tions model. We used Hernquist model for Galaxy model in all of the simulations, which models 
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detail is.discussed in below section §2.2.2. 
Gatz et al.(1990) propose a total dynamical mass model within the starburst region (r~dius= 

15" "'230pc) is c・lose to-6 x 108 M。.Theypropose mass profile giving M(soopc) = 2.08 x 109 M。•

2.2.2 Galaxy model (Hernquist model) 

We adopted galaxy model are spheroid Herunquist model(Herunquist 1993) proposed for spherical 
galaxies and bulges. The bulge density profile is 

Mb rb 
Pb(r)＝一21r r(r + rb)3' 

where rb is scale length for bulge, Mb is defined as the mass within a infinite radius, Mb = 
Mb(oo). The cumulative mass profile and potential corresponding to Pb(r) can be written 

(4) 

＃ 
Mb(r) = Mb 

(r +r炉'
GMb 

q>b(r)＝一．
r +rb 

(5) 

2.2.3 Effect of dynamical friction 

We checked the effect of dynamical friction by means of test calculations with different particle 
number, N. Figure 5 shows the evolution of distance from the center of galaxy for several different 
particle numbers. The calculations were performed with N = 10400, 20800, 52000, and 104000 
(We defined as lOK, 20K, SOK, and lOOK below) for all cases for (Mgalaxy, Mc1uster) = (2.08 x 
10,M。,2.0x 106 M0 or 3.0 x 106 M0). 
As shown in Figure 5, the clusters with smallest particle number (N ~ 20K) are substantially 

affected by underestimate of the influence of dynamical friction. The results with large particle 
nu~~~r (['I ~ ?.OK) differ little from each other. Therefore, we adopted IOOK for the number of 
particle simulations. 
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Figure 5: Dependence of the evolution on Figure 6: Relation between r and t Jric三
t~e numb~_r of particles N used in the sim- r Jr in the case of 100K. The both dashed 
ulation:. The c.o?r~ina~~ is the periodic av- line gives the theoriticl line as equation (7) 
erage of an orbital radius. cased ln A ::'. 10 and ln A ~ 3. 

Second, we estimated the effect of dynamical friction between theoretical curve and simulation 
result. Dynamical friction formula definition邸 bellow(equation{l7)), 

r McVc 2.34 V足
tJric = :;:-=―=  -r F - 41r In A a2 JW;泣(r), (6) 
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where, Mc is mass of the cluster, a is velocity dispertion. Using equation (6), and eliminating from 
the relation, a = vc/'11,, we have 

t 
2.34.. 1 v~ 0.5841.. Mb 

/ric =―枷lnAX瓦叩;=― lnAx叫迄）5/2. (7) 

Unfortunately, equation(7) has the unfixed value due to 1/ lnA. Theoretically, this value is 
ln A~ 10 at a typical for spheroid galaxy. However, numerical integration couldn't realize the real 
gal~y, bec~use t~e number of stars in a typi~al galaxy is over 1010. Therefore, we should modeling 
a galaxy using softening parameter c as a galactic dynamics studies. Consequently, ln(bmaェ／bmin)
is used for lnA in a numerical simulation, where bmax is the largest impact parameter, b~ax ~ 
~hE: sys~e!'° size~ bm_iri is_ the right-angle impact parameter, bmin ~ €. In our simulations, therefore, 
ln A "" 3 is good estimates. 

2.3 Cluster component 

Matsushita et al.(2000) observed that the luminosity of the2.2μm secondary peak is equivalent to 
""1500 M2 supergiants. From their observations, using an extended IMF of dN oc M-2・5dM with 
lower and upper mass limits of 1 and 30, respectively, and assuming that there are 1500 stars whose 
masses are 25 "" 30.M;。,thetotal mass formed would be about 2 x 106 M;。,andwith lower mass 
limits se of 0.5, 3 x 106 M。,respectively.The stars of~ 30.M;。wouldhave already exploded in this 
cluster. These massive stras lifetimes of less than 2 x l06yr; see Table!. We adopted mainly their 
estimates for the total mass of the compact cluster model, 2 x 106 M。to3 x 106.M;。•
2.3.1 Stellar evolution 

We modeled effects of stellar evolution by changing the mass of each star. At the last stage of stellar 
evolution, stars lose a significant fraction of their mass in stellar wind and supernova explosions. 
The potential well of a cluster typically lOkms-1 is not deep enough to retain the gas ejects from 
stars mass, since the escape velocity is only a few times 10km s-1. At birth, a neutron star or 
black hole recieves a high velocity kick in a random direction. This distribution is flat at velocities 
below 250km s-1. We assume, therefore that lost mass disappears abruptly from the cluster. We 
give the mass, m(t), of each particle at each time step; 

m(t) =｛二＋［mini-mrm]冠土：：：ご喜1△t 
firm : tseq < t, 

(8) 

where mini is the initial mass, mrm is the mass of any remnant after mass loss, and tseq is 
the main-sequence time scale (Table 1). We obtain values between the points listed in Table 1 by 
linear interpolation. The remnant mass, mrm, is summarized in Table 2. These tables are due to 
Iben & Renzini (1983) from which these tables have been copied. 
We assume that a star with a mass larger than 40.M。leavesa black hole after ejecting its 

envelope during the main-sequence and Wolf-Rayet phase. The mass of the black hole is assumed 
as 0.35mini -12M0 (Table 2). Stars with m邸sesbetween BM。and40.M。areassumed to become 
neutron stars, through the Type II supernova explosion. Stars with masses between 4. 7.M。and
8M。areassumedto become no remnant, through the Type we supernova explosion. The mass of 
the white dwarf is taken to be equal to the core mass of its progenitor at the tip of the asymptotic 
giant branch. Stars with masses less than 4. 7.M。areassumed to become white dwarfs. Iben and 
Renzini 1983 give the final white dwarf mass 0.53r,―0.082 + 0.15r,―o.35 x (m/M0 -1.0), and we 
take the mass-loss rate given by'T/ = ½ for all models. This formula is accurate for initial masses 
m ~ 0.8.M。•

2.3.2 King model 

We used king's model (King 1966) to generate the initial conditons for globular cluster. Thus the 
distribution function, 9(E), is a lowered Maxwellian, given by 

9(E) = K [exp(-(E -Et))], (9) 
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Initial Mass m 
log1o[m/M0] 
-0.08 
-0.01 
0.07 
0.16 
0.27 
0.40 
0.54 
0.72 
0.91 
1.11 
1.33 
1.55 
1.79 

Main Sequence Time 
log10[tse/yr] 

---

10.18 
9.93 
9.63 
9.28 
8.90 
8.50 
8.11 
7.68 
7.33 
7.02 
6.76 
6.57 
6.50 

Table 1: Stelalr evolution time* 

Initial Mass 

圏
< 4.7 
[4.7, 8.0] 

[8.0, 40.0] 
[40.0 "J] 

Remnant Mass Comments 

(M0) 
0.58 + 0.22 x (mini -1) White dwarf 

0 No remnant 

1.4 

0.35mini -12 

Neutron star 

Black hole 

Table 2: Mass evolution* 

*:Iben&Renzini(1983) 

for E <Et= ¢(rt), where E = v2/2+¢(rt), K is constant, and rt is the (tidal) radius of the edge of 
the cluster. (We used¢ for the Newtonian potential to distinguish it from the the softened potential 
虹） TheKing model is determined by the dimensionless center potential, Wi。 =/3[¢い）― ¢(o)l•
For this paper we performed a survey of models defined by combinations of the value of the 
dimensionless central potential of the King model, Wo = 5. 

2.3.3 Tidal boundary 

During the course of a simulation stars escape from the cluster. The precise dynamical definition of 
escape is not easy if there is a tidal field, and there we adopt a simple geometric definition: escape 
are defined to be those stars beyond thetidal radius. All stars within the tidal radius are taken to 
be members, eveb though the tidal field is not spherically symmetric. More precisely, we use the 
distance between the center of the cluster (defined below equation (11)) and the Lagragian point 
in the direction of the galactic center as the tidal radius. If, as before, the galaxy is represented 
by a point mass, it follows that the the tidal radius is given by 

Mc 
1/3 

r1 =に） R，9 (10) 

approxima~el!, wh_ere Mc is the mass of the cluster, R9 is the distance to the galaxy, Mg(Rg) is 
the mass of the galaxy within Rg. If we asuumed a sphericaly galactic potential, taken to be that 
of a distant point mass M,(Rg)・indeedgalactic potential is not possible to be point mass model, 
but the force which a cluster Rq away from the center of the Galaxy receives can be onsidered as ， 

M received from a point mass Mg(Rg)・ Here, Mc is taken to be the total mass of the'members', and 
since this depends on rt itself, some iteration is usually required. We define the (mass-weighted) 
center of the cluster by 

四 miri
re= 
四 mi'

(11) 

where Ti and mi is the distance to the galaxy and the mass of ith particle which fulfills the conditions 
of (rt >> Ire -ril), N is the total particle number of cluster. 
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3 Results 

Vye present_ t~e r_es_u~t~ of our ~imulation~, in ~hi~_l! ~ performed a survey of models differing in the 
slope, a, of the initial power-law m邸 sfunction{IMF); and in the dimeiissionless central potential 
of King's model, Wi。•
All _c~us_ters_ s~nk in ~_he_ center of the Galaxy in the simulation of Point mass. In the point 

m邸 smodel simulations, all clusters sank toward galactic center. 

1aa 

N partic 

x
o
x
 

x
x
0
 Table 3: Stellar evolution and Tidal force 

maェ
100M。
30M。
30M。
30M。

total mass 
2.o x 10bM。
2.0 X 106.M。
2.0 X 106 Afi。
3.0 X 106,M;。

-
5
5
0
5
 

a
2
2
3
2
 

―
―
―
―
 

Table 4: Cluster model 

Figure 3 shows the evolution of the total mass of the cluster for each model. Detail discussion 
for Stellar evolution is in §2.3.1. A massive star is shorter life time and larger difference mass before 
and after supernova than that of light star component. Therefore, Stellar evolution strongly depend 
on the slope of IMF, a. 
As can be seen from figure 8, the star cluster of model-A, model-B and model-C (Mc, 

= 2 x 106 M0) broke, the-star cluster of model-D (Mc, = 3 x 106 M0) did not broke. Compared 
with model-A, model-B, model-C and model-D, we can see that the effect of Stellar mass loss in 
model-D is little from the other. The total remnant mass in teh case of model-D is about twice 
larger than another model, and about 75% of initial mass of it self. Therefore, we could understand 
that the minimum mass of IMF is very important. 
The life time of the cluster is listed in table.5 for each cluster model. The second column 

means the life time of the cluster defined as the time while the total mass of cluster was left over 
1 %, and model D was survived. In the third column, the distance from galactic center at the 
cluster collapse time (life time), and model-D perfectly sank. 

ilefime 
1.5戸 yr
1.71 X 108yr 
1.94 X 108yr . 
-survive-

Nearest distancelkpc 
0.144 
0.102 
0.054 
0.005 

Table 5: Simulation results. Every case takes into accounted the both effects Stellar evolution and 
tidal force from galaxy. 
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Figure 7: Evolution of mass of cluster. Bold line shows the effect of stellar evolution only, thin 
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Figure 8: Thr evolution of total cluster mass. In each figure, the dashed line shows the results of 
point mass simulations taking account into the effect of stellar evolution, and the bold thick line 
shows the results of simulations included the both effects, Stellar evolution and tidal force. 
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4 Conclusion and Discussion 

We investigated the surviving condition of clusters by means of gravitational N-body simulations 
which include stellar evolution and tidal stripping. We put a cluster initially at a distance of 200pc 
from the center of the parent galaxy. We adopted Henquits spherical galaxy model of the truncated 
galactic radius rb = 0.5kpc, and galactic mass Mb = 2.08 x 109 Mi。.Wefound that the surviving 
condition strongly depends on the total m邸s,Mc of the cluster and initial mass function (IMF). 
IMF is characterized by three parameters; those are the slope index, a, the upper limit mass, Mmaエ9
and lower limit m邸sMmin・ We found one cluster with Mc = 3 x 106 U。andMmin = 0.5U。falls
into galactic center for 1.5メ10%r,while the other clusters with Mc S 2 x 106M。arecollapsed
before they reach the galactic center. Since the recent observation suggests the compact cluster in 
M82 galaxy has Mc >> 3 x 106 M0 (§2.3, it will well survive untill it sink toward galactic center 
within 1.5 x 108yr. This supports the formation scenario for SMBHs proposed by Ebisuzaki et 
al. (2001). 
It is well known that there is a linear correlation between the mass, MBH of central black 

hole and those of the bulge. The ration between then is about 0.006 (§1.1). This correlation is 
well explained if the stars, which are born in the clusters but stripped in the precess of the sinking 
of the cluster, forms the bulge of the galaxies. For example, a thousand of cluster with a mass of 
rv 3 x 106 and an IMBH (1000 solar mass) can evolve into a system consist of one bulge with a 
mass of 3 x 109 solar mass and a central black hole with a mass of 106 solar mass. We will study 
this connection between the bulge and the central black hole further and report in near future. 
I am grateful to many other people who have supported my work: Junichiro Makino and 

Toshiyuki Fukushige at University of Tokyo, who gave me invaluable advice on the initial condition 
and the simulation method. Makoto ldeta at Kyoto University, who has instructed me the way to 
generate initial condition of the simulation. 

A Appendix 

A.1 Relaxation time 

From Binney and加 maine{1987),individual stellar encounters will perturb a star from the course 
it would take if the other matter of the system were perfectly smoothly distributed only over of 
order 0. lN / ln N crossing times. The relaxation time defined as 

0.1N 
trelax =—t 
lnN 
cross・ (12) 

9onsequently, even if N is as small as 50,. each stars is deflected from its mean trajectory 
only after several crossing times, and it is possible to obtain some understanding of the dynamics 
of even small system by investigating the orbits of the stars in a suitable mean potential. 
In a globular cluster, on the other hand, N ~ 105 and the crossing time tcross ~ 10所， so

that stellar encounters may be important over the cluster lifetime of 1010yr. Indeed, in the core of 
a globular cluster, where,tcross is very short and N ~ 10, encounters play a key role. But in the 
case of a cluster of galaxies, or of a globular cluster, as in the case of a galaxy, the fundamental 
dy~ami~s is !hat of a_ c~llision system in which the constituent particles (galaxies or stars) move 
under the influence of the mean potential generated by all the other particles. 

A.2 Evaporation time 

From time to time an encounter gives enough energy to a star that it can escape from the system. 
Thus there is a slow but irreversible leakage of stars from system, and in a sense the only permanent 
equilib~ium_st~t~ of ~~tellar syst~m cinsist of t~o stars in a Kepler orbit, with all the other having 
escape_d to infini_ty. The timescale over which the stars "evaporate" in this way can be directly 
related to _the relaxation timescale by the following simple argument. The escape speed Ve at x fs 
given by硲＝ー2叱x).The mean-square escape speed in a system whose density is /J(x) is therefore 

＜硲＞＝ jp(x)v知x=-2jp(x憧(X)沿x＝竺
J P(x)ふX - M M' 

(13) 
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where M and W are the total m~s and potential energy of the system. According to the virial 
theorem, -W  = 2K, where K = ½M く叶＞ is the total kinetic energy. Here <硲＞＝4 <v2 >. 

~hus t~e root mean square (rms) escape speed is just twice the rms speed. The frac-
tion of particles_ in a Mawellian distribution fhat have speeds exceeding twice the rms speed is 
T = 7.38 X 10-3(Binney and Tremain(1987)）． We cancrudely represent the evaporation pr,— 
cess_ as simply removing a fraction'Y of the stars every relaxation time. Thus the rate of loss is 
~N / dt ~ -.'Y N/trelax 三ーf.!/t~va1!, wher~ ~~~ evap~!afion time, th_e charact~ri~tic time in which 
the system's stars evapolate, is tevap = 136trelax・ Thus we expect that evapolation sets an upper 
limit to the lifetime of any bound stellar system of about I02trelax• 

A.3 Dynamical friction 

Decay of globular cluster orbits 
A~ a globular cluster orbits through a galaxy, it is subject to dynamical friction. This drag 

causes the cluster to lose energy and spiral in toward, the galaxy center. We now estimate the time 
tfric(ri) required for a cluster-that is fnitially on a circular orbit of radius Ti to reach the center. 
The flatness of many observed rotation curves suggests that we approximate the density 

interior to ri(ri > ro : coreradかus)with the density distribution, 

2 

P(r) =~ 41rGr2' 
(14) 

of the singular isothermal sphere with circular speed Ve and velocity dispertion a =丸／/2.Binney 
and Tremaine (1987) gives the friction force on a cluster of mass M moving at speed Ve at radius 
r as 

GM2 
F = -0.428lnA~ 

2'  r 
(15) 

where A =.bmaェVl/ G (M + m), where bmax is the largest impact parameter that need the system 
size, Vo is field stars relative velocity that need the velocity dispersion. 
The force eq(l5) is tangential and thus causes the cluster to lose angular momentum per unit 

mass L at a rate 

dL Fr GM  
-＝ - ～ -0.428--lnA. dt M ---r (16) 

Since the cluster continues to orbit at speed Ve as it spirals to the center, its angular mo-
mentum per unit m邸 sat radius r is at all times L = rvc, Substituting the time derivative of this 
expression into eq(l6), we obtain 

dr GM  
r=;... = -0.428―lnA. 
dt vc 

(17) 

Solving this differential equation subject to the initial condition r(o)＝ri, we find that the 
cluster reaches the center after a time 

tJric 
1.17 T[Vc 

lnAGm 

~ 1.5 X 10,（古）2（100;cm/s)（2 X 1I6M。)訂• (18) 

In reality, some mass will be stripped from the cluster by the galaxy's tidal field. However, 
for most globular cluster (ri > lkpc) this process will not greatly lengthen tJric• 
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［星団沈降プロセスにおける潮汐力と質量損失の効果］

東京工業大学地球惑星松林達史

理化学研究所戎崎俊一

-・↓. 99999 99999. ． 
発を起こして質量を
により、重たい星が
団の中心ポテンシャ
から起きていくため
て銀河の中心に向か

心ポテンシャルに強く依存し、つまりは星団内
大質量星に依存すると言える。

巨大プラックホールの「形成」と「謎」

◆現在観測により、巨大BHと銀河バ

ルジの質量には正の比例関係がある

ことが分かっている。 （右図）

ならば、バルジの形成は巨大BHの形成過

程に関係があるのではないだろうか？
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◆しかし、近年まで見つかっていたBHは、

恒星質量サイズ ．I～IOM。
巨大質量サイズ I(）6~lOM。

大きくわけてこの二つ。

巨大BHの形成過程は1970年代から議論されたが、

だ」ということで謎に包まれたままだった。

":9 

M bulge 

「ちょっと無理そう

R分子雲から直接作る→
先にclumpができてしまい、 BHよりも先に星

ができるから ダメ

吐星同士の合体から直接作る→ Relaxationtimeを考えれば宇宙年齢以内
に作ることは不可能なので ダメ
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新種のプラックホール
中質量プラックホールの発見

◆2000年、日本の天文グ
ループによってM82の中心

から200pc離れた場所に中
質量ブラックホール

(1 OOOM。)を含んだ星団が
発見された。 （右図）
(M82銀河はStarburst 
galaxyの中では最も我々の銀

河に近いものである。）

1."’C)¢ ↓ 
I 

，．十

戸 ＼ . ¥ 
I ＼ 
中n●フうノクホー／し

”02の中心

-̀̀ I 1償出フラ794'―Jり）I存a
レていると2人られる笙口

cTuru（京都大学）

「この発見は巨大プラックホール形成の 1 

足掛かりとなるのではないか！」 ＆ 
新しいシナリオの提唱(Ebisuzakiet al. 2001) 

巨大ブラックホール形成シナリオ
(1)星団の中での中質量プラックホールの形成

｀ ■9 , ● 
五嘉＇悶翌悶い 、'’’込し ば〗喜悶：悶喜悶：
が重力収縮して沢山
の星団が形成される

2．生成され竺璽曝．． ・り超大質量星が重力崩壊
して中質量フフックホール(IMBH)ができる

--銀河
f 

中質量BH-t"ー・ト＼
星団
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巨大ブラックホール形成シナリオ
(2)星団の銀河中心への落下 → IMBHの合体

．銀河の中心領

で星団は破壊さ

、IMBHsはさらl 5< 
中心に落ちてい

合体する

尋19
より銀河の中心に沈

， 亀-
む。 ． 6. 巨大プラックバ`ールヘと成長

シナリオの問題点と本研究

I. 星団内でIMBHは作れるのか？

II. 星団は銀河の中心に落ちていけるか？
III. IMBHが合体して巨大BHが作れるのか？

L 星団内でIMBHを作るためには巨大質量星が重力崩壊してしまう前に超大

質量星ができる必要がある。約 10万年のイベント。

ll． 星団は母銀河からの潮汐力を受けて銀河の中心領域では壊れやすくなる。

また、星団内の星の超新星爆発により質量を損失していくため星団自身が

質量を失っていく。本研究で扱う問題である。

I [ I. 銀河の中心で、 IMBH同士の合体は重力波放出によるものだが、重力波が

効くためにはIMBHがlpcよりも近付かなければいけない。
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左図は星団を質点（赤い点）と

して計算を行ったもの。円盤銀

河からの力学的摩擦を受け、約

一億年ほどで中心へと沈んでい

く。しかしこの計算では星団は

潮汐力を受けない。。。



銀河と星団のモデル

M82 Galaxy cNASA 

•銀河の空間的な質量分布

銀河の粒子数： Ngalaxy =104000 
銀河の質量 ： M galaxy =2.08x109M 

゜
星団の粒子数： Ncluster = 10000 
星団の質昼 ：Mcluster=2.0x1 Q6M。

図の丸で囲んだ領域内で計算

（半径500pcの球対称領域）
MX2銀河は non-halodi.、h.galaヽy

Hernquist model : scalelength SOOpc 

•星団は質量分布は IMBH が見つかった星団にフィット
King model : W。=-5,core radius lpc 

•計算は理化学研究所の粒子間相互作用専用計算機
MDGRAPE2（右図）を使用。 Special-purpose computer 

MDGRAPE2 

星団の質量分布モデル

中質量BHが観測された星団は25~30M。の赤色巨星をおよそ

1500個持つことが分っている。これに質量分布をあわせる。

星団の初期の総質量 2.0xl06M。

星の分布のベキ a -2.5 
dN ocMadM 

星の分布の最大質量 30M。

星の分布の最小質量 1M。
/11itial Mass Function (IMF) 

モデルの対比

I. 質量損失「あり」 ・ • ・ ・ mass loss & tidal 
JI. 質量損失「なし」 ・ ・ ・ ・ ---------- tidal 
111. 質量損失「あり」＆質点．．．． massloss -----
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計算結果
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計算では銀河中

心まで落下。

(Flg2参照）

縦軸は銀河の中心からの距離

横軸は時間 星団のコア密度が、銀河のその
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大質量星は力学的摩擦により星団の中心に沈む。

重たい星は軽い星よりも早く超新星爆発を起こすため、

超新星爆発は星団の中心で頻繁に起こる。

星団中心のポテンシャルは徐々に浅くなり、それに伴い

多数の星が星団から抜けていく。

大質量星の質量損失が大きく影響
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星の進化の効果

星団が落下 星団が崩壊

結論
●星団は力学的摩擦により銀河の中心に向かって落ちる。

●質量損失が無ければ星団は銀河の中心まで落ちる。

●星団が崩壊するかどうかは、大質量星の質量

損失が重要である。

今後の計画
● 星団の質量分布を変えて、統計的に見積もる
●星の質量分布は、星団内で中質量ブラックホールを形成する重要
なパラメーター

●巨大プラックホールを作るパラメーターが決まる？

● 星団から引き剥がされた星の空間分布を計算

●バルジの形成の関連性

●バルジ形成の新しいシナリオ？
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初期状態 1億年 1. 5億年 2億年

Figl. I.質量損失あり

口 g
 ．

 Fig2. II.質量損失無し

バラメーターを変えた計算例
0ユ5

0ユ

最接近距離＆Lifetime 

A-144pc 1.59x108yr 

B-102pc 1.71x108yr 

C- 54pc 1.94x108yr 

D- 5pc 1.69x108yr 

質量分布
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Dynamical Friction between Lopsided Disks and Dark Halos 

Makoto IDETA 

Department of Astronomy, University of Tokyo, Tokyo 113-0033, Japan; 

ideta@astron. s. u-tokyo. ac.jp 

ABSTRACT 

The effect of dynamical friction on time evolution of lopsided disks is examined by 

using a linear perturbation theory. The friction is caused by the gravitational interaction 

of a rotating lopsided pattern with a density wake induced in halos. The density wake 

is determined by solving the linearized collisionless Boltzmann and Poisson equations 

by means of the Fourier-Laplace transform. Then, it is found that dynamical friction 

always damps a lopsided pattern in our halo model. In addition, the damping time is 

much shorter than a Hubble time, typically 1 Gyr, unless the pattern speed is quite 

slow. Considering such a short damping time scale and the observed large fraction of 

lopsided disks in spirals, say ~ 30 per cent, it will be unlikely that all of the lopsided 

disks are recently excited. Thus, it is suggested that most of the observed lopsided disks 

are very slowly rotating pattern. Significance of weakly damped modes that have a slow 

pattern speed is discussed. 

Subject headings: celestial mechanics, stellar dynan1ics - galaxies: halos - galaxies: 

kinematics and dynamics - galaxies: structure - method: analytical 

1. INTRODUCTION 

It has long been known that some spiral galaxies have a large-scale lopsided structure (e.g. 

ivilOl, Arp 1966). Although such a structure is often found at the wavelength of 21 cm (Baldwin, 

Lynden-Bell, & Sancisi 1980), it is also observed at optical and near-infrared wavelengths (Rix & 

Zaritsky 1995). Thus, some galactic disks will have a lopsided mass distribution. Moreover, the 

frequency of lopsided disks in spiral galaxies reaches to half of the H I disks (Richter & Sancisi 

1994; Haynes et al. 1998) and one third of the stellar disks (Zaritsky & Rix 1997; Rudnick & Rix 

1998; Kornreich, Haynes, & Lovelace 1998). This large fraction of lopsided disks indicates that the 

lopsidedness would be a repeatedly excited structure or a long-sustained one. 

Although the fraction of lopsided disks is large, their origin is not understood well. Theo-

retically, there may exist a stationary lopsided disk that is responding to the asymmetry of the 

surrounding dark matter halo potential (Jog 1997, 1999; see also Syer & Tremaine 1996). In addi-

tion, Levine & Sparke (1998) considered off-center disks embedded in a flat-cored halo and found 

that lopsided disks would be maintained for a long time when the disk is orbiting in a retrograde 
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manner around the halo center. These findings suggest the longevity of lopsided disks. However, 

in these theoretical studies, the halo is treated as a static potential, and so, the effect of dynamical 

friction on lopsided disks is not taken into account. Hence, it is necessary to investigate the effect 

of dynamical friction on dynamical evolution of a lopsided pattern. 

One direct way to handle dynamical friction is the Chandrasekhar dynamical friction formula 

(Chandrasekhar 1943). However, the formula is restricted to a point mass embedded in a uniform, 

infinite, and non-self-gravitating background, and thus, it cannot be applied to lopsided disks 

embedded in spherical halos. Another approach to take into account dynamical friction is an 

N-body simulation. As an example, a numerical simulation made by Walker, Mihos, & Hernquist 

(1996) demonstrates that the lopsided structure caused by a minor merger would 1邸 tfor up to 1 Gyr 

(see also Zaritsky & Rix 1997). However, significant disk thickening, which may affect the evolution 

of lopsided disks, is also reported in their simulation. Moreover, N-body simulations with an 

insufficient number of particles have the problem of discreteness noise. In fact, to achieve a sufficient 

signal-to-noise ratio, the simulations with a huge number of particles N え107would be required 

(Weinberg 1998a). However, it is hard to simulate a galaxy with such a huge number of particles. 

Then, an alternative way that is completely free from discreteness noise is to solve the linearized 

collisionless Boltzmann and Poisson equations by means of the Fourier-Laplace transform, which is 

known as the matrix method. The matrix method was first applied to problems in stellar dynamics 

by Kalnajs (1977) to find the unstable modes of galactic disks. Subsequently, this method was 

employed by, for example, Palmer & Papaloizou (1987) in the study of the radial orbit instability and 

was adopted by Weinberg (1989) to study the satellite decay in a spherical halo. A similar approach 

was used to estimate the bar deceleration rate (Weinberg 1985) and the damping/excitation time 

scale of galactic warps (Nelson & Tremaine 1995) due to dynamical friction with surrounding dark 

matter halos. 

In this paper, a lopsided pattern rotating in spherical dark matter halos is considered. To ex-

amine the lifetime of such a pattern, the effect of dynamical friction on lopsided disks is investigated 

by using the matrix method. Then, it is found that a lopsided pattern induces a significant density 

wake in halos. This density wake interacts with the original lopsided pattern through dynamical 

friction, and then, the friction damps a lopsided pattern within a time scale shorter than a Hubble 

time unless the rotational period of the pattern is very slow. 

This paper is organized as follows. In §2, the method to solve the collisionless Boltzmann 

and Poisson equations is described. Numerical models and assumptions are also given. Results 

are shown in §3. In §4, some implications of the results and possible effects of the assumptions on 

lopsided disks are discussed, and the results are summarized. 
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2. NUMERICAL METHOD AND MODELS 

In this paper, dynamical friction is treated as a drag force due to the gravitational interaction 

of a lopsided disk with a density wake induced in a primary system. Such a density wake is 

determined by solving the collisionless Boltzmann and Poisson equations by means of the matrix 

method, which was developed by Kalnajs (1977) (see also Weinberg 1989). To solve these equations, 

two assu1nptions are made. First, the amplitude of a lopsided pattern is sufficiently small to adopt 

a linear perturbation theory. Then, the collisionless Boltzmann equation is linearized. Second, 

an unperturbed potential is spherical in shape. Such an assumption is employed because in any 

spherical potential there exist three independent isolated integrals, so that the orbits are analytically 

solvable. On the other hand, a perturbed potential need not be spherical in shape. Possible effects 

of these assumptions on the estimate of dynamical friction are discussed in §4. 

2.1. Matrix Method 

In this section, the method to calculate the density wake induced by a perturbed density is 

mentioned. The method used in this paper is the same as that in Weinberg (1989), who described 

the method in detail. Then, details should be refereed to Weinberg (1989), although the principal 

formulae are summarized in Appendix A. 

The density wake in a primary system will be determined by coupled-solutions of the linearized 

collisionless Boltzmann and Poisson equations, 

8f1 8f1 8H。8fo8H1 
—+——---at'aw 81 81 aw = 0, 

▽2衝＝ 41rGp1,

‘.j‘‘,'‘ 

1

2

 

＇
ー
、
，
ー
、

where the subscript O denotes the equilibrium quantities of the collisionless Boltzmann equation 

and the subscript 1 denotes the first order perturbation of a six-dimensional distribution function /, 

a Hamiltonian H, a potential屯anda density p. The collisionless Boltzmann equation is described 

by action-angle variables, (I, w). 

Let<I>戸bethe response potential to an external potential<I>秤． Then,the perturbed potential 
衝 willbe written as the sum of <I>!xt and<I>~es. Similarly, the perturbed density will be expressed 
as Pl = P秤＋ p~es. Here, the response density p~es to an external density p秤 isrelated to the 
perturbed distribution function, p1es = J d3v /1. Thus, the linearized Boltzmann-Poisson equation 
is an integrodifferential equation. Such an equation would be simplified by means of the Fourier-

Laplace transform. Then, in the frequency-domain, the linearized Boltzmann-Poisson equation 

becomes a simple algebraic equation for a particular harmonic (l, m), or the matrix equation, 

Alm(w) ＝っ—1lm 冗lm(w). iJlm (w)' (3) 
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where the dispersion matrix vtm is 

1)lm＝エー冗lm. (4) 

Here, I is a unit matrix with the same rank as'R lm, the response matrix'Rlm describes the 

information on a primary system, Alm and Blm are the expansion coefficients of response and 

external potentials in biorthonormal basis sets, respectively (Clutton-Brock 1972; Hernquist & 

Ostriker 1992), and the tilde denotes the Laplace transform in the time variable. 

To find the time dependence of expansion coefficients, the inverse Laplace transform for equa-

tion (3) is required. In this paper, to avoid the transient wave that originates from an initial 

condition, the time asymptotic approximation (t→oo) is adopted. Then, in the time-domain, the 

matrix equation is 
Alm (t)＝ヶ1lm(m%）・'R,lm(mfip). Blm (t)' (5) 

where Op is the pattern speed of a lopsided pattern. Here, there may exist weakly damped modes 

(see Weinberg 1994) that satisfy the relation 

Alm（叫＝炉(wd)・ Alm (wd), (6) 

or the dispersion relation 

detvtm臼）＝0, (7) 

where wd is the cmnplex frequency of each weakly damped mode. When weakly damped modes 

should be included, e.g., the damping time of the mode, ~(wd)-1, is longer than a Hubble time, 
one 1nust use equation (A21) instead of equation (5). 

Once the expansion coefficients of the response density Alm are calculated via the matrix 

equation for each harmonic (l, m), the response density and potential, which are both real functions, 

can be found straightforwardly, 

Pや(r,t)＝王 [A炉(t)心(r)妬 (0,,P)+A炉＊（t)d炉＊（噂(0,rf>)], (8) 

年 (r,t) = ~ ~互 [A炉 (t)心 (r) 迄 (0,<f,)+ A炉＊（t)u炉＊（噂(0,<t>)]. (9) 

Here, the asterisk denotes a complex conjugate and Yim (0, ¢) are the spherical harmonics. u炉(r)
and d炉(r)are potential and density basis functions, respectively, which are normalized by 

1 
一:dej drr2u炉＊（r)d恢(r)= Onn‘・ (10) 

Then, the gravitational torque felt by a lopsided pattern,, z, can be written 

ち＝Jがrp秤(r,t)[-~呼ies8;r,t) ］＝ -8TG言ご呵Alm(t). Blm• (t)], (11) 
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where~ denotes the imaginary part. 

Here, it will be useful to consider the non-self-gravity case, which corresponds to<I>1 =<I>秤
and Pl = p秤， forexamining a general property of dynamical friction. Then, the gravitational 
torque can be written by a further simple formula, or the Lynden-Bell & Kalnajs (1972) formula 

ち＝ー8和認m怜（炉） •Blm]. Blm_ (12) 

Hence, it is not necessary to know the real part of a response matrix R lm for calculating the 

gravitational torque due to dynamical friction in this case. Furthermore, when f o depends only on 

the energy E, using the explicit forn1ula for a response matrix (eq. [A19]), the gravitational torque 

can be rewritten 

Tz = 言互32亡予FF靡／］）譴咋（'Ir/2, 0)12喜 Wl仇仇(E,J)2 
l n 

x8 (mOp -li01 -l2伍）， (13) 

where 8 denotes the Dirac delta function, both l1 and l2 are integers, and f21(2) is an angular 

frequency of the angle variable w1(2)・ Here, w1 and w2 are the conjugate variables with respect 

to the radial action Ir and angular momentum J, respectively. The potential transform Wf,:1:n is ll2m 
defined by equation (A8). Meantime, in most galactic models whose distribution function depends 

only on the energy, the relation dfo/dE < 0 is satisfied for any energy E; the halos with such a 
distribution function are sometimes called IDDF (isotropic decreasing distribution function) halos 

(e.g., Goodman 1988). Then, as seen from equation (13), in IDDF halos, the gravitational torque 

is negative (positive) when a lopsided pattern is orbiting in a prograde (retrograde) manner. In 

addition, the above equation contains the Dirac delta function. Thus, the gravitational torque is 

caused by the resonance stars that satisfy the resonance condition 

l1釦＋l2f22= mnp. (14) 

In the epicyclic approximation,釦 and伍 areequal to the epicyclic frequency "'and the orbital 

frequency n, respectively. 

2.2. Model Description 

Here, halo and disk models are described. In this paper, it is assumed that an unperturbed 

potential is spherical in shape and that the orbits of halo particles are not affected by the existence 

of flat disks. In addition, galactic disks are assumed to be stable against m = 1 distortions. This 

means that the amplification of lopsided perturbation due to the interaction with disk stars is 

ignored. Lopsided instabilities are discussed in §4. 
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First, the halo model is an isotropic King n1odel. The explicit formula of a six-dimensional 

distribution function is 

Jo(£)= { ~(/:/u2 -1) 

゜
£ ~ O; 

£ <0. 
(15) 

Here,£= -E+E。.Paran1etersE。,Pl,and a are chosen such that a normalized central potential 
w。=3.0,a total mass /1.1 = 6.0 x 1011 M。,anda tidal radius Rt = 200 kpc. These choices of 
parameters are appropriate for the Milky Way (e.g., Kochanek 1996) by combining with a standard 

exponential disk. This halo model is the same model as used in Weinberg (1998b) and Vesperini 

& Weinberg (2000). 
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)
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Fig. 1.-Amplitude of the m = 1 component of disks as a function of radius for d = 10.0. 

Second, the disk model is a lopsided exponential disk model. Since the lopsided pattern is 

assumed to be sufficiently small as compared with the background density, the model disk could 

be written 

恥 (R,</>, t) ~-

＝ 

恥 (R)+ E1 (R, ¢, t) 
Md 

21r 
―exp (-R) [1 + A1 (R) cos (cp -Opt)], 

(16) 

(17) 

where Md is the disk mass, A1 (R) is the amplitude of them= 1 Fourier component of disks at a 

particular radius R, and Op is a pattern speed of lopsided disks. Clearly, the surface density of a 

lopsided pattern I: 1 is 

Md 
E1 (R, ¢, t) =―exp (-R)A1 (R) cos(¢-n糾）．

2rr 
(18) 

In this paper, the functional form of A 1 that determines the shape of the lopsidedness is chosen to 

express the lopsidedness induced by a fly-by encounter (Vesperini & Weinberg 2000), which yields 

ふ(R)= 
Rd 

25 + R2' (19) 
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where dis the parameter that determines the amplitude. Here, them = 1 Fourier amplitude A 1 (R) 

is shown in Figure 1. Then, A1 (R) reaches to the maximum value d/10.0 at R = 5. Thus, for 

d = 2.0, the maximum amplitude is 0.2. This value is related to the observational fact that about 

one third of field spirals have a lopsided mass distribution with them= 1 Fourier amplitude larger 

than 0.2 at 1.5 to 2.5 disk scale lengths (Rix & Zaritsky 1995; Zaritsky & Rix 1997; Rudnick & Rix 

1998). 

5.0 

2.5 

＞ 0.0 

-2.5 

-5.0 

-5.0 -2.5 0.0 
X 

2.5 5.0 

Fig. 2.— Surface density profiles of the lopsided exponential disk model. The solid contours show 
a lopsided model with d = 2.0 in which the maximum density occurs at (0, 0), while the dashed 

contours represent the corresponding on-center model as a marked reference to a lopsided structure. 

The contour levels are 1.0, 1/2,..., 1/128 of the maximum density. 

Finally, the external density p秤(r,t) is set to be 

p秤(r,t) = E1 (R, ¢, t) 8 (z). 

The surface density profiles of Ed and E1 are represented in Figures 2 and 3, respectively. 

(20) 

When each annulus with a radius R is displaced at△R (R) from the disk center in the x-

direction, the surface density profile can be written 

恥 (R)＋色△R(R)
dx 
d~。

恥 (R) ＋諒—△R(R) cos(¢ —叫）．

As found from equations (17) and (22), A 1 (R) is also considered the displacement of an annulus 

with the radius R. Therefore, the angular momentum associated with a lopsided motion, L z,ext, 

can be written 

ぬ(R,</>) ~-
(21) 

＝ (22) 

00 

L z,ext = 1=  dR21r REo (R)ふ (R)国

゜
(23) 
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Fig. 3.— Surface density contours of the lopsided pattern on the disk plane. The solid (dashed) 
contours show overdensity (underdensity). The contour levels are土1.0,士1/2,…，士1/128of the 

maximum density, which occurs at (0.933, 0). 

2.3. Numerical Procedure 

Units are chosen such that the disk mass Md = 1 and the exponential scale length Rd = 1. 
The gravitational constant is set to be 1.35 so that the circular velocity at the solar radius, i.e., 

8.5 kpc, is equal to 220 km s―1. If these units are scaled to physical values appropriate for the 

Milky Way, i.e., Rd = 3.5 kpc and Md = 6.0 x 1010 M。,unittime and velocity are 1.09 x 10 7 yr 
and 321 km s―1, respectively. 

A biorthogonal basis set to expand the density-potential pair is numerically obtained by solving 

the Sturm-Liouville problem according to the method described in Weinberg (1999). The angle 

variables, w1 and w2, and the potential transforms, Wぬは， arecalculated on a 1000 x 100 grid in 
E and K 三 J/ Jmax (E) by using the Romberg method with the error tolerance parameter being 

10-4. Here, the summations over l and l 1 in calculating the response matrix (see eq. [A19]) must 

be truncated at l = lmax and ll1l = l1,m訟,respectively. These truncation parameters are chosen 
such that lmax = 5 and li,max = 10. The expansions of the potential and density in radial basis 
functions are also truncated at nmax = 30. With varying parameters, these choices of truncations 
seem to have an accuracy of 1 per cent for calculating the gravitational torque. 

Since the numerical techniques used here are rather complex, it is useful to run a test calculation 

for checking the validity of our numerical implementation. Here, the test introduced by Weinberg 

(1989) is done. This test is to calculate the response density and potential when the constant 

force field that rotates at a constant rate f!p is imposed to halos as a perturbation. Since the 

perturbation is a constant force field, no torque acts on the perturbation, and the response of 
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halos is a barycentric shift against the perturbation (see Weinberg 1989, for a detail). Then, the 

calculated response potential agrees with a predicted potential to an accuracy of 1 per cent at 

the range of the pattern speed Op = [0.003 : 0.1] for the calculated range Op = [0.001 : 0.1]. 
For糾＝ 0.002,the difference between calculated and predicted values is about 4 per cent, for 

Op = 0.001, the difference reaches to 15 per cent. 

3. RESULTS 

Using the unperturbed model Jo (E) and perturbed model p和(r,t) described in the previous 
section, the gravitational torque can be calculated by equation (11). Here, since the external density 

p杓 isproportional to M孤， itsexpansion coefficients B1m (t) depend also on U叫 Inaddition, 
the response matrix ~lm contains no information on the strength of the perturbation. Hence, the 

gravitational torque r z is dependent on ~詞

To quantify the effect of dynamical friction on lopsided disks, it is useful to define the rate of 

angular m01nentum change, 
z Lz L 

T=  - ＝一Lz 乃'
(24) 

where £2 is the angular mmnentum associated with the lopsided motion, which can be written 

Lz = Lz,ext + Lz,res (25) 

Here, Lz,ext is defined by equation (23) and Lz,res is defined in the same manner as Lz,ext, 

Lz,res = J oo 2 
dr41rr2po (r)△r(r)2n 。か (26) 

where po is the unperturbed halo density and△r is the displacement of a shell with the radius R 

from the halo center. Clearly, both Lz,ext and Lz,res depend on d叫andthen, the rate of angular 
n1omentum change T is independent of the amplitude d. This is an expected result since the 

calculations are linear. 

If Tis positive (negative), it will be natural to guess that dynamical friction damps (excites) 

the lopsided pattern. Here, in IDDF halos and without the self-gravity of a wake,元 isnegative 

(positive) when np is positive (negative) as seen in §2.1. This is found to be valid even if the 

self-gravity is included. Then, T is always positive, and so dynamical friction always damps the 

lopsided pattern in our halo models. In addition, since r z and Lz are both odd functions of the 

pattern speed, the damping rate is an even function T(!lp) = T(-!lp), which is expected by the 
symmetry of the unperturbed system. 

In Figure 4, the rate of angular momentum change T is shown in the unit of Gyr as a function 

of the pattern speed nP. The units are scaled to the values suitable for the Milky Way. The solid 

line shows the friction due to the self-gravitating response and the dashed line shows the friction 
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Fig. 4.-Damping time defined by the rate of angular momentum change as a function of the 

pattern speed for a self-gravitating response (solid line) and non-self-gravitating response (dashed 

line). The units are scaled to the values suitable for the Milky way. The arrow at the left side 

shows the real part of the frequency of weakly damped modes. 

due to the non-self-gravitating response for a reference. Clearly, there exists a large difference 

between the self-gravitating and non-self-gravitating responses. In addition, to see the corotation 

radius corresponding to each pattern speed, orbital frequencies at a particular radius R are shown 

in Table 1. As seen in Figure 4, the damping time T reaches to the minimum value :::: 1.0 Gyr 

at np：：：： 0.03. Moreover, the damping rate is shorter than a Hubble ti皿：：：： 10Gyr when the 
corotation radius is smaller than the truncation radius,凡＝ 56(see Table 1). 

4. DISCUSSION AND CONCLUSIONS 

In this paper, lopsided perturbation to stable galactic disks is considered. To estimate the 

lifetime of the lopsided perturbation, the effect of dynamical friction on lopsided disks is examined. 

Then, it is found that dynamical friction always damps the lopsided perturbation. The damping 

time scale of lopsided disks is obtained as a function of the pattern speed. Figure 4 shows the 

damping time for the self-gravitating and non-self-gravitating cases. Then, the difference between 

self-gravitating and non-self-gravitating responses is found to be quite large, especially for the slow 

pattern speed. This could be understood as follows. When the pattern speed of the lopsidedness 

becomes slower, since the amplitude of the lopsidedness is constant, the barycentric shift of halos 

becomes larger. In addition, the non-self-gravitating response does not contain the proper informa-

tion for the barycentric shift, and so, the difference between self-gravitating and non-self-gravitating 
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Table 1: Orbital frequencies at a particular radius. 
Radius Freq. 

5.0 7.30 X 10-2 

10.0 5.84 X 10-2 

15.0 4.47 X 10-2 

20.0 3.44 X 10-2 

25.0 2.69 X 10-2 

30.0 2.14 X 10-2 

35.0 1.72 X 10―2 

40.0 1.44 X lQ-2 

45.0 1.22 X 10―2 

50.0 1.04 X 10-2 

56.0 8.78 X lQ-3 

responses will become large with decreasing the pattern speed. Furthermore, Figure 4 clearly shows 

that the damping time is shorter than a Hubble time unless the rotational period of lopsided disks 

is quite long. 

Here, let us consider the case that the pattern speed is so fast that the coration radius is within 

a few optical radius, i.e., Opえ0.04.Then, the damping time scale is typically~ 1 Gyr. Since the 
fraction of the lopsidedness in spirals reaches to about 30 per cent, an excitation should occur per 

~ 3 Gyr. One possible recurrent excitation 1nechanis1n is a gravitational interaction between host 

and satellite galaxies. However, since such interaction can easily thicken galactic disks (e.g., see 

Toth & Ostriker 1992; Walker et al. 1996), it will be unlikely that most of lopsided disks are excited 

repeatedly or recently. Even though some of the lopsidedness may be recently excited (Rudnick, 

Rix, & Kennicutt 2000), it is suggested that most of lopsided disks will be slowly rotating pattern. 

Unfortunately, the pattern speed of lopsided disks remains unknown observationally. Then, some 

in1plications of the results to theoretical models are discussed here. 

First, Baldwin et al. (1980) proposed the scenario that a lopsided disk is the pattern that 

consists of elongated orbits, which is a similar idea to the Lindblad's idea (1963, references therein) 

of kinematic spiral arms. Then, such a pattern rotates at an angular frequency (0-K)(r). Here, n 

and "'are the orbital and epicyclic frequencies, respectively. Since the relation O(r)~ K(r)~ 2n(r) 
is satisfied, the pattern rotates in a retrograde manner. In the King model used here, the pattern 

speed (n-K)(r) is almost comparable with the orbital frequency -O(r). If r is set to be an optical 

radius R。pt~ 3和， thepattern speed is about -0.08. Therefore, such a pattern may damp owing 

to dynamical friction within a Hubble time. 

Second, during a fly-by encounter, a lopsided pattern that rotates at an angular frequency 

'1t・eJ/ Rp would be induced. Here,和 isthe pericentric radius and ½el is the velocity of a perturber 
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relative to the primary system at Rp. The relative velocity will be comparable to the rotational 

velocity,：：： 200 km s -l, and hence, the pattern speed would be close to the orbital frequency at 

Rp. To induce significant lopsidedness, a small Rp is favorable. Then, the rotational speed of the 

significant lopsided pattern would be large. Hence, such a pattern may also damp. 

On the other hand, Vesperini & Weinberg (2000) found that weakly damped modes were 

induced by interactions and that they would play an important role in the lopsidedness. To see the 

effect of such damped modes, the frequencies of such modes are calculated according to equation (7). 

Here, the numerical procedure is in the saipe manner as Weinberg (1994). Then, weakly damped 

f modes with complex frequencies Wd =（士5.0X 10― -6 , -1.7 x 10-6) are found only for (l, m) = 
(1,士1).This value is consistent with the result of Weinberg (1994) within the error. Here, since 

l凸＋l2伍 reachesto the n1inimum value 5.0 x 10-3 for (l1, l2) = (1, -1) (see equation (14]), there 
would exist no resonance star with such slowly rotating weakly damped modes. Then, the possibility 

of ~(wd) = 0 cannot be excluded. In addition, the weakly damped mode is found to have a very 
slow pattern speed, which is indicated by an arrow in Figure 4. Then, such modes could survive 

for a long time against the friction. Furthermore, the excitation of such weakly damped modes 

can be calculated by using equation (A21). Then, it is found that the perturbation used here can 

excite strong modes and that the peak density of such modes is one order of magnitude larger than 

that of the self-gravitating response. This is consistent with the finding of Vesperini & Weinberg 

(2000). In addition, such modes can be also easily excited by the fly-by encounters (f¥/Iurali 1999; 

Vesperini & Weinberg 2000). Thus, the weakly damped modes would play an important role in 

the lopsidedness, as suggested in Vesperini & Weinberg (2000). However, as mentioned in the end 
of §2.3, in the slow pattern speed region, the linear perturbation techniques would cause a large 

error. This is due to the large barycentric shift to very slowly rotating perturbation, and so, the 

density response may be too large to use the linear perturbation theory. Thus, to confirm the 

significance of weakly damped modes, it might be required to include the non-linear effects, e.g., 

by using N-body simulations with a huge number of particles. 

To examine whether such weakly damped modes in reality play a role in lopsided disks, it 

is useful to observe the pattern speed of the lopsidedness directly, e.g., by using the Tremaine-

Weinberg method (Tremaine & Weinberg 1984a; see also Sambhus & Sridhar 2000). In the Milky 

Way, the next generation astrometric satellites such as SIM and GAIA will help us to measure the 

dynamics of the lopsidedness directly. In addition, since our results suggest that the lopsidedness 

will be slowly rotating pattern, and so, they will be long-sustained structure, a large survey of the 

lopsidedness in the sample of isolated galaxies, which have not any companion galaxies that could 

cause the significant lopsidedness, would also show the large fraction of the lopsidedness in such 

sample galaxies. 

In this paper, the shape of lopsided disks, A1 (R), is chosen to be Rd/ (25 +柁）． However,
since each element of the response matrix, R低， isalready obtained, dynamical friction acting on 
another type of lopsided pattern can be readily calculated. Then: the dependence of the functional 

form of A1 on the estimate of dynamical friction is found to be weak. This is because the change 
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of the functional form ofふ doesnot change significantly the shape of ~ 1 or P!xt, because the term 

of exp(-R) is dominant in ~ 1・

Before closing this section, possible effects of the assumptions made in this paper on the 

estimate of dynamical friction are discussed. 

First, the effect of flat disks on the orbits of halo stars is ignored in this work. Taking into 

account the existence of flat-disks, the halo density near disks would increase owing to the additional 

flat-disk potential as mentioned in Nelson & Tremaine (1995). For the fast rotating lopsided disks, 

since the friction will be caused by the halo stars with high orbital frequencies, the damping time 

scale may be shorten by adding the effect of flat disks. However, for the slowly rotating lopsided 

disks, the friction will be caused mainly by the stars with low orbital frequencies, since such stars 

will not be significantly affected by including flat disks, the friction would not change significantly. 

As a result, the conclusion, the damping time scale is short unless the pattern speed is slow, may 

be strengthened. 

Second, galactic disks are assumed to be stable against lopsided (m = 1) perturbation. When 
galactic disks are unstable to lopsided distortions, the amplification of lopsided modes due to the 

interaction with disk stars will be important. Then, dynamical friction might not reduce the 

amplitude of unstable modes (d) but might make the pattern speed of the modes (Op) slow down 

as similar to the case of galactic bars (Weinberg 1985; Debattista & Sellwood 2000). Such m = 1 
instabilities will exist in stellar disks in which the fraction of retrograde stars is large (Zang & Hohl 

1978; Sawamura 1988; Hozumi & Fujiwara 1989; Sellwood & Merritt 1994). Although there exist 

some galaxies that have counter-rotating components (e.g., Merrifield & Kuijken 1994), the counter-

rotation is a rare phenomenon in stellar disks (Kuijken, Fisher, & Merrifield 1996; Kannappan & 

Fabricant 2001). Hence, it would be difficult to explain the large fraction of lopsided disks in 

spiral galaxies. In the mean time, some galactic disks in which the contribution of halos to galactic 

rotation is small will also have a lopsided instability (e.g., Sellwood 1985; Athanassoula, Bosma, 

& Papaioannou 1987; Lovelace et al. 1999). Then, dynamical friction may not affect dynamical 

evolution of such unstable modes owing to the small halo contribution. However, since galactic 

disks with massive halos will be stable to lopsided distortions (e.g., Athanassoula et al. 1987), this 

kind of instability would not be major cause of the lopsidedness in real spiral galaxies, especially 

in late-type spirals. 

To confirm the results in this paper, and to avoid the effect of discreteness noise, numerical 

simulations with a huge number of particles, say ::: 10 7, would be valuable. Such a calculation can 

be done, e.g., with a hierarchical tree algorithm using the GRAPE-5, a special-purpose computer 

for gravitationally interacting particles (Sugimoto et al. 1990; Kawai et al. 2000). This line of 

investigation is in progress. 

The author is grateful to Shogo Inagaki, Shunsuke Hozumi, Junichiro Makino and Martin 

Weinberg for their helpful discussions. The author also acknowledges the anonymous referee for his 
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A. Matrix Equation 

A.1. Expansion of Density-Potential Pairs 

Following Tremaine & Weinberg (1984b) and Weinberg (1989), the response density p~es, the 
response potential 4>戸， andthe external potential叫秤 areexpanded in biorthonormal basis sets 
(Clutton-Brock 1972; Hernquist & Ostriker 1992), 

p戸(r,t)＝こ心(t)d炉(r)迄 (0,ef>), (Al) 
n,l,m 

町 (r,t)＝こ心(t)u炉(r)知 (0,¢)' 
n,l,m 

呼屯，t) = LB炉(t)u杷(r)迄 (0,</>),
n,l,m 

(A2) 

(A3) 

where Ytm (0, ¢) are the spherical harmonics. Here, the radial basis functions u炉(r)and d炉(r)
are normalized by 

1 
戸 jdrr2u炉＊（r) d仰(r)= 5nn', {A4) 

and satisfy the Poisson equation▽誓（r)=位Gd杷(r).

Since the orbits are periodic with respect to the angle variables w, the perturbed potential, 

剌＝のゃ＋i秤， canbe also expanded in the Fourier series, 
00 

衝 (I,w, t)＝LL  W il (I, t) eil-w, where L：三 LL, (A5) 
l,m l l li =-oo l2=-l 

where l = (li, l2, l3 = m) is a triple of integers and I= (!r, J, Jz三 Jcos/3）isa vector of the action 
variables. Here, Ir is the radial action, J is the total angular momentum, and J z is its z-component. 

The Fourier coefficients叱lare 

w il (I, t)＝如(/3)Lwl饂（I)[A炉(t)+ B炉(t)], (A6) 
n 

崖 m(/3) = im-l2狐（1r/2,0)rに(/3)'
1 71" 

Will;は（I）＝ -J如 cos[liw1翡（w2一ゆ）］u炉(r)'
7r Jo 
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whereゆisthe angle in the orbital plane measured from the ascending node and rtm (/3）is the 

rotation n1atrix (see e.g., Edmonds 1960). The explicit formulae for the angle variables w 1 and w2 

are described in Tremaine & Weinberg (1984b). 

A.2. Matrix Equation 

The response density to an external density will be determined by coupled-solutions of the 

linearized Boltzmann-Poisson equation (eqs. [1] and [2]). To find such solutions, it is convenient to 

use the Fourier-Laplace transform. Then, the linearized collisionless Boltzmann equation becomes 

f1l = -l．堕ー 1 
8I 叱lw -l ・ n' 

(A9) 

where n (J) = 8Ho/81 are the frequencies of the angle variables and the assumption that the 
perturbed distribution function vanishes at t = 0 is made. Here, the subscript l denotes the Fourier 

transform in the angle variables, and the tilde denotes the Laplace transform in the time variable. 

Using equation (A9), the response density can be written 

庁 (r,w)= jが砧＝—Jふ匹·堕屯ll l eil.w 
l 
8I w -l.o • (AlO) 

Then, the expansion coefficients of the response density A炉are

応（w)= —命J沿ru炉＊（噂 (0,<P) pや（r,w)＝ご心(w)［西(w)＋的(w)], (All) 
where the response matrix冗仰 is

砥閉(w) 三 (2が 2 dEdJJ 8fo(E,J) 1 
戸 l+1/j 伍（E， J) 匹• 8I w -l・が加(,r/2, 0} 12 

l 

xwlz霊(E,J) ~ぬ瓜 (E,J). (A12) 

Here, the relation for canonical variables, d3rd3v＝がw沿I,is used, and the variables are changed 

from I = (Ir, J, Jz) to (E, J,/3）． The integration over w and/3is done with the assumption that 

an unperturbed distribution function does not depend on {3. In addition, the following expression 

for叫吋盆 isused. 

u炉＊（r）玲t(0,¢) ＝区吼m(9)Wlll霊 (I)e―il•W.
l 

The matrix equation (All) can be rewritten in a symbolic form, 

(A13) 

Alm (w)＝炉(w).[Alm (w) + Elm (w)] = v-1 lm (w)・炉(w)．Elm(w), (A14) 

148 



where 

っlm＝エー冗lm. (A15) 

Here, I is a unit matrix with the same rank as R lm. The inverse Laplace transform of the matrix 

equation (A14) is 
t 

Alm(t)=J咋ー1lm(mOp). K.lm (t -r}. Blm (r}, 

゜
(A16) 

where the kernel matrixば靡 isthe inverse Laplace transform of a response matrix冗低 which
yields 

にlm . (2が 2 { { dEdJJ ~, 8fo 
nn’(t-T) ＝ -t 戸戸／j 釦（E， J) 匹•可 exp[-i!. n X (t -T) l 

l 

X臨（1r/2,0)12叫霊（E，J)Wぬ瓜(E:J). (Al 7) 

In principle, the density and potential responses can be calculated by integrating equation 

(A16) as an initial value problem. In this work, the time asymptotic assumption (t→ oo) is 

adopted to equation (A16). Then, all transient waves originating from an initial condition will 

disperse and the forced harmonic will dominate. When the perturbed density is assumed to rotate 

at a constant rate糾， bothA炉(t)and B炉(t)are proportional to exp (-im出t). Then, the 
integration over Tin equation (A.16) can be readily done, 

Alm (t) ＝っ—1lm (m%）.n_lm (mOp) ・ Blm (t). (A18) 

Here, each element of a response matrix,冗悶， is

8社 2 dEdJJ 8fo 
亨 1ff釦(E,J）四可応／2,o) 12wfi霊(E,J)Wlll瓜(E,J) 

l 

冗lm
nn' ＝ 

xド(m0p: l· 叶—両(m% -l叫A19)
where 8 denotes the Dirac delta function and P denotes the Cauchy principal value. These equations 

are identical to equations (48) and (49) in Weinberg (1989). In addition, when / o depends only on 

the energy E, 
8fo dfo l. — 
81 
= (l ・ O) ~ 
dE' 

(A20) 

Thus, the real (imaginary) part of a response matrix is an even (odd) function of Op, 

The equation (A18) is valid for t→ oo, however, if weakly damped modes should be included, 

one must use the following equation instead of equation (A18) 

心（t) ＝ v-1lm (m%）・炉(m!1p)・ Blm (t) 
00 心Res(vー1lm心）・炉(wd)・ lx, drB1m (r) exp [-iwd x (t -r)]. (A21) 

Here, Res denotes the residue, Wd is the complex frequency of damped modes, det'D (wd) = 0, and 

the summation is over the number of damped modes. 
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Formation of Terrestrial Planets in a Dissipating Gas Disk 
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We performed N-body simulation on formation of terrestrial planets from protoplanets in-

eluding damping of velocity dispersion caused by gravitational interaction with a dissipating 
gas disk. In a gas-free case, the resulting planets have relatively high eccentricities compared 
to those of Earth and Venus. These high eccentricities are the remnant of orbital crossings; 
collisional damping is not strong enough. The damping due to almost dissipated disk gas is 
strong enough to damp their eccentricities down to the present values of Earth and Venus, 
while it allows the protoplanets to grow to the size of the Earth (Kominami & Ida 2002, Icarus, 
in press). In this paper, decay of disk gas is considered as an additional factor. Exponential 
decay is assumed for time evolution of disk gas. We investigate how planetary formation and 
depletion timescale are related. We found out that if we assume the minimum mass disk model, 
Earth like planets are formed when gas depletion timescale is 106 -107 years. 

1 Introduction 

Terrestrial planets are formed through the collisions of planetesimals that are,..._, km size. Oli-
garchic growth predicts formation of about twenty Mars-sized protoplanets (about one tenth 

of Earth mass) on circular orbits (Kokubo & Ida 1998,2000). Mutual gravitational interaction 
between the protoplanets (Chambers et al. 1996) and/or effect of the giant planets increase the 
eccentricities of the protopanets on a time scale of 106 -107 years. (Nagasawa et al. 2000, Ito 
& Tanikawa 1999) to cause orbital instabilities. The protoplanets start to collide and grow till 
about the size of the Earth and Venus. If only the mutual gravitational interaction between the 
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prototplanets are considered, the resulting planets have relatively high eccentricities compared 

to those of Earth and Venus (Chambers and Wetherill 1998, Agnor et al. 1999). These high 
eccentricities are the remnant of orbital crossings. Collisional damping is not strong enough to 

reproduce relatively small (~ 0.03) eccentricities, which are comparable to time-averaged ec-
centricities of Venus and Earth. However, it is reasonable to assume that leftover planetesimals 
and remnant disk gas still exist during this stage. Gravitational interaction with the disk causes 

damping of eccentricities (and inclinations). If this interaction is also taken into account, the 
protoplanets can grow to the size of the Earth and acquire low eccentricities (Kominami & Ida 
2002). 

Kominami & Ida (2002) shows that if orbital crossing and growth of the planets occur when 
gas with surface density ~ 10-3 -10-4 x the minimum mass model (Hayashi 1981) is left in 
the disk, planets with mass of ~ MED and eccentricities ~ 0.03 are formed. This result was 
acquired from the calculations with time independent amount of disk gas. They assumed a 
constant gas model in order to study the effect of remnant gas on the planet formation more 
clearly. Although they also did several calculations with disk gas dissipating exponentially and 
showed in the case with disk decaying time scale of rv 106 -107 years planets with m ~ M0 
and e ~ 0.01 are formed. However, the effects of depleting gas has not been fully understood 
yet. In this paper, performing much more calculations with decaying disk gas, we investigated 
the relation between the depletion timescale of the disk gas and the planetary formation. The 
relation would impose constraints upon evolution of disk gas. 

2 Calculation Model 

2.1 Gravitational Gas Drag 

We consider the damping due to disk-planet interaction, which we call "gravitational drag", as 
in Kominami & Ida (2002). Protoplanets are large enough to ignore the aerodynamic gas drag 
force. 

The effects of the disk-planet interaction can be expressed by the the drag force (/ 00) as 
(Kominami & Ida, 2002) 

fGD=-
V -Vgas 
, (2.1) 

Tdamp 

where v and vgas. arethe velocity of a protoplanet and the gas. We here assume the gas motion 
is non-inclined circular Keplerian motion. Damping timescale of gravitational gas drag is 

叫mp~ （信）（己）に）4 饂， (2.2) 

where E is the surface density of a gas disk, c5 is sound velocity of disk gas and nkep is Keplerian 
frequency (Ward 1989, 1993, Artymowitz 1993). Supposing the minimum mass disk model with 

gas surface density given by Emin = 1700 (r/lAU)―3/2 gem―2 (Hayashi 1981), 

Tdamp ~ 0.5 X 103 (f)―1 （丘）2(長）―1years. (2.3) 

We assume exponential decay of the surface density as 

副＝恥exp（土）． (2.4) 
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As a consequence, damping time scale lengthens as 

Tdamp(E(t)) = Tdamp(Eo) exp（土）． (2.5) 

In our calculations, we assume time-independent Tgas• However, since orbital evolution of 
protoplanets occurs when E,..._, 10-2 -10-4Emin, the evolution is regulated by Tgas at those 

stages. Different values of Tgas at the other stages do not affect the result. 

2.2 Orbital Integration 

We integrate orbits with 4th order Hermite scheme (Makino & Aarseth 1992) and hierarchial 
individual timestep (Makino 1991) as in Kominami & Ida (2002). The equation of motion of 
particle k is 

dvk GM。 GM• VK→gas 
＝一
dt lrkl3 

m-E J 

浮 K比ーrkl3
（ち一rk)-

Tgrav 
(2.6) 

The first term is the gravity from the sun. The second term is the mutual gravity between the 
protoplanets. And the last term is the gravitational drag from disk gas. The drag force has 
time dependence as in Eq. (2.5). When protoplanets collide, perfect accretion is assumed. The 
physical radius of a protoplanet is determined by its mass and internal density as 

rp= (~り 1/3, {2.7) 

The internal density pp is set to be 3 gem―3. 

2.3 Initial Condition 

The initial protoplanet distribution is also the same as Kominami & Ida (2002). The number 

of the protoplanets is fifteen, and separation of semimajor axis is 6 -10 rH, rH is Hill radius 
which is defined as 

2M 
1/3 M 1/3 

rH =に） r~ 0.007(。.2M①) r. (2.8) 

Angular distribution is random. Each protoplanet has mass of 0.2Mm, The initial eccentricities 
of the planets are the order of 10-3 -10-4, which means the orbits are almost circular. 

Initial amount of gas ranges from 1 % to 100% of minimum mass model. It is determined 
as following. Timescale for orbital instability to occur in a gas free case (Tcross) is a function 
of orbital separation and masses of the protoplanets (Chambers et al., 1996). Considering 
gravitational gas drag, orbital instability is suppressed if 

叫 mp(E):S Tcross (2.9) 

(Iwasaki et al. 2002). We define E1 such that orbital instability is allowed when E < E1. Td血 P
increases with time as Eq.(2.5). The system becomes ready for the instability to take place 
when the damping time scale becomes (Eq.(2.5)). 

T。rb= Tgas logしこ｛sぬ）． (2.10) 
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If Torb ≪: Tcross, disk gas dissipated almost completely by the time when orbital crossing starts. 
The following orbital evolution will be as the same as gas free case. On the other hand, if 

T。rbえTcross,orbital crossing starts when tえT。rb,which means orbital crossing is triggered by 
dissipation of disk gas and remnant disk gas may affect the following orbital evolution. We 
consider the latter case, because the former case would result in too large eccentricities. Hence, 
the initial amount of gas (~。)must satisfy 

Tdamp（晶）exp(~△ao)) ＜ Tcross（△ao), (2.11) 

If Emin is adopted as E。,thiscondition is usually satisfied. However, in order to reduce 
computation time, we often start with E。<Emin. As long as E。satisfiesEq. { 2.11), the 
results would not change. Initial separation△ao and the corresponding Tcross is shown in Table 
I. We did several runs with no gas on each△a。andtook the average time for the crossing to 
happen. 

Table I 
Initial Orbital Separation and Instability Time Scale 

△ao(rH) Tcross(yrs) 
7 r"v 1 X 105 

8 "".J 1 X 106 ， 
"-J 2 X 106 

10 r-J 3 X 106 

12 r-.J 4 X 106 
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3 Result 

We did 15 runs with decaying gas. Initial conditons and the final planets'mass and eccntricityies 

are listed in Table II. 

Table II 

List of Simulations with Initial Conditions, and Final Planets 

Simulation △a(rH) 恥（EH) Tgas(yr) nfinal Mmax(Mm) emax Mmax ~ 0.8MEB emax ~ 0.04 

RRuunn~ 2 
7 0.01 3 X 107 6 0.6 0.0001 No Yes 

7 0.2 3 X 106 8 0.6 0.001 No Yes 
Run 8 1 ， 0.01 1 X 107 8 0.6 0.006 No Yes 
Run2 1 8 0.1 3.3 X 106 8 0.6 0.0001 No Yes 
Run 6 2 8 0.1 3.3 X 106 10 0.4 0.001 No Yes 
Run 7 2 8 0.03 3 X 106 7 1.0 0.0067 Yes Yes 
Run4 2 8 0.05 2 X 106 5 1.0 0.0138 Yes Yes 
Run 5 1 12 0.05 6.7 X 106 6 0.8 0.021 Yes Yes 
Run 2 2 

Run 2 2 

， 0.01 3 X 106 4 1.2 0.042 Yes No/Yes ， 0.1 3 X 106 5 1.0 0.142 Yes 
Run 3 2 10 0.05 2.4 X 106 4 0.2 0.14 Yes 
Run ， 3 8 0.3 3 X 105 4 1.8 0.079 Yes 
Run 3 3 ， 1 3 X 105 4 1.0 0.053 Yes 1 

(*) a,b,c,labeled in the simulation number indicates the initial angular distribution type. Angular 
distribution is given randomly. Each distribution is made of different set of random number. Mmax is 

the largest final planets in each run. emax are their eccentricities, respectively. If there are more than 
one largest planets, the average is taken within the same mass. 

The typical result of orbital evolution when the gas dessipates too quickly is shown in 

fig.1(a)．This is a figure of Run;．Since Tg-is short (Tgas = 3 x 105 yrs)，gasis being depleted 
so much during the accretion, that the situation becomes equivalent to gas free case. At 

t = 6.2 x 106 years, when an Earth-sized planet is formed, Td血 Pfor m = lMm is 2.4 x 1012 
years, which is much longer than Tgas・ Planets can grow but the eccentricity cannot be damped. 
Final planets are showm in fig.l(b). Filled circles represent the terrestrial planets. Area of the 

circles are proportional to the mass of the planets. When the gas depletion is too slow, as in 

Run~, the protoplanets cannot grow to the size of the Earth. Figure 1(c) is the typical result. 
When orbital crossing starts at t = 1 x 105 yrs, however, there is too much gas to allow the 
accretion to continue: E r-v 10-2Emin. The eccentricities are quickly damped and the planets 

cannot grow. The final planets are shown in fig. I (d). 

When 7i四～ Tcross,orbital evolution is like fig.l(e), which shows the orbital evolution of 

RunふInitially,the gas supresses excitation of the eccentricities and prevents the orbits from 
becoming unstable. The gas is gradually depleted and when t r-v 3.5 x 107 yrs, orbits start 
crossing. The amount of gas then is r-v 2.7 x 10-4Emin_ This corresponeds to Tdamp r-v 9.3 x 106 

years. During this time, the amount of gas is r-v 10-3 -10-4Emin, It is already known that if 
there is gas of amount of r-v 10-3 -10-4匹min,during the accretion, planets with large masses 

(Mm) and low eccentricities can be formed (Kominami & Ida 2002). Remnant gas is enough 

to damp the eccentricities of surviving planet with mass r-v Mm (Kominami & Ida 2002; Agnor 

& Ward 2002). The final planets are shown in fig.l(f). The largest mass has 0.8Mm and its 
eccentricity is r-v 0.02. 
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Figure 1: (a)Typical orbital evolution when Tgas = 3 x 105 yrs. Semimajor axis, pericenters 
and apocenters are plotted. (b)Final planets of (a). Area of the circle is proportional to the 

planets'mass. Filled cicles are terrestrial planets. (c)Same as (a) except Tgas = 3 x 107 yrs. (cl) 
Final planets of (c). (e) Same as (a) except Tgas = 3 x 106 yrs. 
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The accretion timescale(r growth), which is from when the orbital crossing starts till the mass 

becomes ""Ma,, is "-I 1 -3 x 106 years, although Tgrowth ""5 X 106 years in Fig.l(e). 

4 Condition for Formation of Earth-like Planets 

Here we analytically derive the conditions for formation of Earth-like planets with small eccen-

tricities, comparing with the numerical results. We can impose some constraints on depletion 

time scale Tgas・ It is already shown that the system allows the orbital crossing to happen when 

＞ Tdamp~Tcross (4.1) 

The time when orbital crossing actually starts is some time (Tcross) after this situation is satisfied. 

The damping time at this particular time is 

T damp (inst) = Tcross exp（已）．
In order to allow accretion, 

1°damp(inst)えTgrowth• 

Substituting Eq.(4.2) into Eq.(4.3), we find 

二ぇ In(~)~ 1. 
T gas ¥ T cross 

(4.2) 

(4.3) 

(4.4) 

If the mass of the largest planets become rv MEB on a time scale Tgro~th, the damping time 
scale would be 

1 
Tdamp(end) = ¼Tdamp(inst) exp（竺） (4.5) 

-¼応ossexp (Tcross:asTgrowth)． (4.6) 

Becuase Tdamp(end) is for l'.J Ma, while Tdamp(inst) is for l'.J 0.2Ma,, right hand side of the above 

equations are divided by 5 (Eq.(2.3)). In order to damp the eccentricities of the planets, 

袖皿p(end)~ Tgas• {4.7) 

Substituting Eq.(4.6), we acquire 

Tcross十gasTgrowthるln（三）～ afew. (4.8) 

Taking 2 as the above numerical factor, we obtain the conditions for formation of Earth-like 
planets as 

Tcross +~くく
2 
~ Tg邸～ Tcross•
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Table III 
Comparison of the Time Scales and the Final Planets 

Simulation A=年皿 B=  
.』Tg&S A~ 0.5 Mmax ~ 0.8MEB B ~ 0.5 emax ~ 0.04 

T更a.s 'Tcrou十なrow山
0.003 30 no no yes yes 

0.03 3.0 no no yes yes 

0.20 5.0 no no yes yes 

0.30 2.2 no no yes yes 

0.30 2.2 no no yes yes 

0.33 2.0 no yes yes yes 

0.50 1.33 yes yes yes yes 

0.60 2.2 yes yes yes yes 

0.67 1.5 yes yes yes yes/no 

0.67 1.5 yes yes yes no 

1.25 1.0 yes yes yes no 

3.3 0.20 yes yes no no 

6.7 0.15 yes yes no no 

A is the ratio of time scales Tcross to Tgas• If this value is larger than 0.5, mass of the largest planet 
is likely to be rv MEB. B is the ratio of 2 X Tgas to Tcross + T growth• If this value is larger than 0.5, the 
eccentricities of the largest planets tend to be smaller than 0.04. 

In Table III, Tcross/rgas and 2Tgas/(rcross + Tgrowth) with Tgrowth = 2 X 106 yrs are shown 
for each run. If both quantities え1,the conditions (4.9) are satisfied. Table III shoes the 
condition (4.9) is consistent with the numerical results. 
Note that the case with Tcross ~ Tgas does not necessarily mean that Earth-sized planets 
cannnot be farmed. In this case, the amount of gas then is too much to allow the planets 
to grow enough. The eccentricities are damped rapidly. The separations△a become wider 

resulting in a longer Tcross• Thus, the condition TdampえTgrowthmay be satisfied after the first 
orbital crossing stage. However, since Tcross increases so much with the expansion of△a, the 

other condition (Tcross + Tgrowth) /2乏Tgaswould not be satisfied. Inthe case of Fig.1(c)，△a 
becomes "'15rH after the orbital crossing, so that Tcross in the new orbital separation becomes 
109 -1010 years. Therefore, we can say that the condition TcrossえTgasis required. 

Oligarchic growth model (Kokubo and Ida 1998, 2000) shows that the protoplanets are 

formed with separations about 10 rH, Tcross for△a rv 1 OrH is rv 106 -10 7 years near 1 AU (Table 

I; Chambers et al., 1996). Considering the terrestrial planets, if the gas dissipates on a time 
scale of 106 -107 years, planets with large mass and low eccentriciies can be formed. This time 

scale is consistent with observation. 

5 Summary 

Here we summarize what we have done. We performed N-body simulation on formation of 

terrestrial planets from protoplanets including damping of velocity dispersion caused by gravi-
tational interaction with a dissipating gas disk. We have investigated the effect of dissipating 

disk gas on orbital evolution of terrestrial planets. Calcalations are started with 15 protoplanets 
and initial amount of gas ranges from 1 -100 % of minimum mass model. The eccentricities are 
held low until the gas is depleted to the point when its damping time scale become comparable 
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to instability time scale (Eq.(2.9)). If we consider the terrestrial planets, damping time scale 
of the gas when the orbital crossing starts is 106 -107 years. If the depletion time scale is 
several million years, the damping time scale after the accretion would be 106 -107 years and 

damps the eccentricities of survived planets. As a result, planets with m,-...J Ma, and e,-...J 0.01 

are formed. 

We have analytically derived the constraints on depletion time scale of the disk gas. We 

acquired a relation among the time scales, Tcross, Tgrowth, Tdamp in order to form planets with 

m,-...J Nla, and e,-...J 0.01, as Eq.(4.9). 

References 

[1] Agnor, C. B., R. M. Canup, and H. F. Levison 1999. On the character and consequences of large 

impacts in the late stage of terrestrial planet formation. /carus,142,219-237. 

[2] Agnor, C. B., and Ward, W. R. 2002. Damping of terrestrial-planet eccentricities by density-wave 
interactions with a remnant gas disk. APJ,567,579-586. 

[3] Artymowicz, P. 1993. Disk-satellite interacton via density wave and the eccentricity evolution of 
bodies embedded in disks. Astron. J.,419,166-180. 

[4] Chambers, J. E., G. W. Wetherill, and A. P. Boss 1996 The stability of multi-planet systems. 
/carus,119,261-268. 

[5] Chambers, J. E., and G. W. Wetherill 1998. Making the terrestrial planets: N-body integrations 
of planetary enbryos in three dimensions. /carus,136,304-327. 

[6] Hayashi, C. 1981. Structure of the solar nebula, growth and decay of magnetic fields and effects of 
magnetic and turbulent viscosities on the nebula. Prog. Theor. Phys. Suppl.,70,35-53. 

[7] Ito, T., and K. Tanikawa 1999. Stability and instability of the terrestrial protoplanet system and 
their possible roles in the final stage of planet formation. /carus,139,336-349. 

[8] Iwasaki, K., H. Emori, K. N akazawa, and H. Tanaka, 2002. Orbital stability of a protoplanet 
system under the drag force proprotional to the random velocity. PASJ,in press. 

[9] Kokubo, E., S. Ida 1998. Oligarchic growth of protoplanets. /carus,131,171-178. 

[10] Kokubo, E., and S. Ida 2000. Formation of protoplanets from planetesimals in the solar nebula. 
Icarus,143,15-27. 

[11] Kominami, J., and S. Ida 2002. The effect of tidal interaction with a gas disk on formation of 
terrestrial planets lcarus,in press 

[12] Makino, J. 1991. Optimal order and time-step criterion for Aarseth-type N-body intergrators. 
A.P.J,369,200-212. 

[13] Makino, J., and S. J. Aarseth 1992. On a hermite integrator with Ahmad-Cohen scheme for 
gravitational many-body problems. Publ. Astron. Soc. Jpn.,44,141-151. 

[14] Nagasawa, M., H. Tanaka, and S. Ida 2000. Orbital evolution of asteroids during depletion of 
solar nebula. Astron. J.,119,1480-1497. 

[15] Ward, W. R. 1989. On the rapid formation of giant planet cores. Astrophys.J.Lett,345,L99-Ll02. 

160 



[16] Ward, W. R.1993. Density Wave In The Solar Nebula: Planetesimal Velocities. ICARUS,106,214-

287. 

161 



The Evidence of a Stellar Encounter on the distribution 

Edgeworth-Kuiper Belt Object. 

Hiroshi Kobayashi, Shigeru Ida, and Hidekazu Tanaka 

Department of Earth and Planetary Sciences, 

Tokyo Institute of Technology 

hkobay as@geo.titech.ac.jp 

ABSTRACT 

We show that a stellar encounter may explain high eccentricity (e) and in-

clination (i) [rad] in the outer part (~ 40 AU) Edgeworth-Kuiper belt objects 
and considering the effect of gas drag after the stellar encounter, we may ex-

plain the observed bimodal orbits of outer Edgeworth-Kuiper belt objects, that 

is, i rv e or i>>e. We investigated the e and i of planetesimals pumped-up by 

a passing star and, then the change in e and i for nebula gas drag and Neptune 

scattering. We model a protoplanetary system as a disk of massless particles 

circularly orbiting a host star. The massless particles represent planetesimals. 

A single star as massive as the host star encounters the protoplanetary system. 

Numerical orbital simulations show that in the inner region at semimajor axis 

a ~ 0.3D where D is pericenter distance of the encounter, the disk is intact, and 

that in the outer region a 2: 0.2D, e and i are highly pumped up. If D rv 120 
AU, the pumped-up e and i in outer region (こ 40AU) are as large as e an 
i of Edgeworth-Kuiper belt objects. However, Their e is rv i. To investigate 

the effect of gas drag for a long time {the lifetime of nebula gas rv 5 x 10勺r),
we derive analytical equation of change in a, e, and i of planetesimal caused by 

the gas drag. We calculate the oribital changing of planetesimals pumped-up by 

the passing star due to gas drag, using the equations. The gas drag affects on 

only a planetesimal with high e, and then they migrate to the inner region. We 

also consider Neptune scattering of the planetsimal, so that the planetesimals 

with high e are ejected from Edgeworth-Kuiper belt. As the result, the stellar 

encounter in some parameters and the effect of gas drag can explain the observed 

bimodal orbits of Edgeworth-Kuiper belt objects. 
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1. INTRODUCTION 

J¥Ior(_'t lmll -l(）（） Slllall objects arc ol)S(）rvmliu Edg(·w() 1•tll-Kuipo· lwll l'(‘gioll.Thc ol)-

se1Ted El{B0 are 011,·er~· eccentric and indiued orbits (Fig. 1). That is t.lH'e,・icle11ce that 

Edgeworth-Kuiper belt objects (EKBO) are strongly exited. EKBO a1・<'d~·11a111ically diYid叫

into three classes: bodies locking in the 3:2 resonance with Neptune (Plutinos): bodies with 

se1ni-n1ajor axis between」2AU and 50 AU (classical disk), bodies with perihelion distance 

30-35 Aじscatteredby Neptune (scattered disk). Plutinos 111c1y be cased by the sweeping of 

the 3:2 resonance of Neptune during outward n1igrating (rvialhotra 1995). The classical belt 

do not locate in strong 1nean n1otion resonances or secure resonances. There is possibility 

that classical EKBO experienced dynan1ical excitation in past. 

S01ne theoretical n1cchanism are proposed as the excitation. petit et a.l. (1999) proposed 

that the hypothetical Earth-size planets pun1ped up eccentricity (e) and inclination (i) of 

s1nall planetesi1nals, before they are ejected by Neptune. Nagasawa & Ida (2000) suggested 

that the sweeping secular resonances during the prirnitiYe solar nebula depletion caused the 

excitations of e and i of EKBO. These n1odels can roughly explain high e and i of the classical 

EKBO. HoweYer, inclination distribution of the classical EKBO can not fit single Gaussian 

but well fit two Gaussians of widths about 0.04 and 0.3 Brown (2001). The theoretical n1odel 

neYer explain the bitnodal inclination distribution彎 becausee is pu1nped-up as highly as i 

(see Fig. 2). 

Ida et al. (2000) shows that a early stellar encounter with the pericenter distance 

D = 100-200 AU can explain high e and'i of EKBO and that the outerward 1nigration can 
capture objects after a stellar encounter. After a stellar encounter, the bodies are excited 

in outer region and ones are intact in inner region. The stellar encounter result in deciding 

the boundary radius of inner Edgeworth-Kuiper belt, that is about D /3 (Kobayashi & Ida 
2001). It is also difficult for the stellar encounter rnodel to explain the bi1nodal distribution 

of EKBO, because i is purnped-up as highly as e. However, there are 1nany encounter pa-

ran1eters and,ve search for the successive sets of pararneters. ¥Ve also consider the effects 

of Neptune and the gas drag on EKBO after the early stellar encounter. If the orbit of the 

body is across the Neptune obit, it is scattered by Neptune. As the s111all-body which is 

exited by a stellar encounter would ha.Ye liYed in Solar nebula, they are under the effect of 

gas drag. The gas drag does not affect on the bodies in outer region well, because the gas 

nebula is not so dense there. HoweYeL the bodies with high e arc 1nade to change on the 

orbits by the gas drag. because they pass the dense gas nebula at the near perihelion. Thr 

gas drag effect 111c1~·(、•hauge the distribution of c a11cl i. 

\\~e i11Yrstigat(、tll(‘({f(‘(•t oftll(3 st(‘llal• Cl l(•(}lllltcr on a planctcsinlal disk. all(l t hat tll(・‘ 

orbital changing of planけ(‘simalsllll(ln・ t lw(‘ifn•t ．ヽ of N(、ptuurscatter aud th<'gas drag in 
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EKBO region. 

2. STELLAR ENCOUNTER 

2.1. MODEL 

To study the dynamical effect of a stellar encounter on a planetesimal disk, we follow 

Kobayashi & Ida (2001). We model a planetesimal disk as non-self-gravitating, collision-less 

particles that initially have coplanar circular orbits around a primary (host) star, because 

two-body relaxation time and mean collision time of planetesimals are much longer than 

encounter time scale (Kobayashi & Ida 2001). The particulate disk encounters a hypothetical 

passing star. 

We integrated orbits of 10,000 particles with surface number density ns改 a-3/2.The 

particles are distributed in the region a= 40-80 AU. We took the scale length of encounter 

the pericenter distance D of the passing star, and the parameters for our modeling stellar 

encounter are the inclination（い） relativeto the initial planetesimal disk, eccentricity（ら），
and argument of perihelion (w*) of orbit of the passing star, and the scaled passing star mass 

(M* = M2/ Mi). The encounter geometry is illustrated in Fig. 3. We approximate e* and 

M* are the unit (Kobayashi & Ida 2001). 

2.2. RESULTS 

Figures 4 and 5 show e and i pumped-up by the stellar encounter with some sets of 

parameters as a function with a/ D, where a is semi-major axis of a planetesimal. In inner 

region (a≪ 0.2D) of the disk, the planetesimals are intact. On the other hand, e and i are 

highly pumped-up and have steep radius gradient in outer region. The distributions of e 

and i pumped-up by the stellar encounters strongly depend on the encounter parameters in 

outer region. 

We choose 1,000 bodies in the initial disk from 40 AU to 80 AU to decide D. We 

investigate the planetesimals whose semi-major axis a are distribute from 40 AU to 50 AU, 

that is, Edgeworth-Kuiper belt region. Fig. 6 and 7 shows i of these planetesimals as a 

function of e of themselves, in the case with D = 120 AU and 140 AU. In the case of some 

sets of parameters, e and i are pumped-up enough highly. In the case of D = 140 AU, 

し＝ 60°,and叫＝90°,the distribution of e and i is the best fit to one of EKBO. However, 

some planetesimal's e（:≫ 0.1) is as large as i. In section 4, we investigate the effects after a 
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stellar encounter. 

3. GAS DRAG EFFECT 

We investigate the orbital evolution of planetesimals exited by a stellar encounter due 

to gas drag. Adachi et al. (1976) derive the mean variation of a, e, and i for gas drag, in the 

case that e and i are much smaller than unity. However, e and i pumped-up by the stellar 

encounter is邸 largeas unity. We newly derive the mean variation of a, e, and i, in the case 

with e r,.J l and i ≪ h/ a, or with i ~ h/ a, where h is the scale height of gas nebula. 

3.1. NEBULA DISK AND GAS DRAG LAW 

We consider a gaseous nebula disk rotating around a central star with mass M We 

assume that the nebula disk is axisymmetric and in a steady state. To describe the disk, we 

use a cylindrical coordinate system (r, 0, z). The z axis is coincide with the rotation axis of 

the disk. Then, due to the above assumption, the gas velocity has only the 0-component: 

{O, rilgas, 0), where Ogas is the angular velocity of the gas. The angular velocity Ogas and the 

density distribution of the nebular disk is described by Euler's equation 

l_ _ / GM  
(vgas ・▽)Vgas =ード▽p―▽(-好□二う） (1) 

where G is the gravitational constant and p, p and Vg邸 arethe density, the pressure, and the 

velocity of gas, respectively. We further assume the disk is geometrically thin and isothermal, 

that is, p = c2 p, where c is the isothermal sound speed. Using these assumptions and the 

z-component of Eq. (1), we obtain the z dependence of pas 

p= ふ exp(—贔）， (2) 

where u(= f ~00 pdz) is the surface density of the nebula disk; h is the scale height of the disk 

given by h = c/nK; and nK = (GM/r3)112 is Keplerian angular velocity. For the simplicity, 

u ex: r-0, c ex: r丸 respectively.care assumed as In the minimum-mass solar nebula model 
proposed by Hayashi et al. (1985), for example, the surface density and the sound velocity 

is given by 

{ 6= 1.7 x 103（和）―＿13/142[g/cm3l,
C = 9.9 X 104(双U)-.,q[cm/ s]. 

{3) 
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The angular velocity ngas is obtained from the r-component of Eq. {1) as {Tanaka et al. 

2002) 

!1gas = !1K [1 +(a+ 2/J）芦＋心]1/2' (4) 

In the derivation of Eq. (4), we neglected the term of O(z4が） andthe higher. This 
approximation is valid even for the investigation of the gas drag effect on highly inclined 

orbits because we do not have to consider the gas drag (and the nebula gas) at a high 

altitude such as z rv h. 

We consider the planetesimals of which size is larger than 1 km. For such large body, 

the gas drag force is described by Newton's law. Thus, the gas drag force per unit mass can 

be written as {Adachi et al. 1976) 

~ = Ap I u I uゎ (5) 

with A=  C研 d2/2m, where dis the radius of particle, and C0 is the non-dimensional drag 
coefficient of which value is 0.5 ~ C0 ~ 1.5. The relative velocity between the body and 

the gas, u, is given by u = v -Vgas, where v is the velocity of the body. Hence, using Eqs. 

(10), (4), and (5), we can evaluate the drag force on the body by the nebula disk. The ratio 

of this gas drag force and gravity force of central star is 4.4 x 10-4. The gas drag force is 

much smaller than the gravity force, and the time scale of change in orbital elements caused 

by gas drag force is much longer than Kepler time. Adachi et al. (1976) estimated this time 

scale for body with mass m and density Pmat as 

To＝心＝詈（贔）1/3国）―l-a(3:ご-3)2/3(1心°m-3)―lT応 (6) 
where TK is Kepler time of the body. In outer region, tau。ismuch larger. 

3.2. GENERAL EXPRESSIONS FOR THE CHANGE IN a, e AND i 

We examine the time variations of semi-major axis a, eccentricity e, and inclination i 

for a body due to the gas drag force. Such time variations are described by using Gauss's 

equations: 
da 2 / _ ae -＝ -（凡ーsinf+ F. a217 
dt na 

¢― 
n 

de 11 

R)， 
~=~[FR sin J + Fq,(cos f + cos E)], 
dt na 

(7) 

di 1 _ R 
-＝ -F(-cos(f +w)， 
dt na17 -., a 
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where f, n, and w are the true anomaly, the mean motion, and the argument of pericen-

ter,respectively and R-, ¢-and (-directions are the cylindrical coordinate system on the basis 
of the orbital plane of the particle. We express the gas velocity in this coordinate, 

Vgas,R = 0, 
cosz 

Vgas,tj, = rngas (r, Z)―’ 
w 

cos(/+ w) sin i 
Vgas,{ = -rngas(r, z) 

w '  

where w = [1 -sin2(/ + w) sin2 i]1/2 = r / R. 

Using Eq. (5) and gas and particle velocity, we can rewrite Eqs. (7), 

da.  2a 

dt 
:i; = -Apu~ [1 + 2ecos/ + e2 -(1 + ecos/)312"'cosi], 

n 2 

de ~ = -Apu [2cosf + 2e -2 cos / + e + e cos2 f ~ = -Apu [2cosf + 2e -~~cosi], 

di cos2(f + w) ．． 
-＝ -Apu 1/2 "'s1n i dt 利1+ e cos/) 

where p, "', and u are given by 

p(r,z) 

氏

u 

Po(a)(~) —aexp (-a叩 sin2(W+ f) sin% 
1 + ecosf 2炉(1+ ecosf)2), 

Ogas 
0Kw3/2' 

I u I 

(8) 

(9) 

(10) 

(11) 

収 (a)-― 1 + 2ecosf + e2 -2(1 + ecosf)312K,cosi + (1 + ecosf)ふ炉］1/2.(12) 
n 
［ 

Since the gas drag force being much smaller than gravity force of the central star for the 

body, as before, we can assume that a, e, i and w is constant in one orbital period. Thus, in 

the R. H. Ss. of Eqs. (9) -(12), only the true anomaly J is dependent on t. We consider the 
changes in a, e and i averaged over one orbital period. The averaged changes are defined as 

信〉＝ i1TK翌dt＝土［7T皇(1+ en:osf)2df. (13) 

We also treat with e and i, using same averaging. 

Adachi et al. (1976) derive the averaged changes in a, e and i, in the case that e and i 

are much smaller than 1. they consider that nK = Ogas(l -'f/d/2)112 and that'f/d is depend 
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on a. They derive the change in a, e, and i in the case that e, i, and T/d is much smaller than 

the unity. Inaba et al. (2000) modified their results in the form 

T
o
-
a
r
o
-
e
r
o
-
i
 

= -2((0.97e)2 + (0.64i)2 + 77~]1/2閲

[(0.77e)2 + (0.64i)2 + (1.5 

1 = -~((0.77e)2 + (0.85i)2 + 77~]1!2, 
2 

(14) 

where 

To＝詈（土） 1／3国）ll/4(3:ご-a)2/3TK.
Equations (14) are valid for small e and i. If i is large enough, the body goes at 

altitude where the gas density is extremely low. They do not consider such the effects. 

consider them, and attack the problem. As the result, we derive the changes, in the case 

that e is large or i is large. 

a high 

We 

3.3. CASE OF LARGE ECCENTRICITY AND SMALL INCLINATION 

Here we consider the case that e is almost equal to the unity and i is much smaller than 

the unity. Expanding Eqs. (9) with respect to {1ー e2),and keeping only the lowest order 

terms of (1 -e2), we can rewrite Eqs. (9) as 
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da-dtde-dtdi-dt 

(15) 

where 

{ O(f) ＝ （1+ cosf)a+3/2(2 -ご可）✓3 -2三，
叩）＝ （1 + cosf)0 cos2(J + w). 

(16) 

In Eqs. (15), we neglected the terms of O(i2) and the higher. The changes in a, e, and i 

caused by the large e are much larger than the velocity difference between the nebula gas 

and the plane body, we can consider that v gas is equal to VK. To take the orbital average on 
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Eqs. (15), we only have to integrate<I>(/) and w(f) over the orbital period. That is, 

〈誓〉＝ ~(1-e2)―a↓, 
〈怠〉＝こ(1-e2)-a+1屯， (17) 

信〉＝叶(1-e2)-o+l(<1>1ふ sin知）．
TT。

Through numerical integration of Eq. (16)，屯 and<I> are obtained as functions of a. In the 

minimum-mass solar nebular model, a is 11/4 and, then 2 ¥JI = 4.94 and <I> = 1. 75+0.98 sin~ w. 

Figures 8 show the change in a, e, and i, as the function of e/(1 -e2), in the case of 

i = 0.01. The full circles, the <lush line, and the short <lush line show the result of the 
numerical orbital integration, Eqs. (17), and Eqs. (14) (Adachi et al. 1976), respectively. 

when e/(1-e2) is small, that is, e ≪: 1, Eqs. 14 (Adachi et al. 1976) are consistent with the 
numerical result. In the case that e is large, that is, 1 -e2 ≪: 1: large 1/(1 -e2), Eqs. 14 
(Adachi et al. 1976) are consistent with the numerical result. We can derive the changes in 

a, e, and i, in the case that e is large. 

3.4. CASE OF LARGE INCLINATION 

Next, we consider highly inclined such that sin i is much larger than h/a. Bodies with 

such a large inclination penetrate the nebula disk twice (pear the ascending and the descend-

ing nodes) in an orbital period. Then we only have to examine the gas drag effect at the 

penetrations. First, We consider the penetration near the ascending node (/ ~ w). Since, in 

highly inclined orbit, the duration of a penetration is much shorter than the orbital period, 

the only density p changes during a penetration in the R. H. Ss. of Eqs. (9). Thus we put 

f = -w in others factors of Eqs. (9) for penetrations near the ascending node and expand 
p with/+ w. As a result, we have 

da 2a --―G(w) exp (-討 (f+w)蛉in2i dt = T。が 2炉(1+ ecosf)2), 

~ = -~H(w) exp (可（f＋w)％in% 盃＝―玩H(w)exp(-;炉(l+ecosf)2), (18) 

di sini Tl,  _____ (a2が(J+w)蛉in2i 
盃＝一戸I(w)exp(-;炉(1+ecosf)2)， 
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where 

G(w)=『％［1+ 2ecosw+社-（1 + e cos w)312 cos i], 

H(w)＝r-<>u [2(e+cosw)-(cosw+ ~二） cosi工二］， （19) 

l(w) =,p-a+l瓜／1＋ecosw, 

and 

{ f=1+n2cosw' 

u = J2 + 3ecosw + e2 -2(1 + ecosw)312cosi. 
(20) 

In the above we also assumed that Vgas = VK since the relative velocity is large in this case, 

too. Since only the exponential functions includes f in Eqs. (18), we can take the time 
integration them. If we put w = -w -1r in (18), we have the changes during penetration 

near the descending node. Considering the changes during two penetration, we can derive 

the averaged change as: 

信〉＝一£[ ⑬h。[f(wyr+1c(w）十f(w+ ir)'Y+1c(w + ir)], 
To 7fan sini 

信〉＝ー上"h。2・ ．［f(w)7+1 H(w)十f(w+ ir)'Y+1 H(w + ir)], (21) 
To 27fan Slnt 

信〉＝一上 h。[f(w)7+1 J(w) + f(w＋叩I(w+ ir)], 
To亭 an4

When e<<1, we can rewrite Eq. (25) as 

に＝＿這o(1-cosi)3/2 
dt〉占sini'
信〉＝― v'2h畠。＿~ [(2 -cosi) + 2 (a -'Y -D (1 -cosi) cosい］ e,
に〉＝―v'2ho(1-cosi)1/2 
dt/ J示Toa ・ 

(22) 

We also compare the numerical result with the anaretical equations, in this case. Figures 

9 are the changes in a, e, and i, as a function of the initial i, in the case of the initial e = O.Ol 

and hO(a)/a = 4.7x 10-2. When i is large, Eqs.(2―) 5) are consistent with the numerical results. 

Figures 10 are the same as Figs.9 except for the initial e = 0.9. This figures show Eqs.(25) 

are also consistent for the large i in the case that the initial e is large. 
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i = 0.01. The full circle plots, the <lush lines, and the short <lush lines show the numerical 
result, Eqs. (17), and Eqs. (14), respectively. 
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3.5. NEW EQUATION 

We derive the analytical equations for the variation of orbit in two cases, and we connect 

these equations to derive new equations. To derive the equation of the changes in any e and 

i, we modify Eqs. (14), (17), and (25) by the following ways. 

釘＝―疇e [(0.97:〗 +(0.6研＋ n2]1/2:
釘＝―元[(o.11Q) 2 + (0.64i)2 + (1.5q)2].,,, 
i 2 1/2 

り＝―玩[(o.11Q) 2 + (o.s研＋n2] ，

(23) 

a, e 
a2＝石（口）喝
1 e 約＝一（一 o-1屯
27rT。1-e2 ),  {24) 

t e 
z2 =―(--）a-l(―- 2 

2m—。 1 -e2 
屯＋動sin:tw). 

a./'ih。
知＝一ー [f(w)'Y+1G(w) + f(w + 1r)'Y＋1G(w + 1r)], 
ToJテaがsini 
l h。

匂＝一ー [r(w)'Y+l H (w) + r(w + 7r）叶1H(w + 1r)], 
To亭 a112sin i 

(25) 

l h。
和＝一ー [f(w)-Y+I J(w)十f(w+ 1r)'Y+l J(w + 1r)], 
T。高an4

Using these expression, we can write in the case with i<<a/h, 

信〉＝ ✓（研＋（a2)2 {26) 

信〉＝如）日（切）2 {27) 

〈塁〉＝ ✓（研＋（ら）2 (28) 

In the case with any e, The orbital change for small and large limit of i can be expressed by 

Eqs. (25) and (28). We can write the variation in the case with e ≪: 1, 

信〉＝ ✓（研＋（崎 {29) 
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信〉―

信〉

ー
(30) 

ー
{31) 

and in the case with e,....._, 1, 

信〉

信〉

信〉＝

ー
(32) 

ー
(33) 

ー
(34) 

We confirm the validity of the new equations numerically. Figures 8, 9, and 10 show that 

Equations are compared with the numerical results. 

4. AFTER THE STELLAR ENCOUNTER 

4.1. Neptune scattering 

If the perihelion distance [= a(l -e)] of the planetesimal is smaller than 30 AU that is 
the semi-major axis of present Neptune, the planetesimal may be ejected by Neptune. The 

stellar encounter pump up e of the planetesimals, some plantesimals with a > 40 AU are 
ejected. 

Figures 11 and 12 show the planetesimals'orbit after the stellar encounter with D = 120 
AU which is removed one's perihelion distance is smaller than 30 AU. If i* is small (in the 

case of 30°, 60°), e is highly pumped-up. Many bodies are ejected. On the other hand, 

high inclination (i*) encounter result in small i and they are not ejected. After ejecting 

the planetesimals with perihelion distance < 30 AU, We plot i of the plantesimals with a 

between 40 AU to 50 AU as a function withe of themselves. In the case withし＝ 60° and 
w* = 90°, It similar to EKBO distribution (there are the planetesimals whose i are higher 
than their e). 
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Fig. 11.— i of the planetsimals with a between 40 AU and 50 AU and perihelion (a(l -e)) 
> 30 AU as a function of e, after a stellar encounter with D = 120 AU. We select 1000 
bodies with initial a between 40 AU to 80 AU. 
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4.2. gas drag effect 

We calculate the change in a, e, and i due to the gas drag, using Eqs. 31, 34, 28, 

and 25 and the data table of the variation for no limit equation. The variation of a due to 

gas drag is larger than that of e and i, in the case with high e, because the effect of gas 

drag tend to changes a of the body with high e to its perihelion distance. The gas drag 

affect on the planetesimals with near perihelion distance. We investigate the effect of gas 

drag, assuming nebula gas density to decay as exp(t/tdecay). Figures 13 and 14 show e and 

i of the planetesimals under the gas drag setting parameters as tdecay = 5 x 107 years and 

r = 5 x 106(m/1022g)113, as a function of thief a. The gas drag effect is not only that the 

planetesimals with high e and any i fall into inner region, but also that some planetesimal's 

e are dumped and i remain high. As the result, the bimodal distribution of EKBO can be 

explained by the stellar encounter with D rv 120 AU, i* rv 60°, and w* rv 90° (see Fig. 15). 

5. CONCLUSION 

We investigate the effects of a stellar encounter on a planetesimal disk and the evidence 

of the stellar encounter on the distribution of Edgeworth-Kuiper belt objects (EKBO). The 

classical EKBO are so exited that there are some perturbations in past. The distribution 

of inclination (i) of the classical EKBO are statically two peak in 0.05 and 0.3: The group 

with large i have the feature of i ≫ e, and the other i rv e. 

We considered that a disk of massless particles (planetesimals) orbiting a primary star 

encounters a passing single star. Encounter parameters are pericenter distance of the en-

counter (D), the argument of perihelion (w*), eccentricity (e*) and inclination (i*) of the 

orbit of the passing star, and the mass ratio (M*) of the passing star's mass to the primary 

one. We show that a stellar encounter can pump up e and i of EKBO. However, in the case 

of most successive sets of encounter parameters, most of e of EKBO are as large as i. 

We consider that a stellar encounter occur in early time of planet formation. We also 

investigate the effect of the gas drag and Neptune scattering, after the stellar encounter. 

These affect on the bodies with small perihelion distance well, resulting in the bodies falling 

into inner region or scattering. As the perihelion distance is= a(l -e), the only bodies with 

high e are ejected from Edgeworth-Kuiper belt region, and the ones with high i remain if 

they have small e. As the result, We can show that the stellar encounter with some sets of 

parameters can explain EKBO's bimodal distribution: i ≫ e and i rv e. 
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Fig. 15.— The effect of gas drag. i of the planetsimals with a between 40 AU and 50 AU 
as a function of e, after a stellar encounter with D = 120 AU. We select 1000 bodies with 
initial a between 40 AU to 80 AU. 
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1. Introduction 

The most favored hypothesis of the origin of the lvioon is giant impact hypothesis. 
It is considered that a Mars-sized protoplanet had collided with the proto-Earth and the 
Moon is formed from a debris disk, which is splashed by the impact. Using N-body 

method, it was shown that a single lvioon would be fonned from a massive debris disk, 
which is initially confined within the Roche limit (Ida et al. 1997). The Moon accretion 

process is as follows. As rando1n velocity of disk particles damps, they begin to form 
aggregates. Within the Roche lilnit, tidal effect shears them apart, and spiral pattern 

develops in the disk. The pattern enhances radial spreading of the disk. Beyond the 
Roche limit, tips of spiral arms form lunar seeds, and they collides each other and grow. 
A seed nearest to the Roche limit grows preferentially by the disk particles diffused out. 
Eventually, other satellite seeds collide to the largest one or are scattered to the Roche 
limit, and a single lvioon remains. The Moon scatters the disk particles to the Earth. 

In this work, we performed N-body simulations of the evolution of debris disks of 

various mass. We found that a single satellite would be formed only from such a massive 
disk as the protolunar disk, while multiple satellites would be formed from a less massive 

disk. In a less massive disk, the satellite forms a gap between the disk and itself. Satellite 
mass is regulated by the gap formation condition. We found that as the initial disk mass 
decreases, the satellite mass decreases more rapidly. If the initial disk is less massive, disk-
satellite interaction pushes the formed satellite outward rather than the satellite scatters 
the disk to the central planet. In this case, next satellite is formed near the Roche 
limit again. We performed N-body simulations of two-satellite formation cases and semi-

analytically derived the condition for the multiple satellite formation. We extrapolate 
our result to a much less massive disk, and found that multiple satellite system, which is 

similar to the satellites of outer planets of solar system, may be formed from such a disk. 

2. Numerical Method 

We numerically integrate the orbits of disk particles using Hermite integrator of 
second-order. Being near the Roche limit, physical radius of particles are comparable to 
函 particles'gravitationalradius. Since particles do not approach closely, second-order 
integrator is enough. 

Outside the Roche limit, particles form aggregates. We performed two sets of simu-
lations, adopting different models to express aggregates. In set A, we adopted a rubble 
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pile model to express the aggregates. When we detect an overlapping of particles, we 

change the velocity of particles according to restitution coefficient, and simply pushed 

apart the particles up to the sum of particles'radius. We had found that the simulation 

result does not depend on restitution coefficient much. We adopted normal restitution 

coefficient as 0.1. In set A, we performed simulations with various initial disk mass, from 

0.01 to 0.046狐 whereMc is mass of central planet, and follows the evolution of the 
disk until a satellite forms a gap and its growth stops. 

After a satellite is formed, it slowly migrates outward. However, rubble pile model 

takes larger computer power, and it is not good for following longer time evolution. Thus. 

we perform another set of simulations including artificial accretion process. In set B, we 

initially put a satellite seed outside the Roche limit, which is smaller than the expected 

final satellite mass. When we detect a collision between disk particle and satellite seed, 

we artificially merge them. In set B, a satellite is expressed by one large particle. In this 

way, we follow orbital evolution of the first formed satellite for longer time, until the first 

satellite is pushed away enough and the next satellite is formed. 

3. Results 

We show typical evolution of the disk. Figures 1 are face-on snapshots of a run of set 

A with initial disk mass 0.046. Left panel shows snapshot at t = 8, where the unit of time 
is Kepler time at Roche limit radius (~ 2.9 planet radius). Spiral arms develop in the 
disk, and several satellite seeds are formed beyond the Roche limit. Right panel shows 

snapshot at t = 36. Satellite seeds collide each other and form a single large satellite 
eventually. 
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Figures 1 

We show the typical evolution of less massive disk. The left panel of Figures 2 is a 

snapshot at t = 20 of a run with initial disk mass 0.017 Mc. In a case that an initial disk 
is less massive, scale of spiral structure is small, and time scale of viscous spreading of the 

disk is much longer. Right panel shows a snapshot at t = 106. The mass flow from the 
disk to the satellite is nearly stopped by this time. The largest satellite seed is formed 

just outside Roche limit. Though several satellite seeds still remain, the second largest 

aggregate has only 20% mass of the largest one. They would collide to the largest one or 
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be scattered to the central planet eventually. 

．
 

゜ `>
Figures 2 

We show the growth rate of the largest satellite seed in Figures 3 (left panel). Initially, 

the satellite grows rapidly. When a gap is formed between the disk and the satellite, mass 

supply from the disk stops and the growth rate of the satellite becomes much smaller. 

Slow growth of satellite at this stage mostly comes from particles or small satellite seeds 

scattered beyond the Roche limit at the early stage of disk evolution. vVe continued the 

simulation 2 Tstop at least) where.tst?p is the time at which rapid growth of the satellite 

stops. By that time, a clear gap is formed between the satellite and the disk and mass 
flow from the disk to the satellite almost stops. In the right panel, we show the mass of 

satellite and disk at the end of simulations of set A. Horizontal axis Mgisk is initial disk 

mass. Filled circles are mass of the largest aggregate, and triangles are all mass outside 

the gap, including the mass of the satellite. The particles outside the gap would collide 

to the satellite or be scattered eventually. Final satellite mass would be between a filled 

circle and a triangle. Sometimes, the second largest satellite seed with a considerable 

mass remains in a horse shoe orbit of the largest one. Crossed points represent a disk 

mass inside the gap at the same time. As the initial disk mass decreases, satellite mass 

decreases more rapidly, and mass ratio between the remaining disk and the satellite 

increases. 
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This tendency comes from that the angular momentum transfer rate within a debris 

disk is proportional to塁 whereE is surface density (Takeda and Ida 2001, daisaka et al. 
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2001). while the disk-satellite interaction is proportional to surface density and satellite 

mass (e.g. Goldreich and加 maine1979). Thus, the satellite mass required to form a 

gap is ex豆 sothat disk-satellite mass ratio increases with decreasing disk mass. 

Since angular momentum is transferred from the disk to the satellite, the satellite 

migrates outward, while the disk mass diminishes as the disk particles fall to the planet 

in compensation. If disk mass remains enough, a second satellite formation would occur. 

Since disk-satellite mass ratio increases with decreasing disk mass, second satellite for-

mation would occur in a less massive disk. However, it takes larger cpu time to simulate 

all the way of the satellite migration adopting rubble pile model. Thus, we introducr 

another model (set B). In this model, we introduce merger of the satellite seed and disk 

particles, so that a satellite is represented by one large particle, and its orbital evolution 
is much easier. We should put the seed near the Roche limit. However, if we put it too 

close to the Roche radius, it enters the Roche limit. So we put it at about l.2RR initially. 

We have confirmed that the mass of the satellite formed in runs of set B are consist with 

that of set A, as long as the initial location of satellite seed is well chosen. 

We see the snapshots of a run of set B with initial disk mass 0.017. Initially, the 

satellite seed grows as the disk radially spreads. As the satellite mass increases, it begins 

to form a gap between itself and the disk. The left side panel of Figures 4 shows a 

snapshot at t = 50. After that, the satdlitc migrates outward by the disk-satellite 
interaction. When the satellite migrates enough, a second satellite begins to form outside 

the Roche limit. 

Figures 4 

We found that a satellite pair formed in this way tends to be in 2:1 resonance. This 

is because the first formed satellite widens the gap up to 2:1 resonance, and the second 

satellite is formed at the edge of the gap. After the satellite pair is formed. both satellites 

migrate outward keeping the resonant state. 

If initial disk mass is much smaller, this process would continue until the disk mass 

is exhausted. Extrapolating our results to a much less massive disk, we found that a disk 

with ~ 0.003Mc may form 4 to 5 satellites of mass with 0.001 to 0.000lMc. This satellite 
system resembles satellite systems of outer planets of the solar system. As a future work, 

we will investigate the evolution of further less massive disks. Also, the stability of the 

multiple satellite system formed in this way must be investigated, including the effect of 

tide from the central planet. 
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Abstract 

We investigated the orbital instability of a protoplanet system, in which five protoplanets whose mass is Mp are 
distributed with an equal separation distance,△a。． Inthis paper, the cases where Mp is 10-9 M。andwhere Mp 
is 10-5 M0 were studied and, combining our results with the works on the cases where Mp is 10ゴM。,whichwere 
already done in the past, we confirmed that the following properties of an orbital instability are valid, regardless of 
M p• 

{l) The logarithm of the orbital instability time,'.I1nst, of a system without a gas disk increases in proportion to 
△iio. 

(2) In the presence of the nebular gas, the instability time of a system becomes extremely large compared with 
'.I1nst by the effect of the drag force due to the nebular gas and the system substantially doesn't experience an 
orbital instability, when△a。islarger than a critical separation distance,（△iio)crit ・ 
{3) The value of（△励）critbecomes large with a decrease in the surface density of the nebular gas. 

Furthermore, we obtained a semi-analytical expression for（△iio)crit, partly using our simulation results. Finally, 
we applied our results to the orbital stability of a protoplanet system in the Jovian planet region (a = 5AU, 
Mp = 10-5 M0). In the presence of the minimum mass solar nebula,（△ao) crit is estimated to be 4.3, which is 
smaller than a typical separation distance of a realistic protoplanet system (!::: 10). Thus, in the presence of the 
minimum mass solar nebula, the orbital instability of a protoplanet system never occurs in the Jovian planet region. 

1 Introduction 

In the standard scenario of planetary formation, ter-
restrial planets and solid cores of Jovian planets are 
formed through accretion of planetesimals whose initial 
sizes are 10 -100km. (Safronov 1972, Greenberg et al. 
1978, Hayashi et al. 1985). The process of planetary for-
mation from planetesimals is divided into plural stages. 
In the beginning of planetesimal growth, planetesimals 
grow uniformly via mutual collisions (orderly growth). 
As planetesimals become massive, mutual gravity be-
tween planetesimals becomes effective and have an im-
portant role on the growth mode of planetesimals. Cou-
pling effect of dynamical friction caused by mutual grav-
ity (i.e., energy equipartition) and gravitational focusing 
(i.e., increase in the collisional cross section) leads to the 
preferential growth of relatively massive planetesimals. 
This growth mode is called "runaway growth" (Wether-
ill and Stewart 1989, Kokubo and Ida 1996). 
Next, a small number of massive planetesimals (i.e., 
protoplanets) formed in the runaway growth stage begin 
to pump up the random velocities (i.e., orbital eccentric-
ities and inclinations) of surrounding planetesimals, and, 
as a result, reduce the speed of their own growth. This 
feedback effect regulates the masses of protoplanets to 
be nearly equal with each other. This growth mode is 
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called "oligarchic growth" (Kokubo and Ida 1998). The 
final mass of a protoplanet, Mp, which would be formed 
through oligarchic growth, are dependent on the radial 
distance from the sun. In the terrestrial planet region 
(aく2.7AU),

2 

炉 0.1（幻（曲）3馬，（1)
and, in the Jovian planet region (a> 2.7 AU), 

Mp ce 2.8（詞）｝（品）3馬，（2)
where a is the semi-major axis of a protoplanet and ud 
and u: are the initial surface density of solid materials 
and that in the minimum mass solar nebula, respectively 
(Kokubo and Ida 2000). In the above, MEB represents the 
Earth mass. Here, note that the mass of a protoplanet 
in the Jovian planet region attains to about 10 times 
as large as that in the terrestrial planet region. These 
protoplanets are displaced with nearly equal separation 
distance(~ 10), when the separation distances are scaled 
by the Hill radius. The Hill radius, rtt, is defined as 
follows: 

m = （既）｝（三a2゚）， (3) 



where M,。isthe solar mass and a10 and a20 are the semi-
major axes of two adjacent protoplanets, respectively. 
The random velocities of protoplanets (i.e., eccentricities 
and inclinations) are very small just after the formation, 
since the protoplanets are formed, suffering from dynam-
ical friction with the surrounding planetesimals. In other 
words, the protoplanets become isolated. 
In the terrestrial planet region, after the oligarchic 
growth, the isolated protoplanets increase their orbital 
eccentricities owing to mutual gravity and experience or-
bital crossings (i.e., orbital instability) (Chambers et al. 
1996, Yoshinaga et al. 1999, Ito and Tanikawa 1999, 
2001). Orbital crossings cause protoplanets to collide 
with each other and start to grow to the present planets 
again. Recent works on the formation process of terres-
trial planets from protoplanets imply that, in order to 
form terrestrial planets with small eccentricities such as 
present Earth and Venus, the nebular gas is needed even 
after the formation of planets (Chambers and Wetherill 
1998, Kominami and Ida 2001). However, in the pres-
ence of the nebular disk, a protoplanet system is ex-
pected to be prevented from undergoing an orbital insta-
bility, since the nebular gas has an effect of suppressing 
eccentricities of protoplanets through gravitational and 
hydrodynamical interaction (Adachi et al. 1976, Ward 
1988, Artymowicz 1993). Thus, it is important to inves-
tigate the orbital stability of a protoplanet system in the 
nebular disk in detail. 
Orbital behaviors of a protoplanet system without 
the gas disk were already studied by Chambers et al. 
(1996). They considered a system composed of 5 to 20 
protoplanets with mass of 10-7 M0 (about one third of 
Martian mass). Initial orbits of protoplanets are dis-
tributed with equal orbital separation in circular and 
coplanar orbits. Through long term orbital calculations, 
they discovered that the orbital instability time of a pro-
toplanet system becomes large exponentially with an in-
crease in the separation distance of protoplanets. Fur-
thermore, Iwasaki et al. (2001,2002) investigated the or-
bital instability of a protoplanet system set up by Cham-
bers et al., including the drag forces caused by the hy-
drodynamical interaction (i.e., gas-drag force) and the 
tidal interaction (i.e., gravitational interaction) with the 
nebular gas. According to their results, regardless of the 
kind of the interactions, the onset of an orbital instability 
is suppressed by the drag force, when the separation dis-
tance is larger than a critical separation distance. They 
also showed that a critical separation distance increases 
as the surface density of the gas disk decreases, i.e., the 
gas disk dissipates. Especially, Iwasaki et al. (2002) elu-
cidated that the surface density of the gas disk must de-
crease to about 0.1 % of that of the minimum mass solar 
nebula for the onset of an orbital instability of a proto-
planet system with a typical separation distance (~ 10 
Hill radius), when the gravitational interaction with the 
gas disk is taken into account. 
On the other hand, in the Jovian planet region, pro-
toplanets begin to capture the surrounding nebular gas 
gravitationally and become gaseous giant planets such 
as Jupiter and Saturn (Mizuno 1980, Bodenheimer and 
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Pollack 1986, Ikoma et al. 2000). The formation time of 
these gaseous planets depends strongly on a solid core 
mass (i.e., a protoplanet's mass). Especially, Ikoma et 
al. {2000) pointed out that, in order to form massive 
gaseous envelopes of the present Jovian planets (~ 100 
to 1000 M,叫aroundprotoplanets within the nebular life 
time (~ 107-s year), a protoplanet's mass which would 
be formed through oligarchic growth must exceed a crit-
ical mass (~ 5 to 10 M,叫． However,from equation (2), 
we find that a typical mass of a protoplanet formed in 
the Jovian planet region when(Jd=(J: is smaller than 
the above-mentioned critical mass. This means that a 
protoplanet formed in the minimum mass solar nebula 
can not become the present gaseous giant planets alone. 
There are two possible ways to resolve this difficulty 
in the formation of Jovian planets. One is to enhance 
initial surface density of solid materials, <Jd, from that 
of the minimum mass solar nebula,(J:. The other is 
to consider the collision and accretion between proto-
planets. Here, we must again discuss about the orbital 
stability of a protoplanet system in the nebula gas, if we 
think about the latter possibility (i.e., collisional process 
between protoplanets). However, the above-mentioned 
works on the orbital stability of a protoplanet system 
in the terrestrial planet region (Chambers et al. 1996, 
Iwasaki et al. 2001,2002) cannot be applied straightly 
to this case. This is because their works are limited to 
the case where the masses of protoplanets are 10ゴM。
which is about 0.03MEB. 
In this study, we investigated the orbital stability of 
a protoplanet system in the nebula gas through orbital 
calculations, changing the masses of protoplanets exten-
sively. The tidal (gravitational) interaction between a 
protoplanet and the nebular gas is taken into account 
as a drag force proportional to the random velocity of a 
protoplanet (Iwasaki et al. 2002). A protoplanet system 
is set up in the same way in Chambers et al. {1996), i.e., 
protoplanets with same mass are distributed with equal 
orbital separation and their initial orbital eccentricities 
and inclinations are set to be zero. 

2 Model of Orbital Calculations 

We investigated the orbital behaviors of n protoplan-
ets (in this study, n = 5) revolving around the central 
star in the nebular gas through numerical calculations. 
The forces acting on a protoplanet in our numerical sim-
ulations are the gravitational force from the central star, 
the mutual gravity between protoplanets, and, the tidal 
(gravitational) interaction with the nebular gas. The 
tidal interaction between a protoplanet and the nebu-
lar gas is included as a drag force proportional to the 
random velocity, u, of a protoplanet. Here, the random 
velocity, u, represents a velocity of a protoplanet in co-
ordinates rotating with a Keplerian circular velocity in 
the semi-major axis of the protoplanet, VK, i.e., 

U = Vp - VK, (4) 

where Vp is a velocity of the protoplanet in an inertial 
space. Thus, the drag force caused by the gas disk, Fgrav 



is expressed by 

F 
1 

grav =--u, 
Tl) 

(5) 

where 7b is a numerical constant. 
The value of 7b is obtained by calculating the tidal 
torque, which is acting on the density waves excited in 
the nebular gas (Ward 1988, Artymowicz 1993), and it's 
explicit form is (Artymowicz 1993) 

7b = 8x10•(~ )—1 （ミ 4x 
(1.7x 1;：gcm-2)―1 (示)）}TK, 

(6) 

where ug and Cs represent a gas surface density at lAU 
and a sound velocity at the semi-major axis considered, 
respectively. Furthermore,咋 denotesa Keplerian pe-
riod. In the above,_ we assume that the gas surface den-

2 sity decrease邸 a-2with a increase in a. Here, we must 
mind that ro depends not only on the physical quanti-
ties of the gas disk (i.e.，Cs and u g) but also on the mass 
of a protoplanet, Mp. Generally, the eccentricity of a 
body suffering from the drag force obeying equation (5) 
is depressed. The time variation of the eccentricity, e, of 
the body in that case is given by (Adachi et al. 1976) 

1 de 1 

e dt 7b 
＝ (7) 

From the above equation, we understand that TD is a 
characteristic damping time of the eccentricity by the 
drag force. 
In order to study the orbital evolution of five proto-
planets under the drag force obeying equation (5), we 
performed orbital calculations for various initial con-
ditions. However, the initial setting of a protoplanet 
system is the same as that adopted in Chambers et al. 
(1996) and Iwasaki et al. (2001,2002), i.e., 

(a) The masses of five protoplanets are equal in each 
simulation. 

(b) The five protoplanets are placed with equal sepa— 

ration distance scaled by the Hill radius (see equa— 

tion (3)），△a0, from the same semi-major axis, i.e., 
lAU. 

(c) The orbital eccentricities and inclinations are set 
to be zero. 

(d) The position angles of protoplanets are selected at 
random, under the constraint that the angle be-
tween two adjacent protoplanets is set to be larger 
than 20 degree. 

(e) The value of TD (i.e., the intensity of the drag force) 
is not changed with time through each simulation. 

We investigated the cases where Mp is 10-9 M。and
where Mp is 10-5 M。,inorder to see how the property 
of an orbital stability changes with respect to the masses 
of protoplanets (the cases where Mp is 10-7狛 wereal-
ready studied by Chambers et al. (1996) and Iwasaki et 
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al. (2001,2002)). For each Mp, the following four cases 
with different町） areconsidered: 

7b = 1.0 x 103, 3.0 x 103, 9.0 x 103, and 2.7 x 104 TK. 

(8) 
We also calculated the cases with different separation 
distance,△ii0 for each Mp and 7lJ. Thus, the separation 
distance,△両， ischanged by a step of 0.2 from 3.6 to 
8.8, i.e., 

△a。=3.6,3.8, 4.0, • • •, 8.6, and 8.8. (9) 
Furthermore, for each separation distance,△iio, ten cases 
with different position angles are calculated. 
Integration scheme used in this study is a 4th-order 
P(EC)n Hermite scheme (Makino and Aarseth 1992, 
Kokubo et al. 1998, Kokubo and Makino 1998). 

3 Results 

3.1 Orbital Instability of a Gas-free Sys-
tem 

Before considering the effect of the drag force caused 
by a gas disk, we must know the property of the orbital 
instability of a protoplanet system without a gas disk. 
As mentioned in the previous sections, the orbital stabil-
ity of a protoplanet system in a gas-free condition where 
叫 is10-7 M0 was already studied by Chambers et al. 
(1996) and their results were re-confirmed by Iwasaki et 
al. (2001). Through long-term orbital calculations, they 
showed that a protoplanet system always experiences an 
orbital instability within 1 x 107 year, as long as the nor-
malized separation distance,△a0 ranges from 3.6 to 8.8. 
Here, the onset of an orbital instability means the first 
approach of any two protoplanets within one Hill radius. 
The logarithm of the time of the onset of an orbital in-
stability, 11nst, is expressed as a function of△lio, i.e., 
(Chambers et al. 1996) 

log10（咋st/TK)= b△ao + C'(IO)  

where band care numerical constants. The values of b 
and c are almost constant independently of the number 
of planets, n, when n is equal to or larger than 5 and, 
for n = 5, (Iwasaki et al. 2001) 

b = 0.777士0.11, (11) 

and 
C = -Q.154士0.064. (12) 

In the present study, we calculated the cases where 
Mp is 10-9 M。andwhere Mp is 10-5 M。.Figure1 
shows the relation between the logarithm of 71nst and 
△iio, when Mp is 10-5 M。andn is 5. In this figure, 
ten cases with different initial phase in the position an-
gles are plotted for each△cio. The logarithm of 71nst 
becomes large with a increase in△a0 in the same way in 
the cases where Mp is 10-7 M。.Forthe cases where Mp 
is 10-9 M。,suchexponential increase of the orbital in-
stability time against△ii0 is also observed. However, the 



degree of increasing is different depending on the masses 
of protoplanets. In figure 1, the least-squares fit given by 
equation (10) for the present case (the solid line) are also 
shown, together with the same fitting line for the case 
where Mp is 10-7 M0 (the dotted line). We can easily see 
that the inclination (i.e., the value of bin equation (10)) 
of the fitting line for the present cases is larger than that 
for the cases where Mp is 10-7 M,。•Furtheremore, table 
1 shows the values of band c in equation (10) obtained 
by the least-squares fitting of computational runs for the 
cases where Mp is 10-9 M,。,whereMp is 10-7 M,。,and
where Mp is 10-5 M。.Clearly,the value of b increases 
with Mp. This was already pointed out in Chambers et 
al. (1996) for a system composed of three protoplanets. 

Table 1: The values of b and c in equation {10) for a system 

composed of five protoplanets. 
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Figure 1: Orbital instability time of a protoplanet system 
(n = 5) without a gas disk, Tinst, against△a。.Themass of a 
protoplanet is 10-5 M0. Ten cases with different initial angle po-
sitions are plotted for each△a。.Thesolid line is obtained by a 
least-squares fitting of all of the plots (see equation (10)). The 
dotted line shows also the same fitting line for the cases where Mp 
is 10-7 M0 ( see equations (11),(12)) 

3.2 Orbital Stability in the Gas Nebula 

In this subsection, we investigate the orbital stabil-
ity of a protoplanet system considered in the previous 
subsection under the drag force obeying equation (5). 
The orbital instability time under the influence of the 

drag force, ~塩 is expected to become larger than the 
instability time in a gas-free condition, 11nst, since the 
drag force has an effect of suppressing the eccentricities 
of protoplanets (see equation (7)). Thus, we stopped the 
orbital calculation, regarding the computational run as a 
case where the onset of an orbital instability is prevented 
by the drag force, when the evolutionary time exceeds 
the cut-off time, which is defined by (Iwasaki et al. 2001, 
2002) 

Tstop = 200 X 71nst, (13) 

where 11nst is the instability time of a system without a 
gas disk and given by equation (10). 
In figure 2, the logarithm of ~~~t are plotted against 
the separation distance,△ii0 for the cases where Mp is 
10-5M。andro is 9.0 x 103牧． Figure2 shows that 
the instability time under the drag force, ~塩 becomes
larger than and separates from the instability time of 
a system without a gas disk, 11nst (solid line), in other 
words, a system becomes more stabilized, as△励 in-
creases. Thus, the abscissa of figure 2, i.e.，△励 canbe 
divided into the three zones, according to the degree of 
stabilization, i.e., the unstable zone（△a。＜ 5.2),the 
transition zone (5.2 ~△a。 <5.6), and the stable zone 
(5.6 ~• ii0) (Iwasaki et al. 2001, 2002). In the unstable 
zone, all the ten cases for each△a。undergoorbital in-
stabilities within the time nearly equal to 11nst・ In the 
transition zone, only some cases of the ten cases expe-
rience orbital instabilities. In the stable zone, all ten 
cases for each△a。reachthe cut-off time, Tstop, with-
out the onset of an orbital instability. Therefore, the 
transition zone represents a partition which divides the 
range of△伽 intothe unstable zone, where a protoplanet 
system always undergoes an orbital instability like a sys-
tem without a gas disk does, and the stable zone, where 
a protoplanet system never experiences an orbital insta— 

bility. 
The position of a transition zone changes, depending 
on the value of ro. Table 1 shows the smaller boundary, 
（血o)1, and the larger boundary,（△iio)2, of a transition 
zone for each ro. The values of（△袖）1and（△iio)2 (i.e., 
the position of a transition zone) move toward large△iio, 
in other words, the unstable zone becomes wide, as ro 
increases. This is because an increase in ro reduce the 
efficiency of an eccentricity damping by the drag force 
(see equation (7)) and, as a result, a system becomes 
more unstable. 
The above-mentioned properties of an orbital insta-
bility of a system with a gas disk are almost the same for 
the cases where Mp is 10-9 M。.Intable 2, the values of 
（△iio)1 and（△励）2for the cases where Mp is 10-9 M。
are also shown. For these cases, the position of a transi-
tion zone becomes large with an increase in ro. 
Figure 3 shows the transition zones for the cases 
where Mp is 10-9 M。,whereMp is 10-7 M。,and,where 
Mp is 10-5M。,againstfo. Here, fo is defined by 

71)=(~)7}), (14) 

where ro is given by equation (6). Thus, the abscissa 
of figure 3, i.e.，fo, is independent of the mass of a 
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Table 2: Boundaries of a transition zone,（△a。)iand（△励）2・
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 Figure 2: Instability time of a protoplanet system with a gas 

disk, Ti~~t, as a function of△cio, for the cases where Mp is 10-5 M。
and在） is9 x 103TK. For each△袖，tencases with different initial 
phase in position angles are plotted like figure 1. Solid line shows 
the instability time of a system without a gas disk,'11nst, (see 
equation 10) and the upper dotted line denotes the cut-off time, 
Tstop (= 200 x'11nst)-Two vertical dotted lines represent the 
boundaries of a transition zone, i.e.,（△iio)i (left), and,（△袖）2
(right). 

protoplanet, Mp, and, depends purely on the physical 
quantities of the gas disk, i.e., Cs and ug. In figure 

3, we also plotted the "critical separation distances", 

（△iio)crit'which were introduced in Iwasaki et al. (2001, 
2002), in order to point to the position of a transition 

zone definitely and given by 

（△iio)crit = 
（△a砧＋（△ao)2
2 

where 11nst is given by equation {10). Solving equation 

{16) for（△励）crit'weobtain 

（△ao) crit 
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Here, in the above equation, we set the value of C to be 
0.3, following Iwasaki et al. (2002). In figure 3, the lines 
given by equation (17) are in good agreement with the 

values of（△iio)crit obtained by numerical calculations, 
regardless of the mass of a protoplanet, Mp, This implies 

that equation (17) can be applied to a system composed 
of protoplanets with an arbitrary (but equal) mass. 
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Figure 3: Critical separation distance, (• iio)crit• as a function 
ofわ forthe cases, where Mp is 10-9 M0 (triangle), where Mp is 
10-7 M0 (open circle), and, where Mp is 10-5 M0 (filled circle). 
Vertical error bars represent the width of a transition zone. Three 
lines, i.e., the dotted line (for the case of Mp = 10-9 M0), the 
broken line (10-7 M0), and, the solid line (10-5 M0), show the 
semi-analytical expressions for（△励）critgiven by equation (17). 

4
 
Summary and Conclusion 

{15) 

The lines in figure 3 represent the semi-analytical 

expressions for a critical separation distance,（△iio)crit, 
which are derived in the same way in Iwasaki et al. 
(2002). These expressions are commonly obtained by 
meeting the requirement that the damping time of a ec-

centricity due to the drag force caused by the gas disk, 

To, must be equal to the stirring time ~f an ec四~ntricity
by the mutual gravity of protoplanets, C11nst (6 is a nu-
merical constant), when△iio=（血o)crit'i.e.,(Iwasaki 
et al. 2002) 

In our present study, we investigated the orbital sta-

bility of a system composed of five protoplanets with 
equal mass, for the cases where Mp is 10-9 M。andwhere 
島 is10-5 M。.First,we studied the orbital stability of 
a protoplanet system without a gas disk through orbital 
calculations. Next, the orbital stability of a system with 

a gas disk was examined by including the effect of the 
drag force caused by a gas disk in orbital calculations. 

゜
ur main results are summarized as follows: 

• Orbital stability of a protoplanet system without 
a gas disk. 

(1) A protoplanet system inevitably undergoes an 
orbital instability owing to mutual gravity. 

Tb = C11nst at△iio =（△iio)crit, {16) 
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(2) Regardless of the m邸 sofaprotoplanet, Mか
the orbital instability time, 11nst, incre邸 esex-
ponentially with an increase in the separation 
distance,△iio, i.e., 

log10('.l1nst/TK) = b△西＋C. (18) 

However, the values of band c depend on the 
mass of a protoplanet. Especially, the value 
of b increases as MP becomes large. 

• Orbital stability of a protoplanet system in the 
nebular gas. 

(1) The drag force due to the nebular gas has an 
effect of preventing a protoplanet system from 
undergoing an orbital instability. 

(2) Such a effect of the drag force becomes re-
markable, when△a0 is larger than a critical 
separation distance,（△ao)crit, and the insta-
bility time, ~~~t., becomes at least 200 times inst, 
as large as the instability time of a system 
without a gas disk,'.l1nst. 

(3) The value of a critical separation distance, 
{Aao)crit'depends on TO (i.e., the intensity 
of the drag force) and is estimated by 

1 
（△iio)cdt = ~ [1og10（乳）ー (log砂＋c)l -

(19) 

Now, we apply the above results to the orbital in-
stability of a protoplanet system in the Jovian planet 
region (a ~ 5 AU). As mentioned in the first section, 
a protoplanet system must experience an orbital insta— 

bility in the presence of a gas disk, if we consider the 
accretion process of protoplanets via mutual collisions, 
as a possible way to overcome the difficulty in the for-
mation of Jovian planets that the mass of a protoplanet 
is too small to capture a gaseous envelope. However, 
the above results show that, in the presence of a gas 
disk, a protoplanet system never experiences an orbital 
instability if tha separation distance, Aa0, is larger than 
a critical separation distance,（△ao)crit. The value of 
(Aao)crit is obtained by substituting the value of TO 
in the Jovian planet region into equation (19). Sub-
stituting Mp = 10-5 M。~ 3MEB, Cs = 0.05vK, and 

3 ug = 1.7 x 103g/cm.,, (which are the values in the min-
imum mass solar nebula model) into equation (6), we 
obtain 

TD = 2.3 x 102TK. (20) 

From equations (19) and (20),（△iio)crit in this case is 
given by 

（血o}crit= 4.3 ・ (21) 

On the other hand, a typical separation distance, 
△a0, which would be formed through oligarchic growth 
is about 5 to 10 (Kokubo and Ida 2000), i.e., is larger 
than (Aa0)crit in the above equation. Thus, in the pres-
ence of the minimum mass solar nebula, a protoplanet 
system never experiences an orbital instability. Natu-
rally, the value of（△知）critcan become larger than the 
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above value, if the nebular gas dissipates, i.e., the sur-
face density of the nebular gas decreases. However, in 
order to form a gaseous giant planet such as the present 
Jupiter whose mass is about 1 x 10-3 M,。,theremust 
remain a nebular gas whose surface density is as large as 
that of the minimum mass solar nebula around a proto-
planet, if we assume that the present Jupiter captured 
the nebular gas in its feeding zone (i.e., a ring region 
with a width of about 6 Hill radius). Therefore, the sce— 

nario that protoplanets grew to a critical mass owing to 
mutual collisions is implausible. It is natural to think 
that a surface density of the solid mass in the Jovian 
planet region was two or three times as large as that of 
the minimum mass solar nebula. 
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Dynamical Stability of Planetary Syste1n of GJ876 

Hiroshi Kinoshita and Hiroshi Nakai 
National Astronomical Observatory 

Abstract 

The main-sequence star GJ 876 was found to have at least two planets from the precise 
Doppler measurements made at the Lick and Keck observatories. If the two planets are 
moving in the same plane, which lies in the line of sight, the planetary system of GJ 876 
is stabilized by the 2: 1 mean motion resonance.ふ theinclination of the orbital plane to 
the line of sight decreases from 90 degrees, the planetary mass increases and the mutual 
perturbation between two planets becomes large. However the planetary system of GJ 
876 continues to be stabilized by the corotation of pericenters of the two planets together 
with the mean motion resonance. This stabilization mechanism is explained by the secular 
perturbation theory. 

1 l11.troduction 

、Sofar 77 extrasolar planets have been discovered since 1995 and among them 7 multiple 
planetary systems (v Andromeda.e, GJ876, HD168443, HD82943, HD74156, 47 Uma) are 
confirmed. v Andromedae has three planets, the orbital period of the most inner planet 
is only 4.6 days and its mass is 0.68 MJ. The orbital periods of two outer planets are 
241.3days and 1299 days and their masses are l.94MJ and 4.02MJ, respectively (California 
& Carnegie Planet Search, 2002). Since the perturbation to the most inner planet from 
the outer planets are weak, the motion of the most inner planet is stable. On the other 
hand the mutual interaction between outer two planets might become strong and unstable 
because of a close approach due to their large eccentricities. The orbital motion of outer 
two planets, however, is stabilized by the alignment of the pericenters of two planets, which 
makes to avoid a close approach between them (Nakai and Kinoshita 2000, 2001, Rivera 
and Lissauer 2000, and Kinoshita and Nakai 2002). The planetary systems of GJ876 and 
HD82943 are stabilized by the 2: 1 mean motion resonance. As for other four planetary 
systems the mutual distance is large and the mutual perturbation is week and their orbital 
1notions are stable. 

Marcy et al. (2001) discovered from precise Doppler observations during six years from 
the Lick and Keck Observatories at least two planets orbiting GJ 876. With the assumption 
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that the two planets do not disturb each other and their orbits are Keplerian, Marcy et 
al. determined the following dynamical parameters: masses of M sin i = 0.56 and 1.89 M.ふ
orbital periods of P=30. l and 61.0 days, semimajor axes of a = 0.13 and 0.21 AU, and 
eccentricities of e=0.27 and 0.10, respectively. Marcy et al. (2001) performed numerical 
simulations with minimum mass(i = 90°) and twice their minimum masses (sin i = 1/2) 
under the assumption that the orbital elements in the above are the osculating elements 
and found that the planetary system of GJ 876 is stable by the 2: 1 mean motion resonance. 

We assumed the minimum planet mass(sin i = 1) and carried out the numerical simula— 

tions for this planetary system with the initial conditions, which are different from those 
of Marcy et al. (2001) and investigated the orbital stability. We put the planet 2 (the 
outer planet) on its pericenter at the initial epoch and searched a stable configuration with 
changing the initial mean anomaly l1 of planet 1 (the inner planet) from Oto 360 degrees. 
We found that when l1 is in the range of -60 < li < 60, the planetary system is in the state 
of 2:1 mean motion resonance (the critical argument a=ふー2ふ＋兌）， whichavoids a 
close approach between two planets and makes the planetary system stable. At the initial 
epoch the pericenter of planet 2 is very close to that of plai.1et 1. However, in these stable 
planetary systems the pericenters of two planets move independently and not corotating 
as in the case of planetary system of v Andromedae. 
Since the determination of the planetary mass has ambiguity of sin i, which cannot be 
determined from the Doppler observation under the assumption of two Keplerian orbital 
fitting. If i is small, then the planetary mass becomes large and the mutual perturbation 
grows and the system might be unstable. By changing sin i we investigate the stability of 
the planetary system in the 2: 1 mean motion resonance and found that the alignment of 
pericenter stabilizes the planetary systems and explained this stability mechanism by semi 
analytical secular perturbation. 

2 Mass Depe11dence of the Stability of the Planetary 

System of GJ 876 

The orbital para1neters, which Marcy et al.(2001) determined fro1n the Doppler observa— 

tions, are shown in Table 1. These parameters were determined under the assumption that 
there is no mutual perturbation between two planets. As for the mass determination from 
Doppler observation the combination M sin i, where i is the inclination of the orbital plane 
to the line of sight, is determined and i and M cannot be separately determined. We define 
a 1nass factor m f as 

1 
m1=_—-:;, 
Slnt 
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Table 1: Orbital Parameters (Marcy et al. 2001) 

Parameters Inner Outer 
Orbital Period P(day) 30.12 61.02 
Eccentricity (e) 0.27 0.10 
ro (deg) 330 333 
Periastron Time(JD) 2450031.4 2450106.2 
M sin i(MJ) 0.56 1.89 
a(AU) 0.130 0.208 

where we assume the two planets move in the same plane. Since even in the case of m 1 = I 
and not in the state of 2: 1 mean motion resonance the planetary system is unstable (Ki-
noshita and Naka 2001, 2002b), we choose the critical argument a =入1-2ふ＋切＝ 0 
at the epoch.（入1= 42.46，ふ＝ 186.23,W1= 330.00, tepoch = 2451362.7426, which lies in 
the period of the observations at Lick and Keck). We use an extrapolation method and a 
symmetric multiple step as a numerical integrator. 

At first we integrated the planetary orbits for 200 years with increasing the mass factor 
m1 from 1 to 20{i = 2.9°) by one and show their orbital elements as for m1 =1,3,5,10, and 
11 in Figure 1. The upper three panels show the semimajor axis a1, the eccentricity e1, 
and the longitude of pericenter ro1, and then the next three panels show the corresponding 
quantities for the outer planet, and the next two panels show the difference of the peri-
center's longitudes (0 = ro1 -ro2) and the critical argument a =入1-2入2+ ro1, Even 
though the planetary system with m1 > 10 is in the 2:1 mean motion resonance at the 
epoch, the 2: 1 mean motion resonance state is soon disrupted and the eccentricities of the 
planets become large and then the close approach takes place and the planetary system 
becomes unstable. In order to畑owthe measure of the close approach we calculate the 
mutual distance of two planets with the relative Hill radius. Here we choose the following 
three types of Hill radius: 

知＝（誓）M手），
恥＝（誓）i呼），（2)
知＝（誓）i呼），

where Q1 =釘（1+釘）（theapocentric distance of the inner planet)q2 = a2{l -a2) is the 
pericentric distance of the outer planet). We normalized the mutual distance by these 
three types of relative Hill radius and found there is no qualitative difference among three 
normalization. Therefore, we only show the 1noralized by RHa as for m1=1,5,10, and 11 in 

201 



0.132 

＾ コ0.131<( 

員̀-一
゜
0.130 
0.129 
0 50 1 00 1 50 200 

Year 

ぷ 昌▽いふへへ心～▽立い△へ

゜
50 100 

Year 

150 200 

胃＼＼＼＼＼＼＼＼＼＼＼＼＼＼＼l
゜

50 100 150 200 
Year 

＾ 百コ< 00..2200980 5 
0.2080 

8:~8~8 

゜
50 100 150 200 

Yeor 

ず凸i叡▽V了▽▽丁ロ
0 50 100 150 200 

Year 

胄『三ゞ→-~ゞ→←~ゞ-4
゜

50 100 
Year 

150 200 

＼̀＼¥＼¥＼¥＼¥¥¥¥¥＼＼l 
゜

50 100 150 200 
Year 

.;; `  名〇 420 0 
韮

゜
50 100 150 200 

Yeor 

Figure 1-1.— The orbital ele111ents of two planets for 200 yea.rs（町＝ 1):Theupper six 
panels represent t.he se1ni-n1ajor axis, the eccentricity, and the longitude of the pericenter, 

respectively. The last two panels show the angles 0 = r;:;1 --r:v2 and the critical a.rgu1nent 
(J ＝ふー 2入2+'w1・

202 



゜

4
2
0
8
b
 

3
3
3
2
2
 

1
1
1
:
 

••••• 0
0
0
0
0
 

(nv)'o 
50 100 

Year 

150 200 

5 [i恥心心瓜叫心い心ぬ心闊心叫
゜

50 100 
Year 

150 200 

厚唸I¥＼¥＼＼＼¥＼¥＼¥＼＼＼¥＼＼＼¥＼¥＼¥¥＼¥＼¥＼¥¥¥¥¥¥¥＼¥＼¥＼¥|
゜

50 100 150 200 
Yeor 

0.2100 

浮^  < ::,0.2090 
0.2080 
0.2070 

゜
50 100 150 200 

Year 

ぶ喜叩硫帽買信買間買信間買帽
0 50 100 150 200 

Yeor 

］聾‘... 、口‘,‘〗:＼ヽ＼、＼、＼、＼＼＼、＼‘＼＼‘\、＼＂`、｀ヽ｀、＼、ぺ"``、
゜

50 100 150 200 
Yeor 

1~8 

・~! →一． -180 8 

゜
50 100 150 200 

Year 

.`,; g ・b~ 420 0 
崎

゜
50 100 150 200 

Year 

Figure 1-2.—The orbital ele1nents of two planets（町＝ 3).The explanations for the 
vertical邸 esare sa1ne as for Figure 1-1. 

203 



゜

4
2
0
8
0
 

3
3
3
2
2
 

1
1
1
 .. 

••.•• 0

0

0

8

 

(nv)'o 
50 100 

Year 

150 200 

゜

403530
弥

．
．
．
．
．
 

0
0
0
8
 

-a 

50 100 
Year 

150 200 

〗 ~;ii＼\\＼＼＼＼＼＼\＼＼＼＼＼＼＼＼＼＼＼＼＼＼\＼＼＼＼＼＼\＼＼\＼\\\\＼＼＼＼＼\＼\\\\＼\＼叫闘
0 50 100 150 200 

Year 

゜

2

0

8

6

 

1

1

0

0

 

2
2
2
2
 

0
0
0
0
 

(nv)zo 
50 100 

Year 
150 200 

0.15 

ぶ
0.10 

0.00 
0.05 9簡罹買憎罰管闘
0 50 100 150 200 

Year 

゜

0
0
0
8
 

6
7
8
9
 

3
2
1
 

(6ap)z:~ ； 

！ 
: 

50 1 00 150 200 
Yeor 

゜

0
0
0
8
 

8

9

9

8

 

1

-

1

 

(
6
a
p
)
o
 

50 100 
Year 

150 200 

゜

0
0
0
8
 

4
2
2
4
 

―― 

(
6
a
p
)
o
 

50 100 
Year 

150 200 

Figure 1-3.—The orbital ele1nent.s of two planets（町＝ 5).
vertical axes are san1e as for Figure 1-1. 
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Figure 2. We define 
/3＝△IRH3, (3) 

where△is the minimum distance between the two planets. When the planetary system is 
stable, the parameter f3 becomes small from about 4 to 2. When the planetary system is 
unstable, the parameter f3 becomes smaller than 1, which means that the planets enter the 
Hill sphere and the orbits change largely and a close approach takes place and then the 
planetary system becomes unstable. 

The notable features of the orbital elements for the stable planetary systems are 1)From 
around m 1 = 2, the difference of pericenter longitudes 0 circulates for some time and then 
librates. The circulation and libration of 0 take place periodically. As m1 increases, the 
time of the libration of 0 becomes longer and for m1 = 10 the angle 0 only librates. 
2)Both the longitudes of pericenters are retrograde and the periods of the circulation of匂 l
and匹 becomesshorter as the mass factor m J increases. 

Then we integrated the planetary syste1n, which is stable for 200 year, for 108 years 
and found that the planetary systems(l ~ m1 ~ 10) are stable and the 2:1 mean motion 
resonance and the corotation of the pericenters is conserved. Figure 3 show the orbital 
elements for the first.five million years of 108 years integration as for m1 = 10. Figure 4 
shows the instability time with respect to the mass factor m1. Since the orbital elements 
as for 1 ~ m1 ~ 10 in Figure 3 show no indication of irregularity, the planetary system 
could plausibly be stable over 108 years. 

3 Role of the Alignment of Pericenters 

As mentioned in the previous section, around from m1 = 4 the angle 0 almost librates, 
which 1neans that the the pericenters of two planets corotate. The initial state in the 
computation in Section 2 the pericenters are very close. We, therefore, choose叫＝
w-180° as the initial condition and integrated the orbits for 200 years with m1 = 1, 2, 3, 4. 
Figure 5 shows the evolution of the orbital elements for the case of m1 = 1, 3, 4. The angle 
0 almost librates for the case of m1 = 2, 3. However for the planetary system with m, = 4 
the pericenters moves totally move independently and around t = 30 years the 2: 1 mean 
motion resonance is disrupted and the planetary system becomes unstable. Figure 6 shows 
the mutual distance normalized by the mutual Hill radius RH3. Since the pericenters move 
independently, at some thne the apocenter of the inner planet and the pericenter of the 
outer planet are in the same direction, when (3 becomes smaller than 1,which takes place 
around t = 30 years and the 2: 1 1nean motion resonance is broken. 
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Table 2: Orbital Parameters (Laughlin and Chambers,2001a) 

Parameter Inner Outer 
Period(day) 30.13 61.58 
Eccentricity e 0.226 0.025 
ロ(deg) 156 70 
Mean Anomaly(deg) 277 31 
a(AU) 0.1297 0.2092 

4 The Stability with Use of the Orbital Eleme11ts 

Determined by Laughlin and Chambers 

As mentioned in Setion 2, Marcy et al. (2001) determined the orbital parameters (Table 1) 
assuming that both planets are Keplerian and the mutual perturbations are not taken into 
account. With use of the Doppler Observations, which are given in the paper by Marcy 
et al. (2001) Lauglin and Chambers (2001a) determined the orbital parameters (Table 2) 
taking account into the mutual perturbations. 

In determination of the parameters of Table 2 Lauglin and Chambers assumed that both 
planets are coplanar and sin i = 1 is one for both planets. The orbital parameters are os-
culating elements, which includes the perturbation. They also made orbital determination 
including sin i as fitting parameters. 

With use of the orbital parameters of Table 2 we carried out a similar numerical simula-
tion as in Section 2 by changing the mass factor m1. Figure 8 show the orbital elements as 
for m1 =1,4, and 5. We found until m1=4 the 2:1 mean motion resonance state is conserved 
and the corotation time of the pericenters becomes longer as m I increases. From around 
m1 = 5 the 2:1 mean motion resonance is disrupted and the planetary system becomes 
unstable. Figure 8 shows the instability time. In making Figure 8 we integrated the orbits 
for 108 years, which indicates the planetary system (1 ~ m1 ~ 4) might plausibly stable 
over 108 years. 

The origin of the difference of the instability times of Figure 4 and 8 originates fro1n 
the fact the initial difference of pericenters of planets 0 by Marcy et al. (2001) is only 3 
degrees but that by Laughlin and Chambers (2001a)is as big as 86 degrees. Laughlin and 
Chambers (2001b) gave another sets of the orbital parameters, in which sin i is determined 
as one of the fitting paraineters. In these new orbital paraineters, the pericenters are very 
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Figure 7-1.—Orbital ele1nent.s with Laughlin and Cha1nbers's initial values（叩＝ 1).
The explanations for the vertical axes are san1e as for Figure 1-1. 
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close by about 10 degrees. 

5 Secular Perturbation 

The Hamiltonian for the coplanar c邸eis 

F=F(a1,a戸 1,e2, ti:凡四ふ，ふ）． (4) 

Since we discuss the case of 2:1 mean motion resonance case, after short periodic terms the 
Hamiltonian takes the following form: 

F* = F*(a1, a記 1,e2, a, 0), (5) 

where a =ふー 2ふ＋匂1(the critical argument) and 0 =口l-口2.When both the 
eccentricities of both planets are small, the Hamiltonian after the elimination of short-
periodic terms takes the following form: 

F* =＋噂＋ e~)(2oD。 +&D~)A。
f +-e心 (2-2oDa-O況）A1cos0 -l釘(4+aDa)A匹 OS(J' （6)
＋ぅ叫3+ aD0)A1 cos(a -0), 

where o = a1/a2,and A。=bi腐，ふ＝ b腐，A2= b腐whichare Laplace coefficients, and 
D0 = 8/80. By using the recurrence formulae for the Laplace coefficients (Brouwer and 
Clemence, 1961)), F* takes the following form: 

F* = B1 (e~ + e~) + B呼西cos0+ B西 cosa+B四 cos(u-0), (7) 

where 
B1 = !ab晶

(2) 
恥＝—iab乎
B3 = -½(6biうぶ＋ a(b塁ー ab塁））
B4 = ½(4b腐＋ a(b塁ー abi佐））

(8) 

The degree of freedom of the new Ha1niltonian is reduced from four to two. However this 
Hamiltonian is not integrable. Here we assume the critical argu1nent a = 0, from which 
we have a1 and a2 are constant. Then the degree of the freedo1n of the new Hamiltonian 
is reduced one: 

F* = F*(e1, e2, 0), 

with conservation of the angular momentu1n: 

nw冨戸面＋ m2..[a冨＝~ = const = H. 
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(10) 



the Hamiltonian F* takes the following form: 

F* = B1(e~ + e含）＋B炉西cos0+B西＋B4e2cos 0, (11) 

The last two terms of equation (11) originates from the 2:1 mean motion resonance. The 
equation of motion from the Hamiltonian (11) is not integrable because of the existence of 
the two terms. With use of (10) we eliminate e from F* (11) and we have 

F* = F*(e1, 0, H) {12) 

and we can draw the level curves of the Hamiltonian and know the global behavior of e1 and 
0. As we see fro1n Figure 1, the eccentricity becomes large and the expanded Hamiltonian 
(11) is not appropriate for drawing the level curves. Therefore we numerically averaged 
the original Hamiltonian (4) under the condition of the critical argument(J'＝0 and the 
angular momentum conservation {11) and then get numerically the averaged Hamiltonian 
(12) with the parameter of the angular momentum H. The technical of this numerical 
averaging is described in the paper by Kinoshita and Nakai{l985), in which the case of 
u # 0 is also discussed. We draw the contour map of the Hamiltonian (12) taking 0 as the 
horizontal axis and e1 or e2 as the vertical axis with the parameter H, which is determined 
from the initial conditions. Figure 9 shows the contour maps for m1=1,5, and 10 and 
the numerical solutions are plotted on these 1naps. Since the solution includes the short-
periodic terms, the averaged solution is shown in Figure 10. These figures show the good 
agreement between the numerical solutions and the semi-analytical secular solutions. 

6 Sum1nary and Discussio11s 

The planetary system of GJ 876 are stabilized by two mechanis1ns 1) 2: 1 1nean motion 
resonance and 2) the alignment of the pericenters. Among two stabilizing mechanism, the 
necessity of the alignment of pericenters depends mainly on the planetary mass. As the 
planetary 1nass increases till m1 = 10, the duration of the corotation of the pericenters 
becomes longer for the stabilization. For the planetary system with m1 > 10 the alignment 
of the pericenter is broken and then the 2:1 mean motion resonance is disrupted and the 
system becomes unstable. 

With use of the Doppler measurements of the 1nain-sequence star GJ 876 (Marcy et 
al. 2001) Rivera and Lissauwer (2001) determined the orbital parameters for the two 
planets that accounts for the mutual perturbation between the planets. Their orbital 
detennination method is a Levenberg-Marquardt 1ninimization algoritlnn, which is one of 
the nonlinear para1neter fitting method and was also used by Laughlin and Chambers ( 
2001a and 2001b). They seeked the best fit solutions from the larger paraineter space 
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Figure 9.-Equi-Hamiltonian curves and osculating orbital elenwnts for m.1 =1,5, and 10. 
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Figure 10.—Equi-Hamiltonian curves and mean orbital elements for m1 =1,5, and 10. 
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than those by Laughlin and Chambers. Since this method determines the local minimum, 
the solution is not unique. The best fit solutions with minimum x2=1.34 is unstable. The 
other local minimum solution with x2=1.43 is stable for at least 108 years. The real solution 
should be unique, which has the global minimum of x2. One of the possible explanations 
for the fact that the best fit solution by Rivera and Lissauer is unstable is the existence of 
an unfound planet which locates the outer region of the two planets. If so, we need much 
longer observations to determine the true orbit and to discuss the stability of the planetary 
system of GJ 876. 
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fSchwarzschild解」の意味するもの
A co置prehensionfor the solution due to Sch冒arzschild

井上猛 （京都産業大学）
T. Inoue 
Kyoto Sangyo University 

Abstract.It is widely accepted that the general theory of relativity established 
by Einstein (1915) solved totally the problem of the excess advance which exists 
in the longitude of the perihelion of Mercury. This excess advance was found by 
Le Verrier 0859) when he tried to adjust his theory of the motion of Mercury to 
the observations of the passage of Mercury in front of the disk of the Sun. The 
same excess advance was equally necessary in the theory of Newcomb (1895). That 
is, Newcomb confirmed the Le Verrier's result. 

The present author pointed out that the theory of Le Verrier for the motion 
of Mercury contains tiny errors and that because of this he胃asnot able to well 
predict the passage phenomena of Merc叩 (Inoue,1992). We revealed, in the case 
of Newcomb, that his theory also contains the same kind of errors (Inoue, 2000). 

If one corrects the errors, one can obtain perfect theories of the motion of 
Mercury. This means that there never exist discrepancies between the theory of 
the motion and the passage observations in nineteen century. 

Then, what did Einstein and Schwarzschild solve? There was no problem to be 
solved! In order to legitimately understand. we propose the following postulate 
"The Schwarzschild. s solution gives exactly the●otion of the tro-body proble• 
in the Newtoni皿 •ech皿ics".

Let us describe the system of Schwarzschild by (R, <I>) and that of Newton by 
(r, ct,). The equations of the motion for Mercury take the form as follows in the 
system of Schwarzschild: 

岱—R刑＋ -fr= 喩＋栖胴— 2m 開
1 d 
で布 (R2饉 2m dR do 

叫＝で訂―可

For the problem of two bodies, the equations are given by the follo胃ingfor阻S

記— r僭)2＋ヤ＝ 0

＋計（い静） ＝ 0 
胃ith the aid of functions p and a. we are able to combine the two systems 
(R, <I>) and (r, ct,) as follows : 

R = r+mp= r[l ＋舟｛合 (1-E) —噸 e sin f} ] 

<I> = ct,+ma= ct,＋管｛3(f-胆り＋土丑やヱし sinf} 

The detailed explanations of the quantities are given in the text (in Japanese). 
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The relations satisfy'the Schwarzschild condition'：胃henthe quantity r tends 
to infinity, the difference between R and r tends to zero. It is the same for 
the difference between 4> and ct,. 

In the Newtonian mechanics, the el I ipt ic orbit does not move and there is no 
advance in the longitude of the perihelion m. Therefore, one revolution after 
the longitude ct> takes simply the value : ct> = a1 + 2冗．

In the Schwarzschild system. the circumstances are different. At the moment 
of start, the quantity 4> obtains the value m. But, so as to just return to the 
'perihelion', one should give the following vaI.ue for the quantity <f> 

0 =｛m+号｝＋ 2冗．

久しく心に留めて居て、人にも知って欲しいと願って居るものがある。それは、私かに
尊崇して止まない平山清次先生がお書きになったものである。此処に添付するのは、甚だ
御無礼な事かも知れないが「積年の椴いの吐露」として、御寛恕の程を請う次第である。

昭和五年(1930)十月、東京天文嘉内に本部を置く日本天文學舎が、日本天文學舎編輯の
下に、本格的な研究誌としての『日本天文學會要報』なるものを世に送り出さむとした。
その「第一琥」に、理事長の平山清次先生が、 「登刊の辞」を述べて居られるのである。
此処に全文を引用するのであるが、残念な事に“文字上の制約”から、本文の通りに打つ
事が出来ない憾みがある。それ以外は、先生のお書きになったものの通りである。

攀 千 J c 頑

日本天文學會理事長

理學博士 平山清次

現代の日本の學者が歌文で學術上の論文を書くのは、外國人がそれを讀む事を豫期す
る結果、便利を考へてさうするのであって、徳川時代の儒者が自己の學識を表したい為め
に殊更難解の字句を並列し文章を飾つた事と混同してはならない。英佛獨等の外國語によ
るよりも望ましいのはエスペラントの如き世界語を用ひる事であるが歌米諸國の學者が箕
に此事に目醒めぬ限り賓行は出来かねる。
國旗は國家の符徴に外ならないが言語は事賓上民族を結束する締縄であり其表徴で
ある。それであるから民族が其個性を維持せんとする志望を失はない限り言語は尊重され
なくてはならない。海外より弘く有益な知識を吸牧する為めに外國文を讀む事を怠っては
ならぬが、然し其為めに自國語を蔑視したりしてはならない。
それであるから學術上の論文は、如何に世界的のものであつても、それを自國語で書
くのは営然であって、更にそれを外國文に綴つて弘く海外に登表するのが最も適営な虚置
である。事情によりそれを自國語だけに止めるのは自由であるが、外國文で登表して自國
語で登表しないのは大なる誤と言はなければならぬ。
のみならず外國文と自國文と内容は同ーでも著者の意想が自國文の方に適切に表はれ
るのは営然である。従って其方に原作としての債値の多い事は無論である。
日本天文學會の役員の主張は寅に此貼に在る。其結果、定會の議決を綬て賓現したの

は此要報である。事は小さいながらも思慮は十分に深く寅行の意志は強固である。筆者は
理事長として荘に役員を代表し此主意を會員諸氏並に闊係ある識者に停へる事を大なる光
榮とするものである。
日本の天文學の前途は有望である。それが吾々の此新らしい計蓋によって1頓営なる登

達を遂げ、深遠なる宇宙と盤妙なる自然とが一層明確に示さる渭事を得れば誠に幸である。
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1. Le Verrierの研究(1859)に端を発する「水星近日点黄経ロに於ける余剰の永年変化の
問題」は、 Einsteinの一般相対性理論(1915)に依って、完全解決を見た事になって居る，
就中、重力場方程式に対するSchwarzschildの美麗な解(1916)は、 Eddingtonの著書(1924)
等を通じて広く知られて居る処である。 「当該問題解決法」は、 “現代の常識”である。
斯うした折りに「LeVerrierの研究には誤りがあった。その故に《余剰の永年変化》の
出現を見る事になった」との結論を得た(Inoue,1992)。その後の調査で「Newcombの研究
(1895)にも、 LeVerrier同様の誤りが在る。その為に一世紀当り43秒角の不等性が生ずる
事になって居る」のが明らかになった（井上、 2000)。
我々の主張をその儘に受け容れるならば、 『件の問題そのものが存在しなかった』事に
なる。これは“現代の常識’'に反する。然し、 『我々の結果』を否定しなければならない
理由を、我々は見つける事が出来ないのである。そこで『Newton力学に於ける二体同題が
表わす処のものは、 Einstein理論に於ける Sch冒arzscbild解が与えるものである』と捉え
る事にする。斯うする事は可能である。此の事を以下で見て行く。

実は、十二年ほど前の事になるが、次の様な問題を「理論天文学」の後期試験に課して
居る。

◎平面運動であるとして、水星近日点黄経に於ける余剰前進の問題に関連させて
以下を問う。

（甲） Newton力学に於ける二体問題は次の形に書ける：

昨— r （肝）2＝一

森 (r2肝）＝
（乙） Schwarzschildの謂わば一体問題は次の様に与えられる：

罪— R （舒） 2= —咆亡 3m （針ぎ） 2

森 (R2和＝ 0 : R2舒

+ μ. =G  (mけm•)

゜
r 2 肝 h

 

=H  

問1．上で、 Newtonの場合とSchwarzschildの場合とで文字の書き分けを行なった。
その必要性の有無を、理由を付けて述べよ。

問2．此の問題は、その総てが LeVerrierに依る、水星の太陽面通過に対する
条件方程式から出発して居る。此の事に付いて知れる処を述べてみよ。

問3.Schwarzschi ldの場合には、 SiriusやCapella等の連星系に於ける運動を
どの様に理解するのが良いか？ 考えを述べよ。

問4.此の問題は、
考えるか？

糾＝（1

一般相対論との関連に於て、
考える処を記してみよ。

—袖）―1 μ
 

どの様に扱われるのが望ましいと

me 2 (90Z14V 00>うへたけし）

当時は「LeVerrierの研究に誤りがある」等と云った認識は、皆無であった。然し『文字
書き分けの必要性』には考えが及んで居た様である。これが有ったればこそ「LeVerrier 
理論に誤りがあった」のに気付く事も出来れば「余剰前進問題の解決」に取り組んで行く
事も出来たのであった。
上で、 r及び¢は動径および経度を表わす。 R及び0は、それらに対応する「座標」で
ある。 Newton力学で言う絶対時問 tは、 Schwarzschildの系では「座標時」に相当する。
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量ては「固有時」を表わす。量Cは「光の速さ」を表わし、量mは、長さの単位を有する
“微小な定数”を表わす。量Gは万有引力定数を表わし、量meは太陽の質量を、また量
m・ は水星（惑星）の質量を表わす。
此の時に、撒μを量 me勺こ等しいと置くか否かに付いては、大いに「議論の余地」の
有る処と考えて居る。先に引用した Eddingtonの場合には量 mc2は、 Gm.,に等しいと
捉えるのが妥当と考えられる（同著：81頁～83頁）。 ところが別の著者の場合には、此の
量 mc2は「量µ即ち量G(mけm•) に等しいと理解すべきである」と考えられるのであ
る (Brumberg,1991:1頁，2頁，5頁，76頁，82頁）。
水星の場合には、質量 m•が、太陽の質量 m.の 1. 1x10-1倍でしかないのであるから
「量 m•の存在を無視する」と云う見方が有る様である。然し、それは的を射たものとは
言い難い。何となれば、我々が問題として居る「余剰の前進量6m(S)」の大きさは「太陽の
重力下で水星が公転運動する量」の 8x10-s倍でしか無いからである。詰り、 1.1x10-1の
大きさの量を無視するのならば、 8x10-aの大きさの物は更に積極的に無視しなければな
らない事になるからである。
此の問題は、真剣に取り組まなければならないものなのであるが、多くを考える事なく
此処では、 「単純に、量μは量 mc2に等しい」と置いて、以下の議論に移る事にする。

2.先ずは、 Einstein理論に於ける Schwarzschild解が与える「惑星運動の基本方程式」
の導出を試みる。これを、行なうのに Eddingtonの著書を参考にしたい。同著の86頁及び
87頁から一部を抜き書きしてみる。此処で、 dsは cdての事である。

Differentiating with respect to cl>, and removing the factor —ー，d 1 d<t>・ r 

胃ith

が 1
す下＋

_l_ ＝ m 3m  
r 下す＋で

い雑—= h 
Compare these with the equations of a Newtonian orbit 

d2 1 
か下＋

1 ＝ m r 了戸―
胃ith

r 2粋＝ h

(39・61}, 

(39・62). 

(39• 71) 

(39・72) 

In (39•61) the ratio of悸 to骨 is耀， orby (39・62) 
3 (r稽） 2.

For ordinary speeds this is an extremely small Quantity — practical 1 y 
three times the s<1uare of the transverse velocity in terms of the 
velocity of light. For example, this ratio for the earth is ・0000 0003. 
In prctical cases the extra （以下 87:0 term in (39•61) will represent an 
almost inappreciable correction to the Newtonian orbit (37・71). 

前節で指摘した様に、只今の Eddingtonの謂が一般には「何の疑問も抱かれる事なく」
受け入れられて居るのである。此の方程式群が導かれる基となったものは、当然の事乍ら
「Schwarzschildの計童」及び「測地線の方程式を解いて得られる積分」である。そこで再び
同著から少しく引用して置く事にしよう。但し、 「平面問題」に限定してのものとする。

r = 1一立皿r 
ds2 = -r―1d r 2 - r 2d <I> 2 + r c 2d t 2 
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以上は、 85頁に所載のものである。此処で Eddingtonは、光の速さ Cを「速さの単位」に
選んだので、 (38・8)式に記した Cは、彼の表式には現われては居ない。続いて、 86頁から
積分表式を引用するが、此処でも我々流に書き換えたものを記す事にする。

い稽—= h 
d t _ 1 
ds - c r 

(39・41), 

(39・42). 

「基本となる方程式群は既にEddingtonが与えて居るではないか」と、改めての導出を
誇る向きもあるであろうが、我々は『文字の書き分けの必要性』を主張して居るのである
から、此処は「いちから」見て置きたいのである。
此の時に問題となるのが「Newton力学に於ける絶対時間t」と「Einstein理論に於ける
座標時t」の問の関係である。此処では、 「同一の文字 “t"」を「考えも無しに用いて
居る」かの印象を与えるかも知れない。然し、 『これらを同一視しても良い』と云うのが
既に広く行なわれて居るので、此処はそれに依拠した迄である。

先ずは(38・7)式(38・8)式を、我々の文字記号で書いて置く。

(1),=1-皿
R 

(2) d s 2 = C 2 d -r 2 = T C 2 d t 2 - T―1dR 2 - R涌<l>?..  

同様にして、 (39・41)式(39・42)式も書き換えて置く。

(3) R 2砂
dて =H  R秤 T―l=H 

(4) 4上＝土
dて T

= T―1.  

以下に計算をして行く。

c2 = T c2年— T ― 1年— R2拌
C2 = T―l C 2 - T -3 dR2 H2 す戸― Rす―

此の表式を、独立変数 t で微分する。然る後に各項を、因子ー2y-3~-3 dR 
dt 

次の表式に到達するであろう。

がR H2 訂―で戸＋賢 T-栖-偕12T―1 = 0 

で整除すれば

運動方程式の体裁を整える為に、 (3)式を用いて積分定数のHを消去した形に導く。

(5) 閉— R 僭➔ 2 y ＋咽T-柄僭「,-1= 0.  

以下では、先程「問題とした」量 me2を単純に量μに等しいと置く事にする。量mは
充分に「小さい」として、これの自乗以上の量は総て無視する事とする。斯くして、次の
Einstein理論に於ける「動径」に関する運動方程式が得られる。

(6) 岱—R駒2＋+-=喩＋栖咽） 2 - 2m僭「．
これに対応する「偏角（経度）」に関する運動方程式は、 (3)式を次の形に書いた後に
時間 tで両辺を微分して導く事が出来る。

R秤＝直＝ H (1-杷）
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(7) 令計 (R豹＝把粋秤—

上記の(6)式および(7)式の表わすものが「Einstein理論に於ける平面惑星運動に対する
基本方程式」である。勿論、此処で対象として居るのは、太陽と一個の惑星のみである。
これらの表式が、只今の立場で惑星運動を論ずる際の基本方程式である事を確認するには
以下の文献を参照すれば充分であろう。

Brumberg : Essential Relativistic Celestial Mechanics p. 82 (3. 1. 49)式

平山清次：天匿力學 一般栖動論 P-71 (l. 3)式

此の「二体問題」に対する「Newton力学に於ける基本方程式」は、 「文字書き分け」の
主張に基づいて、次の形に書かれる事になる。

(8) 記— r 僭）互ヤ＝ 0

(9) ＋叶— (r 2許） ＝ 0 

初等的な事柄を長々と述べて来たが、我々の言わむとする処を此処で強調して置こう。

"".....................”9...............“9......................."."""”'""""."9..’"'"•H•".".........."9...“•••••••"..........—·"'”'".......".""""""........."...................—•" 
i「Einstein理論に於ける基本方程式」 (6)式および(7)式が表わす惑星運動は
i「Ne胃ton力学に於ける基本方程式」 (8)式および(9)式が与えるものに完全に 目

！ 一致する。 l 
.＂"......................ff●●●●、..........................................................................................................................................................................,..,．．．．．-

3.問題の、 「Einstein理論の系を記述する量 (R,<I>)」と「Newton力学の系を記述する
量 (r,<P)」とを次の関係で結び付ける。

(10) 

(II) 

R = r + mp 

<I>= cl> +m(J 

此処に、量pおよび量0は「以下の条件」を満たすべく決定されなければならない未知量
である。

(6)式および(7)式を記述する量Rおよび量0を、 (10)式および(I1)式の関係に
依って量rおよび量¢に匿き換えるなら、直ちに (8)式および(9)式が得られる

未知量の pおよび0を求めるのに、方程式(6)式および(7)式を積分した形を用いる。
そこで、先ずは(7)式から考える事にしよっ。これは、次の形に書き換える事が出来る。

(R袢）清 (R秤） ＝栖粋
従って、容易に積分する事が出来る。結果は以下の如しである。

(12) R袢＝ H・exp (-2骨 ， （H:積分定数）

これを、 (6)式に代入し、量mの自乗以上の微小量を無視すれば次の表式が得られる。
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聾椙＋条＝學＋構刑撃．
因子に微小量mを有する項では、 「Newton力学」に於ける「二体問題の解表式」を、量R
および量0で書き表わしたものを用いても構わないであろう。そこで、エネルギー積分の
次の形のものを取り入れる。

t{偕『＋ （R拌）2｝-喰-＝ E , (E :積分定数） ． 
斯くして、最上段の表式は、容易に積分可能な次の形へと導かれる事になった。

(13) 閉—招＋術＝臀＋攣—呻
積分の結果は以下の通りである。此処で、量Cは積分定数である。

(14) （約 2＋椙— if= 一攣— 12酎＋咽＋C . 
これに、先に設定した関係式(10)式(11)式を代入して行く訳である。この時、次の表式を
用いるのは当然の事である。

05) R = r (1 +苧）

(16) 粋＝廿＋ m竹＿
以下の計算の流れを容易にする目的で、 「Newton力学」に於ける種々の関係式を一覧の
形で記して置く事しよう。

(17) t{即 2+ (r粋）2}--f-= E , ［エネルギー積分］ ． 
(18) r 2舒＝ h ; (h：積分定数） ［角運動蘊積分］

09) E =―土． h= f{μ,p}, P=a(l-eり
2a'  

此処で、量aおよび量eは楕円軌道の長半径および離心率である。

準備が整ったので(15)式(16)式を(14)式に代入する。この時に定数の間に以下の等式の
成立を要請する。

(20) C = 2E,  H = h 
その結果、共通因子のmで整除の後に、未知量pに対する微分方程式として次の形のもの
が得られる。

(21) 肝賛—辛 P＋十 P ＝—岳—呼＋号
再び、楕円軌道に対して成立する関係式を書き出して置こう。

(22) 虹＝且esin f 旦 df h 
dt ＝ー＝ ＝心n'd  t d t 下 n

此処で、量fは真近点離角である。更に、次の略記号を用いた。

(23) n =[｛叶， n=4{1-e2} ；戸千＝ 1+ e cos f 
初等的な関係式等を並べて来たが、結局は未知量pに対する方程式は次の形に導かれる。

(24) 静 •e sin f + (1 -e) P=エ -4+ 3e 
と

此の方程式を満たす量pは、 「人工系の方法（定数変化法）」に依っても解く事が出来て
次の形を取る。結果の正当性は、これを(24)式に代入してみれば容易に確かめられる処で
ある。此処で、離心近点離角Uに登場して貰う必要があった。
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3u 
(25) p ＝合（1-~)-~esinf

n 

次には、只今の「動径」方向の関係を用いて、 「経度」方向の差 (Jを求めて行＜゜

R2 特—= （r +mp) 2 ．柑~+m 抒）＝

- r 2粋＋ 2rm魯＋ r2 m 抒＋…••=

- h ·exp(—杷＝ h -蜻＋…•• = 

= r2 粋—舟丼 me+ …••
因子mの一次の項を等置する事に依って、未知量叫こ対する方程式を導く事が出来る。

r 2肝＋ 2千r2ft-=一年
T} 
3 と

r 2柑＝ na 2 n dt＝計合df

此処でも、真近点離角 fに関する微分方程式に書いて置く。

(26) P抒＝ー 2~(l+p}

これも容易に解く事が出来て、次の形の解が得られる。

(27) pa =3 (f —州け＋士— (2 + 2 e + e 2) e sin f 

以上で、目的は総て逹成された。即ち「Einstein理論の系」と「Newton力学の系」とを
結び付けるべく設定した関係式(10)式(11)式が、滞り無く求められたのである。これらを
書いてみれば以下の如しである。

(28) R = r + m p = r [ 1 ＋乎｛合（1- ど）—峡 e sin f } ] 

(29) <I> = </>+ma＝ぃ＋恐{3 (f-〗け＋』身合口 2e sin f } 

これで見れば明らかな様に、 r→OOおよびp→00に際して、 R→rおよび0→¢が実現し
所謂「Schwarzschild条件」を満たして居るのが判る。

4.量Rが「動径」を表わすものならば、 「近日点」に於ては、時間に依る「微分」商は
「零」に等しくならなければならない。これを確かめる目的で、 (22)式に与えた関係式を
改めて書き出して置く。

廿＝告 esin f,  -H-＝千 (22)

更に、離心近点離角Uに関する「微分」商も書いて置く。

(30) 粋＝竿

(31) 粋＝舟g_e sin f + m｛ふ・舟ぢ esin f + 

-!-•晴 e sin f —峡•晴 e cos f } = O 

233 



此処で、量fや量Uは「Ne胃ton力学」に於ける「二体問題の解」を記述する量なのである
から、 f=Oではu=Oである。此の時、水星（惑星）は「近日点」に在って、動径rは
「近日点距離」を与える。上式から明らかな様に、量Rも、此の時点で「近日点距離」を
与える事になって居る。
「Newton力学」に於ける「二体問題」では、一公転の後には f=2冗となり Uも 2冗に
等しくなる。当然の事ながら、動径rは、再び「近日点距離」を与える事になって居る。
然し、量Rの方は、上記(31)式を成立させるには、量fは 2冗とは少しばかり異なる値を
取らなければならない事になって居る。そこで、量mの大きさの微小量むの存在を仮定
して、 (31)式の成立を図る。量mの一次の大きさに限定して考えるのは当然の事である。

(32) 

f = 2冗十 6f 
nae or+m{o(む)-O(or) —芋— •e ．叫号ヂ門＝ 0 
n 

6 t＝皿．（1＋ e) 2 X2冗
P n 

同様の事を、 「経度」の方に付いても見て行く。 「Newton力学」に於ける「二体問題」
では、経度¢は、近日点黄経口を用いる時は次の形に与えられる。

(33) <J> =w+  f 

従って、 f=Oに於ては¢＝口である。量0の方はと言えば、 (29)式から明らかな様に
此の時は、 0も 0＝口である。

「Newton力学」では、初め「近日点」に在った水星（惑星）は、量fが f= 2冗とな
った時に一公転を終え、経度¢は計算上 cl>=a1+2冗となる。端的に言えば、¢＝口の儘
なのである。従って、 「近日点」に《前進》も無ければ《後退》も無い。
同じ事が、量0に付いても言えるか？ 言えない！！！ 「Einstein理論」の枠組みでは
「動径」 Rが、再度「近日点距離」を与える時には、量fは f= 2冗十 6tなる値を取る
のであった。それ故に、 「経度」 0に対しては、 (29)式を次の様に扱わなければならない
事になって居る。

<t> = U1 + (2冗十む）＋管[3 { 2冗ー舷 (l+e)2}+ 0（い］ ＝ 

- m +2冗十 27tX咽・旦→戸立2＋管叫2冗ー寿 (1+e)2}

(34) <I> = m + 2冗十 6冗mp 
此処でも、量 2冗の存在は無視して考えても構わない。然し、等式〇＝田は、明らかに
成立し得ず、量mの大きさの「前進」を有する事になって居る。此の「前進量」を与える
表式は、将に「Einsteinの一般相対性理論」が、 「水星近日点黄経0に於ける余剰の永年
変化の問題を解いた」とする「表式」そのものである。

以上で、我々が、本小論で『論じたいと考えた処のもの』は総て述べ終った事になる。
小論を閉じるに当り、フランス航空宇宙研究所のマルシャル博士に敬意と謝意を表して
置きたい。博士には、当該問題に付いて、折々に、議論に乗って頂き懇切な助言を受けて
来た。そのお蔭で「より深く」此の問題を考える事も出来たと云う次第である。

Nous sommes tres heureux de dire a haute voix que Docteur Christian MARCHAL. 
Office national d'etudes et de recherches aerospatiales (ONERA) France, nous 
a donne beaucoup de suggestions utiles grace auxquelles nous avons pu achever 
et perfectionner les etudes actuelles dont nous re皿ercionsde tout notre creur. 
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本小論で扱った Schwarzschildの系に関しては、此処とは異なる蜆点から論じた事があ
る（井上， 1989)。

参考文献

1. Brumberg, V. A. 1991, Essential Relativistic Celestial Mechanics 
Adam Hilger 

2. Eddington, A. S. 1924, The Ma the且aticalTheory of Relativity 
Cambridge University Press 

3. E ins t e in. A. 1915, Preuss. Akad. 『iss.Berl in, Si tzber. 47 

4.平山清次 1930,天證力學 ． 一般振動論 岩波書店． 

5.井上 猛 1989,第23回天体力学研究会集録， p.156 

6. Inoue, T. 1992, Proceedings of the Twenty-Fifth SYI11posiu11 on 
Celestial Mechanics, p. 205 

7.井上 猛 : 2000,第32回天体力学N体力学研究会集録， p.147 

8. Le Verrier, U. J. : 1859, Annales de J'Observatoire I且perialde Paris, V 

9. Marchal, C. : 2000, Prri ivate communications 

IO. Newcomb, S. 1895, Astronomical Papers of the American Ephemeris, VI 

11. Schwarzschild, K. 1916, Si tzber. Deut. Akad. 『iss. Ber I in, 
Kl. Math. -Phys. Tech. 

(025091) 

235 



Subsystems in a stable planetary 
system I. A classification 

Kiyotaka TANIKAWA and Takashi ITO 1 
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Mitaka 181-8588, Japan 

Abstract 

Our planetary system is dynamically stable for the lifetime of the solar system accord-
ing to the long-term numerical integrations of planetary orbits (Ito & Tanikawa, 2002). we 
discuss various forms of subsystems of a stable planetary system which may contribute to 
maintain the system stability. It is well known that resonances play an important role in 
such a long time scale. We stress that contrary to the restricted problem such as the sta— 

bility of asteroids and comets, multi-planet subsystems may have variety of mechanisms 
for keeping stability. 

§1. Introduction 
The solar system is dynamically stable for at least five billion years in the past and four 
billion years in the future (Ito & Tanikawa, 2002; hcrcatcr IT2002). The orbital clements 
of nine planets are almost constant within a small range of variability for 9 billion years. 
Only the eccentricity and/ or inclination of Mercury might have a slight touch of secular 
change. We expect that if the solar system of nine planets would become unstable, then 
Mercury would be the first that makes a close encpunter with Venus or Earth and possibly 
dives into the Sun or is scattered away from the solar system. 
For the moment, we arc safe to say that the solar system is stable. We are apt to 
ask: Why is the solar system stable? This is a dangerous question because the question 
requires a'true'reason of stability. We instead ask: How is the solar system stable? 
This is a feasible problem. We can邸 kmore specifically.'What kind of stabilization 
mechanims arc working?'What kind of realization and what kind of characteristics do 
these interactions have?''Have these interactions continued to exist from the formation 
era of the system?'Are these interactions common to extra..c;olar systems? 
In the present paper and the one follows this, we address these questions and answer 
some of them or at least show the direction of study to be taken. Five-billion-year in-
tegrations of our solar system provided us information not only on the stability of the 
system but also on mechanisms acting on various subgroups of the system. These are 
the clue..c; for unveiling the mechanisms of keeping stability. The purpose of the present 
paper is to classify the groupings of planets, to exmanine the stabilizing mechanisms of 
our solar system and justify the validity of the classification. As is well-known one of the 
stabilizing mechanisms is the grouping of individual bodies. The whole system becomes 
stable upon making subgroups if otherwise unstable. One famous and typical example is 
the hierarchical structure of gravitating systems. We will see in this report other types of 
grouping in the solar system. 

1 email: tanikawa.ky@nao.ac.jp and t.it.o@t.abby.mt.k.nao.ac.jp 
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We start with classifying and counting subsystems. We do not claim that we count 
up all subsystems. A number of subsystems may have been overlooked. 

(1) (mean motion) Resonant pair 
1.1. Binary planets (Sister planets) 
1.2. Other 1: 1 resonant pair 
1.3. Other (mean motion) resonant pairs 
1.4. Resonant triples 

(2) Close neighbors (Cousin planets) 

(3) Planetary groups 

(4) Independent planetary subsystems 

In the following section, we describe individual subsystems and examine their stablity 
where it is possible. We specifically pay attention to the last three subgroups of the above 
list. 

§2. More about subsystems 

In this section, we consider subsystems in the Solar System together with possible 
subsystems which can be existent in other solar systems. If the latter subsystems do not 
exist in other solar systems, then this gives strong constraints on the formation process 
or mechanism of planetary systems. In some cases, we alter the existent subsystems and 
compare the stability of the whole solar system with and without this alteration. In other 

cases, we add perturbations from outside the Solar System. This stability analysis is only 
possible because we are sitting outside the solar system and in front of computers. 

2.1. Resonant pair planets 
If plural planets are in mean motion resonance(s), then we call these resonant multiples. 
If the number of planets involved is two, these are called a resonant pair. As is well-
known, there are an infinite number of resonances because there are an infinity of rational 
numbers. It is also known that higher resonances have smaller resonance regions. Thus, 
the number of resonant multiples are not so many though, up to the observational limit, 
every pair or triple, etc is in resonance. 

2.1.1. Binary planets 
A pair of planets in 1: 1 mean motion resonance is called a (1: 1 mean motion) resonant 
pair or simply binary planets. The member bodies have strongest interaction and connec-
tion. Examples are the Earth-Moon system and Pluto-Charon system. There may be an 
objection that these are not the planet-planet pairs. We do not know the reason why in 
our solar system there are no planet-planet binaries. We do not know why Jupiter and 
Saturn do not have satellites of mass comparable with that of the Earth or Venus. We 
may find these combinations in extr邸 olarplanetary systems. The formation process of 
planetary systems somehow prohibited these combinations in our solar system. 
Essentially, there are three kinds of binary planets. 

1) Pluto-Charon system 
In this sytem, orbits of both planets are sometimes convex and other times concave 
to the Sun. The semi-major axis is 17 Rpluto, the eccentricity is equal to zero, and the 
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period is 6.387 days. The masses are Mcharon = 0.08Mpluto・ The acceleration of Charon 
due to the Sun is 

acharon = GU。/rf。-charon)= 3. 79 X 10―6m/s汽
whereas the acceleration due to Pluto is 

a 2 
charon = G.l¥1/pluto/r[pluto-charon) = 2.63 X 10―3m/s2. 

(1) 

(2) 

The acceleration from Pluto is far larger than that from the sun. So, the orbit of 
Charon is always concave to Pluto. 

2) Earth-Moon system 
The orbital semi-major axis is 60REB, the eccentricity is 0.0549, and the orbital period 
is 27.3 days. The masses satisfy lvlmoon = 0.020MEB. The acceleration of the Moon due to 
the Sun is 

amoon = GU。/Tf0-moon)= 5.93 X 10-3m/s汽
whereas the acceleration due to the Earth is 

amoon = GA;Ja,/r[EB-moon) = 2.70 X 10-3m/s2. 

(3) 

(4) 

The orbit of the Moon is always concave to the sun. The interaction between compo-
nents is weaker than the Pluto-Charon system. 

3) Retrograde binary planets 
Mikkola & Innanen (1997) coined the term'quasi satellite'for the object orbiting the 
mother planet with unusually large semimajor axis. Wiegert et al. (2000) surveyed the 
stability of these orbits around outer four giant planets and found that low inclination 
orbits survive for the age of the solar system. This orbit is fairly large compared with a 
prograde satellite orbit. So a tentative system will have a relative distance greater than 
the Earth-Moon system. We classify these objects as a retrograde binary. 

2.1.2. Other 1:1 mean motion resonant pair 

1) Tadpol-type pair 
Typical examples are Trojan asteroids. If, instead of an asteroid, there is an object of 
planetary mass, the system can be called a planetary pair. There can be a pair that one 
of the members explores more wide area. But the position is always in front of the main 
member or in its back side. It seems that the stability of this pair is not well analysed. 

2) Horseshoe pair 
Theoretically, there can be horseshoe type pairs. However, there is a problem of long-
term stability. We do not so far find any pair of comparable masses in our solar system. 
Small objects are found in this position. It is interesting to see the stability including 
perturbative forces from other planets. 

2.1.3. Neptune-Pluto system 
This is a very special system maintaining its long-term stability using plural resonant 
mechanisms (Kinoshita & Nakai, 1995, 1996; IT2002). In the shortest time scale, this is 
a 3:2 mean motion pair. It roughly resumes the original configuration every five hundred 
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Figure 1: Variation of the angular momentum of eight planets for 2.5 million years from 

Brower & van Woerkom's (1950) theory of secular perturbation. From the top, Mercury, 
Venus, Earth, l¥!Iars, Jupiter, Saturn, Uranus, and Neptune. The ordinate represents the 

total angular momentum. The unit is 10-12 U。AU2day―1.
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years. In a more microscopic view, the critical argument 01 = 3入p-2入Nー匂plibrates 
around 180°. The period is 2 x 104 year. Thus, the system returns to the original 
configuration every 2 x 104 years. 
Pluto's argument of perihelion w p＝恥＝ wp-Oplibrates around 180°. The period is 
3.8 x 106 years. The system ressumes its original configuration, which takes into account 
the relative position of the ascending node, every 3.8 x 106 years. This is a very long 
periodicity. The longitude of Pluto's node referred to the longitude of Neptune's node, 

釦＝ Op-nN, circulates. The period of circulation is equal to the period of恥libration.
When longitudes of acending nodes of Neptune and Pluto coincide (03 = 0), Pluto's 
inclination becomes maximum, its eccentricity minimum, and argument of perihelion 90 °. 
When島＝ 90°,Pluto's inclination becomes minimum, its ecentricity maximum, and 
argument of perihelion 90° again. This was confirmed by Milani et al. (1989). 

There is a longer periodicity. An argument 04 =口p-匂N+3(0p-0刈libratesaround 
180°. The period is 5. 7 x 108 years. IT2002 showed that 04 varies between librations and 
circulation in 0(1010)-year timescale. This is one of the longest timescales ever known. 

2.2 Close neighbors 
In our solar system, the Earth-Venus system, if these two can be called a system 
at all, occupies a special position as a subsystem. The Earth and Venus are planets of 
similar character. Nonetheless, these two planets have not explicitly been regarded as a 
dynamical pair. According to the long-term integrations of our planetary system (IT2002), 

these planets have interesting behaviors. These are not in any low order mean motion 
resonance. In the secular perturbation theory (Brouwer & van Woerkom, 1950), their 
orbital angular momenta have negative correlation in a short time-scale (r",J million years), 
i.e., if one planet obtains the angular momentum, the other loses the angular momentum, 
and vice versa (the second and third panels of Fig. 1). This is also observed in our 

numerical integrations. In a longer time-scale (billion years), the orbital angular momenta 
seem to have a positive correlation (Laskar, 1994; IT2002), i.e., if, for example, one planet 
obtains the angular momentum, the other also obtains the angular momentum. Figure 
2 (the second and third panels) shows one of the numerical results taken from IT2002. 
This means that in a longer time-scale, these two planets behave synchronously against 
the perturbation from outside. They are repulsive each other in a shorter timse scale but 
move together against outer forces in a longer time scale. These may be alternatively 
called cousin planets. 
So far, our statement is of a qualitative nature. In order to quantitatively confirm 
the above statement and to see the difference from other conceivable pairs like Jupiter-
Saturn and Uranus-Neptune, we take correlations of orbital elements using the results of 

long-term integrations of IT2002. 
A simplest method of taking correlation would be, after removing the trend from a 
time series, that is, after subtracting an average value, to asign + (resp. -) to the data 
at t十△tif the value of a parameter at t＋△tis larger than or equal to (resp. less than) 
that at t. Pick up two time series and take the data according to the elapse of time. If 
at t both data have +, then we add 1. If at t one has + and the other has -, then we 
add -1. If at t both data have -, then we add 1. We sum up 1 and -1 made from two 
time series and divide by the number of data. This quantity p is the easiest index for 
the strength of correlation. If p is positive and large, then a positive correlation. If p is 
negative and large in absolute value, then a negative correlation. If the absoluet value of 
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Figure 2: Variation of the angular momentum of nine planets for 4.5 billion years showing 
qualitatively the correlation of orbital elements (reproduced from IT2002). From the top, 
Mercury, Venus, Earth, Mars, Jupiter, Saturn, Uranus, Neptune, and Pluto. The ordinate 
represnts the total angular momentum. 
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p is small, then the correlation is weak. 
The second easiest method which we have adopted is as follows. As before, we subtract 
the trend and obtain and average for each time series. From each data Xi, we get a 

normalized value Xi= (xi -x)／|団|． Thencorrelation p is defined by 

l N 
p＝一LXぷ
N 
i=l 

where Xi and~ are normalized data fro1n two time series. 

Table I. Correlation of the orbital energy and angular momentum in Earth-Venus, 
Jupiter-Saturn and Uranus-Neptune pairs. 

N+l Eneier-g0y 1 Ang， • l¥llom. z-c9o.m01p3o9nee-n0t 1 Venus-Earth -9.5563 8. 389e-01 
JUurpa iter-Saturn -4. 7369e-01 -1.1749e-02 -9. 9988e-03 
ranus-N eptune 9.6988e-02 -9.4638e-01 -9.4363e-O 1 
N+2 
Venus-Earth -9.1239e-Ol 7.8515e-01 8.3140e-Ol 
Jupiter-Saturn -2.0947e-01 2.2497e-03 5.9993e-03 
Uranus-Neptune -3. 7995e-02 -9.0689e-01 -9.0414e-Ol 
N+3 
Venus-Earth -7. 5304e-O 1 9.9014e-Ol 9.9272e-Ol 
Jupiter-Saturn -5. 7535e-Ol 5.5392e-01 5.6135e-01 
Uranus-Neptune -2.3225e-01 -l.5655e-01 -l.4569e-Ol 
N-1 
Venus-Earth -9.0385e-Ol 9.1585e-01 8.6786e-01 

JUurpaintuers--SNaetputrun ne -3.l 795e-Ol -6.6656e-03 -4.6659e-03 l.2198e-01 -9.0218e-01 -8.9585e-01 
N-2 
Venus-Earth -8.8844e-01 8.5159e-01 8.8302e-01 
Jupiter-Saturn -5.0593e-01 -4.3422e-02 -4.l 708e-02 
Uranus-Neptune 
N-3 

5.6563e-02 -9.6215e-01 -9.5958e-01 

Venus-Earth -8.2674e-01 9.5758e-01 8.5702e-01 
JUurpa iter-Saturn -8.1674e-01 3.8252e-01 3.8395e-01 
anus-Neptune -3. 7880e-Ol -1. 8083e-O 1 -1. 9054e-O 1 
short 
Venus-Earth -2.0819e-01 -1. 7899e-02 -l.5059e-01 

JUurpaintuesr--SNaetputrun ne -6.6097e-02 -4.5458e-01 -4.5498e-Ol 
-3.3998e-03 -4.2998e-03 -3.3998e-03 

We have several time series of long-term integrations of our planetary system. In 
addition, there are several dynamical and physical quantities for which correlations can 
be considered. This time, we consider the correlation of the energy, angular momentum 
and the z-component of the angular momentum. The results are shown in Table I. Let us 
first explain the meaning of N士i(i = 1, 2, 3) and'Short'in the table. N + i (i = 1, 2, 3) 
is for the future and N -i (i = 1, 2, 3) is for the the past. Except for N -3 for which the 

Nloon is neglected, the Earth-1¥tioon barycenter has been adopted in the integrations (see 
IT2002, Table I).'Short'is obtained from the initial 10 million years of N + 2. It is to be 
noted that data series N土ihave passed a low-pass filter, whereas'short'data have not. 
The first feature we point out is that the correlation is strongest in the Earth-Venus 
system. This confirms our first impression looking at Figs. 1 and 2 that the Earth-Venus 
may form a pair. The second characteristics seen in the table is that the Earth-Venus 
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system has reverse correlations in long and short time scales. The contrast between long 
and short time scales may be more conspicuous if we take a shorter time series for the 
shorter data. In 10 million times scale, the correlation seems in a transition, i.e., the 
correlation is rather weak in paticular for the angular momentum. The correlation of the 
energy is negative in both cases, that is, if the orbital energy of the Earth increases, then 
the energy of Venus decreases in any time scale, and vice versa. The correlation of the 
angular momentum has a different character. In the shorter time scale, it has the same 

character as that of the energy. However: in a longer time scale, the angular momentum 
correlation is positive. It means that both planets gain and lose their angular momenta 
synchronously. Both planets behave as a unit against external perturbations. The third 
characteristics seen in Table I is rather unexpected. The Uranus-Neptune pair has strong 
correlations for the angular mon1entum. Correlations are negative in the long time scale, 

whereas the correlations are very small in the short time scale. The energy correlation 
is weak in both time scales. Thus, Uranus and Neptune move independently in a short 
time scale, whereas in the long time scale, their motions are related. When Uranus gain 
the angular momentum, then Neptune loses and vice versa. As a pair, the connection is 
weaker in the Uranus-Neptune pair than in the Earth-Venus pair. 
It is interesting that l¥!Iercury and l¥!Iars seem to have a positive correlation for the 
angular momentum in the long-term. However this is a consequence of the fact that each 
planet behaves with negative correlations to the Earth-Venus system. We cannot say 
that :tvlars and Mercury consitute a system. 

2.3 Planetary groups 
So far, most of the efforts on the stability problem of our solar system have been 
concentrated on the motion of small bodies like satellites, asteroids, and rings. Recently, 
Kuiper-belt objects are added to the list. In other word, most studies treated the stability 
problem as a restricted problem in the sense that bodies for which the stability of motion 
is examined are assumed to be massless, and give no responding force to perturbers (see 

the review papers by Wisdom, 1987; Lissauer, 1999; Lecar et al., 2001). 
There have occasionally been numerical studies on the stability of the whole solar 
system. 350 years of Eckert {1951) was the first. Then, in the chronological order, 120 
thousand years of Cohen & Hubbard (1965), 1 million years of Cohen et al. (1973), 5 
million years of Kinoshita & Nakai (1984), 100 Myr of Nobili et al. (1989), and so on. The 
longest record at present (2002) is土5billion years integration of 9 plantes by IT2002. 
IT2002 have shown that our solar system is stable 5 billion years in the past and 4 billion 
years in the future. 
There have been a small number of systematic studies of the stability of planets as a 
group in our solar system. One of the first trials has been done by Gladman {1993) and 
later by Chambers et al. (1996). Ito & Tanikawa (1999 or IT1999) noticed the importance 
of these ideas to apply to the actual solar system. IT1999 were the first to examine the 
possibility that Jupiter form prior to the formation of terrestrial planets. The idea was 
that the existence of Jovian planets, especially the existence of Jupiter may affect the 
formation process of terrestrial planet group and even now affect the stability of this 
group. 
Ito & Tanikawa {2001 or IT2001) also noticed that the so-called outer planetary group 
or Jovian planets form a subsystem which are not affected from other groups. Indeed, the 
motion of the Jovian planetary group may be not altered if there is no terrestrial planet 
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group. On the other hand, the terrestrial planet group receives the secular perturbation 
of Jupiter (l"'V 300 thousand year periodicity of the motion of Jupiter's perihelion) and 
make it uninfluential by sharing the effect of perturbation (IT1999). 
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Figure 3: The contours of the same instability time. The results of the numerical inte-
grations with the Earth and Venus merged. The ordinate and abscissa are the semimajor 
axis and eccentricity of a merger. The inclination is related to e by 21 = e. 

In order to check the meaning and role of this kind of subsystem, one somhow alters the 

terrestrial system and see what happens. Innanen et al. (1998) examined the dynamical 
stability of the inner solar system by removing each of terrestrial planets in turn. They 
found that a drastic phenomenon takes place when the Earth-Moon system is removed. 
The eccentricity of Venus oscillates with large amplitude. If Mercury is included, then 
the large oscillation of Mercury's eccentricity takes the role of Venus. Venus is nearly 
at the position of secular resonance from Jupiter. Innanen et al. (1998) interpreted 
that the Earth-Moon system suppress the secular resonance. IT1999 gave a slightly 
different interpretation to this phenomenon. Terrestrial planets share the effect of the 
secular perturbation from Jupiter. Eccentricities of all the inner planets increase. The 
mechanism is simple. Due to the perturbation of Jupiter, the eccentricity of Venus tends 
to increase. The eccentricity of the Earth increases according to the long time scale 
behavior of correlations in Table I. In other words, the Earth shares the increase of the 
eccentricity of Venus. The enhancement of the eccentricity is weakened by sharing. 
Yet another method of checking stability is to merge two of the planets. To conserve 
the total mass, total energy and angular momentum is a too restrictive condition, so 
we consider two cases in which the total mass is conserved and either energy or angular 
momentum is conserved. We survey the stability of the altered system around the specified 
position. The position of the merger will be at a ~ 0.855AU if the merger has the 
mass of the Earth and Venus and the orbital energy of the Earth and Venus neglecting 
the eccentricity. Indeed, we put the merger at various places between a = 0.645AU 
and a = 0.930AU with e ranging from O to 0.5. The number of different sets of initial 
parameters are more than 150. To reduce the number of integrations, we assumed e = 21. 
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The result of stability analyses is depicted in Fig. 3. Here the abscissa is the semi-
major axis and the ordinate is the eccentricity or inclination of the merger. Instability is 
meant if the orbit of some planet crosses the orbit of another planet. In our case, always 
Mercury does this. In the figure, the contours of equi-instability time are drawn. The 
lines with purple color corresponds to 100 my, i.e., the system is stable until 100 my. We 
need longer integration times to see the final fate of the system. We see two unstable 
intervals of semi-major axis centered at around a = 0. 72 and a = 0.88 with e = 0. These 

are the positions of secular resonance from outer planets. Figure 4 shows this. In Fig. 
4(top), the secular resonant motion of 1vlercury with the merger at a = 0. 73 is shown. 
The position of the merger is close to the resonance with Jupiter. Here instead of the 
increase of the mergers's eccentricity, !vlercury's eccentricity increases. The number of 
points is small because Mercury soon becomes unstable. Figure 4(middle) and {bottom) 
show the secular resonant motion of Mercury with Jupiter and Uranus when the merger is 
at a= 0.88. We stopped the integration at t = 108 years in most cases. Between a= 0.8 
and a= 0.85 and for small e, integrations are done until t = 109 years. The stable area 
in Fig.3 becomes smaller if we extend the integration time. 
We can conclude that if the Earth and Venus merged in the early solar system, Mercury 
would have in high probability escaped away. The individual roles of the Earth and Venus 
as they occupy the present positions in the terrestrial zone contribute the maintenance 
of the stability of our planetary system. As pointed in IT1999, terretrial planets keep 
their stability by sharing and weakening the secular perturbation from Jupiter. The 
Earth-Venus system plays the distributor of the effects of perturbation. 

2.4 Independent planetary subsystems 
Innanen et al. {1997) carried out interesting numerical simulations. They put a 
companion star of 0.02,......, 0.51¥.1;。at400AU from the Sun with a circular but inclined orbit 
from the invariant plane of the solar system with various inclinations. They wanted to 
see the stability of a planetary system in a binary. They took as a representative case 
the Jovian planetary system (Jupiter, Saturn, Uranus, and Neptune) and tried to see 
its behavior under the perturbation of a companion star. It was initially expected that 
Kozai mechanism will independently drive the inclination variations of planets and hence 
planets would soon experience close encounters. For a suitable parameter set, however, 
the Jovian planetary group shows a stability. The Kozai mechanism of individual planets 
is suppressed and the motions of the ascending node of the planets synchronize. They 
called this synchronous state a dynamical rigidity. 
In our context, two experiments of Innanen et al. {1997, 1998) can be used as a 
tool for checking the strength of connection among planets against internal and external 
perturbations. The first experiment (Innanen et al., 1997) is a check for the unity of 
the system against external perturbation. The second experiment {Innanen et al., 1998) 
can be arranged to test the internal rigidity of the system. We will explain these in the 
corresponding subsections. In both cases, if there is no rigidity in two subsystems and 
these two are stable, then we can regard that these two systems are independent. 
We give here a preliminary result in a sense that the number of experiments are not 
enough. We divide our planetary systems into three groups: [1] Mercury, Venus, Earth, 
Mars, and Jupter; [2] Saturn; [3] Unanus, Neptune, and Pluto. We will carry out numerical 
integrations of orbits with and without the second group {Saturn). 

2.4.1 Rigidity against internal perturbation 
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Secular resonance (Mercury vs. Venus+Earth) 
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We carry out two integrations over 100 million years. In the first calculation, Group 

[l] and Groups [2] + [3] are inclined by 20°. In the second calculation: Groups [l] and [3] 
are inclined 20° each other, whereas Group [2] is not included (see Fig. 5(a)). 

(a) 
／ 
(b) 
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 ． 

／ 
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/... 30゚

···•~•-•·•··•...*..• • • ●.．．．． 
Saturn 

Figure 5: Initial configurations of planets for checking rigidity, (a) rigidity against internal 
perturbation, (b) rigidity against external perturbation. 

Possible results are : (i) The sytem in the first calculation is unstable, whereas the 
system in the second calculation is stable; (ii) Both systems are unstable; (iii) Both 
systems are stable. Result (i) implies that Saturn plays the role of pivot to connect 

outer and inner planetary systems and the planetary system compises two independent 
subsystems without Saturn. Result (ii) implies that the connection among planets are 
strong enough irrespective of the existence or non-existence of Saturn and the planetary 
system is unstable with other configurations. Result (iii) implies the parameter used in 
this investigation is not suitable to check the independence of subsystems. 

Numerical results are shown in Fig.6. At around t = 4.4 x 106 years, the system with 
Saturn becomes unstable in the sense that Mercury's eccentricity becomes as large as 0.8 
and more (the upper panel of Fig. 6) and its inclination approaches 60° (the lower panel 
of Fig. 6). In the system without Saturn, the ecentricity of :tvlercury oscillates stably 

between 0.18 and 0.23, and the inclination has similar variations (Fig. 7). Result (i) is 
attained. Saturn plays the role of a pivot between outer and inner planets. It is to be 
noted that the terrestrial planets join the rigidity of the whole planetary system. This 
again confirms the rigidity of terrestrial planets against the perturbation of Jupiter. 

2.4.2 Rigidity against external perturbation 
We use Innanen et al. (1997)'s numerical experiments as a method of measuring the 
strength of connection among planets against external perturbations. Rigidity implies the 
unity of the system. If there is no rigidity in two subsystems and these two are stable, 
then we can regard that these two systems are independent. 
We carry out two integrations: one with Saturn and the one without Saturn. In 
both cases, a perturbing star of mass 0.2.M;。moveson the circular orbit of 500AU with 
inclination 30°. The initial configuration is shown in Fig. 5(b). The integration time is 
100 million years. The results are shown in Figs. 8 and 9. Interestingly, both systems 
are stable and have synchronous motion of nodes n. Though initially the nodes are 
distributed random on each orbits of planets, they converge and gather. Inclinations of 
planets change together (middle panels of both figures). The only noticeable difference 
is that the oscillation amplitude of Mercury's eccentricity is smaller when Saturn is not 
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existent. Jupiter affects the motion of Uranus and Neptune without the connection of 
Saturn. This is rather a surprising fact. 
The difference of the results of sections 2.4.1 and 2.4.2 indicates that the independence 
of planetary groups should be examined more carefully. The different checking methods 
may discriminate subtle differences of the systems otherwise overseen. The existence or 
the non-existence of Jupiter may be more explicitly related to the independence of outer 
and inner planetary systems. 

3. Discussions and Summary 
We examined several groupings of planets. Some of the groupings are not real in 
our solar system. The existence of a particular grouping of planets should have reflected 
the formation process of planets and planetary systems. Thus for example, there are no 
binary planets in our solar system. There are binary asteroids and binary Kuiper-belt 
objects. Pluto and Charon may be interpreted as a binary Kuiper-belt objects. The 
Earth-Moon system may be conceivable as binary planets. However, the hypothesis of a 
giant impact which is most successful at present in explaining the formation of the Moon 
presupposes the existence the Earth prior to the impact. The hypothesis is not compatible 
with binary planets. We may need to consider different formation processes to obtain a 
binary of comparable masses. Can a binary of comparable size be produced through a 
giant impact? 
Binary planets are in a sense a paradoxical objects. Suppose a multi-planet planetary 
system. In general, the system becomes unstable if two of the members make a close 
approach. However, if the two are close enough and continued to be close enough, then 
these two constitute a subsystem and the whole system becomes stable once again. The 
difference is that through many body interactions, gravitational potential energy is re-
leased from the binary and is given to the remaining constitients of the system as kinetic 
energy. If the whole system has negative enough energy so that kinetic energy does not 
cancel out the total energy, then the system remains stable. So binaries of small masses 
can be possible to form. Dissipative media may help to form binaries by absorbing the 
energy and scatter itself away. Planetesimals are one of the candidates. Thus, a planetary 
system can release energy when it forms. The Oort cloud may be interpreted as an object 
resulted from the energy release. 
As a subsystem, cousin planets sit between binaries (sister planets) and planetary 
groups. Binaries can be regarded as a single body because the motion of the center of 
gravity frequently replaces the individual motions of the components. Cousin planets 
turn out in the present study to be important first because one component suppresses 
the orbital instability of the other component and secondly because they transmit the 
perturbation to other members of a larger subgroup to stabilize this larger subgroup. 
The Earth-Venus is a good example. Uranus-Neptune may be weak cousin planets. 
Numerical experiments confirm that the N-body considerations are important. Secular 
perturbation theory predicts the position of secular resonances of massless particles. In 
the non-massless pertubed system, secular perturbations may be nullified or the position 
of secular resonance may be moved off the system. 
A planetary group is a collection of loosely connected mutually dynamically dependent 
planets. A typical example is the terrestrial planets. As Innanen et al. (1998) showed, 
if one of the important members is void, the terrestrial system becomes unstable against 
external perturbation. In the present paper, we showed that if two of the members merge 
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Figure 7: Rigidity against internal perturbations. The planet紅 ysystem of Fig. 5(a) is 

stable if Saturn does not exist. Variations of eccentricities (top) and inclinations (bottom) 

of planets. 
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into one, the system becomes unstable also against external perturbation. Even if one of 
the members is in strong secular resonance with perturbing bodies, all the members share 
the perturbation to stabilize the whole subgroup. The configuration itself contributes to 
the stability of the system. This gives a strong constraint to the formation process. 
If there are two independent planetary subsystems around a star, We may say that 
planetary formation processes took place twice. These may be expected in a binary stellar 
system. One planetary system is around one member of the binary and the other system 
is around both member stars. 
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Abstract 

We have studied the change in planetary obliquity near a spin-orbit resonance through 
numerical calculations and analytical arguments. To clarify basic process of the obliquity 
evolution, we have considered a simple system that consists of a host star, a hypothetical 
terrestrial planet, and a hypothetical giant planet. When the precession rate of the spin 
axis of the terrestrial planet coincides with the frequency of secular variations in its orbital 
inclination, spin-orbit resonance occurs and the obliquity of the terrestrial planet has large 
variations. We investigated time evolution of the obliquity near the resonance through 
numerical calculations of secular precession equations as well as analytical arguments. We 
derived the resonance width semi-analytically. Using this result, we predict the resonance 
region as a function of semi-major axis for a given giant planet. 

1 Introduction 

In general, the orientation of the planets'spin axis is not fixed, but cha~ges all the time. 
Because of their equatorial bulge, planets are subject to torques arising from the gravitational 

forces of their satellites, host star and oth~r planets. This causes precessional motion of the spin 
axis. Since the planets'orbits exhibit secular variations induced by gravitational perturbations 

exerted by other planets, the obliquity of the planets (the angle of the spin axis relative to the 

orbital plane) generally changes periodically, too. At present, Earth's spin h邸 aprecessional 

period of about 26,000 years, and its obliquity varies by士1.3degrees around the mean value of 

23.3 degree. Such obliquity variations would affect the planet's global climate through insolation 
change. 

'i¥'ard (1974) and Vvard & Rudy (1991) showed that large f'.J土10degrees variations of the 
obliquity of f¥.-Iars are caused by the spin-orbit resonance, employing the secular precession 

equations (Eq. (1)). Here, spin-orbit resonance 1neans that the precession rate of the spin axis 
coincides with one of the eigenfrequencies of secular variations in the orbital inclination. 

O,・erlapping of spin-orbit resonances 1nay cause chaotic Yariations of the obliquity of ter-

restrial planets ('Varel 1992, Laskar & Robutel 1993, Tou1na & Vlisdom 1993). The 1naxin1un1 
oscillation ainplitude of orbital inclination at a spin-orbit resonance was approxin1ately deriYed 

by,,~arcl (1993), through a nonlinear analysis of the secular precession equations. If changes 
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i l l l) l a ll (‘t a l・ • V (） l• I) i t a l i l l (• li l l a t i(） l lS a l•(. (l l l a s i-l)（≫ r i (） (l i (•. S(＇(. l l l a l. l) （‘l • t l l l• I)a t i (） l l t l l (》(）1・ • V ((•. g.．l } r(） 1 1 ¥V(’l' 
k Clem(_‘ll(•(、 196 l) I)l•('dias locat iollヽ・ ()f t ll(＇ spiu-（）rbit 1•('S( ) Ilalk(‘S. 
Laskar (1989) showed that orbital(》volutioll of th(_~ terrestrial plauet.s has Lyapu110,・ tiuie 

S(•al(l ~ 1 07 ycars, why may imply t hat t lw orbital cvolllt ion is (•haot ic ou at illl{‘S(al() ~ 1 (）7 
rears (although their orbits are globall~-stahle). The chaotic orbital en>lution of plauets results 
in nwre co111plicated obliquity changes (Laskar & Rohutcl 1993). 
¥Vit.h Fourier spectnun of ti1neー(hp(‘ll(l(‘llt(‘igenfr(、（lll(_}ll(•ies for orbital ill(•lilla tioll variatiollS 
obtaiued by Laskar (1990), Laskar & Rohutel (1993) iutegratecl the secular precessiou equations 
with wide ranges of initial obliquity (t=0) and the precession pararneter (n). They found large 
chaotic regions in the t=0-o: plane and suggested that the obliquity of all the terrestrial planets 
except the Earth in the Solar systen1 could have experienced large and chaotic variations. 

Since the procedure to find the chaotic regions by Laskar & Robutel {1993) is rather con1pli-
catecl, it would not be easy to apply their results to rnore general extrasolar planetary systems. 

Laskar & Robutel {1993) suggested that argu111ents based on the spin-orbit resonances can be 

still used to understand qualitative features of their results. Here we are interested in obliq-

uity variations of rocky planets in habitable zone in extrasolar planetary syste111s where a gas 

giant planet(s) has been detected. Large obliquity variations, even if they are not chaotic, may 

inhibit habitability. 

For this purpose, we re-analyze the spin-orbit resonance in n1ore general fonn. In order to 

clarify fundarnental processes of obliquity evolution, we study a systern containing a host star, 

a hypothetical terrestrial planet and a hypothetical giant planet, in wide parameter ranges. 

In particular, :ヽveinvestigate the behaYior of obliquity near a resonance through analytical 

argu111ents and nun1erical calculations of the secular precession equations. In section 2, we 

briefly sum1narize the spin-orbit resonance. ¥Ve show results of nu1nerical calculations in section 

3. In section 4, resonance width is cleriYecl serni-analytically. In section 5, we briefly discuss 

the regions for a hypothetical terrestrial planet where its obliquity variations becon1e large by 

the spin-orbit resonance. 

2 Basic Equations and Model 

¥Ve consider a syste1n containing a host star, a hypothetical terrestrial planetヽvith axisynunetric 

shape and negligible mass, and a hypothetical giant planet. ¥Ve assurne the two planets initially 

have circular orbits around a host star. ¥Ve nun1erically solve the orbit-averaged Euler equations 

(secular precession equations) given by ¥¥Tard (1974): 

ds 

dt 
- ＝ a(8. n)（3 xれ），

where s is a unit Yector in the direction of the spin axis with con1ponents 

(1) 

I

"

)

こ

s
s
s
s
 

sin 0 sin仇

-sinO cos t'， 

cos 0, 

(2) 

(3) 

(4) 

H is tll(、auglcl) (1t\9•e(:‘n the spin axis and the z-axis, andいisthe longitude of the equator of the 
t m•rcst riall)lall(‘t i u ill(‘rtial franl(‘. Thc pl'（‘('（‘ssional (•onstant nis giv(—‘l l hv 

3G(C'-.-!) J/1 
n= ―.  
2C'-’ (l. ¥ 

(5) 
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wl町(、 (-T'istll('gl.avi tat iol lal (•() IISt a I It.．¥ l l is t l l('l l l 9lS (）l. t 1 l(、hoststar. (('-.-l)/C'. -.1.1'a11d a 
al'（, t l1(＇（lyllami(，．al dlipt idty, t ll(‘spiu rat(_’,aud tlw se111i-uwjor axis of th(、tm•cst rial plall(_，t. 
respecti,・ely. In our cakulation, we assu111(_! (C'-.-l) / C and,.;J are constants. 
れisa unit YPctor 11on11al to the orbital plane. 

r
"
”

こ

．
 

I

、,

I

l

l

l

 

＝ 

sin J sin n, 
-sin J cos n. 

cos I: 

(G) 

(7) 

(8) 

where I is the orbital inclination and fl is the longitude of the ascending node of the terrestrial 
planet. ¥Ve here adopt the orbital plane of the giant planet as the reference frame. According 

to secular perturbation theories (e.g., Brouwer & Clcn1ence 1961), the Yariations in I and n 
are giYen as 

I

Q

 

＝ 

＝ 

const., 

-Bt+O。,
(9) 

(10) 

where n。isthe initial ascending node of the terrestrial planet. B is 
l AI2 

B=n-―a咽恥），
4 l¥/1 

(11) 

where n is the rnean motion of the terrestrial planet, J1h is the rnass of the giant planet. o:2 is 
a/ a2, where a2 is the semi-major axis of the giant planet. b塁isa Laplace c~efficient. 
The obliquity of the terrestrial planet €, the angle between i,, and s, is obtained by 

＾ ^  n • s =cos€. (12) 

The relationship between the reference plane, orbital plane and equator is schematically shown 

in Figure. 1. 

Substitution of Eqs. (2) to (8) into (1) yields 

o.” 
a cos EI sin(1/J -0) + 0(1り，
-acos€ +0(I)． 

(13) 

(14) 

with the assun1ption I<<1 (¥,1arcl 197 4; note that definition ofゆisdifferent). ¥Ve denote the 

precession frequency of the spin axis r-..J -a: cos f. by PJ・ ¥Vhen I ~ 1, 0'.:::'. f.. Since the sign of 

iJ chan~es':ith frequency（いー切， f.and 0 usually oscillate with a1nplitucle r-..J('J（I). However, 
when,J; -n'.:::'. -a: cost+ B'.:::'. 0, oscillation period oft becomes very long and t has a large 
a1nplitu<lc~. This is the spin-orbit resonance. 
n has dependence asれ＝れ(I,Bt). If we scale tin1e by a-1, Eq. (1) is transfonned to 

(IS 
(I 
B-:. 
） ］ ［ 

B-:. 
~ = [s ・ n(I, —t))[s Xれ(I.-t) 
一dt a (l‘ 

(15) 

wherP 1 = n t. This c•qua t ion shows that the eYolution path of s is dependent only on th(、valll('S
of I aud B/o. ＼＼•(、 will show that t 11<'eyolution path near a n•so11a11ce can be written as a fonu 
iud(‘l)（‘ll(l(‘ll t o[ J alul B /（¥ \\• i t l l l•I I L•t ll(‘L• S(•aling oft and (•()S f. 
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z
 

X 
Reference plane 

Equator 

Figure 1: Relationship between the reference plane, orbital plane and equator. s is the unit 
Yector in the direction of the spin axis: n is the unit Yector nonnal to the orbital plane: E is the 
obliquity, 0 is the angle of the（、qnatorrclatin1 to the reference plane: l/J is the longituclP of thC' 
equator, I is the orbital indi11atio11. aud n is the longitude of the ascending node. 
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(a) a= 1.3 AU, I= 1.3 (b) a= 1.0 AU, I= 1.3 
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Figure 2: The tirne evolution of the obliquity E of the terrestrial planet. ゅ。 isthe initial 
longitude of the equator of the terrestrial planet,ゅ．

3 Numerical Results 

¥Ve integrate the precession equations (1) over 106 years, using a fourth order Runge-Kutta 

scheme. Here we adopt (C -A)/A = 0.00335, w = 7.292 x 10-5 rad/year, which are the same 
as the current Earth's values, 1,11 =.~1。, （12 = 5.2 AU and砧＝ 2め（AIJ is the mass of 
Jupiter). 

Figures 2 shows exa1nples of time evolution of c : (a) off-resonance case_ (a = 1.3 AU and 
I= 1.3°), (b) the case of resonance (a = 1.0 AU and I = 1.3°). Initial obliquity co is 20° in 
both cases. ゅ。— Q。 ,where 珈 is initial precession angle, is 0°, 45°, 90°, 135°, and 180°. c 

oscillates regularly with periods f'J 106 years. In the off-resonance case, the variation amplitude 

is ～叩）， whilethatintheresonance caseis much larger than O(I)． 
To investigate the resonance width at a = 1.0 AU, we did similar calculations for different 
initial obliquity fro1n 0° to 90° with 1 ° step size. The minimum and n1axiinum values of c 

plotted as a function of co in Figure 3 (the lower panel). p 1 / o: and B / o: are also plotted in 
the upper panel. The resonance occurs when JJ f / o: ::: B / o:. Fig. 3 shows large resonance zone 
extending fro1n 15° to 55° around exact resonant obliquity c,. ::: 40°, where c* is defined by 

B / n = cos c*. Even if it. has the sa1ne initial obliquity, the amplitude depends onゆo-Q。.
To explain these features, we inYestigate cYolution of x盲三ゆ— n and its tiine clerivatiYe 

!J ＝ （‘J)遺）／叫 ~(-OCOS €+B)／叫， \\'here0＝汀石訂国立＝ ✓I（B/0)』て万五予 (Eqs.
(10) and (14)). The 111caning of the scaling fact or,1J for!Jwill be clear later. Since n and B are 
fixed, the eYolutiou off is uniquely detennined h~· that of:.l)．Forゆo-0。=1r,tiine evolution of 
y for the results in Fig. 3 is Hhown in Figure」.Trajectoriesstarts at 1/Jo -n。=1rwith different 
e0. that is different iuit.ial y(=.tJo) . Trajcrtol•i(‘s wit h-2るリ0;S 2 show lihrat.iou around the 
center of n c・os f = fl (y = 0) andじー n= 11 (.r = 1r L while the other trajC'etorit's show 
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(• i l'(• I l l at i (）） l. 1̀ l 1 (、 i•( ）l'll l (‘l'（．aS(IS tl l'(＿1..  1・（ド()II (l ll (•(‘· •.'[ l l (` t rai (‘(• t (） l•i(‘s wi t l l l i l) ra t i (） I l g(I I I (‘ra l l. v l l tl V(‘ 
ltll'邸 l)01•iodic val•iatiollS. that is. largC l)Cl•iodi(. obliquity,．ariatiollS. Not,(、that,aS lllClltiollml 
before, Eq. (1) is scaled with o and hence the contour 111ap of Fig. 4 holds for the cases ¥¥'hid1 

haYc the sa1nc B / a. For the parameters adopt.Pd her(‘• リ＝ー2 and 2 correspond to f :::'. 15° 
and :::'. 55°, respectiYely, which explains the results in thE、lowerpanel of Fig. 3. In this cas(—~, 

resonant width inリis:::'. 2 for that in E :::'. 20°. 

For other I and B /a(= cos E* L the libration rang'(、in、リ canchange in principle. Resonance' 
width depends on cos<:* and J as in Figures 5. Since n and B are dependent on a, different 
a corresponds to different cos f*. Fro1n these results and the results with other cos E* and J, 
we found the resonance width changes approxin1ately as ex /112 and weakly depends on cosり

However, we will show the evolution trajectories on the① -y plane do not change for other I 
and B / a: at least near a resonance. 

a= 1.0 AU, I= 1.3 
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Figure 3: The lower panel is the minimum and maximum values of obliquity E over 106 years 

calculation as a function of initial obliquity Eo-PJ and B scaled by a are plotted in the upper 
panel. 

4
 
Analytical calculation 

¥Ve derh・e an analytical solution to Eq. (1) near a resonance. Near a resonance (n cos E ~ B), 
Eqs. (2) -(4), (6) --(8), (13) and (14) lead to 

d 

dt 
-．,じ=a洵，

(l d 
ーリ＝一(s. れ)~ -o:,{3 sin :r. 
di V dt 

(16) 

(17) 
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I << l. ¥Vith況 aledYarial >les 
一t = （,Jt, 

Eqs.（16) and (17) arc l•(‘(lll( :()( l to 

d 
_(lt .l、●=仏

(l 
ーdtリ'.::::'. Sill ;r, 

(18) 

(19) 

(20) 

which are independent of I and B/o. The equilibriu1n points are y = 0 and sin x = 0 (x = 0, 1r). 
x = O is unstable against s1nall displace1nents.. T = 1r is stable. 
Let &r and <Sy be s1nall displacen1ents fro1n the equilibriu1n point, 1: = 1r and、リ＝ 0.Eqs. 
(19) and (20) gives 

d 
----:::.d 6.1: ～ 6 t - Y, 

d 
-dt 6y ~ ・ _— o.1,' . 

The solution is 

紅＝ Ccos(i +う），

(21) 

(22) 

(23) 

where C andぅ,are constants of integration which are detennined by initial conditions 1j10 and 
€0. Substituting Eq. {23) into Eq. {21), we have 

c5y = C sin(t +う）． (24) 

Eqs. (23) and (24) represent librating n1otion centered at x = 1r and y = 0 with libration 
period 21r in unit of i. The scaling factor a= for i appears to be angular velocity 
for the libration. 

As 1nentioned in Sec. 3, if a, B and J are given, f uniquely corresponds to sonic value y. 
Therefore Figure 4 explains the evolution off. If a starting point is on closed trajectory,.1: and 
y librate around the equilibrium point and f exhibits large variation. Equations (19) and (20) 

have an integration as 
1 

H = -' 2 
ぅ•
リ＋ COS.T~
▲一‘

(25) 

where H is constant. Different Yalues of H corresponds to different trajectories. In Fig. 4, we 

start with cos x = -1. Thus, the trajectory withリ0corr(3Sponcls to the contour of H =リ説／2-1.
Trajectories of libration correspond to -1 :s; cos :r :s; 1 atリ＝ 0,which is equivalent to 
-1 :s; H :s; 1. Since IYI takes a 1naxin1u1n yalue = J2.面了可 atcos.-r = -l(.1; = 1r) for each 
trajectory, 

IYmaxl = 2. (26) 

In Fig. G. these analytical estilnates are con1parPd with 111111wrical results in Fig.-1.which 

agn¥P "・ith Pach other. N u1nerical r0s11lts with other / and 13 / n also agree with the anal~·tieal 
estilnates. 

Thn•( '[ol•(‘99'e clcriv(-、clthe resonan(_．c width sm11i-a1rnlytindl.,・ as 

|(5(•()S (| 
IIIと1X
= 2《I(•()S( ヤ sill (≪ • (27) 
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11l(‘(l(1WIl(l(‘ll( ．（ヽ ol• I(i (（）S f |,11、IX(）Il f* aIl(l l as w(ol l as t l l(‘lllagll it 1l(l(—、 ill t ll(，a l)（）V(、allll(）St 

co1nplet.el~· ag1でes"・it h t.he 11un1erical results. ¥ Yard et al. (1979) deriYed j6fl ～り万盃~ at 
a resonance. through higher order expansion of Eq. (1). although the detailed dcrinltion is not 

presented. ~-\lthough his result does not ha,・(-、aIlydq)（‘ll(lCll(,．C Oll lr'（） and€o -(＊とlll(litill(•ludcs 
uncertainty of a m1nwrical factoL it is consistent with Eq. (27) in the li111it ofふ→ 0cxpPct 

for a munerical factor. 

5 Conclusion and Discussion 

,,1e have investigated the evolution of obliquity through analytical argurnents and nu1nerical 

calculations. ¥Ve re-analyzed the spin-orbit resonance in a more general form. ¥Ve considered 

a system containing a host star, a hypothetical terrestrial planet, and a hypothetical giant 

planet, and calculated the evolution of obliquity E of the terrestrial planet in wide ranges of 

parameters I, B, a, and initial conditions of E and 4J -0, where I is the orbital inclination, B 
is the frequency of the orbital variation, a is the precessional constant, E is the obliquity, ・l/J is 
the precession angle, and n is the longitude of the ascending node. 
¥Ve found the following results: 

1. Evolution of obliquity is described by a contour 1nap on the plane ofぉ＝u -Q 
and y =（い― O)／吋I(B/a)汀言戸． Differentcontours correspond to 
different initial conditions of E and ゆ— n. The contour map does not depend 

on I, B, and a. 

2. In the librating region centered at a resonant point, cos E* = B / a andゆーn= 7r 
(x = 1r, y = 0), the obliquity has variations with large arnplitudes (Fig. 3 and 

4). 

3. The width of libration region is 18、Ylmax= 2, which reads as 

18 COS fl max~ 2✓/cos f* sin€,.. (28) 

The range of the obliquity variation near a resonance f* is 

cos―1 (COS€* + 18 COS ti max)::; €::; cos—1(cos€* -l6costlmax). (29) 

Note that the,Yidth of resonance region does not explicitly depend on the masses and sen1i-

major axis of the terrestrial planet and the giant planet. In Figure 6, we plot this range as a 

function of a, in the case of I = 1.3° and the other para111eters given in section 4. If another 
giant planet is considered, the large variation regions are expressed by the superposition of spin-

orbit resonances due to individual eigenfrequencies of orbital change of the terrestrial planet. 

If the resonant regions overlap, the obliquity variations could be chaotic. 
I¥Iany extrasolar giant planets have been found around nearby solar-like stars. Substituting 

the rnasses and t lw se1ni-111ajor axes of such planets、¥vecan obtain the resonance regionsヽvhere

obliquity nuiations ar(、largeby the spin-orbit resonance if planctar~· cllipticities and spin rates 
are giYen. l11 a s~·stP111 with a giant planet with relatiYely large s(:'tni 11iajor axis, Earth-like 
planets (snrnll rock~- planets) n1ay exist inside the orbits of the giant plauC'L For life to exist 
in such a Earth-lik(、planet:the planet n1a~· IH'<'d to haYe not 0111~· H:!O ocean but also orbit 
aud obliquity ¥¥'ith small nuiation to keep the din1ate stable..¥ssmning probable Yalues of 

elli pt ici t,．̀ト.t¥l l ( l t l l (‘ S l) i l l l.tl t （ー、． \\•e n1a.＼ト・ (‘̀；;ヽl ll;l~ t c t l l(‘ l)l•ol);l l)ii l i t:¥. ot• (‘x i s t (‘ l l (•(‘ ( )I• Sl l(-•ll ••llal)it,al:)le.. 
l)lalllctsill (‘xt raS(）la r s.＼．st(1lllS. ¥＼?C ¥vill aし(l(lr(‘sst his isSll(、illll(‘xt l)all)（‘l.. 
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Figure 6: Resonance region in the case of J = 1.3°. The area between the two solid lines 
expresses a resonance region. Triangles show the numerical results. Solid lines express the 

analytical expression given by Eq. (29) 
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Motion around Triangular Lagrange Points 

Perturbed by Other Bodies 

Hideyoshi ARAKIDA~ Toshio FUKUSHIMAt 

Abstract 

We constructed an analytical theory of the motion of the test particle being linear with 
respect to the magnitude of departure from the Lagrange points, and taking into account 
the direct effects of the other perturbing bodies including the effects of their eccentricities up 
to the second order, in the planar restricted N-body problem. We compared our analytical 
solution with a numerical integration and confirmed that the solution represents the linear 
part of the true solution so well that the residuals are only due to the non-linear effect of the 
primary and the secondary system mainly which we ignored. The results will be useful in 
designing the orbit of near-future space missions to be located in the vicinity of the triangular 
Lagrange points. 

1 Introduction 

The five Lagrange points from L1 to L5 are special solutions of the three body problem. Espe-

cially the triangular Lagrange points, L4 and L5, are important in terms of their linear stability 

because the centrifugal force and the Coriolis force balance. Since then, there have been vast 

investigations of the Lagrange points. Of course, they have high potentiality for the long-lived 

space missions and the astronautical applications. Most studies were developed in the frame-

work of the restricted and general three body problems. In fact, the simplest approach to obtain 

an approximate solution is to linearize the equation of motion around the Lagrange point in 

the restricted circular and planar three body problem [44, 60]. This analytical solution quite 
well coincides with the result of numerical integration. Obviously the next step w邸 toinclude 

additional physical effects; the non-linear effect by Bhatnagar [3], Deprit [12], Gozdziewski [32], 
Hagel [33], and Papadakis [63]; the effect of eccentricity of the primary and secondary bodies by 
Danby [9], Erdi [18], Ichtiaroglou [41 ], Kinoshita [45], Selaru [70], and Todoran [81]; the effect 
of high inclination of the orbit of the test particle by Zhang et al. [91]; the effect of radiation 
pressure due to the primary body by Kumar [49], Lukyanov [53, 54], Ragos [67), Simmons [72], 
and Todoran [80]; the effect of dragging force by Murray [61]; the effect of J2 and other higher 
order gravitational field of the primary body by Kondurar [48], Shriv邸 tavaet al. [71], and 
Sharma et al. [76, 75]; the effect of variability of m邸 sof the primary body by Horedt [37, 39], 
Horedt et al. [38], and Singh et al. [73]; the general relativistic effect of the primary body by 
Maindl [55] and Maindl et al. [56]; and the effect of electro-magnetic force of a charged primary 
body by Dionysiou [16]. 
On the other hand, the stability of the motion was analytically studied by Celletti [7], Danby 

[9], Deprit et al. [13, 15], Giorgilli [28], Howard [40), Kinoshita [46], Roels [68], Whipple [85], 
and Zagour邸 etal. [88]. Garfinkel considered the motion of Trojan邸 teroids,mainly taking 
notice of the tadpoles and horseshoe orbits in the three body problem ([22] to [27]). 
While the long term behavior of the motion around the Lagrange points has been mostly 

studied by numerical integrations; the population of the long-lived asteroids by Melita et al. 

*E-Mail : h.arakida@nao.ac.jp 
tE-Mail: Toshio.Fukushima@nao.ac.jp 
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(59], the search for stable orbits of planets by Weibel et al. (83], Innanen et al. [42], Erdi [18], 
Zhang et al. [89, 90], and :tvlarkellos et al. [57], and the escape probability from the triangular 

region by Tsiganis et al. [82]. Unfortunately, in the framework of N-body problem, there are few 

analytical researches, especially for the perturbations on the third and other perturbing bodies. 
As we briefly summarized, the most of the analytical researches on the dynamical behavior 

around the Lagrange points have been conducted in the framework of the restricted or general 
three body problems. These treatises rather correspond to solve the free oscillation problem 
around an equilibrium point in terms of the oscillation dynamics. However, when we consider 

an actual problems in the N-body system such as our solar system, there exist not only the 

primary and the secondary bodies but other perturbing bodies. In the existing works, very 

few authors discussed the applicability of the results of the restricted and general three body 

problems to the actual N-body systen1. According to our preliminary numerical integrations, 

the obtained results indicate that for the same initial condition, quite large differences in the 
motion around L4 appears between the restricted three body problem and the restricted four 

body problem, which is the representative of restricted N body problem. Fig. 1 shows the orbit 
of a Trojan-like asteroid in the corotational coordinate system of the Sun-Jupiter system. In the 
experiment, we assumed that both Jupiter and Saturn are moving on the circular orbit. We put 
Saturn on the positive X axis at t = 0. Obviously the solution in the case of Sun-Jupiter-Saturn 
system is quite different from that of Sun-Jupiter system; about 10 times larger than the latter 

in the magnitude. Therefore the result obtained from the three body problem does not become 
the first approximation of the N-body problem. The differences are no other than the effect 

Orbit in Corotating Coordinate System 
0.015 

0.01 

0.005 

[
n
v
1
A
P
 
-゚0.005 

-0.01 

-0.015 

-0.02 

4 Body 
3 Body ・・・・・・・・・・ 

-0.02 -0.01 

゜dX[AU] 
0.01 0.02 

Figure 1: Orbits of Trojan-like asteroid in the corotational coordinate system. 

of forced oscillation term due to Saturn. Of course, the dominant gravity force acting on the 
asteroid is evidently those due to the Sun and Jupiter. However the closer to L4 the asteroid is, 
the smaller the influence of the gravity of these two bodies becomes. Therefore, in the vicinity 

of L4, the effect of Saturn plays the key role. In terms of oscillation dJrnamics, we must first 
consider the forced oscillation caused by the external bodies like Saturn in this case. 
As we mentioned earlier, there are only a few investigations that dealt analytically with the 

266 



l.VIain interests 

Approach 

Non-linear effect 

Eccentricity of primary and secondary 

Eccentricity of other bodies 

Comparison with numerical integration 

Discussion of application limit 

Global aspect of orbit 

Our Solution 

Sun-Planetary syste1n 

Purely analytical 

Expansion of disturbing force 

No 

No 

Second order 

Yes 

Yes 

Yes 

Gomez et al. (2001) 

Earth-Ivioon system 

Semi-analytical 

Lie transformation 

Yes 

No 

No 

No 
No 

No 

Table 1: Comparison of our theory and that of Gomez et al. (2001) 

dynamical behaviors around Lagrange points in the framework o{ N-body problem (and Gomez 

et al. [29, 30, 31]). In the series of their study, they tried to investigate motion of the collinear 
and the triangular Lagrange points by both the numerical and the semi-analytical In their works, 

the corresponding approach to our study is the bicircular problem in which the motion of test 
particle moves under the gravitational forces of Earth, Moon, and Sun. They assumed that 
the orbit of Moon around the Earth is circular, and the Sun moves around the Earth-Moon 
barycenter in another circular orbit. In that simplified model, they interpreted the procedure 
to obtain the analytical solution based on the Lie transformation in coordinate. However, they 
did not solve it completely, and the several figures inserted in their textbook were described 
with the aid of some numerical processes. Hence their approach is not satisfactory in many 

points as illustrated in Table 1. Thus as yet, there does exist the purely analytical solution 
around the Lagrange point. In this work, we will construct a purely analytical theory of the 
motion of the test particle around the triangular Lagrange points in the framework of N-body 

system. We include the effect of direct gravitational force of the third and other perturbing 
bodies. And we express the solution as an explicit function of time. Then we compare our 

analytical solution with the results of numerical integration. It is also beneficial to construct an 
analytical theory, especially for designing the orbits of some space missions. As we mentioned 
before, some space missions located on the triangular Lagrange are planned. But the present 
orbital design must carry out the vast of numerical integration in the huge initial condition space. 

Then the analytical solution is expected that it reduces the considerable time of the numerical 
integration and restricts the initial condition of numerical integration. The re-evaluation of the 

orbital region is much easy especially when the spacecraft was put into a wrong orbit. Then it 
is possible to provide the preliminary constrain for the initial condition of the orbital design. 

2 Analytical Solution 

Let us construct an analytical theory of the motion of a test particle around the triangular 
Lagrangian point when there exist the perturbations due to extra perturbing bodies. We assume 
that (1) the orbits of all bodies are coplanar, (2) the orbits of the primary and the secondary 
around their barycenter are circular, and (3) the extra perturbing bodies are moving around 

the barycenter of the primary and secondary in non-circular Keplerian orbit. As we showed in 
Fig. 1, the solution of the three body problem does not become the first approximation of the 

motion of N-body problem. Therefore we can no longer regard the effect of the other bodies as 
the "perturbation" around the Lagrange point as the usual approach of the perturbation theory. 

Thus we start from the equation of motion in the inertial coordinate system and expand it 

around the Lagrange point in the coordinate. Then we estimate the magnitude of the expanded 
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terms and include the dominate terms. 
The equation of motion of the test particle is written in the inertial coordinate system as, 

d2r 

dt2 
= FL(r, t) + FE(r, t) 

r = ro, r = ro, t = 0, 

where 

FL(r, t) 

FE(r, t) 

r1 -r 乃ーr
= GM1 3 +GM2 |m -r| |r2 -r|3 
N 

= LGM1 
TI-r 

1=3 
lr1 -rl3 ・ 

(1) 

、1
J
`
i
J

2

3

 

、
~
f
1

、

The subscript I denotes the perturbing bodies, G is Newton's gravitational constant, and M1 is 
the mass of perturbing bodies. In Eq. (1), we separated the perturbing force into two parts. The 
one is the net effect of the primary and the secondary bodies which vanishes at the Lagrange 
points in the corotational coordinate frame. The other is the contribution due to the extra 
perturbing bodies which remain finite at the Lagrange point. Let us introduce a new variable 
8T = T -TL where TL denotes the Lagrange point, Then we expand Eq. (1) around TL as, 

d2（九＋8r)
dt2=  FL（九＋8r,t) + FE（九＋8r,t) 

"" FL（互，t)＋応（叫）＋ （8F;『't)）”6r
+(~ご't))”6r,

Noting that the Lagrange point satisfies the relation, 

d2rL 

dt2 
FL(rL, t) = 0, 

we rewrite the above equation of motion as. 

d裕r

dt2 ＝応（九，t)+ ( 
8FL(r, t) ¥ l" __, { 8FE(r, t) 

~tL5r+(~tL5r 

：：：：：：応（九，t)+ ( 
8FL(r, t) 枷）”Or.

(4) 

(5) 

Here we estimate the magnitude of each term of Eq. (5) in the Sun-Jupiter-Saturn system. The 

ratios of (8F E(r, t)／枷）rL8r／応（九，t)and (8FE(r, t)/8r)rL8r／応（TL,t) are, 

(8FE(r, t)/8r)rL8r 
= 0.014e 

FE(TL,t) 

(8FE(r, t)/8r)rL8r 
= 4.6 x 10-5e, 

FE(rL,t) 

where 
ぷ

C ＝一・
rL 

Therefore we ignore the third term in the first line in Eq. (5). Next we assume that the solution 
is split as, 

8r = 8rL + 8rE, (6) 
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where 8r L and 8r E satisfy the following equations, respectively, 

d祁互 8FL 戸＝(~)伍，伍＝ 6To,6れ＝祈。，att = 0, 
TL 

亨＝F(rL,t)E+(¥）れ6rE 6咋＝0，缶＝0,at t = 0. 
In the following sections, we will specifically derive the expression of the solution. 

2.1 Solution of Free Oscillation 

(7) 

(8) 

First, we derive the solution of the free oscillation part in the inertial coordinate system. The 
equation of motion of 8r L is expressed as 

8窃互 8F(r, t) 
dt2= （ Or )九伍・ (9) 

Usually the solution is given in the corotational coordinate system. See the derivation given in 
the literature such as Kinoshita (44] or Murray & Dermott [60]. The equation of motion in the 
case of the restricted three body problem is express in the corotational coordinate system as, 

d裕X d6Y 8初
言ー2n可＝国）紋，

rL 

d窃Y
言＋2n警＝（塁）紅

rL 

in which U is the potential, 

1 
U=――炉（炉＋Yり GM1 GM2 
2 |r1 -r| |r2 -r|. 

The solution has a form of harmonic oscillator of two modes, 

2 2 

紋＝LC13 cos(w成十祁）， 6Y＝L S13sin(w砂＋叫・
/3=1 /3=1 

where w1, w2 are the eigenfrequencies expressed as, 

where 

叫＝乳 {1十エニ~}n

吟＝孔｛1-戸｝n,

M2 
ッ＝
M1+Mぶ

n= 
G(M1＋島）
a3 

(10) 

(11) 

(12) 

(13) 

(14) 

(15) 

In the case of Sun-Jupiter system, w1 and w2 have the period of 11.901 year and 147.42 
year, respectively. The amplitude and initial phase depend on the initial condition. We put 
(8元，6g,6ま，8y)= (8元。，6g。,6岳。，8y0)at t = 0 as the initial condition and the amplitude and 
initial phase are given by 

C1 = 
2n匈o+ (w~ -a*）狂。

(w~ -wr) 

a*2(2n8fio + (w~ -a*)f,恥）2

2nw1w~緬＋叫(a* -w~)f,元6
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C2 2吋疇o+ (a* -wi)w造 o✓ a*2(2nfifjo + (w? -a*）知）2
= +1 

a*(wr -w~) 2nwrw函 o+(a*-wr)四碕

,1 = arctan （ー(wi-a*)w滋 o+2nw四知0)
a*(2n8如＋（w~ -a*)8元o)

12 = arctan 
(-(w?-a*)w磁 o+2吋疇0)
a*(2n6恥＋（wr-a*）紐o)

s。＝一哨―a* (3=1,2, 
c/3 2nw{3 

， 

where 

a*= -~3 (1 -/i-3v(l -v))n乞
Thus the solution is expressed in the inertial system as 

x = X cos f, -Y sin f, y = X sin f + Y cos f 

where f, is the longitude of the secondary body and 

X = a{cos(i)-μ＋紋cosa-6Ysina} 
Y = a{sin(；）＋紋sina + <>Y cos a}. 

Here n is the rotation angle and defined by the relation. 

arctan(—((1 -2v)) 
a = -

2 

(17) 

(18) 

(19) 

(20) 

(21) 

Note that the the effect of the initial condition of the motion is completely absorbed by the 
solution of free oscillation. 

2.2 Solution of Forced Oscillation 

From Eq. (5), the equation of motion of <5r E becomes 

d28r E 
＝応（TL,t) + ( 

8FL(r, t) 
'-Ji!-= FE(rL, t) + (~tL lirE・ (22) 

As we examined the order of terms in the right-hand side, the first term is the main part of the 
forced oscillation. In evaluating it, we consider the effect of eccentricity of the extra bodies up 
to the second order. Note that the eccentricity of Saturn is as small as e = 0.0555. We expand 
the position of the perturbing bodies in the coordinate system where x-axis is the direction of 
the perihelion, up to the order of e7 as 

忍三工万sin町＝（1-砂sin£［一炉sin2釘＋］叶sin3釘＋・・・ (23) 

{1 

町
一三 COSU[=-i町＋ （1- 均） cos釘＋ ~e1cos 2釘＋均cos3釘十．．．． （24) 

2 8 2 8 

By rotating them by the angle女7,the longitude of perihelion, we obtain the expression in the 
inertial coordinate systern as, 

XJ = ~I COSWー 1JIsin匂， YI=~1sinw 十 1JICOS匂． (25) 
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Since we assu1ne that the orbit of the secondary body is circular, we approxhnate 

ェ＝に） la22  
町町 1-e/COS町 aI ) 

~ ~(1 + e1cos町＋町COS町 ＋・・・

～ 嘉(1-]十町COS釘＋］叶cos2er). (26) 

Then we expand the den01ninator of FE by using Legendre polynomials up to the order of 
(r／町）7as, 

r 3 
＝可 [1+3cosS可＋ぅ (5cos2ふー 1)じ）
立(7cos3 S 1 -3 cos S 1)（エ
+¥  (21cos4 SJー 14*COS2rsI1): l) （肛
十〗~33 cos5ふー30cos3~I~ 5cos 81)（砂5
了 (429cos6ふー495cos4ふ＋135cos281 — 5) に） 6

町

噌(715co詔81-1001 cos5 81 + 385cos}-35cos 81)（叫，（27)
where S1 =釘ーf=町 (t-t10)-n(t-to),n1 is the mean motion of J-th perturbing body, and to, 
t10 are the times of perihelion passage of Lagrange point and J-th perturbing body, respectively. 
We expanded 1/lr 1 -rl3 up to the order of (r／町） andignore the third and higher terms with 
respect to e1. Since we assume that the orbit of the secondary body is circular, the position of 
the triangular Lagrange point (L4) becomes 

ー

lr1 -rl3 

XL = a (COS (£+ i) -μ COS f), y L = a (sin (f + i) -μ sin f) (28) 

Thus the first term of the right-hand side of Eq. {22) is explicitly expressed as the function of 
time t as, 

(::) = ~ [ l+ 3 cos S; (1 -:J + e1 cos l+]叶cos2e)五
+ ~ (5cos2＆ー1)(1-旱＋2e1cose＋［叶cos2l)（五）2

+ [5(7cos3ふー3cosふ）（嘉）3
+ ： （21cos4 S-14* COS2S + 1) （五）4
+ ! ~33cos5: _-30co蒻s+5cosS) （嘉）5

a 6 

＋ー (429cos6S -495cos4 S + 135cos2 S -5)（一
17 

＋喜 (715cos7S-1001cos5 S+ 385cos3S -35caols:)（嘉）］
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町［｛（l-詞）sinf1 —炉 sin2釘＋詞 sin3f1}cos匂
+ ｛炉ー（1- 詞） cosf1 —炉 cos2釘—詞 cos3f 1} sin吋
-a (cos (e +司一μcosf)
町[{(l -ief} sin釘ー炉sin2釘＋詞si直｝sinro 
-｛柘ー（1- 詞） cos釘ー加 cos2釘—詞 ~os3f1}cos口］

X (29) 

-a (sin (e + !) -μsine) 

The partial derivative in Eq. (22) is given by 

鴨 (r,t) -0 rt,11, r 8jk I 3(rJj -Tj) R (r1k -rk) 如＝苫GM1[-~+~] (30) 

where the subscripts j and k represent the coordinate and伽 isthe Kronecker's delta. The 
components of the right-hand side of Eq. (30) becmne 

oFLx 

ax 
8F1_,y 

8y 

OFLx 

8y 

OFT,y 

ox 

＝ 
＝ 
＝ 
＝ 

~ [ ~ { 1 + 3 cos (2 (f + i)) } + 3G M2{字 -cos（況十i)}l (31) 
~ [H 1 -3cos (2 (e+ i)) }-3GM2{字 -cos（三）｝］ （32) 

点[~ sin (2 (e + i)) + G M2 ｛芋— sin(2f -i) } ] (33) 

fJFLx 

8y 
(34) 

Now it has become straightforward to solve Eq. (22) since the main term contains only t. 

Actually we solve it iteratively. Namely we expand the solution as, 

00 

如；三区6r似＝ 6堺＋6哨＋6噌＋・・・，
n=O 

(n) 
where Drp;°'satisfy the following equations 

d28噌）
＝ FE（町、，t),dt2 

d26rE (1) 

＝ 8FL（町、，t)6r (0) dt2 8r E, 

d26噌 ＝ oF瓜互，t)6r (1) dt2 8r E' 

These equations are directly solved by the double integration as 

6堺＝/[/凡(rL, t)dt] dt, 

叶＝![/(~り）九 6堺dt] dt, 

(35) 

(36) 

(37) 

(38) 

(39) 

(40) 

Here we only consider 8堺 and8哨 because8噌 andthe higher correspond to the solve the 
nonlinear tern1s. Note that the initial condition is given in the form 6r附＝ 0at t = 0 since 
the initial conditions of the whole equation of motion is satisfied by the solution of the free 
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oscillation part. In the above expression, we ignored the second and higher terms. Thus the 

final solution is expressed in the series of a/ a1 as, 

00 

伍 ＝t[6亭＋6r炉］（一．a ¥J 
j=0 a1) 

(41) 

Actually we expanded the series up to (a/aが．

3 Numerical Comparisons 

From now on, we will show the comparisons between our analytical solution and the numerical 

integrations. As a test problem of the N-body system, we consider the motion of test particle 

in the vicinity of L4 point of the Sun-Jupiter system under the gravitational forces of the Sun, 
Jupiter, and Saturn. We assume that the orbits of all the bodies are coplanar. We compare 

our analytical solution (hereafter noted Analytical) with the numerical solution of the restricted 

four body problem (hereafter 4 Body), and with the numerical solution of restricted three body 

problem (hereafter 3 Body). We also assume that the Jupiter's orbit is circular and its semi-

major axis is 5.2026 AU. For the Analytical and 4 Body cases, we include the perturbation of 

Saturn, whose semi-major axis and eccentricity are chosen as 9.5549 AU and 0.0555, respectively. 

Initially the test particle is located at a point departed by the radius 8r from L4 and the initial 
position angle <I> (see Fig. 2). The numerical solutions were obtained by using the method of 
variation of parameter based on the KS regularization developed by us [2] based on the results 
of [1]. And we adopted the Adams method as the numerical integrator. 

Sun 

Figure 2: Initial Condition 

3.1 Time Evolution of Orbits 

First we show the differences in the corotational coordinate system. Fig. 3 shows the time 

evolution for the 20 revolutions with respect to the Jupiter. This is for the initial condition 
6r = 5.2 x 10-5 AU, and <I>= 0 degree. This figure illustrates that the analytical solution agrees 
well with the numerical integration of 4 Body case. Fig. 4 illustrates the difference between the 

analytical and numerical (4 Body) solutions for the 20 revolutions of Jupiter's orbit. And Fig. 5 

is the same as Fig. 4 but for a longer time span, 1000 revolutions of Jupiter. For the short span, 
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Orbit in Corotating Coordinate System 
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Figure 3: Orbit in the corotational coordinate system : 0 = 0 (deg.) 

the maximum error is of the order of 10-4. For the long term, the error is of the fonn of the 

mixed secular term and finally becomes of the same order of the size of orbit. Fig. 6 is the same 

as Fig. 4 but plotted are for a longer period. From these figures, the beating period is almost 

3250 orbital periods of Jupiter. The feature of the error in the short term supports an idea that 

the error is caused by the non-linear effect of the free oscillation term. The observed frequency 

of the error is around 0.16, which is quite close to the double of the longer eigenfrequency of 
the free oscillation,吟＝ 0.0805.Fig. 7 plots the frequency analysis of the residual of dX by 

Fast Fourier Transforn1 (FFT). Clearly, the effect of 2吟 standout and we can find that the 

error growth of our analytical solution is mainly occurred by elimination of the nonlinear effect 

of the tidal force of the primary and the secondary bodies. Also the amplitude of the relative 

error is of the order of the square of the relative amplitude of the linear solution, C1,2 or S1,2, 

Figs. 8 and 12 show the error in radius. Figs. 9 and 13 are the same as Figs. 8 and 12 but 

for the longitude. Figs. 10 and 11 are the same as Figs. 8 and 9 but plotted are the close-up 

of Analytical. Unchanged is the error increasing in a 1nixed secular manner. We note that, 

when perturbed by other bodies, the behavior of the test particle moving around the triangular 

Lagrange point hardly depends on the initial condition. Namely the solution of the main part 

remains the forced oscillation due to the other bodies as we expected. 

3.2 Comparison with Real System 

As the next examination, we compare our solution with the numerical integration where the 
motion of perturbers is given not by pure Keplerian ones but by the actual planetary ephemeris, 

DE 405 (hereafter cited by DE). Our analytical solution is constructed based on the simple 

physical model where the orbit of all the bodies is on the same plane and all the perturbers 

move on the Keplerian orbit. However in the actual system such as our solar system, the motion 

of the perturbers is more complicated; the effect of the eccentricity of the secondary, the effect of 

the inclination of the other perturbers, the influences of other planets as Uranus and Neptune, 

that say, the orbit of the perturbers is not c01npletely closed. Therefore it is useful to examine 
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Figure 10: Radial Error of Analytical Solution with respect to Numerical Solution 
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how n1uch our solution represent the real motion. 

We chose the epoch as JD 2305424.50, and adopted the osculating elements at the epoch in 

constructing the analytical theory. Since our theory is planar, we regard the Sun-Jupiter plane of 

DE as our fundamental plane and projected the actual orbit of Saturn on this plane. The initial 

condition of the test particle was set asぷ＝ 5.2x 10-5 AU and<I> ＝0. Figs. 14, and 15 show 

the deviation in radius and in longitude between the cases of Analytical and DE, respectively. 

Figs. 16, and 17 are the same as Figs. 14, and 15 but plotted are in the long run. The maximum 

values of the relative errors in radius and in longitude are 0.0025 and 0.001, respectively. Fig. 

18 illustrates the frequency analysis of the residual in dX. Comparing with Fig. 7, there appear 

the various frequencies, however, we can realize that the main contribution to the error growth 

is produced by the lack of the nonlinear effect of the primary and the secondary bodies and then 

the elimination of the effect of the eccentricity of the secondary body or the inclination of other 

perturbers is relatively less contribution to the residual. Then, we conclude that our analytical 

solution represents the quite well the features of true orbit. 

3.3 Limitation of Application 

Finally, we examine the limitation of our analytical solution. Figs.19, 20, and 21 plots off― 

dependence of the ratio of the width and thickness of orbital region for cases of Analytical, 4 

Body, and 3 Body, respectively. For the cases of Analytical and 4 Body, the behaviors are the 

same up to f = 10-4. At f = 10-3, a bit of difference occurs, and at f = 10-2, the behavior of 4 
Body is rather similar to the that of 3 Body. The order of magnitude 10-3 is almost the same 

as the value at which the nonlinear effect of the tidal force of the primary and the secondary 
bodies and the direct gravitation due to Saturn balance, 

1 a2凡（九，t)
応（九，t）～-6r砂Tk.

2 8rj8Tk 

For the Sun-Jupiter-Saturn system, this critical value is, 

fc rv 4.1 X 10-3. 

Therefore this value almost coincides with the observed value. Fig. 22 shows the orbits in the 

corotating coordinate system where f = 10-2. Obviously the orbits of 4 Body and of 3 Body 
have the similar feature. This is because the effect of the non-linearity of the tidal force of the 

primary and the secondary dominates over the forced oscillation term due to the third and other 

perturbing bodies. Since our theory is linear, it cannot deal with the non-linear effect and this 
is the limitation. 

4 Conclusion 

We created a purely analytical theory of the motion around the triangular Lagrangian point in 

the framework of the planar N-body system. We considered the effect of the forced oscillation 

term due to the third and other perturbing bodies by expanding not the disturbing potential 

but the disturbing force. We represented the disturbing force as an explicit function of time 
and obtained the correction in position due to the forced oscillation by its double integration. 

The effect of the eccentricity of the third and other perturbers was taken into account up to 

the second order. Here we emphasize that our analytical solution is linear theory such that it 
is easily applicable to calculate the perturbations due to the any number of perturbing bodies 

though we limit our discussion to the restricted 4 body problem in the main text. For the 

short period, our solution well coincides with the numerical solution with a relative maximmn 

error less than 10-4. For the long period, the residual between the analytical solution and the 
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numerical solution grows as the mixed secular manner and then beat. By the frequency analysis 
of the residual, we found that the deviation is mainly caused by the non-linear effect of the tidal 
force of the primary and the secondary bodies. This fact indicates that the analytical solution 
we derived is well express the effect of the direct gravitational force due to the other bodies in 
the linear theory. Then the improvement for the solution must be performed not to the part 
of the forced oscillation but to that of free oscillation of the primary and the secondary bodies. 
Further we compared our solution with the numerical one based on the real solar system by using 
JPL's planetary ephemeris DE405. From this comparison, the main contribution to the residual 
between the analytical solution and the numerical one based on the DE405 is also mainly caused 
by the elimination of the nonlinear effect of the tidal force in the part of the free oscillation of 
the primary and the secondary bodies. Finally we examined the limitation of the application of 
our analytical solution and realized that when the direct gravitation of the other bodies and the 
nonlinear effect of the tidal force of the primary and the secondary bodies balance, our solution 
reach the limit. 
In conclusion, for the motion of the test particles around triangular Lagrange points in the 
restricted N-body system, the key role is played by the direct gravitational force due to the 

third and other bodies rather than the non-linear effect of the tidal force of the primary and the 
secondary bodies. Practically speaking, this range of allowance is quite large. For example, in 
the case of the Sun-Earth system, it corresponds to 450000 km in the deviation from L4 by the 
gravitational influence of Jupiter. 
Our solution is especially effective for designing the orbit of some space missions to be put near 
the triangular Lagrange points such as the gravitational wave detection or the space telescope 
for observing the near Earth crossing objects. This is because it is expected that the analytical 
solution limits the initial condition and then reduce considerably the vast of numerical integration 
~nd als~ it makes us estimate easily the orbital region of the spacecrafts without the numerical 
integration. 
As a future work, it is necessary to improve the part of the free oscillation of the primary and 
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the secondary bodies including the nonlinear effect of their tidal force for better agreement with 
the numerical integration. Since our formalism is restricted to the planar case, the introduction 
of the inclination of the test particle will be significant in the applying it to the real system such 
邸 themotion of the Trojan邸 teroids.
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木星と平均運動共鳴またはその近傍にある小惑星
の軌道

Minor planet's orbits in or near mean motion 
resonances with Jupiter 
中井宏、木下宙（国立天文台）

H. Nakai and H. Kinoshita 
National Astronomical Observatory 

Abstract 
We investigate the characters of minor planet's orbits in or near mean motion reso-

nances with Jupiter. Using semi-analytical methods and numerical integrations which 

take account of the perturbation of Venus, Earth(and Moon), Mars, Jupiter, Saturn, 

Uranus, and Neptune, then we get following results. 

• If critical arguments(u) and 0 which is the angle between the longitude of perihelion 
of asteroid and Jupiter(B =匂A- ti刀） librateat the same time, the eccentricities of 

the asteroids become very large(0.24 :::; e :::; 0.58, as for 3:2 mean motion resonace 

and more larger for inner mean motion resonances) except the 1: 1 mean motion 

resonance. But numbered asteroids that have orbital elements with these conditions 

do not exist. 

• When u circulates and 0 librates coincidentally, the eccentricities of asteroids become 

very small(emax ~ 0.08) except 1:1 mean motion resonance. 

• When u and 0 librate in 1:1 mean motion resonance coincidentally, the eccentricities 

of asteroids become small(O :::; e :::; 0.09) 

1.はじめに
軌道が確定し番号が付けられた小惑星は2001年12月現在32729個ある。観測が少な

く軌道が確定していない小惑星は約12万個ある。その中には木星との平均運動共鳴関係

になっている小惑星も数多く存在する。共鳴と軌道の安定性については興味ある問題とし

て、古くから多くの人が研究している。メインベルトにおける共鳴についてはYoshikawa

(1989,1990,1991)、カイパーベルト領域についてはFuse(1999)、太陽系外惑星系(GJ876)

の安定性については、 Marcyet al.(2001)、Laughlinet al.(2001)、Kinoshitaet al.(2001) 

などの研究もある。我々は番号の付いた小惑星の中でギャップ、群に属する小惑星の分類

を行い、各共鳴領域の軌道の特徴を調べている。同時に、小惑星の安定性やギャップ、群

の形成に木星や他の惑星がどのように影響するかを検討し、メインベルトとカイパーベ

ルトにおける共鳴や分布構造の類似点、相違点について調べている。また、太陽系内小惑

星と太陽系外惑星系の安定性に種々の共鳴が果たす役割についても調べようとしている。

ここでは、木星と平均運動共鳴の関係にある小惑星の軌道について検討した。
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2数値積分

小惑星の初期値は MPC{2001NOV. 30)の軌道要素を用いた。木星と平均運動共鳴

になる軌道長半径の範囲は、臨界引数 (6)が秤動する時の軌道長半径の変動幅を見越し

た範囲とした。この範囲は表1に示している。軌道長半径がこの範囲内にある小惑星を各

共鳴の候補として数値積分を行った。しかし、平均運動共鳴の小惑星で離心率が非常に大

きい小惑星では、接触軌道要素の軌道長半径が表1に示した範囲外にあることも考えられ

るため、今回数値積分を行った小惑星以外にも平均運動共鳴にある小惑星が存在する可能

性はある。特にギャップについてはこの範囲を見直す必要がある。数値積分法は外挿法を

用い、摂動天体は金星、地球（月を含む）、火星、木星、土星、天王星、海王星の7天体と

摂動天体として木星、土星の 2天体だけを考慮した2つの場合の数値積分を行った。計算

期間は7摂動天体で10万年、 2摂動天体で100万年の場合について行った。小惑星の質

量は0、摂動天体の初期値は惑星暦 DE405から求めた。

3.1摂動関数
摂動天体として木星（離心率： eJ) 1天体を考える。その質量をmJ、小惑星と木星

の相互距離を△とすると、

小惑星におよぼす木星の摂動関数は

1 TA 
R=  k2叩（一一方cosS)
△乃

で表される。但し TA,TJは小惑星、木星の日心距離、 Sは両天体間の角距離である。小

惑星、木星の近日点経度を匂A，のJ、真近点離角を fA,fJ、とし、小惑星の近日点引数を

WA、木星軌道に対する小惑星の軌道傾斜角をiAとすると、

ぷ＝ r~ -2r Ar J cos S + r~, 
1 

cos S = ~(1 + cos iA) cos{f A -f 1 +（WAー匂J)｝
2 
1 
＋ー(1-cosiA) cos{/ A+ !1ー（匂Aー匂J)+ 2wA} 
2 

となる。添え字の Aは小惑星、 Jは木星を表す。 WAの周期は匂Aー匂Jに比べて短周期

と仮定して、数値的に平均操作を行い消去する。同様に、真近点離角は短周期であるの

で、これも平均操作を行い消去すると、摂動関数Rは eA,iA点双一匂Jだけの関数とな

る。角運動量e＝り＝万cosiAを決めると、系の自由度は1となり、等エネルギーカー
ブから匂AーのJとeAの関係が分かる。

3.2等エネルギーカーブ

上述の方法で求めた小惑星と木星の近日点経度の差 (O＝匂A-'CiJJ)と離心率 (eA)の

関係を図 1、図2、図3、図4に示す。 図1は3:2平均運動共鳴領域の 0:eAの等工

ネルギー曲線の例である。共鳴領域で、 0が秤動するときの最大離心率を eRma工、最小離

心率を enminとする。添え字Rは共鳴にあることを示す。図1から 0が180度のとき、軌
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道の離心率が最小離心率 (eRmin= 0.24)以上または最大離心率 (eRmaェ＝ 0.58)以下の

場合、 0は180度の回りを秤動する。平均運動共鳴の状態で、 0(＝匂Aー WJ)が秤動すれ

ば、離心率は非常に大きくなる可能性がある。また、 0が秤動しなくても、境界付近では

離心率は大きく変化する。図 1中黒丸は、木星と 3:2平均運動共鳴にある小惑星 (4446)

Carolynの10万年間の数値積分の結果である。この小惑星は今回調べた中では10万年間

の平均の離心率が一番大きな小惑星である。しかし、 0が180度のときの離心率（約0.2)

は eRmin(0.24)より小さいために 0は常に回転している。一方、この小惑星の臨界引数

(a= 3入J-2心一匂A)は0度の回りを秤動していて、小惑星が木星を追い越すのは小惑

星の近日点付近になっている。このような大きな離心率の小惑星は木星との平均運動共鳴

関係にないと、木星に大接近し軌道は不安定になる。

図2は3: 2平均運動共鳴付近で共鳴から外れ、 a が回転する場合の f): eAの等エネ

ルギー曲線である。この場合、小惑星の軌道長半径は平均運動共鳴に相当する軌道長半

径(a=3.97)とは異なる値(a=3.76)とした。しかし、軌道長半径を変化させても等エネル

ギーカーブの様子は本質的な差がなかった。平均操作は木星と小惑星の真近点離角で独立

に行っている。図 2 から、 0 が 0 度のとき、離心率が最大離心率 (eNmaェ~ 0.08)以下の軌

道は 0が0度の回りを秤動する。添え字Nは平均運動から外れていることを示す。この

ように平均運動共鳴から外れると、永年共鳴ではあるが離心率はそれ程大きくならない。

図2中の黒丸は小惑星 (1144)Odaの10万年間の数値積分の結果である。

図3は1:1,4:3,3:2,2:1,7:3,5:2,3:1,4:1平均運動共鳴にある (aが秤動）場合で、 0が秤動

する場合の離心率の範囲を示している。図中＋印は秤動の中心を表し、 eRcenの添え字の

Rは共鳴にあることを示す。＊印はエネルギーの高い所で散逸過程では不安定になる場所

である。群である 4:3,3:2共鳴の eRcenは0.3rv0.4、ギャップである 2:1,7:3,5:2,3:1,4:1共鳴

のeRcenは0.5~0.9と非常に大きいために、 aと0が同時に秤動する軌道は長期間安定に

存在できない。しかし、 1:1共鳴ではeRcenが約0.05、eRmaェが約0.09と小さい値のため

に、 oと0が同時に秤動する軌道がある。 Yoshikawa(1989,1990,1991)によると、 6の変動

幅により encenは変化するが、ここではoの変動幅を0とした。

図4には図3と同じ共鳴付近で、平均運動共鳴から外れOが回転する場合の0:eAの等

エネルギー曲線である。 0が秤動するための中心の離心率 (eNcen)は約0.02rv0.05と非常

に小さく、軌道長半径の増加につれて僅かに増加する。 1:1共鳴付近は平均運動共鳴が崩

れると軌道が不安定になるので、図は省略した。 1:1共鳴のeRmin,encen, eRmaxとその他の

共鳴付近のeNmin,eNcen, eNmaxとは殆ど同じ値で、等エネルギー曲線は1:1共鳴と他の共

鳴付近で平均運動共鳴から外れた状態が同じようである。

4.考察

木星と平均運動共鳴にある小惑星の個数を表1に示す。トロヤ群(1:1共鳴）、ヒルダ

群 (3:2共鳴）では、共鳴の候補として選んだ小惑星の殆どが木星と平均運動共鳴の関

係になっている。 1:1共鳴では、 10万年間軌道が安定なものは、全積分期間中全ての小惑

星の 6 が秤動している。 3:2共鳴では、軌道が安定なものは、小惑星のびが秤動している

か（図5-1)、6 が0度の回りを秤動しているとき 0が回転し、 6 が回転しているとき 0が
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秤動する状態を交互に繰り返す’'Pericentriclibrator’'である（図5-2)。チューレ群の領域

には現在3個の小惑星がある。 (279)Thuleは一時期びが回転する”Pericentriclibrator" 

（図6)で、その軌道は積分期間内では (7摂動天体の場合 10万年、 2摂動天体の場合1

0 0万年）安定である。しかし、他の2個の小惑星、 (3552)DonQuixoteは約800年後、

(20898) Fountainhillsは約1万年後に4:3共鳴が崩れ軌道が不安定になる。

4:3,3:2共鳴では、 oが180度の回りを秤動しているとき 0が回転し、 6 が回転してい

るとき 0が秤動する状態を交互に繰り返す ’'Apocentriclibrator’'は見つからなかった。

これらの共鳴になる軌道長半径は木星の軌道長半径に近いため、小惑星の遠日点で木星を

追い越す’'Apocentriclibrator’'は木星と接近する可能性があるためと考えられる。

ギャップでは、平均運動共鳴の関係になる小惑星は少ない。しかし、 2:1共鳴領域では、び

が全期間完全に秤動する ”librator"が31個、 ’'Pericentriclibrator"が131個、 ’'Apocentric

librator’'が34個ある。このように2:1共鳴では3種類の'’librator’'がある。それぞれの例

として、図7-1に'’librator"(1362)Griqua、図7-2に’'Pericentriclibrator" (300)Geraldina、

図7-3に”Apocentriclibrator" (528)Reziaの軌道要素を示す。

7:3平均運動共鳴の小惑星は (5324)Lyapunovで10万年間の最大の離心率は0.67、平

均の離心率は0.56である。また、 3:1平均運動共鳴の小惑星は (6318)Cronkiteで10万年

間の最大の離心率は0.73、平均の離心率は0.54である。この他に、 3:1共鳴付近にはびが

180° の回りの秤動と回転を繰り返す3個の小惑星(2608),(6491),(19356)がある。しかし、

これら 3個の小惑星の0は常に回転していて、 ’'Apocentriclibrator”のように Oが回転し

ているとき0が秤動することはない。また、これら小惑星の離心率は0.65以上なので、軌

道は地球の軌道の内側に入り込んでいる。このように大きな離心率の軌道が長期間安定か

どうかは今後検討する必要がある。

5:2、4:1平均運動共鳴領域では6が秤動する小惑星は見つからなかった。

平均運動共鳴から外れた場合、図4に示したように、 0が秤動しているときの離心率は

小さくなる。平均運動共鳴ではないが、 7:3、4:1共鳴付近に 0が秤動する小惑星が存在

する。これら 0が秤動する全ての小惑星は離心率が最大になった時でも3.2節で説明した

eNmaェより小さい離心率である。

数値積分で求めた10万年間の平均の軌道長半径と平均の離心率の関係を図8(1:1)、図

9 (3:2)、図 10 (2:1)に示す。軌道が不安定になった小惑星は除外している。図8、トロ

ヤ群(1:1)では、軌道が安定なものは全て木星と平均運動共鳴の関係になっている。その

中で離心率の大きさにより 3グループに分類される。 (1)離心率の小さい小惑星は0が

常に秤動（図8白丸）する。 (2)離心率の大きい小惑星は0が常に回転（図8黒四角）す

る。 (3)中間の離心率の小惑星は0が秤動と回転を繰り返す（図8十印）。各グループの個

数はそれぞれ93個、 210個、 191個で、各グループに属する代表的な小惑星はそれぞれ

(1871),(617),(1208)である。

図9、ヒルダ群(3:2)では、積分期間中完全に平均運動共鳴にあるものを丸印、 ’'Peri-

centric librator”を三角印で表している。軌道が安定なものはこの2種類だけで、離心率

の小さいものが’'Pericentriclibrator”となる。一方、図 10に示す2:1共鳴では、びが秤

動し完全に、木星と平均運動共鳴の関係にある小惑星（丸印）、 ’'Pericentriclibrator’'（三
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角印）、’＇Apocentriclibrator"（四角印）がある。黒小点は平均運動共鳴でない小惑星を示

している。図8,9,10には0が秤動するための離心率の最大値も示している。離心率の最

大値がeRmaェ(1: 1共鳴），eNmax(3: 2, 2 : 1共鳴）より小さい軌道は 0が秤動する。また、

図9,10中には、小惑星の軌道が火星軌道、木星軌道に交差するための離心率も示してい

る。これより大きな離心率の軌道は火星や木星の軌道と交差することになる。平均運動共

鳴付近で離心率の大きな小惑星は全てerが0度の回りを秤動し、木星との大接近を回避

している。これら小惑星の軌道傾斜角は20度～30度と大きいので、このことが火星との

接近を回避している可能性があり、検討しなければならない。

摂動天体を金星から海王星までの7天体と木星・土星の2天体とした差は、軌道長半径

が小さい共鳴、 5:2、3:1共鳴などで大きく現れる。例えば3:1共鳴付近の小惑星(887)で

は、 erは摂動天体が2天体の場合100万年間安定に秤動を繰り返すが、摂動天体が金星か

ら海王星の7天体になると、 6万年後にはerは秤動から回転になり、平均運動共鳴が崩れ

る。このように、内側の共鳴領域では内惑星の存在が小惑星の分布構造に影響してくる。

一方、木星に近い共鳴（1:1,3:2,2:1)の個数は摂動天体の数では変化がなかった。

5.まとめ
半解析的摂動手法によれば、木星と平均運動共鳴の関係にあり (erが秤動）、同時に、

小惑星と木星の近日点経度の差(0)が永年共鳴で秤動すると、

• 1:1共鳴以外では小惑星の離心率は非常に大きくなる可能性がある (3:2共鳴での離

心率～0.6)。そのような小惑星が安定に存在するためには、火星をはじめ他の大惑

星との大接近を回避する機構が必要になるが今回の調査ではそのような小惑星は見

つからなかった。

• 1:1共鳴では小惑星の離心率は小さい領域に限定 (eRmax~ 0.09)される。実際、 93

個の小惑星がこの様な軌道であった。

木星と平均運動共鳴の関係にない (erが回転）場合は0が秤動すると、

• 1:1 共鳴以外では小惑星の離心率は最大でも eNmax(~ 0.08)以下である。

• 1:1共鳴付近では小惑星の軌道は不安定で存在できない。

半解析的摂動手法によるこれらの結果は数値積分の結果と良く一致する。

1:1共鳴ではerは土60度の回りを秤動する。そのとき、 0が干60度の回りを秤動する

小惑星がある。この場合永年共鳴であるが離心率はそれ程大きくならない。

erが0度の回りを秤動する小惑星は4:3,3:2,2:1共鳴付近に存在し、 180度の回りを秤動す

る小惑星は2:1,7:3,3:1共鳴付近に存在する。

6.おわりに
離心率が大きく火星や地球の軌道と交差する軌道が安定かどうかの検討と、摂動天体

が外側と内側に存在するときの解析的解法も検討する必要がある。また、メインベルト小

惑星の軌道の特徴がカイパーベルト小天体の軌道ではどう変化するのかを調べることは

今後の課題である。
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survey resonance out resonance 

a(AU) region(AU) numbers a(Lib.) び(L<>C) 0(Lib.) 

Trojans 1:1 5.20 5.0 5.5 495 494 

゜Thule 4:3 4.29 4.1 4.5 3 

゜
l(P) 

Hilda group 3:2 3.97 3.7 4.2 184 166 15(P) 

gap 2:1 3.28 3.20 3.40 836 31 131(P) 

34(A) 

7:3 2.96 2.94 2.98 494 1 

゜5:2 2.82 2.80 2.84 380 

゜ ゜3:1 2.50 2.48 2.52 189 1 3 

4:1 2.06 1.94 2.14 179 

゜ ゜Table 1. The numbers of asteroids in the mean motion resonances with Jupiter. 

u means critical argument. 0 = -aフA -'lAフ1,where ti:フA and ti:フ1mean the longitude of 
perihelion of the asteroid and Jupiter respectively. u(L<>C) indicates that u alternates 

libration and circulation. P,A mean pericentric librator and apocentric librator, respec-

tively. 
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Figure 6. The orbital elements of {279)Thule : 4:3 pericentric librator. The six panels 
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ABSTRACT 

We have developed an analytical theory for a celestial body orbiting in a highly eccentric orbit 

under the perturbational influence of an inner body which revolves in a circular orbit around 

a central body (a restricted three-body problem). We made the Hamiltonian closed in form to 

the orbital eccentricity. 

We confirmed that our theory is highly accurate by comparing numerically integrated results. 

However, the theory loses its high accuracy when the eccentricity of the outer body is very 

large. 

Our theory can be applied to some celestial bodies. The motion of the N eptunian satellite 

Nereid orbiting in a highly eccentric orbit (e = 0.75) perturbed by Triton is one example. Our 
theory provides a degree of accuracy, with results generally much better than 30Km in the 

(osculating) semimajor axis of Nereid. 

1 Introduction 

Astronomical ephemerides provide precise positions of celestial bodies. Today, numerically 

integrated ephemerides are widely used in the world. DE (Development Ephemeris) series 

compiled by JPL is one example. 

When we construct an analytical ephemeris, we usually handle a perturbation theory. Re-

suits are expressed as osculating elements which are functions of time. Since most planets or 

satellites revolve in nearly circular orbits, we expand a perturbing function in terms of powers 

of eccentricity. However, when we construct the orbital theory of a highly eccentric body, the 

ies of power series of eccentricity converges quite slowly. 

For example, a Neptunian satellite Nereid revolves on a highly eccentric orbit (e = 0.75). 
Mignard(1975)'s study is the pioneered work on the motion of Nereid. Saad{2000) studied 
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the motion of Nereid using a canonical perturbation method of Hori type. The inner orbiting 

satellite, Triton, is not taken into consideration in these studies because its perturbational effect 

is wealcer than the Sun's and is not detected by astrometric observations from ground telescopes. 

Oberti (1990), Segerman and Richardson (1997) developped the analytical theory of Nereid 

under the perturbational influence of Triton. In their work, the motion of Nereid is described 

in the barycentric coordinate system of Neptune and Triton to express the problem in simple 

form. Oberti (1990) expanded the Hamiltonian in eccentric anomaly, thereafter Segerman and 

Richardson (1997) expanded the Hamiltonian in eccentricity. However, it is suspected that 

these theories can provide good accuracy because they did not show any experimental check in 

their papers. 

In this study, we have developed an orbital theory of a highly eccentric body under the 

perturbative influence of an inner revolving body. It is one kind of restricted three-body problem. 

In the previous paper (Masaki and Kinoshita (2001)), we proposed an orbital theory of the 

planar restricted problem. 

We construct an analytical theory using a Lie-type canonical perturbation method, proposed 

by Hori (1966). This theory can be applied not only to a planar restricted problem but also to 

an inclined case. We made the Hamiltonian closed in form to the eccentricity in order to apply 

it to any highly eccentric orbit. 

2 Analytical formulation 

We describe the motion of a celestial body (hereafter, we call it the'outer') moving in a 

highly eccentric orbit around a pair consisting of the primary body and an inner revolving body 

(called the'primary'and the'inner', respectively). See Figure 1. The mass of the inner body 

is small enough compared to the primary, and that of the outer can be neglected (i.e. mass-less 

particle). For brevity's sake, we can say that the inner body orbits around the primary star in 

a circular motion. 

Hereafter, we designate masses of the Primary, Inner and Outer as M, m', m, respectively. 

The symbols used in this paper are listed in Appendix pages. The universal gravity constant is 

written by k 2 

When we consider the motion of the outer orbiting body, it is preferable to introduce the 

barycentric (Jacobi) coordinate system of the primary and the inner, because the time-variation 

in osculating elements is limited in the small magnitude as we see in Brouwer and Clemence 

(1961), Oberti (1990) and Segerman and Richardson (1997). 

The (perturbed) Ham出onianfor Outer becomes, 

F = μ［上 Mm'r92
2a 
＋ 
(M + m')2衿~P2(cosS) 

Mm'(M -m') r'3 
+ （M+m’)3 万瓜cosS)＋…],

where Sis the elongation between Inner and Outer, and l'i is a Legendre polynomial of degree 
i. Using spherical trigonometry, Scan be expressed by the angular orbital elements, f, w, 0 and 
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胃
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吟

I 

Figure 1: A schematically illustrated model of an inclined restricted problem 

入'{SeeFigure 2) as follows: 

cosS =cos(/+ w) cos(..¥'-0) +sin{/+ w) sin（入’-0）cosI 

From now on, we simplify the problem: {1) Inner moves in a circular orbit. {2) Outer's 

perturbation does not affect the motion of the Primary or Inner (i.e. we neglect the mass of 

Outer). In other words, we consider a circular restricted three-body problem. 

The elongation S contains a variable..¥', which depends on time: 

入’=k = n't + const.. 

To make a Hamiltonian independent of time, we introduce a canonical conjugate action variable, 

K. The term -n'K has to be added to the Hamiltonian. 

There are three independent angular variables in this system: /, g and h -k, i.e. there are 

three degrees of freedom. Therefore, we can deduce the Hamiltonian including only three sets 

of canonical variables, (Y1, z1), (Y2, z2) and (Ya, xa), after a suitable canonical transformation. 

F(l, g, h, k, L, G, H, K)→ F(y1, Y2, Ya心”心）．

One example is: 

Y1 = l, Y2 = 9, Ya = h -k, Y4 = k 

Z1 = L, Z2 = G, Z3 = H, X4 = K + H. 

Here, (l, g, h) and (L, G, H) are the canonical set of Delaunay variables. Since y4 does not 

depend on F anymore, we can eliminate X4 from the Hamiltonian. Finally, we obtain F: 

1 
F = μ― 

2a 
+n'x3 
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〇↑々
 

も
.
fゥ

令つ

Figure 2: An angular distance S expressed by angular orbital elements. 

Mm'a3砂 1
+μ(M+m’)2工百i(3cos(2S) + 1) 

Mm'(M -m') a4砂 1
+μ (M+m'）3 万百i(5cos(3S) + 3 cos S) +…• 

3 Hori' ori's canonical perturbation theory 

In this section, we briefly discuss Hori's canonical perturbation theory. See Hori(1966)'s work 

in detail. 

Suppose Ham出oniansF(z, y) and F*（が，y*)are expanded in a small parameter€, i.e., 

F = Fo + F1 + F2 +… 
F* ＝ F。*＋F1* + F2* +…， 

where subscripts mean powers of E. 

An arbitrary function / of canonical variables (z, y) can be developed in a converged series 

of E using the Lie theorem: 
OO n 

f(z,y)=こ-Dげ（が，が），
n=0 
n! 

where D11 is an operator of n-times Poisson bracket with S, i.e.: 

D~ = 
D; = 
D! = 
＝ 

f 
{/, S} 

{ {/, S}, S} 

Substituting a Hamiltonian F in /, we obtain F in a series of E with variables (z*, y*). 

Comparing this expression with F*(z*, y*), we obtain the following equivalences for each power 
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of e: 

Fo* 

F1* 

F2* 

F3* 

= F。
{F。,S1}+ F1 

1 
{F。,S2}+ {Fi, Sサ十一{{F。,S1},S1}+ F2 

2 
= {F。,Sa}+{F1, S2} + {F2, S1} 

1 1 1 
+;;{ {Fo, S2}, S1} +;;{{Fi。,S1},S2} +;;{{Fi, S1}, S1} 
2 2 2 
1 
+-{｛｛F。,S1},S1}, Sサ＋F3
6 

＝ 

Variables before transformation, (z, y) require expression in variables (z*, y•). With Hori's 

theory, they are written: 

OO n 

+E n! Ds― 
1 as 

Z = Z* - -
n=l 

8g* 

8S 1 2 8S 
= Z*+€—+ -€ ＿--

8g*2 8y*' 
{ ~'S} +... 

and 

y
 

y*-t：：埒―1竺
n=l 
n! 8z• 

8S 1 2 
€ ｛ 
8S 

Y* -€—- --S}  -.... 
釦＊ 2-l 8z•' 

4 Building an analytical theory 

We decompose perturbations into four parts according to their periodicities. They are: 

• Short periodic perturbation (caused by the revolution of the inner body) 

• Intermediate periodic perturbation (caused by the revolution of the outer body) 

• Long periodic perturbation (caused by the circulation of the pericenter of the outer body) 

• Secular perturbation. 

In this chapter, we mainly describe the equations for the perturbed Hamiltonian only up to 

P2 terms of Legendre polynomials for the short or intermediate periodic perturbations, and up 

to Pa terms for the long periodic ones. 

4.1 Short periodic perturbation: Elimination of short periodic terms 

We average the Hamiltonian over the short periodic variable, y3 and decrease the number of 

degrees of freedom by one. In other words, we let the new Hamiltonian F* be free from y3. The 

Hamiltonian is transformed into: 

F(y1, Y2洩a,z1,”'％）→F*(y1, Y2,年 2)．
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The original Hamiltonian (before transformation) is written as: 

where, 

and 

F = Fo+ F1 +F2 

F。=n'z3
μ 

F1 = 
2a 
Mm'a3砂 1

F2= μ(M+m’)2芦市(-1+3炉）
3 
十一（1-炉）cos(2/+ 2y2) 
8 
3 
十一(1-8)2 cos(2/ + 2y2 -2ぬ）
16 
3 
＋ー（1-炉）cos(2ぬ）
8 
3 
＋詞＋11)2cos(2/ + 2y2 + 2ぬ）］，

O三 cosI.

Subscripts are approximate orders of a small parameter告， andfrom here on, the expressions 
are neglected（元詞 orhigher order terms. 
A new Hamiltonian F• = Eぼtand a generating function S = Eぶ are:

F0 = Fo(UNPERTURBED) 

F1* ＝［凡］sec

＝ 2μ が2 I 

S1 = / [Fi]perdt* 

= 0 

F2 = [{F1,ふ｝＋凡］sec
1 Mm'a3 a'2 
= -8μ ,-(M + m')2衿 a3[(-1 + 3炉）＋3(1-炉）cos(2/+ 2y2)] 

S2 = j[{F1,S1}+F':心 dt*

= _ μ Mm'a3 a'2 [ 3 2. 
n'(M + m')2衿 a3 -o"n32 (l -8) s1n(2/ + 2y2 -2ぬ）

3 
十一16(1-()りsin(2ぬ）

＋西3(1+/)）2 sin(2/ + 2y2 + 2ぬ）］

Fa = [{F1, S2}]aec 

= 0 

S3 = j[{F:凶｝］perdt*
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巧＝［｛F1ぶ｝］sec+0(（Mm  +m' ）2 ） 

= 0 

＝ 

Ft = [{F1, Siー1}]aec+ 0((Mm +m1 ）り

Si = j[{F1,S曰｝］perdt• + O((MM:+m' 内
＝ 

Here, {X, Y} is an operation of the Poisson bracket of X and Y. [Q]aec and [Q]per are 

operations of getting secular and periodic parts of Q, respectively. An artificial time t• satisfies 

the following relations: 

dz* 8F。
＝ dt* 8y* 

dy* 8F。
＝ dt• 8z* 

4.2 Intermediate periodic perturbation: Elimination of intermediate period-

ic terms 

Next, we eliminate an intermediate periodic perturbation by using a canonical transformation 

F*(y1, Y2, z1, z2)→ F**(y2, z2). 

we have to add additional terms for Si to avoid contaminating secular trends in angular vari-

ables. 

We obtain the Hamiltonian p•• and a generating function s• as follows: 

F;* ＝ F; 

Fi• = Fi(UNPERTURBED) 

• 1 Mm'1 a'2 2 
F; ＝ -8μ ,-(M + m')2113 ーa3(-1 + 39) 

Mm'1  a'2 [1 2 
Si = μ (M + m')2叶-a3 -8 （-1 +30)（f + esinf -Y1) 

3 { 11  1 } ＋ー8（1-的ー2e sin(/+ 2y2) + 0 2 sin(2/ + 2ぬ）＋ー6esin(3/ + 2ぬ）

—ー116 （1-叫1(2 -3e2 -2が）sin(2112)]
F3* = 0((m 内

M+m' 

s; = 0((m)り
M+m' 

＝ 
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4.3 Long periodic perturbation: Elimination of long periodic terms 

Finally, we eliminate the long periodic variable Y2 from the Hamiltonian and obtain a new 

Hamiltonian p••• free from any angular variables y. 
However, we have seen in the previous section, the Hamiltonian p•• does not contain an 
angular variable. This is attributed to the fact that we take only P2 perturbational contributions 

into consideration. In other words, if we include higher Pi terms (in practice, only the even 

numbers of i contribute intermediate or long periodic perturbations), p•• contains trigonometric 
functions of Y2• For example, if we follow up till P6 terms, 

Fo* 

Fi* ＝ 

n・z3 

μ 2 

2が1 
Mm'1砂 1

F2*(P2) 

F2*(P4) 

= μ ----
(M + m1)2 113 a3 8 

(-1 + 3炉）

1 a'4 r 9 
= μQ--［―-n7砂 1024(3 -30炉＋35が）（2+ 3e2) 

F;＊(P6) 

where, 

45 

512 
—一（1- 炉）（1 -7炉）＆cos(2112)]
1 a'6 r 25 

µC•-[— (-5+ 105(J2 -315が＋231炉）（8+ 40e2 + 15eり
n11が 32768

2625 
＋一（1-炉）（1-1802 + 33が）社(2十e2)cos(2y2) 
32768 
+ 1575 
一（1-野（ー1+110叩 cos(4y2)],
65536 

C4 -

C6-

Mm'(M3＋記）

(M + m')5 
Mm'(M丘 m‘5)
(M +m')7 

From now on, we redefine F2* and F3*: 

F2* = F2*(P2) 
F8* = F;*(P4) + F;*(Pa). 

We consider the new F2* as an unperturbed Hamiltonian for a canonical transformation 

F**(y2, z2)---+ F*＊＊， 

and eliminate Y2 from F**. 

The new Hamiltonian F*** = Ei Ft** and the generating function S** = Ei s;• are: 

F*＊*=  F*＊ o - i・o 

Fi** = Fi* 
F2** = F2*(UNPERTURBED) 
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F;＊* ＝ ［F;＊］sec 

= μ [c4上竺上(3-30炉＋35が）（2+ 3e2) n7砂 1024
1 a'6 25 

+c6一—―(-
n11が32768

5 + 10592 -315が＋231炉）（8+ 40e2 + 15e4)] 

Si* = J [F':;＊］芦rdt••• 

15 _ a'2 n 
=―声恥デ(-1＋研）e2(1-炉）（1-7炉）sin(2ぬ）

175 _ a'4 n 
-—B6一32768 a叩 (-1+5炉） ［ -20e2(2十e2)(1-炉）（1-18炉＋33が）sin(2ぬ）

記（1-野(-1+ 11炉）sin(4y2)]
F,i** = [{F;•, Si*}]aec 

S2* = J [{F3*, Si*}]perdt••• 

＝．．．， 

where, 

M3+m'3 
B4 三
(M + m')3 

M5 + m'5 
B6 三
(M + m')5" 

It is noted that Si* is 0(（年）0)because in integrating J Qdt•••, a quantity Q is divided 

by a factor of 0(（式）り．

4.4 Secular perturbation 

We have obtained a Hamiltonian p••• which does not depend on any angular variables. 
The equations of motion are: 

dz*＊＊ 8F*＊＊ 

dt {)y••· (= 0) 

dy••• 8F... 
＝ 8z*＊＊ dt 

From them, we obtain 

＝
 ．．
 ．． ．． zu”
 

const. 

（ 
8F*** 

8z*＊＊ 
)t + const.. 

That is, the action variables (the semimajor axis a•••, the eccentricity e••• and the inclination 
J•••) are constants, while the angular variables (the mean anomaly z•••, the argument of the 
perihelion w••• and the longitude of the ascending node n•••) increase (or decrease) linearly 
with time t. 

Orbital elements a•••, e•••, 1•••, z•••, w•••, n••• deduced from z••• and y••• are mean orbital 

elements. 
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4.5 Deriving osculating elements 

Osculating elements E for canonical variables are summed up by the following contributions: 

• Mean elements E*** 

• Contribution from long periodic perturbation &E•• 

• Contribution from intermediate periodic perturbation 6E* 

• Contribution from short periodic perturbation 6E. 

Therefore, we evaluate the following procedure: first, 

E** = E*** + 8E**(E*＊拿），

then, 

E* = E** + 8E*(E**), 

and finally 

E = E* + 8E(E*). 

Neglecting 0(（＃品）り terms,then, 

8E** = {E**, S**} 
8E* = {E*, S*} 
8E = {E, S}. 

5 Checking accuracy (comparison with numerical integrations) 

The accuracy of ephemerides is assessed by comparing the results to observational data, 

i.e. calculating residuals of O -C((observed) -(calculated)). In general, observations are 

contaminated by noise, the constants are fit by methods of least squares. 

In this study, we check the accuracy of our theory by comparing numerical integrations and 

calculating residuals of ((analyticals) -(numericals)). See Figure 3. Numerical integration 

is performed by Bulirsch-Stoer ("extrapolation method") code in double-precision accuracy. 

This code provides high accuracy in results, suitable for our aim. We start integration with 

position and velocity values that are converted into Cartesian coordinates from a set of analytical 

osculating elements at the initial time. Then, at a time T, residuals (analytical results minus 

numerically integrated ones) are calculated as: 

(Residuals)= (Analytical results) -(Numerical results). 

When we calculate residuals in angular variables, Y1, Y2 and Ya, secular trends (the slopes of 

regression line for raw data) are subtracted, not to hide fine structures in residuals for output 

figures. 
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Comparison between analytical and numerical results 

Numerical approach Analytical approach 

Mean elements 

●
●
―
―
―
-
．
 

ー

會

Numerteal int叩ration
(BuII匹咆匹，

↓ 

| Posltlo了e;OCity|

↓ 

| °rbItala：午ments |...出・….....

Figure 3: Flowchart for calculating residuals 

6 Accuracy of our analytical theory 

6.1 Results and residuals 

Now we check residuals between analytical and numerical results. The former contains up to 

Ps perturbations (and up to Ss, Si and S2* terms for each periodic perturbations), while the 

latter contains the full perturbing force caused by the inner body in the equations of motion. We 

use the same parameters as in the problem of Nereid. (See Table 1, except for a= 5.5 x 106[Km] 

and e = 0. 75.) The residuals are shown in Fig. 4. 

Short periodic variations, which are expressed by trigonometric functions of Ya (the periodicity 

is rv 6[days]), are not seen in the residuals. That is, they are almost perfectly calculated by our 

theory. 

However, a step-shaped discrepancies are seen in the residuals. The maximum divergence of 

our analytical solution from the numerical one is the level of rv 30[Km] in the semimajor axis. 

Next, we check residuals for a long timespan. In e,1 and w, misfits of cos4w or sin如 terms

dominate. (w has the periodicity of rv 3.4 x 10列yr].)They come from the higher order terms 
of (m 酌）2that we have neglected in our construction of a theory. 

Residuals in mean anomaly l remain quadratic trends. They are due to growth of numerical 

round-off errors in longitude (or position) with time. I.e., they are attributed to the errors in 

numerical integration, not to those in our analytical theory. 

Therefore, we conclude that our analytical theory represents the true orbital motion of an 
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Figure 4: Residuals of numerical results minus analytical ones (a) for a short timespan and (b) 

for a long timespan. Secular trends in the angular variables are subtracted. 
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Table 1: Parameters and (mean) orbital elements used in this study. The inclination of the 

outer body refers to the orbital plane of the inner one. We use the same parameters as in the 

Nereid~m~~ and the eccentricity. 
Item Model 

Mass of the primary body [M0] 5.1514 x 10-5 

Mass of the inner body (2.89 x 10-4)x (Mass of Primary) 

Mass of the outer body 0. (test particle) 
s・・emimajor axis [Km] variable (Integer multiples of 5.5 x 10り
Eccentricity 

Inclination [deg] 

Longitude of ascending node [deg] 

Argument of pericenter [deg] 

Initial longitude of the outer body [deg] 

Semimajor axis of the inner body [Km] 

Eccentricity of the inner body 

Inclination of the inner body [deg] 

variable 

132.4 

0.0 

0.0 

0.0 

14.15 X 24764 

0.0 

0.0 

eccentric celestial body fairly well, except for step-shaped errors. Our theory maintains the 

accuracy of within 30[Km] in the osculating semimajor axis. 

6.2 Normalized residuals 

In this section, we define the term'normalized'residual range: 

residual range 
(normalized residual range)= 

magnitude of perturbations 

The reason for introducing the normalized residual range is the following: if we change orbital 

parameters of the outer body, such as a or e, the magnitudes of perturbation are also changed. 

We adopted the initial values as shown in Table 1. We vary the values of a and e and check 

the normalized residual ranges. We used the same values as in the problem of Nereid for other 

parameters. 

The growth of the normalized residual ranges with the eccentricity is shown in Fig. 5. Our 

theory maintains a high degree of accuracy for a wide range of eccentricity, especially for a larger 

semimajor axis. The normalized residual range on the order of rv 10-5 is a machine precision 

limit for calculating residuals. Therefore, our theory perfectly agrees with numerical results. 

However, for a larger eccentricity or for a smaller semimajor axis, the combined analytical 

model degrades accurately. This is due to the following: 

• Offset growth 
According to the results of numerical integration (Fig. 6), step-shaped abrupt changes in 

the orbital elements are observed when Nereid passes its pericenter. We define'offset'as a 
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一One orbital period of Nereid 
Figure 6: Definition of offset in this study. 

difference of the values of an orbital element between the successive revolutional periods. 

Our analytical theory does not describe these phenomena. 

• Ill-convergent series of Si 
For short periodic perturbations, the series of Si converges by a factor of告 However,Si 

is calculated as follows: 

Si = I {F1, Si-1}dt* 
n f 8Si-1 
-；；；1言 dy2
n (1 + e cos /)2 f 8Si-1 
= -；；； n3 ／可―dy2.

The factor of ~ b l f 
n 
ecomes a larger value for a large eccentricity, especially at the 

pericenter，平． Thereforeit prevents Si from converging. 
n 

• Truncational error of Legendre polynomials 
Our theory is truncated by the Ps terms of Legendre polynomials. Thus, the accuracy of 

our theory is decreased when the outer body approaches the pericenter. 

• Truncational error of canonical transformation 

Our theory is truncated by the S5 terms for short periodic perturbations and neglects 

terms of the order of（元）． Itcannot fully explain all of the perturbations. 

7 Di ISCUSSIOll 

7.1 Validity of neglecting higher order terms of（近后）

In this study, we deal with the small factor of the order(＃転ヂ orhigher terms as negligible 
parameters. 

In practice, this simplification is valid for the system that the theory is applicable to. For the 

Nereid system, 
m ＇ 
M 
-~ 2.89 X 10 
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the squared value is approximately of the order of 10-7. The value is small enough to neglect 

the terms of the order of (~)2. 
Similarly, for the extrasolar planetary system, it depends on each system. The upper limit of 

the planetary mass is bounded by 13 Jupiter masses. (This is the lower limit of the mass for 

brown dwarfs. Recently, this classification has come to be accepted among astronomers. See 

Martin et.al.(1999) or Oppenheimer et.al.(2000).) Therefore, for an extrasolar planet orbiting 

around a sun-like star,（畔）2is smaller than the order of 10-4. 

7.2 Reliability of Numerical Integration 

We have checked the accuracy of our analytical theory by comparing it with the numerical re-

sults integrated by Bulirsch-Stoer. Results of numerical integrations are degraded by numerical 

errors, like a'round-off'. They occur in a round-off process at the smallest digit throughout cal-

culation. For a long-interval calculation, the result suffers severely from these errors; therefore, 

'good'integration codes are for the purpose. 

The Bulirsch-Stoer code used in this study is widely admitted as a highly accurate integration 

code for a relatively short interval (which means that it is not suited for the age of the Solar 

system). Murison (1989) discussed the usefulness of the code for keeping a Jacobi integral value, 

which is the integral for the restricted three-body problem in the corotating coordinate system 

with a perturbing body, throughout his numerical integration. 

8 Further Application of This Study 

8.1 Application to the Nereid system 

Nereid, a satellite of Neptune, moves on the most eccentric orbit of known satellites in the 

Solar system. It was discovered by Kuiper in 1949. The semimajor axis of the orbit is about 

5.5 X 106 [Km] (f",J 220 radii of Neptune). However, its orbital eccentricity reaches 0. 75, Nereid 

approaches Neptune in 1.4 x 106 [Km]. Before investigation by the spacecraft Voyager II, only 

two satellites were known to be orbiting Neptune. Triton, the first one discovered, by Lassell in 

1846, orbits in a nearly circular but retrograde orbit once every six days. 

After the discovery of Nereid, many astronomers reported its osculating elements, such as van 

Biesbroeck (1951,1957), Rose(1974) and Veillet(1982). Due to its long orbital period (nearly 1 

year), astrometric observations for a long span are required to obtain orbital elements accurately. 

Besides, its faintness {19th magnitude) has obstructed the acquisition of clear images of Nereid 

from ground-based telescopes. The accuracy of ground-based astrometrical observations is about 

O.l[arcsec]. It corresponds to the length of about 2200[Km] at the mean distance of the Neptune. 

Nereid's Kepler motion is disturbed incessantly by the Sun, Triton and other disturbers. The 

Sun plays an important role in the time-variation of orbital elements of Nereid. 

Mignard (1975) first studied the motion of Nereid, and built an ephemeris (Mignard (1981)) 

analytically. He used canonical transformations and took only the solar perturbation (P2 and 

Pa terms) into account. 
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For the Voyager II mission's flight program, Jacobson(1990, 1991) constructed a precise nu-

merical ephemeris of N eptunian satellites. 

In an analytical approach, Oberti {1990) showed periodic and secular perturbation terms 

of Nereid using a canonical perturbation method of Deprit (1968) type. In this work, the 

solar perturbation (P2 to P4 terms) and that of Triton (P2 and P3 terms) were.included in his 

Hamiltonian and set the origin at the Neptune-Triton barycenter. Segerman and Richardson 

(1997) also studied the motion of Nereid. They took the solar perturbation (P2 and P3 terms), 

that of Triton (P2 and Pa terms) and theみ effectof Neptune into consideration. 

Saad(2000) studied the motion of Nereid using a canonical perturbation method of Hori type. 

He considered only the solar perturbation (P2 term only). The secular perturbation he solved 

analytically, b邸 edon Kinoshita and Nakai(1999)'s work. 

8.2 Application to newly discovered outer satellites 

Gladman et.al. (1997) discovered two satellites of Uranus on CCD-images using the Hale 5-

meter telescope at Mount Palomar. Some successive observations revealed that these satellites 

orbit far from Uranus in retrograde. Today, they are named Caliban (semimajor axis f"V 280 

radii of Uranus) and Sycorax (f"V 480 radii of Uranus). After this discovery, satellites orbiting 

the outer region have been reported one after another for Jupiter, Saturn and Uranus. 

These newly discovered satellites tend to have slightly more eccentric orbits (eccentricity 

f"V 0.5). For Jovian and Saturnian outer satellites, perturbation by the Sun is predominant. 

However, satellites of the farther revolving planet from the Sun have the same spatial configu-

ration (the planet + the inner orbiting satellite + the outer orbiting satellite) as those in this 
study. 

8.3 Application to extrasolar planetary systems 

In the mid-1990's, Mayor and Queloz (1995) reported the presence of a Jupiter-mass com-

panion to 51 Pegasi through observations of its radial velocity. On the study of extrasolar 

planets, some review papers have already been published (for example, Marcy and Butler(1998) 

or Marcy et.al.(2000)). Today's findings are mainly due to radial velocity observation. Slightly 

more massive planets than Jupiter are orbiting around the sun-like stars. Some extrasolar giant 

planets have been detected in the neighborhood of the primary stars. They are called "hot 

Jupiters." 

This property supports the expectation that a more highly eccentric planet revolves further 

from the known extrasolar planets. Our theory can be applied to such a system. 

Our theory can also be applied to the motion of a planet around a binary pair, when we take 

the higher order terms of (~) M+m' into consideration. 

9 Conclusions 

We have developed an analytical theory on the motion of a celestial body orbiting in a highly 

eccentric orbit. The body is perturbed by an inner celestial body which revolves in a circular 
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orbit around the main star. Our theory is constructed using Hori's canonical perturbation 

method without expanding the Hamiltonian in eccentricity. In order to check the accuracy of 

our theory, we compared the analytical results with numerically integrated ones. 

We ascertained that our theory provides the orbital elements with high accuracy. The semi— 

major ax.is ratio of the outer body to the inner one is larger, and our theory maintains its high 

degree of accuracy in the case of a higher eccentricity. 

We also found that both results diverge in the case of a very large eccentricity. This is 

mainly due to the following: (1) The series of the generating function Si for the short periodic 

perturbations becomes less convergent, or more diverse. (2) The offset phenomena: abrupt 

changes in the orbital elements take place when the outer body passes through its pericenter. 

They are not represented in the analytical theory. 

We tried to apply our theory to the Neptunian satellite Nereid that orbits in a highly eccentric 

orbit (e = 0. 75) perturbed by the inner revolving satellite, Triton. Our theory maintains a good 
degree of accuracy, yielding results better than 30Km in the osculating semimajor ax.is of Nereid. 

Our analytical theory can also be applied to other highly eccentric orbits. Some extrasolar 

planets are known as "Hot J upiters", which revolve around their primary stars in circular orbits 

at small distances from them. Another new planet may exist in the outer field. The motion of 

such a new planet can be described by our theory. 

10 References 

Brouwer, D. and Clemence, G.M., 1961, Methods of Celestial Mechanics, Academic Press. 

Deprit, A., 1968, Canonical Transformations Depending on a Small Parameter, Cele. Mech. 

Dyn. Astron., 1, 12. 

Gladman, B.J., Nicholson, P.D., Burns, J.A. and Kavelaars, J.J., 1997, reported in IAUC 

6764 (Marsden, B.G. ed.). 

Hori, G., 1966, Theory of General Perturbations with Unspecified Canonical Variables, Publ. 

Astron. Soc. Japan, 18, 287. 

Jacobson, R.A., 1990, The orbits of the satellites of Neptune, Astron. Astrophys., 231, 241. 

Jacobson, R.A., 1991, Triton and Nereid astrographic observations from Voyager 2, Astron. 

Astrophys. Suppl. Ser., 90, 541. 

Kinoshita, H. and Nakai, H., 1999, Analytical Solution of the Kozai Resonance and its Ap— 

plication, Cele. Mech. Dyn. Astron., 75, 125. 

Marcy, G.W. and Butler, R.P., 1998, Detection of Extrasolar Giant Planets, Annu.. Rev. 

Astron. Astrophys., 36, 57. 

320 



Marcy, G.W., Cochran, W.D. and Mayor, M., 2000, Extrasolar Planets around Main-sequence 

Stars, in Protostars and Planets IV (Mannings, V., Boss, A.P. and Russell, S.S. eds.), The U-

niversity of Arizona Press, 1285. 

Martin, E.L., Brandner, W. and Basri, G., 1999, A Search for Companions to Nearby Brown 

Dwarfs: The Binary DENIS-P J1228.2-1547, Science, 283, 1718. 

Masaki, Y. and Kinoshita, H., 2001, Construction of Analytical Expressions of Nereid's Mo-

tion Perturbed by Triton (I) Planar Problem, in Proceedings of the 33rd Symposium on Celestial 

Mechanics (Kokubo, E., Ito, T. and Arakida, H. eds.), 189. 

Mayor, M. and Queloz, D., 1995, A Jupiter-mass Companion to a Solar-type Star, Nature, 

378, 355. 

Mignard, F., 1975, Satellite a forte excentricite. ApplicationらN碑 de,Astron. Astrophys, 
43, 359. 

Mignard, F., 1981, The Mean Elements of Nereid, Astron. J., 86, 1728. 

Murison, M.A., 1989, On an Efficient and Accurate Method to Integrate Restricted Three-

body Orbits, Astron. J., 97, 1496. 

Oberti, P., 1990, An accurate solution for Nereid's motion I. Analytical modeling, Astron. 

Astrophys., 239, 381. 

Oppenheimer, B.R., Kulkarni, S.R. and Stauffer, J.R., 2000, Brown Dwarfs, in Protostars 

and Planets IV (Mannings, V., Boss, A.P. and Russell, S.S. eds.), The University of Arizona 

Press, 1313. 

Rose, L.E., 1974, Orbit of Nereid and the mass of Neptune, Astron. J., 79, 489. 

Russell, S.S. and Boss, A.P., 1998, Protostars and Planets, Science, 281, 932. 

Saad, A.S., 2000, The Theory of Motion and Ephemerides of the Second Neptunian Satellite 

Nereid, Doctoral thesis, The Graduate University for Advanced Studies. 

Segerman, A.M. and Richardson,D.L., 1997, An Analytical Theory for the Orbit of Nereid, 

Cele. Mech. Dyn. Astron., 66, 321. 

van Biesbroeck, 1951, The Orbit of Nereid, Neptune's Second Satellite, Astron. J., 56, 110. 

321 



van Biesbroeck, 1957, The Mass of Neptune from a New Orbit of its Second Satellite Nereid, 

Astron. J., 62, 272. 

Veillet, C., 1982, Orbital Elements of Nereid from New Observations, Astron. 

112, 277. 

A strophys., 

A Appendix 

lem) 

Analytical Expressions (The Inclined Prob-

We use the following descriptions in this paper. 
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Mass of the inner body 
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Mean motion of the outer body 
Mean motion of the inner body 
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Hereafter, we neglect 0(（百底ii")2)or higher order terms. 

A.1 Hamiltonians 
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A.2 P2-limited generating functions 
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Abstract 

This paper is the results of the first systematic investigation of very small Main-belt 

Asteroids (sub-km MBAs) using the Subaru Prime-Focus Camera (Suprime-Cam), 

which has an 8KX IOK mosaic CCD array on the 8.2m Subaru telescope atop Mauna 

Kea, Hawaii. We call this survey SMBAS (Sub-km Main-Belt Asteroid Survey). 

Observations were carried out on February 22 and 25, 200 I (HST) and the ~3.0deg2 sky 

area near opposition and near the ecliptic was searched. We detected 1111 moving 

objects down to R~26 mag (including very slow Trans Neptunian Objects). In this 

survey, we could not determine the exact orbit of each moving object, because of its 

short observational arc, which is only 2 hours. Instead we estimated statistically the 

semi-major axis (a) and inclination (I) of each moving object from its apparent sky 

motion vector, and then obtained the size and spatial distributions of sub-km MBAs. The 

main results of SMBAS are summarized as follows: (1) the sky number density of 

MBAs is found to be ~290 per deg2 down to R~24.4 mag (for MBAs) near opposition 

and near the ecliptic. (2) the slope of the cumulative size distribution for sub-km MBAs 

ranging from 0.5 km to 1 km in diameter is fairly shallower (~ 1.2) than that for large 

MBAs obtained from the past asteroid surveys (~ 1.8). This means that the number of 

sub-km MBAs is much more depleted than a result extrapolated from the size 

distributions for large asteroids. (3) the depletion of sub-km MBAs is clearer in the outer 

main-belt than in the inner main-belt. (4) the spatial distribution of the smaller asteroids 

indicates a wider /-distribution near the mean motion resonances (2.8~3. lAU) in the 

outer zone of the main-belt. 

1. Introduction 

The current size, spatial and compositional 

distributions of the Main-Belt Asteroids 

(MB As) have been believed to reflect a 

long-term history of collisional evolution (e.g., 

* Based on data collected at Subaru Telescope, which is 

operated by the National Astronomical Obseivatory of Japan. 

拿 Sendoffprint requests to yoshdafin@cc.nao.ac.jp 
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Wetherill, 1989). Good knowledge of the 

Cumulative Size Distribution (hereafter CSD) 

of asteroids in the main-belt brings an insight 

into collisions between MBAs, the production 

rate ~f Near-Earth Asteroids(NEAs) and 

meteoroids, the cratering rate on the surfaces of 

the inner planets, the impact strengths of 

asteroids and so on. It may also allow us to 

infer the accretion process in the main-belt 

region in the initial stage of our solar system 

and the original mass of the main-belt (e.g. 

Kuiper et al, 1958, Anders, 1965, Jedicke & 



MetCalfel, 1998). 

From such motivations, some systematic 

investigation of MBAs as summarized in Table 

I have so far been done and the CSDs of 
MBAs have been revealed down to a few km in 

diameter (D). However, we emphasize here the 

importance of sub-km MBAs whose sizes are a 

few hundred meters in D from the two view 

points as follows; 1) the majority (about 

70~80%) of NEAs are sub-km-sized 

(_),  

and are widely supposed to originate from 

sub-km MBAs and 2) this size region lies near 

the border-line size separating two typical 

catastrophic impact mechanisms, namely those 

in the strength regime and the gravity regime 

(e.g., Melosh & Ryan, 1997, Durda et al., 1998). 

Concerning the first point, it is generally 

accepted that NEAs originated from MBAs 

through collision processes between asteroids 

in the main-belt and the subsequent 

gravitational perturbations associated with the 

Kirkwood gaps (e.g., Wisdom, 1983, 

Morbidelli & Moons, 1995). However, this 

dynamical conjecture has never been confinned 

observationally, because of the faintness of 

sub-km MBAs. Hence, in this respect our 

SMBAS may shed direct light on physical 

relations between NEAs and sub-km MBAs. 

And if the above second point is correct, there 

may be difference between the CSD slope for 

sub-km MBAs and that for known large MBAs, 

and it may be able to be interpreted as the 

difference in the collisional nature between the 

strength regime and the gravity regime. For 

those reasons, we consider that the 

observational study of sub-km MBAs is very 

crucial in the collisional history of the 

main-belt and performed the following 

observations. 

In this paper Section 2 deals with SMBAS 

observations and data reduction and Section 3 

explains our detection technique of moving 

objects. We described in Section 4 positional 

and photometric measurements of asteroids, 

including the determination of the detection 

limiting magnitude. In Section 5 and 6, the 

method of statistical estimations of the 

semi-major axis and inclination for each 

asteroid and a observational bias correction 

method are treated, respectively. Section 7 

mentions the main results derived from our 

SMBAS, namely the size and the spatial 

distributions for sub-km MBAs. And fmally in 

Section 8 and 9, we discuss physical 

implication for our obtained results and future 

prospect. 

TABLE I 
The Previous Asteroid Surveys and SMBAS 

Survey Observation Telescope Limiting Sky coverage Number of Slope of the CSD 

time size(m) magnitude (deめ detectedasteroids for detected 

asteroids 

YMS 1950-52 0.25 Vp < 14-16 14,400 1,550 2.4 (for D =30~300km) 

PLS 1960 1.25 Vp < 20-21 216 > 2,000 1.8 (for D > 5km) 

Spacewatch 1992-95 0.90 Vく21 3,740 59,226 1.8 (for D > 5km) 

SDSS 1998-2000 2.5 r* < 21.5 500 ~13,000 1.3 (for D = 1~5km) 

SMBAS 2001 8.2 R~24.4 3.26 1,111 1.2 (for D = 0.5~1krn) 

Vp: photographic magnitude. 

r*: R-band (the effective wavelengths is 6280 A) in SDSS. 
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2. Observations and Data reductions 

2.1 Observations 

Observations were carried out on February 

22 and 25, 2001(HST) by using the 8.2m 

Subaru telescope atop Mauna Kea, Hawaii. We 

used the 8KX IOK wide-field mosaic camera 

acronymic as Su prime-Cam (Subaru 

Prime-Focus Camera) (Komiyama et al., 2000), 

attached at the prime focus of the telescope. 

Suprime-Cam covers the field of view of ~34' 

X ~27'at the prime focus (F/2.0) and it consists 

of ten CCD chips (2048 X 4096 pixels for each 

chip; the pixel size is 0.2"). However, since one 

CCD chip did not work in our observations, we 

actually used nine CCD chips. The field of 

view was -0.22 deg2 with nine CCDs. The 

searched sky includes the ecliptic area near 

゜opposition at RA. =lOh 22m, DEC.=+10° 20', 

which was within an ecliptic latitude土l゚．
The seven sky fields were selected carefully so 

that they are relatively star-free and did not 

include bright stars. The R-band filter used, 

which is most efficient in terms of both 

quantum efficiency of CCD and the peak 

intensity of solar spectra. Each exposure time 

was 7 min. The seeing size was 0.8~1.0 arcsec 

on Feb. 22 and 0.6-0．9 arcsec on Feb. 25. The 
same fields were taken in two nights. The total 

surveyed area during the two nights was 2.97 

deg2. 

Two observational modes were performed : 

1) Wide Field (WF) survey mode and 2) Deep 

Field (DF) survey mode. In WF survey, we 

took three images of the same field with a time 

interval of about 55 min. In DF survey, 

eleven images of the same field were taken 

every 11 min in succession. In both modes, 

however, the observational arc for each moving 

object is about two hours. We also observed six 

Landolt standard stars at different airmass for 

photometric calibrations (Landolt, 1992). 

The observational data described here are 

actually the same as those of the Wide-Field 

Survey of Edgeworth-Kuiper Belt Objects that 
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have already been reported by Kinoshita et al. 

(2002). However, since the purpose of 

observations and the method of data analysis 

are quite different between Kinoshita's and this 

work. We distinguish our survey from that by 

Kinoshita et al. for Edgeworth-Kuiper Belt 

Objects (EKBOs) by calling this survey the 

Sub-km Main-belt Asteroids Survey (hereafter 

SMBAS). The observational mode and 

exposure time were optimized for detection of 

EKBOs. 

2.2 Data reductions 

Image reduction was carried out on a 

chip-by-chip basis using the standard method 

with NOAO IRAF. First, the averaged output 

value for the overscan region of each CCD was 

subtracted from each CCD image data. Second, 

the overscan region was trimmed and then the 

image consisting only of the effective area was 

made. Third, in order to correct the 

two-dimensional bias pattern of each CCD, the 

bias image was subtracted from each CCD 

image. The bias image was produced by 

averaging a few raw bias frames which were 

taken every night. Next, we made corrections 

of difference in pixel-sensitivity over a 

CCD-chip, namely a traditional flat-field 

calibration. For that purpose, we took several 

images of the twilight sky with the field-centers 

offset slightly from each other. Then, a median 

flat-field image was constructed from them, by 

which each CCD image was divided to get 

uniform sensitivity. 

3. Detection of moving objects 

There are two approaches to detect moving 

objects in observed images, that is, detection by 

visual inspection and that by computer software. 

We adopted here the former approach, whereas 

most large-scale survey programs conducted in 

the last decade for NEAs and EKBOs relied on 

the latter one (e.g., SDSS, LINEAR). However, 

both approaches have their own merits and 



demerits. Software detection is believed to be 

objective, free from careless mistakes made by 

the human interface and appropriate for 

handling large amount of data. But a properly 

designed procedure of visual detection can also 

be as objective as the software approach. 

On the other hand, there seems to be a 

tendency that use of only software detection 

gives the limiting magnitude of roughly at least 

1.0 ~ 1.5 magnitude shallower than that for 
visual detection; this is reasonable because at 

critical signal levels or in blended images, even 

sophisticated detection algorithms can never 

surpass the overall judging ability of the human 

eye and brain. As a result, software detection 

generally needs some help of more or less 

visual confirmation. We therefore believe, as 

shown later, that our technique of visual 

detection gives reliable results compatible with 

software approach, especially for medium-sized 

data of less than a few thousand objects. 

Regarding this, it is worthwhile to cite the 

recent survey observation of EKBOs by Millis 

et al. (2002), who, after comparing software 

detection and, they report that their technique 

works well even with only two-exposure 

pseudo-colored images. 

After the basic reduction mentioned in 

Section 2 were applied to all object frames, we 

made combined images to recognize and count 

moving objects easily. Concretely, for all object 

frames in the WF survey which consist of three 

exposures, we subtracted the first image from 

the second one, and added the resulting image 

to the third image. An example of such new 

images made by the above operation is shown 

in Fig.I a. One can see moving objects as trains 

of separated black-white-black dots. This 

technique is basically the same as that proposed 

in Yoshida et al. (2001). Then we counted the 

number of moving objects by careful 

eye-inspection. 

When multiple images were combined, the 

absolute value of the sky mean level for 

positive and negative images was equaled 

within a certain error level. This operation 
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increases the dispersion of the sky level 

compared to that for single exposure images (as 

for quantitative aspect of sky level fluctuation 

see Section 4.2). However, the easy 

detectability of asteroids shown as trains of 

black and white dots was much more 

advantageous than some degradation of SIN 

ratio in composite images. Fig. I b shows an 

image to which the above operations were 

similarly applied using a series of 11 images 

taken in the DF survey. One can recognize 

moving objects as a sequence of 

black-and-white striped bars. In Fig. I a, stars 

are generally seen as grouping black-and-white 

dots slightly shifted each other; this was caused 

by the telescopic pointing error during about 

one hour exposure interval. This also helps us 

distinguish stars from moving objects. 

This black-and-white image technique also 

enables us to easily identify moving objects as 

a time sequence. For example, in the WF 

survey, we can surely confirm that the white 

dot corresponds to the image taken at the 

second exposure. It may also help us judge 

whether one elongated object is either a moving 

object or a galaxy, because all galaxies are 

always seen as black images, and we can 

confidently distinguish all white images as 

moving objects. Our this technique is also 

useful to confirm that a moving object is the 

same one on the neighboring CCD chips. 

In actual detection of moving objects, we 

divided all of the processed images into 

partially overlapped small sub-frames the 

separated parts of lOO"xlOO" (about SOOxSOO 

pixel), so that its size can cover sufficiently the 

motion of asteroids in inner main-belt during 

two hours. And then we magnified all separated 

images and checked by careful eye-inspection 

twice separated by a few days. As a result we 

detected 1194 moving objects. Then, after 

removing the same moving objects that strode 

over neighboring CCDs, we eventually 

recognized 1111 moving objects. 



” i••.~ '',. ... :: , 
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FIG.I-The moving objects detected in each one of the CCD images in WF survey and DF 

surveys. (a) only some trains of black-and-white dots as identified asteroids are marked by lines for 

clarity. Fifteen moving objects are detected in 2KX4K chip image altogether. Black-white-black dots 

appear fairly separated because of long exposure intervals (-55 min.). Field stars and galaxies appear as 

slightly shifted groupings of black-white-black dots, due to the telescope guiding error during the three 

exposures. (b) twenty-three detected moving objects are included in this image. They appear as 

black-and-white straight bars because of short exposure intervals (-11 min.). Field stars and galaxies 

appear as black images. Up is north and left is east in these images. All moving objects moved from left 

to right {due to retrograde motions near opposition). 

4. Photometry and Measurement of 

positions 

4.1 Photometry 

carried out aperture photometric 

measurements of detected moving objects using 

We 

mean 

IRAF-APPHOT. Then we added to the 

measured brightness of each moving object the 

following two corrections. First, we made the 

correction of difference in the sensitivity 

between CCD chips. The relative response for 

each CCD to the incoming radiation on the 

Suprime-Cam was calibrated comparing the 

count of sky background brightness 
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between CCDs. Second, the correction of the 

atmospheric extinction arising from the 

variation of airmass was made by using the 

extinction coefficients obtained from several 

Landolt photometric standard stars observed at 

some different airmasses on each night. 

From measurements of the brightness of 

moving objects at each exposure time, we 

found that the mean amplitude of the intrinsic 

light variations of the moving objects (caused 

by their rotation) is~0．25 mag. This value is 

about ten times larger than the measuring 

photometric error (~0．03 mag) of each object. 
Therefore, the absolute magnitudes of all 

detected moving objects may include the error 

of~O．25 mag. However we emphasize that this 

kind of error can accordingly be averaged out 

when we construct the size or spatial 

distributions from many objects. 

4.2 Determination of the limiting magnitude 

According to Kinoshita et al. (2002), the 

R-band limiting magnitude of point sources for 

our observing run is 26.1 mag. However, it is 

necessary for us to examine independently the 

limiting magnitude of moving objects by our 

own method, because our moving objects were 

much more trailed than EKBOs and we used a 

special technique, that is, the black and white 

image method. Since we combined multiple 

images to detect moving object, the mean sky 

fluctuation was increased to 1.8~2.0(1 （(1 ： 

standard deviation of the sky brightness 

variation for a I-exposure image) for 

3-exposure composites and to 2.9~3.3(1for 

11-exposure ones. Considering that the 

variation of the sky brightness follows the 

photon (namely, Poisson or Gaussian) statistics, 

the detection probability of a star with its peak 

intensity of I(1is calculated to be 68.3 %, and 

95.5 % for 2(1 -peak, 99.7 % for 3(1 -peak, 

respectively (Meyer, 1975) for single exposure 

images. Hence, this can be interpreted as that 

the objects barely observed in 3-exposure 

composite images with 1.8~2.0 <1 have 
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92.8~95.5 % detection probability, and 

99.6~99.9 % probability for those in 

11-exposure composites with 2.9~3.3 a. In 

other words, we may safely say that all of the 

detected asteroids in our composite images can 

be found in single exposure images with 

probabilities higher than 90%. This is a 

quantitative basis for our detecting moving 

objects in SMBAS. 

The next step is to detem血ethe limiting 

magnitude for trailed asteroids in 

black-and-white composite images that we 

made. For the purpose, we conducted 

simulation experiments using the task 

IRAF-MKOBJECTS. We first produced a 

stellar image with the FWHM of an average 

seeing-size for the observed night, then we 

made its slightly shifted image, added the two, 

and continue the process, to give a train of 

superimposed images; this is to mimic trailed 

images of asteroids. We assumed a mean 

apparent motion for mid-belt asteroids (14 

arcmin/day) with a trail length corresponding to 

a 7-min exposure time. Then, series of trails of 

different brightness with a 0.2 mag step 

(covering about 4 mag span) and with a fixed 

separation were output randomly in location on 

the black-and-white composite images (see 

Fig.2). The lefunost trail in each series is the 

brightest one. By careful eye-inspection, we 

measured the magnitude of the discernible 

faintest trail with 0.1 mag accuracy, relative to 

the brightest one. 

In practice, overlapping of some part of the 

trails with background stars and galaxies often 

occurred, so that we had to attempt many series 

of trails. Among them, we picked up 87 cases 

in which the brightest and faintest discernible 

trails could safely be measured, and plotted a 

percentage detection frequency of the faintest 

trails as a function of magnitude (in Fig.3). The 

origin of the magnitude in abscissa is arbitrary. 

By measuring magnitude differences between 

the brightest trail and some nearly photometric 

standard stars using asteroid trails as a mediator, 

we connected the abscissa to the standard 



FIG.2---An example of simulated asteroid 

trails superimposed on a composite 

Suprime-Cam image. The magnitude difference 

between adjacent artificial trails is kept to be 0.2 

mag. The length of trails is characterized by an 

average motion for mid-belt asteroids during 7 

min exposure time and by a mean seeing size for 

the observed night. 

Artificial trail simulation 
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FI G.3---Trail detectability as a 

of magnitude. The ordinate shows 

fraction of trailed asteroids can be visually 

detected at a given magnitude, relative to the 

brightest trail. The origin of abscissa is 

visually arbitrary. 

function 

what 

magnitude system. One can see that 

detection probability is in Fig.3 changes from 

100% to 0% over a magnitude range of0.8---0.9. 

This is good agreement with Fig.4 in Millis et 

al. (2002). 

the 

Here we adopted a 90 % perfect detection 

level in Fig.3 as the limiting magnitude in 

SMBAS. The magnitude corresponds to 24.4 

mag in R-band. Note that this limiting 

magnitude is for mid-belt MBAs with their 

typical motions, but not for stars (namely point 

sources). 

4.3 Positional measurements of moving objects 

The position for each moving object was 

measured again with IRAF-APPHOT relative 

to about ten USNO-A2 stars 

(http:IItdc-www.harvard.edu/software/catalogs/ 

~) that we picked up on the same frame. 

The apparent velocity for each object was 

calculated from its positions corresponding to 

all the exposure images. Fig.4 shows the 

apparent daily motions along the ecliptic 

longitude and the ecliptic latitude for each 

moving object detected in SMBAS. From Fig.4, 

we can easily distinguish between MBAs and 

the other groups of moving objects by their 

motions. We discuss only MBAs in the next 

section, because our interest focuses on small 

asteroids in the main-belt in this paper. 

5. Estimates of semi-major axis and 

inclination for asteroids 

Since the observational arc for each asteroid 

detected in SMBAS is only two hours, we can 

not determine its exact orbital elements. Thus 

instead we adopted a method to derive 

approximate semi-major axis (a) and 

inclination (/)from the sky motion vector of 

each asteroid under the assumption that its 

orbital eccentricity (e) is zero. This method is 

based on geometrical and kinematical relations 

in the two-body problem, which was initially 

proposed by Bowell et al. in 1990. We call it 

Bowell's method in this paper. Since, however, 

the e-values of the typical MBAs lie actually in 

the range from Oto ---0.2, we had to estimate in 

a statistical sense by Monte Carlo simulations 

the possible errors between the a and I obtained 
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FIG.4-Apparent motions along the ecliptic longitude and the latitude of moving objects 

detected in SMBAS. One can also see a considerable number of Hilda and Trojan asteroids. 

by Bowell's method and true orbital elements 

for each asteroids. We hereafter denote the 

former as a'and I'and the latter as a and I. 

The following is the outlive results from 

Nakamura & Yoshida (2001) and Yoshida & 

Nakamura (2001a). 

First, we generated many hypothetical 

asteroids with various orbital elements in a 

computer and picked up a few thousand 

asteroids that entered the observational window 

in SMBAS. We selected the ranges in orbital 

elements of the generated asteroids to be 

slightly wider than the ranges of known MBAs. 

The observational window area was set to be 

nearly the same as the actual observational 

window in SMBAS. The orbital elements 

ranges of the generated asteroids and the 

observational windows are listed in Table Il. 

Next, we calculated their daily motions at 

opposition using a two-body ephemeris 

generator. We then compared the a and I for 

each hypothetical asteroid with the a'and /' 

calculated from its motion vector. 

Fig.Sa is a reproduction from Nakamura and 

Yoshida (2001) which shows the a and a' 

calculated by the above simulation. It seems 

that there is little systematic difference between 

the a and the a・, though the scattering roughly 

attains to---0．I AU. Fig.Sb shows the / and /' 

calculated by the same simulation. The 

difference between the I and the/'is seem to be 

considerably large, especially for/>10 deg. We 

summarized more quantitative results in Table 

皿aand Table皿b.

After we calculated the a'and /'of asteroids 

detected in SMBAS using Bowell's method, we 

obtained systematic errors in their a'and /' 

based on the mean values of (a-a) and (/-/) 

shown in Table皿aand Table皿b.In order to 

give random errors in estimating errors of the 

a'and /', we also calculated standard 

deviations, namely SD(a-a) and SD(/-/), 

which were shown in the fourth column in 

Table皿aand Table皿b.From Table皿a,we can 

that random errors, namely SD(a-a) 

exceed systematic errors, namely mean(a-a), 

for each zone, so that correction of the 

systematic error may bring about little 

important in a-estimate. On the other hand, 

Table皿bshows that the mean(/-/) for the 

high-inclination MBA zone is larger than 

SD(/-/り， andhence the correction of the 

systematic error is essential, though random 

errors in / are fairly large for three zones. We 

see 
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comment that these errors are for individual 

asteroids and their effects are much more 
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FIG.5 (a) and (b)ーGenerateda vs. Bowell's a'plot and Generated I vs. Bowell's I'plot, 

respectively, which is based on Nakamura and Yoshida (2001). The horizontal axis: the value of a or I 

generated in a computer run. The vertical axis: the value of a'or I'calculated from the sky motion vector 

of each asteroid generated in a computer run. The input parameters are from Table Il. 

TABLEilーTheOrbital-element Ranges of Simulation-generated Asteroids and Assumed Observational 

Window 

a(AU) 

/ (deg) 

e 

Angular elements 

Observational window 

2.75士 0.75

15土）5

0.2土 0.2

uniform over 0~360° 

2° X 2° 

TABLE m a---Errors of Semi-major Axis Obtained from Bowell's Orbit 
Zone range (AU) mean (a-a') SD(a-a) 

Inner-belt 

Mid-belt 

Outer-belt 

2.0<aく2.6

2.6 <a< 3.0 

3.0 <a< 3.5 

0.075 

0.070 

0.083 

0.14 

0.13 

0.1S 

SD : the standard deviation 

TABLEWb---Errors of Inclination Obtained form Bowell's Orbit 

Zone range (deg) mean(/-/') SD(/-/) 

Low-incl. 

Medium-incl. 

High-incl. 

SD : the standard deviation 

0</<10 

10<／く20

20 <I< 30 

0.27 

2.35 

6.37 

1.5 

4.4 

5.8 
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6. Observational bias corrections 

SMBAS was conducted in a very small sky 

area only near opposition and near the ecliptic. 

For such observational conditions, we must 

consider some specific observational biases. 

Nakamura & Yoshida (2001) have already 

estimated observational biases for a small area 

near opposition and near the ecliptic (see Fig.6a, 

b). They calculated the observational biases as 

functions of a and / for an assumed 

observational field of view (5¥ X 4 ゚, a little 

wider than in actual SMBAS), centered at 

opposition and on the ecliptic. Fig.6a shows the 

relative bias as a function of a. The relative 

bias is defined here as the number ratio 

between near-ecliptic distant asteroids with, say, 

r~6 AU (r : heliocentric distance) and those 

with r=a (AU). Three relative bias curves are 

calculated for circular, near-circular, and 

elliptic orbits. Fig.6b shows the relative bias as 

a function of/. The relative bias is defined here 

to be the number ratio between ecliptic 

asteroids (J-0）and those with /. The relative 

bias curves were calculated for the inner-

(a=2.3 AU), middle- (a=2.7 AU), and 

outer-MBAs (a=3.1 AU), respectively. 

The a-distribution and /-distribution for 

MBAs detected in SMBAS, which we describe 

in Section 7, were corrected by using the bias 

corrections shown in Fig.6a and b. Since we are 

mainly interested in profiles of size and spatial 

distribitions, the relative bias corrections are 

sufficient for our purpose and absolute bias 

corrections are unnecessary. 

7. Results 

7. l Overview of results 

In this paper, we defined the main-belt zone as 

a=2~3.5 AU in accordance with the past 

swveys. After the corrections of the a and I 

described in Section 5, we regarded all the 

moving objects that fell in a= between 2 and 

3.5 AU as MBAs. We found 861 MBAs in 

SMBAS. From this, we estimated that the sky 

number density of MBAs down to R=24.4 mag 

is ~290/deg2 near opposition and near the 

ecliptic. 
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FIG.6 (a)ーTherelative bias as a function of 

a. The relative bias is the number ratio between 

near-ecliptic asteroids in distant orbits (r~6 AU) 

and those at r=-a (AU). The relative bias curves 

are calcurated for circular, near-circular and 

elliptic orbits. (b) The relative bias as a function 

of I. The relative bias is the number ratio between 

ecliptic asteroids (/-0) and those with /. Three 

relative bias curves are calcurated for the inner-, 

middle-, and outer-MBAs. These figures are taken 

from Nakamura and Yoshida (2001). 
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Next we calculated the absolute magnitudes 

（出） ofeach MBA by Eq.(I) (e.g., 

Ephemerides of Minor Planets for 200 I) : 

HR=R-5 log（△． r) -p(a)一 oV, 

see logD=3. l 295-0.5logp-0.2HR. (2) 

(1) 

r~a 

where R is the apparent magnitude in R-band of 

an asteroid in question,△ and r stand for the 

geocentric and heliocentric distances (in AU), 

respectively, p(a) is the phase function 

(a :phase angle, namely Earth-asteroid-Sun 

angle), and o V is the light variation due to 
rotation. Since SMBAS is observations near 

opposition the value of p(a -<)゚ ）isnegligibly 

small. Though r-=a(l-e2)![ 1 +ecos(jt w)] near 

the ecliptic, where w is argument of 

perihelion and/ is true anomaly, we can regard 

for each asteroids, because of our 

assumption that e=O (see Section 5). We can not 

estimate the o V for individual asteroids, 
because we didn't observe their lightcurve over 

all phase. However the phase of every asteroids 

are random. So their o V will be averaged out 
when we construct size distributions from their 

observations. So we put here o V=O for 
convemence. 

If the albedo(p）of an asteroid is known or 

assumed, its diameter (D) can be obtained 

approximately from its HR (except for color 

effects) by Eq. (2) (Bowell et al. 1989), which 

is a modified version of the formula by Bowell 

and Lurnme (1979): 

We have used the averaged albedo of C-and 

S-type asteroids, that is, using an empirical 

formula logD=3.65-0.2H, because we could 

not measure albedos of asteroids in SMBAS. 

Fig. 7 shows a comparison between the 

HR-distribution of MBAs detected in SMBAS 

and the H-distribution of 85,150 known MBAs 

September 2000 data of 

(flp:／ flp. lo¥＼．cl l.cdu/pub e|gb aSlorb.hlll1l)． 

Since the (V-R) color for asteroids with typical 

taxonomic types is known to range between -

0.05 and + 0.25, we need not distinguish HR― 

and H-magnitudes within accuracy of our 

diameter estimate and such a comparison is 

therefore justified. The approximate D 

corresponding to the HR was also indicated by 

arrows on the upper horizontal axis in Fig. 7. 

From Fig. 7, we see that the peak of the 

HR-distribution for known MBAs is ~15 mag 

(corresponding to D---4.5 km), whereas the peak 

for MBAs obtained with SMBAS is ~20 mag 

(corresponding to D~450 m). Therefore, one 

can understand that our SMBAS could 

substantially observe sub-km MBAs whose size 

region is one order of magnitude smaller than 

that of known asteroids; this is really 

unknown world. The range of MBAs 

SMBAS for the minimum and the maximum 

size covers from ~O. I to ~IO km. 
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FIG.7-The HR-distribution of MBAs detected in our observations and that for known MBAs 

(solid boxes: MBAs detected in SM BAS; open boxes: known MBAs). 
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7.2 a-and I-distributions 

Fig.Sa shows the a-distribution of 861 MBAs 

detected in SMBAS. The black, white, and gray 

boxes respectively indicate, the raw 

a-distribution of 861 MBAs, the a-distribution 

of MBAs corrected by the relative bias 

calculated for elliptic orbits, and that of MBAs 

corrected by the relative bias calculated for 

circular orbits given in Fig.6a. In Section 5, we 

said that the a of each asteroid in our estimation 

has a mean error of 0.13-0.15 AU. However, 

the a's error in the histogram of Fig.Sa should 

be generally smaller, because the statistical 

error in an a-bin is improved by the amount of 

△a/Jn（△a: the a-error for a single asteroid, 

n : the data number in that a-bin), unless the 

data number is too small. Hence the histogram, 

especially the one corrected for elliptic orbit is 

worth comparing with that for known asteroids. 

Fig.Sb shows the a-distribution of 85,150 

known MBAs discussed in Section 7.1 and 

Fig.7. In order to fairly compare the result of 

known MBAs with that for the MBAs from 

SMBAS, we drew Fig.Sb by intentionally 

degrading the resolution for the a. In the 

a-distribution of known MBAs, it is well 

According to the statistical consideration 

already mentioned, a mean error of 1.5~5.8 deg 

in the / for individual asteroids in our 

estimation is also improved by the amount of 

△Il.f n（△/: the I '..error for a single asteroid, 

n : the data number in a /-bin), unless the data 

number is too small. Fig. 9b shows the 

/-distribution of the 85,150 known MBAs. 

Though the /-distribution of known MBAs 

steeply decreases along with the increase of/, 

that of the relative-bias-corrected MBAs is seen 

to be comparatively uniform over the /-range 

shown in Fig.9a, except the lack of asteroids 

゜near /~12-. It is not clear now whether the 

lack is real or an artifact caused by statistics of 

small sample number, and will be a target for 

future exploration. 

7.3 Size distribution in the whole main-belt 

Next we discuss the cumulative size 

distribution (hereafter CSD) of sub-km MBAs 

detected in SMBAS. It is well known that a 

cumulative number distribution for MBAs 

brighter than a certain magnitude HR is 

expressed as 

known that the diininution of asteroids near 2.1, logN(<HR)= C+ a HR. (3) 

2.5 and 2.9 AU is reflected by the existence of 

the Kirkwood resonant gaps. One can see the 

depression near a~2.1 and 2.5 AU which is 

same as that of the known MBAs in the 

a-distribution of the small MBAs discovered 

with SMBAS. This might imply that, even 

where a and C are constants. The value of 

a is often referred to as the slope for log N vs. 

出 plot.If we rewrite Eq. (3) with the help of 

Eq. (2), the result is equal to 

for sub-km MBAs, the 3: I Kirkwood gap still N(>D)ocD-h. (4) 

gives strong dynamical effects. On the other 

hand, the depression of the small MBAs near 

a~2.9AU is so not conspicuous as that of the 

known MBAs; on the contrary the number 

seems to increase in this region in Fig.Sa. 

Fig.9a shows the /-distribution of MBAs 

detected in SMBAS. The black and white boxes 

represent the raw /-distribution of 861 MBAs 

from SMBAS and the /-distribution of MBAs 

corrected by the relative bias calculated for 

middle-belt asteroids in Fig.6b, respectively. 
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The power-law index (b) in Eq. (4), which 

corresponds to the slope for log N vs. log D 

plot, is connected to a by b = 5 a. In this 

paper, we use b to express the slope of the CSD 

of asteroids. 

Fig. l O shows the differential (white-box 

histogram) and cumulative (filled dots) 

HR-magnitude distributions for 861 MBAs 

detected in SMBAS. The D corresponding to 

the HR was also shown on the upper horizontal 
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FIG.8ー (a)The a-distribution of 

detected in SMBAS. The black, white, and gray 

boxes respectively indicate the a-distribution of 

861 MBAs from SMBAS, that of MBAs 

relative bias calculated for 

MBAs 

corrected by the 

ecliptic orbit, and that of MBAs corrected by the 

relative bias calculated for circular orbit in Fig.Ga. 

(b) The a-distribution of 85,150 known MBAs. 

axis. The HR of each asteroid was estimated by 

using Eq. (I) with its a (see Section 7.1). 

Therefore, the HR of each asteroid includes the 

a-error caused by the assumption that e=O. The 

HR-error caused by the a-error is 0.25---0.38 

mag. Again statistically, however, the HR-error 

in a HR-bin decreases by the amount of△HR/ 

.f"n（△HR: the mean error derived from the 

mean a-error, n: data number in a HR-bin). We 

showed the error bar only for the cumulative 

HR-magnitude in Fig. IO for clarity. 

The solid line was drawn to compare with 

the slope (b~l.75) for the CSD from PLS and 

Spacewatch survey. It seems that the slope of 

FIG.9ー(a)The /-distribution of MBAs 

detected in SMBAS. The black and white boxes 

indicate the /-distribution of 861 MBAs from 

SMBAS and one of MBAs corrected by the 

relative bias calculated for middle-belt asteroids 

Fig.6b. Note that there are two detected 

asteroids near / = 37 and 38 deg. (b) The I 

distribution of 85,150 known MBAs. 

In 

the CSD for asteroids brighter than Hr! 7 is a 

little steeper than ~ I. 75, and that of asteroids 

fainter than HR~l8 is much more gentle. 

Spacewatch (Jedicke & Mefcalfe, 1998) and 

SDSS (Ivezic et al., 200 I) ascertained that the 

slope of the CSD for small MBAs is shallower 

than previous estimates and cannot be 

represented by a single power-law. We can also 

confirm their results in Fig. I 0. Nevertheless, in 

order to compare our results with the b obtained 

from the past survey, we attempted to obtain 

the b by fitting with the least squares method. 

The best-fit value of the b for the asteroids with 

18.3<H(mag)<l 9.7 (corresponding to O.S<D 
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FIG.IOーTheHrdistribution of MBAs detected 

with SMBAS in the whole main-belt. 

(km)<l, assuming a mean albedo for known C-

and S-type MBAs in Eq. (2)) is found to be 

1.18士 0.03. Hence we attain the same 

conclusion with that of SDSS for asteroids 

conducted by Ivezic et al. (2001) that the 

number of small MBAs extrapolated so far 

based on the number of large MBAs (D>Skm) 

was overestimated. 

7.4 Size distribution in three zones of the 

main-belt 

Furthermore, we partitioned the main-belt 

into the inner, middle and outer zones defmed 

by 2.0<a<2.6, 2.6<a<3.0, and 3.0<a<3.5AU, 

respectively. This division is conformable to 

the previous surveys: YMS, PLS and 

Spacewatch survey. Since the limit of the 

detectable magnitude becomes brighter along 

with the increase of asteroid's heliocentric 

distance, it is important to take such a distance 

effect into account when we examine the CSD 

of MBAs for each zone of the main-belt. The 

detectable HR-magnitude for each zone were 

here calculated at the farthest position of each 

zone, namely 2.6, 3.0, and 3.5 AU by using Eq. 

(1) and the limiting magnitude (R=24.4 mag) 

discussed in Section 4.2, and they were listed in 

Table IV. We can say that SMBAS detected 

nearly completely MBAs in each zone in the 

main-belt up to the values of the HR or D 

shown in TableN. 

TABLE N --The Limiting Hrmagnitudes 

Asteroids for Three Zones in The Main-belt 

--— ’'L L」-----・―,――
Belt-zone Inner Middle Outer 

-----―,------,― l ■-■ 「― ■「―「――---
a(AU) 

出 (mag)

D(km) 

of 

2.6 

21.3 

0.25 

3.0 

20.5 

0.35 

3.5 

19.7 

0.51 

The HR-differential distribution and 

HR-cumulative distribution for each zone are 

shown in Fig. I la (inner-belt), b (middle-belt), c 

(outer-belt). It seems that, for asteroids with 

凡＞～15,the slope of the CSD for the outer 

region is gentler than that for the inner region. 

However, when seen more in detail, the slope 

of the CSD changes continuously with the 

HR-range for any of three zones. So, we 

calculated the local slope values as a function 

of HR, and then drew them in Fig.12. In Fig.12, 

the crosses, triangles, and open circles 

connected with curves show the changes in the 

CSD slopes for the inner-, mid-, and 

outer-MBAs, respectively. For asteroids with 

Hi>~11.5, it is seen that the slopes of the CSDs 

becomes gentler in order of the inner-, middle-, 

and outer-belt. Namely, it is obvious that the b 

of the CSD for outer-belt in Fig.12 is smaller 

than that for inner-belt. On the other hand, for 

asteroids with HR<l 1.5, the slope is steepest in 

the middle-belt, though it is possible that this 

trend may be an artifact caused by small 

sample statistics. 

Now we focus on the CSD slopes of sub-km 

MBAs for the size range from 0.5km to 1 km in 

diameter in each zone, since we are especially 

interested in the CSD for sub-km MB As (D< 1 

km). The discussion below is meaningful, 

because the number of MBAs detected in 

SMBAS is large enough to deal with 

statistically in this size region, and SMBAS 

the 
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a function of the absolute magnitude. The 
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detection of MBAs is nearly complete down to 

D--0．5 km in the whole main-belt (see TableN). 

Since the slope change is not so clear within the 

narrow sized-range, we examined the b of the 

CSD for MBAs with 0.5<D(km)<l by fitting 

with the least squares method. The slopes of the 

CSDs thus calculated in the sized-range for the 

three main-belt zones are found to be 1.37士

0.04, 1.13士0.03,and I. I 0士0.03,respectively 

(see Table V). From the results, it is likely that 

the CSD slopes for sub-km MBAs are 

systematically different. 

TABLEV-The Slopes of CSDs of MBAs with 0.5< 

D(km) <I 

Belt-zone 

slope (b) 

Inner 

1.37士0.04

Middle 

1.13土0.03

Outer 

1.0)士0.03

FIG.11--The size distribution detected with 

SMBAS in three different zones of the 

main-belt. The box histograms are the differential 

HR-magnitude distribution of the MBAs (a)inner, 

(b)middle and (c}outer main-belt, respectively. 

The crosses, triangles, and circles show the 

cumulative HR-magnitude distribution. 

7.5 Spatial distribution in the whole 

main-belt 

Fig.13 shows the spatial distribution of 

MBAs detected in SMBAS. Note that each data 

point includes the errors for the a and I 
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the /-distribution of smaller MBAs has a wider 

range than that of large MBA. There seems to 

be a trend that asteroids with larger a show a 

higher/. 

8 Discussion 

8.1 Size distribution of sub-km MBAs 

S• mi-m~o, ""  (AU) 

FIG.13—the spatial distribution as the a vs. / 

plot for MBAs detected in the SMBAS. 

Symbols correspond to the marks given in Fig. 12. 

mentioned in Section 5, namely the error~0．I 

AU in the a and the error of 2゚ (forhigh 

inclination ~6゚ ）inthe / for each asteroid (also 

see Table皿a,Table皿b).Probably due to these 

errors, one cannot confirm the well-known 

Kirkwood gaps in Fig.13. Instead, however, 

there seems to be several vague gaps near 

゜/~12° and ~23 over the whole main-belt. The 

cause of the depletion of asteroids with /~23° 

is known theoretically. It is due to the secular 

perturbations by Jupiter. On the other hand, the 

depletion of asteroids with /~ 12° has not been 

clear so far (nobody has ever pointed out that 

there is a weak depletion of asteroids with 

/=IO~ 12 ° seen in PLS (Van Houten et al., 

1970)). Furthermore, the as of the 

high-inclination asteroids seem to be located 

near the heliocentric distances corresponding to 

the mean motion resonances of Jupiter, namely 

2.5, 2.8 and 3.0 AU. This may imply that those 

asteroids are under the transport process in 

which asteroids are exported through the 

resonances from the main-belt to the other 

place in the solar system. Since it is likely that 

there is an inverse correlation between the size 

and velocity for fragments produced in 

collisions among asteroids (e.g., Nakamura & 

Fujiwara, 1991), smaller fragments should have 

faster release velocity. If so, it is reasonable that 

First we comment on the sky number density 

of small MBAs, ~290/deg2 (R<24.4 mag) 

which is given in Section 7.1. Although 

Poisson statistics teaches us that a formal error 

of the sky density is about IO %, we suspect 

that the actual error will probably be much 

higher, perhaps by several ten percent. In fact, 

such a high variation of the number density can 

be seen depending on time, if plot on the sky 

positions for known asteroids of about a 

hundred thousand 

(ftp:IIftp.lowell.eduIpub/elgblaStorb.html)． 

Hence, we consider that the sky number density 

is a less stable quantity to characterize the size 

distribution of small MBAs than their slope, 

and the latter is more important. 

We have already seen in Section 7 that the 

CSD slope for sub-km MBAs with 0.5~1 km in 

diameter detected from SMBAS is obviously 

shallower than that for multi-km asteroids 

estimated with YMS, PLS, and Spacewatch 

surveys. Yoshida et al. (2001b) also found that 

the CSD slope of sub-km MBAs is ~ 1.0 from 

their preliminary survey that was similar in 

principle to SMBAS but adopted a more 

simplified approach than SMBAS. lvezic et al. 

(200 I) found recently that the slope is 1.3 for 

MBAs with I <D(km）<5 in SDSS project. 

Considering the above three results, it seems 

highly certain that small asteroids are not so 

plentiful as had been expected from past 

observations of larger ones. 

However, when seen in more detail, our CSD 

slopes of sub-km MBAs with D=0.5~lkm are 

shallower than that obtained in SDSS. This 

implies that the number of sub-km MBAs 
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detectable only in SMBAS is much more 

depleted compared with the prediction by 

Ivezic et al. (2001). Thus we infer that there is 

size dependence in the mechanism to remove 

asteroids from the main-belt. For example, 

Nakamura (1994) found that smaller asteroids 

more abundantly exist more closely to the 

centers of the Kirkwood gaps, form where 

NEAs are believed to be supplied. 

As possible causes of the depletion of small 

asteroids in the main-belt, researchers have so 

far proposed three physical processes as 

follows: (1) small asteroids may become a part 

of large asteroids that have the structure of 

strengthless "rubble-piles". Likely existence of 

rubble-pile asteroids which consist of 

re-accumulated impact fragments was 

theoretically predicted for the first time by 

Weidenschilling (1981). In fact, the asteroid 

(253) Mathilde observed by the NEAR 

spacecraft (Veverka et al., 1999), and (216) 

Kleopatra observed by radar (Ostro et al., 

2000) have been regarded as having the rubble 

pile structure, because of their observed low 

bulk density. Recent collisional theories and 

experiments suggest that the impact energy 

needed to disperse an asteroid is greater than 

that to thoroughly shatter it, for asteroids larger 

than a few km to sub-km in size. This means 

that it is more difficult to disperse collisional 

fragments for asteroids in such sizes. If this is 

the case, the number of small MBAs should be 

depleted, because they will be incorporated into 

a part of the large rubble-piled asteroids. (2) 

small asteroids would have been thrown into 

the Kirkwood gaps by the Yarkovsky effect 

(anisotropic repulsion force due to thermal 

emission), and then they would have been 

removed from the main-belt (e.g. Farinella & 

Vokrouhlicky, 1999). According to calculations 

by Farinella & Vokrouhlicky (1999), the a of 

the asteroids with 1~10 km in radius can be 

moved by a few hundredths of AU by the 

Yarkovsky effect during their collosional 

lifetimes (1O~1000 million years). In particular, 

the a of small asteroids with 1O~100 m in 
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radius will change more effectively. Since this 

size range is a part of the sizes of asteroids 

observed in SMBAS, the Yarkovsky effect 

could be another candidate for depletion of 

small MBAs. (3) when small asteroids acquired 

higher speeds than the escape velocity of the 

parent body in a collision, they would have 

been thrown out of the main-belt. Seemingly, 

this is the simplest process to remove asteroids 

from the asteroid belt, though the existence of 

such high speed fragments has not yet 

established in laboratory experiments. Presently 

we cannot say from only our SMBAS, which 

process among the above three candidates is 

more plausible. To solve the problem, we may 

need detailed observations for the CSD of 

NEAs and/or for the CSDs of the craters on the 

surfaces of inner planets and satellites, in 

addition to the CSD of small MBAs. In any 

case, we would say that our investigation of the 

CSD for sub-km MBAs (namely NEA-sized 

asteroids) can provide an important step in 

estimating both the supply rate of NEAs and 

the formation rate of rubble piles asteroids. 

Next, we discuss the CSDs of sub-km MBAs 

investigated for three zones of the main-belt. 

As we have already shown in Section 7.3, it is 

fairly certain that there is a difference in the 

slopes between the inner-and other-zones for 

asteroids with 0.5~ I km in diameter. The slope 

in the inner-zone is relatively steep (~ 1.4), 

while that in the outer-zone is shallow (~ 1.0). 

However, we must remember here that 

transformation from the brightness (HR-mag) of 

asteroids to the size considerably depends on 

their albedo. For well-observed MBAs, we 

know that S-type asteroids with a high albedo 

are abundant in the inner main-belt while 

C-type ones with a low albedo are dominant in 

the outer region of the main-belt; namely the 

number ratio of the S-type and C-type asteroids 

varies with the heliocentric distance 

- ).  Note that a 

C-type asteroid is about twice as large as a 

S-type one with the same absolute magnitude, 

due to the difference in albedo. Xu et al. (1995) 



TABLE VI 

Two kinds of Mean Slopes of the CSDs for Asteroids with 0.5< D(km) <1 

Belt-zone Inner-belt Outer-belt 

2.0<aく2.6

Middle-belt 

2.6<a<3.0 3.0 <a< 3.5 

mean slope 1 

mean slope 2 

1.37士0.04

1.58士0.04

1.13士0.03

1.13士0.03

1.01士0.03

0.83士0.07

Note: mean slope I ; the mean slope of the CSD for asteroids of the size-range estimated based on the assumption 

that any asteroids have the mean albedo of well-known MBAs, mean slope 2 ; the mean slope of the CSD for 

asteroids of the size-range estimated by considering the abundance ratio of the S-type and C-type asteroids in the 

main-belt. 

showed, in the Small Main-belt Asteroid 

Spectroscopic Survey (SMASS), that the 

majority of the small main-belt asteroids (D<-20 

km) are C-and S-type asteroids, and their 

distributions are sitnilar to the one of large 

asteroids. Therefore, we assumed that all of the 

inner-belt asteroids have the albedo of S-type 

asteroids, the middle-belt ones have a mean 

albedo between S-type and C-type asteroids, 

and the outer-belt ones have the albedo of 

C-type asteroids. Then we re-estimated the 

CSD slopes for the three main-belt zones by 

taking the albedo effects into account and 

showed the results in Table VI. In Table VI, the 

mean slope 1 indicates the slope of the CSD for 

asteroids in the sized-range estimated based on 

the mean albedo of well-known MBAs, which 

has been already shown in the Table VI. The 

mean slope 2 represents the slope estimated by 

considering the ratio mentioned above of the 

S-type and C-type asteroids in the main-belt. In 

Table VI, except for the mean slope 2 of 

outer-belt asteroids, all slopes were calculated 

for asteroids with 0.5<D(km)<l. The mean 

slope 2 of the outer-belt was estimated for 

asteroids with 0. 7<0(km）＜1, because 

completeness of asteroid detection is only up to 

HR=19.7 mag (D=0.7 km, assuming the albedo 

of C-type asteroids) in this region (refer to 

Table IV). The above result indicates that 

consideration of the S/C number ratio for 
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MBAs makes clearer, the difference in the 

slopes of CSD between inner- and 

outer-MB As. 

In the PLS, the slope of CSD in the 

inner-belt was also somewhat steeper than 

those in the other zone of the main-belt (Van 

Houten et al. 1970). We here again propose that 

there really exists a difference in the CSD 

depending upon the location of sub-km MBAs, 

namely it is comparatively steep in the 

inner-belt, and shallow in the outer-belt. 

Then what is the cause of this difference ? 

Here are some considerations. We may infer 

that some specific mechanism to remove a large 

number of small asteroids had worked in a 

distant past, or rubble-pile asteroids have been 

produced more effectively in the outer-belt 

rather than in the inner-belt. We may also be 

able to consider that it is a result of the 

difference in the distributions between S-and 

C-type asteroids. For larger asteroids, in this 

respect, Anders (1965) had suggested that the 

frequency of collisions is different between the 

inner-belt and the outer-belt : in the inner belt, 

impact frequency is only a few times 

throughout its history, while collisions are 

severe and asteroids are highly fragmented in 

the outer-belt due to proximity to Jupiter. We 

know that C-type asteroids and S-type asteroids 

are like carbonaceous chondrites and silicate 

rocks, respectively. Furthermore, by recent 



space probe investigations, we know that the 

bulk densities of (243) Ida (S-type asteroid) and 

(253) Mathilda (C-type asteroid) are ~2.6 g/cm3 

and ~ 1.3 g/cm3, respectively. It is therefore 

likely that the different outcomes would occur 

in collisions of bodies that have the different 

material and density. 

On the other hand, Nolan et al. (2001) found 

by their numerical simulations that since a 

shock wave after a collision fractures an 

asteroid in advance of crater excavation flow, 

impact results are controlled by gravity ; the 

tensile strength is unimportant whether 

asteroids are initially intact or rubble-piles. If 

this is the case, it means that the dispersion of 

fragments after a collision is independent from 

the tensile strength of parent bodies. Hence, in 

short, whether a correlation exists or not 

between the size distribution of the collisional 

fragments and the tensile strength of the parent 

bodies is not yet known. Therefore, in order to 

pursue the cause of the difference of slopes of 

the CSDs in three zones of the main-belt that 

we found, it is necessary to investigate 

separately the size distributions of C-type and 

S-type asteroids. And the point will be 

discussed a little more in detail in 9.2. 

8.2 Spatial distribution of sub-km MBAs 

Finally, we discuss the spatial distribution of 

sub-km MBAs. Fig.13 indicates that the spatial 

distribution of the smaller-sized asteroids has a 

wider /-distribution in the outer-part of the 

main-belt. We also pointed out that and a small 

number of asteroids with high inclination were 

seen in the neighborhood of the distinct 

Kirkwood gaps at 2.5, 2.8, and 3.0 AU. 

Dynamical consideration generally shows that, 

once an asteroid gets trapped into a gap, it 

undergoes a chaotic orbital transition, its e 

grows unexpectedly to a very high value, and 

fmally it is ejected from the main-belt to the 

near-Earth region or to the other regions in the 

solar system. In some cases where a 

mean-motion resonance is coupled with a 
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secular resonance or the Kozai resonace, it is 

shown that the inclination also pumps up to a 

high level (Morbidelli and Moons 1995). So it 

is possible that the high-inclination asteroids 

near the Kirkwood gaps in Fig.13 might 

correspond to such chaotic asteroids. In the 

Fig.13, asteroids near the gaps (at 2.5, 2.8, and 

3.0 AU) may be in the process of delivery 

outside the main-belt. 

The depletion of asteroids with 1~12° over 

the whole main-belt may also be significant, 

which it is seen in Fig.13, because the recent 

studies of numerical direct orbital integration 

and the analytical method showed that the 

pumping-up of Is and es of asteroids caused by 

sweeping secular resonances in the main-belt 

(Nagasawa et al. (2000)). 

9. Conclusions and future prospect 

9.1 Summary and conclusions 

We detected 1111 moving objects down to 

R=24.4 mag in the sky area of 2.97 deg2 near 

opposition.and near the ecliptic in SMBAS. 

Then, we identified 861 MBAs by estimating 

the a of each moving object from its sky 

motion vector. The sky number density of 

MBAs was ~290 per deg2 down to R=24.4 mag 

near opposition and near the ecliptic. We found 

that the slope of the CSD for small MBAs 

ranging from a few km to sub-km is fairly 

shallower (~0．8-1.6, depending upon locations 
in the main-belt) than that for large MBAs 

(~ 1.8) obtained from the past asteroid surveys. 

This means that the number of sub-km MBAs 

is much more depleted than a result 

extrapolated from the size distribution for large 

asteroids. The CSD slope of the inner sub-km 

MBAs was somewhat steeper than that of the 

outer sub-km MBAs. The investigation of the 

spatial distribution suggests that there seems to 

be a trend that asteroids with larger a show a 

higher / and there seems to be a new gap near 

/~12° over the whole main-belt. 



From the above mentioned results, we 

conclude that overall size and spatial 

distributions of very small asteroids can fairly 

be different from those for large asteroids. 

However, one possible weak point of our 

survey described in this paper might be 

smallness of the survey area, only covering 

about 3 deg2. In this respect, we plan to widen 

the survey area in near future observations, in 

order to make our conclusions more reliable. 

9.2 Future prospect 

As a next step, we must clarify and well 

interpret the difference for the slopes of the 

CSD in the individual regions of the main-belt. 

For the purpose, it is necessary for us to 

investigate each size distribution for C-type and 

S-type asteroids because these two taxonomic 

types are major component of MBAs. Their 

two types can be discriminated from (B-V) or 

(V-R) color observations. We performed such 

observations in late October, 2001, and data 

reductions are now progressing. As above 

mentioned, since it is believed that there is 

some correspondence between the asteroid 

material and taxonomic types, such a survey 

observation conducted by us will also allow us 

to argue interrelations between the collisional 

processes, orbital evolution and material 

distribution of MBAs. 
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Sub-km小惑星のデータに力学的摩擦の徴候は見られるか？
吉田二美（国立天文台・神戸大）

箱根天体力学N体力学研究会Mar.11-13,2002

微 小メインベルト小惑星のサイズ分布・空間分布を調べるために、すばる望遠鏡を用いて観測を行い、 861個の小惑星帯小惑星の軌道長半径(a)、軌
道傾斜角(/)、絶対等級(H)のデータを得た。

このデータをもとに、2<a<3.5AUの小惑星帯小惑星において、力学的摩擦が有効であるかどうかを検討した。

すばる望遠鏡によるsub-km小惑星の観測 Sub-kmMain-Belt Asteroid Survey (SMBAS) 

観測装置
’ 'や ，

しし座の前足
あたり貫径
150・付近 門 ・は認叫9。の天体のうち、既知の天体は

;, •小惑星帯小惑星を各移動天体の移動速度の違
いを利用して分離した（右図）。
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鶴出■界
I累積サイズ分布の傾き IV(D)0C:D.. D=5km以上の小惑星の傾き(b-1.75)に比べてかなり浅い．これは、| ＇’.5<D(km)＜ 1の小惑星に対して
メインペルト全体 h-1.lhll.llJ 

1km以下の微小小惑星の数が従来の予想より少ないことを意味す

・ 内債 h=1)7土91.I" る．微小小惑星の数が少なくなることの原因としてはRubble-pile小

中央 h=91.1)士91.91) 惑星の存在やYarkovsky効果により微小小惑星が選択的に小惑星

外倒 b=l.111土"・") 帯から取り除かれることが考えられる．

さらに小屈星帯の外側で微小小惑星
の枯渇は顕薯である。
小惑星帯の内と外でのサイズ分布の
違いは、小惑星の構成物質が異なる
ため（実際に小惑星帯の内と外で小
惑星のタイブは異なる）か、もしくは木

星の影響の違いを反映するものと思
われる。外側ほど木星の摂動を強く

受けるので、小惑星帯の外側の小惑
星は内憫の小惑星よりもより強い衝
突を何度も経験した可能性がある。
次期観測では小惑星のタイブごとに
小惑星帯の外側と内側のサイズ分布

を慎ぺる予定である。

Sub-km小惑星のI一分布において、 /~12・付近にギャッ

ブがあるように見える。u-1分布でこのギャッブはメイン
ペルト全体にわたって存在するのがわかる。1960年に行
われたPLS（直径5km以上の小惑星帯小惑星のサイズ分
布及び空間分布を頂ぺた）でもこのギャッブは見えてい

る．
このギャッブが力学的成因（惑星との永年共鳴など）によ
るものか、/-12・を挟んでファミリーが存在するために相
対的にl~12・の小惑星が少なく見えるのか、今のところ

わからない。今回の我々の観測はほぽ賃道面上のサー
ベイであるため軌道傾斜角の大きい小惑星が検出され
る可能性は少ない。我々は贄道面に垂直な方向にサー
ペイ親測を行ってこのギャッブが確かに存在するかどう
か帽かめる必蔓がある．
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Sub-km小惑星のデータに力学的摩擦の徴候は見られるか？
今回の箱根N体力学研究会のテーマは『力学的摩擦』であった。サイズの異なる粒子の集団の中で、系の運動状態を或る種の熱平衝状態へと近付ける効果が力学的庫擦と言える．これを小惑星帯

で言えば、質量の大きな小惑星のランダム速度を小さくし、贄量の小さな小惑星のランダム速度を大きくする効果を力学的庫擦は持っている可能性がある。勿論、小惑星帯の天体の個数密度が低く

て相互作用が小さすぎる場合には、力学的庫隕は効果を発渾しない。我々の観測により発見された非常に小さな小惑星のランダム速度は、既知の大きな小惑星との相互作用によって増大されるか
否か？軌道傾斜角のデータをアルペドを仮定して得た小惑星の賃量のデータと比較し、以下のように検註してみた．
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現時点での結譲

・小惑星帯では力学的摩擦は弱い
ように見えるが、sub-km小惑星の観
測データを増やしていくことで．力学
的庫擦が見えてくる可能性がある。

• D>Skmでは力学的庫濱は全く見
られない。

すばる望遠鏡による観測は継絞中。

2001年10月データ解析中

2002年9月に再度観測予定

悧＂：観綱生データから．Ill宥い這U似負への宣険は111立
天文台・データ鱗析センターの伊薦攣士さんにやっていただ
きました．
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離散力学系におけるレヴィフライト
Dynamical systems which produce the Levy flights 

Tomoshige Miyaguchi* and Yoji Aizawat 

Department of Applied Physics, Faculty of Science and Engineering, 

Waseda University, Tokyo 169-8555, Japan 

Abstract 

We introduce a one-dimensional map producing flights of arbitrary 
length and explain that the orbits and the density functions that evolve 
under this map have the same properties as Levy flight. We derive an 
approximated Frobenius-Perron equation and prove that this equation 
converges to the u和ydiffusion equation. 

1 Introduction 

Gaussian statistics, which are characterized by exponentially decaying tails 
of the density function, provide an important framework of statistical mechan-
ics and thermodynamics. But physical systems also frequently exhibit scaling 
behavior, e.g., Hamiltonian systems[l], fluid mechanical systems [2], and eco-
nomics systems[3]. Levy stable distributions are believed to be important for the 
statistical treatment of such systems. The symmetric Levy stable distribution 
is defined by its characteristic function, 

p(k) = exp(-blk『)， (1) 

where a (0 < a ::; 2) is the Levy index and b (b > 0) is a scale factor. For 
a = 2 and a = 1, the corresponding distributions are Gaussian and Cauchy 
distributions, respectively. Except for the case a = 2, the variance of a stable 
distribution is infinite, and for a < 1, the mean is also infinite. 
Levy stable distributions were defined by Paul区vy[4]as rescaled sums of 
independent, identically distributed random variables. This definition naturally 
leads to the concept of a diffusion process called‘区vyflight', whose density 
function is a区vystable distribution at any instant if the initial conditions 
are given by a delta function 8(x). Levy flight is defined by the騒vydiffusion 
equation[5], 

b I D喰ーx')Pt(x')dx', (2) 旱 =-JOO
8t -00 

where D0(x) is the Fourier transform of the generalized function lkl0: 

1 00 
咋）＝叶 lkl0exp(-ikx)dk. (3) 

-oo 

•E-mail: tomo◎aizawa.phys. waseda.ac.jp 
fE-mail: aizawa◎aizawa.phys. waseda.ac.jp 
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Integrating the Fourier transform of Eq. (2), it is easily shown that the density 
function Pt(x) is a Levy stable distribution whose Levy index is a. For a=  2, 
this equation is a normal diffusion equation, whose space derivative is of order 
2. Contrastingly, for a< 2, this equation becomes non-local. 
Although Levy flights are defined in a purely probabilistic manner, we would 
like to know the dynamical structures generating Levy flights. Recently, deter-
ministic models of normal and anomalous diffusion have been introduced by 
many people (7, 8). In those models, the flight lengths are finite. For Levy 
flight, however, arbitrarily long flights are significant[9]. For this reason, in this 
article, we propose a one-dimensional map producing flights of arbitrary length 
and discuss its convergence to Levy flight. 
In §2, we introduce a model consisting of a one-dimensional map. In §3, 
we derive the relation between the approximated Frobenius-Perron equation 
(FPE) of this map and Levy diffusion equation and the last section is devoted 
to a summary. 

2 One-dimensional maps 

Consider the one-dimensional map f-r (x) defined by 

J,.,(x) = 

ac7 

(a+ x)-Y 

a 
X 

a -€ 
， 

a€7 
(a -x)'Y' 

， -a S X S- (a-€) 

ー(a-t:) ~ x ~ (a -t:) 

a-f$x$a 

which satisfies the discrete translational symmetry 

J,.,(x + 2na) = J,.,(x) + 2na. (n = 0，士1，士2,..・) 

(4) 

(5) 

In Eq. (4), a, -y and € are parameters obeying the restrictions a > 0, -y > 0 
and O < € < a. As shown in Fig. 1, this map diverges at lattice points, x = 
(2n+l)a (n = 0，士1，士2,•••),i.e., the mapping generates arbitrarily long flights. 
We define the orbit Xt by successive iterations of f....,(x): 

Xt+l = f...,(xt)- (6) 

Three different realizations of the orbit Xt are shown in Figs. 2(a)-(c). In 
Fig. 2{a), small fluctuations are dominant, and the orbit resembles Brownian 
motion. On the other hand, for large -y, long flights are generated, and the 
orbits display behavior similar to Levy flights. 
Next, we calculate and approximate the FPE of our map f...,(x). In what 
follows, we assume -a ~ x ~ a, and the result will be extended to the entire 
real axis, due to the translational symmetry of our system. FPE is given by 

00 

Pt+1 (x)＝こ Pt(Xn) 
n=-00 

lf~(xn)I 
(7) 

＝二弘（二句＋1区 (ac'Y）"Y 
.l 

i+IPt(Xn), 
a a 1 |x -2na| "Y n:,/:0 

(8) 
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Figure 1: An example of the map f-y(x), for € = 0.5a and'Y = 1.0. (a) f-y(x) 
is presented over five periods. (b) The magnification over one period. At every 
lattice point, the value of the map diverges. The dashed lines are linear functions 
of slope 1.0. 

1;~~!; ； □□;06 
x ;；；；； ;,;1 ニ 06

三i,；1;, ；106
Figure 2: Numerical simulations of the orbitsエt.Each graph corresponds to a 
different value of 1: (a) 0.4, (b) 0.8, (c) 1.2, at a= 1 and € = 0.1026. 
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where Xn (n = 0，士1，士2,• • •) are the inverse images /;1 of x (xn = J;1(x)), 
which are given by 

(2n+l)a-,(a)合
x-2na 

for n ~ -l, 

a-€ 
for n = 0, (9) Xn＝く―x

a 

(2n-I)a+e(a)ょ' 
2na-x 

for n ~ 1. 

If the density Pt(x) is a smooth function of x, we can approximate the FPE by 
setting xo ~ x (n = 0) and Xn ~ 2na (n-/= 0). Then, rewriting the infinite sum 
as a Riemann integral and using the continuous time approximation, we finally 
get 

誓心~[ix＿工＇ 1 こa|x 竺〗丑血'-9応）］ • （10) 
The first term on the right-hand side of Eq. (10) is the density, which flows 
into the interval -a ~ x ~ a, and the second term is the flow from the same 
interval. As mentioned above, this equation is extended to the whole real axis, 
-oo < x < oo. Integrating Eq. (10) over x, one can show that this equation 
satisfies the conservation of probability. 

3 Analytical results 

The purpose of this section is to derive the relation between the approximated 
FPE of Eq. (10) and Levy diffusion equation given in Eq. (2). 
We begin by transforming the Levy diffusion equation into a form compa— 

rable with Eq. (10). Here we assume O <et< 2. The function D吋x)[Eq. (3)) 
can be expressed as[lO) 

か (X)＝lim炉 (x,e), 
€• O 

(11) 

where the function E0 (x, €) is given by 

r(a+ 1) f (-1)号 (-1)一号
炉 (x,e) =―言亡 [(x+ic)a+l―(X-ic)a+1]． {12) 

Here we have assumed arg（工士ie)E（一1r,1r) and (-1)0 = exp（初ra).Combining 
Eqs. (2) and (11), let us exchange the order of the integral and the limit: 

麟） ＋00 

言 ―=-b阻J炉 (x-x', e)pt(x')dx' 
-oo 

= b!正記 [J—+OOOO(X（一ー 1;1号十Pti:；)+ldx'-[OOOO (；一叫悶xa1区］．
After substituting x'= z + if. into the first integral and x'= z -iE into the 
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□
〗

X 

Figure 3: Path of integration. C 1 is a semicircle in the lower half plane and C2 
is a semicircle in the upper half plane. The radius of C1 and C2 is a. 

second, we obtain 

知） ＝ blimr(a+ 1) ［J+oo-“(-1)号肛(z)dz-「OO十“(-1)和 (z)dz, 祝€→021ri _OO-ic (X-z)a+1 -00十ic (x -z)c+1 ] 

where we have assumed that pt,(x) is an analytic function of z. Furthermore, 
we choose the path of integration as shown in Fig. 3: 

8凡(X) _ Lr(Q + 1) Sin（和） Pt(x')
下-=bT  L_Z'1こa|x-X'1a+ldx' 

+blim 
r(a + 1) f f (-1)号伍(z)
a→0 271't• [Jdz  + 

(-1)一号Pt(z)
C1 (x -z)a+1 Jo(x -z)a+1 dz] • 

Finally, after evaluation of the integrals, we find 

誓） ＝ 犀br(a+1:sin（和）［lエーが1こa|x竺靡十adx'ー翌］（13)
Comparing Eqs. (10) and (13), we find 

，
 

1
-
1
 

＝
 
a
 

(14) 

and 
ea.., .!.-1 7 
b= 
2, 嗅＋1)sin（合）．

(15) 

That is to say, the approximated FPE [Eq.(10)] converges to the Levy diffusion 
equation in the limit a→o. 
As seen from Eq. (14), the Levy index a is characterized by only the param-
eter 1 in the map f-r(x), and the scale factor b is also determined by Eq. (15). 
These results are valid only to the case O < aく 2(i.e.,, > 0.5). 

4 Summary 

Here we introduced a one-dimensional map that generates arbitrarily long 
flights and found relation between this map and symmetric Levy flight. We de-
rived an approximated Frobenius-Perron equation and showed that this equation 
converges to the Levy diffusion equation for,> 0.5. 
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Dynamical Ordering of Non-Birkhoff Orbits and 

Topological Entropy in the Standard Mapping 
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Abstract 

The standard mapping is an analytical, reversible monotone twist mapping. 
The appearance ordering, i.e., the so called dynamical ordering, of the symmetric 
non-Birkhoff periodic orbits (SNBO) in the standard mapping is derived. Essential 
use is made of the reversibility. After the establishment of various properties of 
the symmetry axes under the mapping, two theorems on the dynamical ordering 
are proved. Then the braids for SNBOs are constructed with the aid of techniques 
developed in the braid group theory. The lower bound of the topological entropy 
of the system possessing an SNBO is estimated by the eigenvalue of the reduced 
Burau matrix representation of the braid constructed from the SNBO. Behavior 
of the topological entropy in the integrable limit is discussed. 
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1 Introduction 

The standard mapping Tis defined in cylinder. 

Yn+l =釦＋af(xn),

Xn+l ::::;: Xn + Yn+l {Mod 21r), 

、
`
'
’
▼
ヽ
・
~

1

2

 

、,＇ヽ``
．＇`‘

where a is a positive parameter and f(x) = sin x. There are two fixed points P = (0, 0) 
and Q = (1r, 0), where P is a saddle and Q is an elliptic point(O < a < 4) or a saddle 
with reflection(a > 4). For convenience, we call a point (21r, 0) a saddle P'. 
As we have repeatedly exploited its property in various occasions, 1,2,14,20,22,23) the 

standard mapping belongs to a class of systems possessing reversibility(see §2.3). All 
orbits are classified either into symmetric or non-symmetric ones. The standard mapping 
belongs to a class of systems which are called monotone twist. All orbits are classified 
either into monotone or non-monotone ones(§2.2). Symmetric monotone periodic orbits 
exist down to the integrable limit. In a sense, these objects are not interesting.・ In order 
to study the chaotic behavior of the system or how the system becomes more chaotic with 
parameter, it seems necessary to study other types of periodic orbits. In the standard 
mapping, symmetric non-monotone periodic orbits are quite suitable for this purpose. 
There exist non-symmetric periodic orbits bifurcated from symmetric ones. 22> 
The appearance order of periodic orbits is called the dynamical ordering. The most 
famous ordering has been proved by Sharkovskii3> in one-dimensional mappings. Ex-
tensions to two-dimensional mappings and to systems described by ordinary differential 
equations have been carried out by many authors.4>-10> In the preceding papers,1>,2> we 
studied the dynamical ordering of the symmetric non-Birkhoff orbits in the standard 
mapping and its family mappings, and in the forced oscillator. In this paper, we extend 
the dynamical ordering derived in these papers, construct braids for periodic orbits in 
the dynamical ordering, and estimate the topological entropy of the standard mapping at 
parameter values for which there are periodic orbits whose braid types are determined. 
The appearance of non-Birkhoff orbits is related to the non-integrability of systems, 1>,2> 
and to the breakup of KAM(Kolmogorov-Arnold-Moser) invariant curves.11>,12> 
In §2, we provide several useful concepts and notation used in the following sections. 
In §3, the properties needed in the proof of theorems are proved. The theorems on the 
dynamical orderings are proved in §4. The braid for non-Birkhoff orbit listed in the 
dynamical ordering is constructed in §5 and the topological entropy is estimated in §6. 
In the final section, we point out several problems to be solved. 

2 
．．． 

Preliminaries 

2.1 Notation 

We have defined the mapping in cylinder. In sections 3 an 4, we almost always work in 
universal cover R 2 and use the lift mapping. We move from cylinder to universal cover 
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and vice versa when we construct braids of the non-Birkhoff periodic orbits in section 
5. We lift the mapping T to universal cover in such a way that the fixed points of Tare 
also fixed under the lift. Then the lift is uniquely determined. To avoid the notational 
complexity, we use the same notation T for the lift mapping and coordinates (x, y) for 
universal cover. We will make a note if there may be a possibility of confusion. 
The orbit of a point z E R2 is denoted o(T, z) = {..., T-1 z, z, Tz,... }. Following 
Boyland and Han,11> we define the extended orbit of a point z E配 by

eo(T, z) = {Tkz + (21rl, 0): k, l E Z}. (3) 

We usually abbreviate o(T, z) and eo(T, z) as o(z) and eo(z). Let町(z)(resp.1r2(z)) be 
projection to the x-coordinate (resp. y-coordinate) of z. The rotation number v of an 
orbit of z E R2 is defined as 

v = limsup 叫Tnz) —叫）．
n→oo n 

(4) 

2.2 Birkhoff and Non-Birkhoff periodic orbits 

A point z E R2 is called a p/q-periodic point for the standard mapping T: R2→R2 if 

T9 z -(21rp, 0) = z. 

A p/q-periodic point z E R2 is called Birkhoff by Hal115> if for any r, s E eo(z) 

1r1(r) < 1r1(s)⇒1r1(Tr) < 1r1(Ts). (5) 

Otherwise, the point is said to be non-Birkhoff. A Birkhoff(resp. ・ non-Birkhoff) periodic 
point is abbreviated as a BP(resp. NBP). Corresponding orbits are denoted as a BO 
and an NBO. 
We give a little bit more precise definition for non-Birkhoff periodic points or orbits. 
If we lift a p/q-periodic orbit in cylinder to universal cover, there are p different orbits 
corresponding to the original one. In fact, a pf q-periodic orbit in cylinder has q points 
in one period. In universal cover, the orbit cover p copies of cylinder in one period. In 
these copies, there are q x p points. Therefore, we need p different p/ q-periodic orbits. 
Taking this into account, let us define two types of non-Birkhoff periodic points(NBP). 

Definition. Suppose a p/q-periodic point z E R2 is given. 
(1) If for some r, s E eo(z) with r E o(s), 

叫r)＜町(s)⇒1r1(Tr)~町(Ts),

then, point z is called a non-Birkhoff periodic point of Type I. 
(2) If for any r, s E eo(z) with r E o(s), 

1r1(r) < 1r1(s)⇒1r1(Tr) < 1r1(Ts) 
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and if for some r', s'E eo(z) with r'fl o(s'), 

叫r')< 1r1(s'）⇒ 1r1 (Tr'）こ町(Ts'), (8) 

then, point z is called a non-Birkhoff periodic point of Type II. 

Remarks. 
1) Obviously, if a 1/ q-periodic orbit is non-Birkhoff, it is always of Type I. Both Types 
I and II are possible for p/ q-NBOs (p ~ 2, q ~ 2). 
2) A point r E eo(z) satisfying 

叫T古）＜ 7r1(r)ぶ (r)~町(Tr), or 
叫 T古）＞ 1r1(r),1r1(r):5 1r1 (Tr), 

(9) 

(10) 

is called a turning-back point or simply a turning point. There is an even number of 
turning-back points in universal cover in an NBO of Type I. There are no turning-back 
points in an NBO of Type II. Points monotonically proceed to the same direction in the 

x coordinate under the mapping. 

In this paper, we restrict our attention to the first type. An example of NB Os of the 
second type has been displayed in Refs. 6) and 8). 

2.3 Symmetry axes and symmetric periodic orbits 

A mapping is reversible if it is decomposed into a product of two involutions.16) Since the 
standard mapping is doubly reversible, 14) there are two forms of the product. Roughly 

speaking, the first one represents the left-right symmetry, i.e., symmetric points are 

disposed rather horizontally, and the second one the up-down symmetry, i.e., symmetric 

points are disposed rather vertically. In this paper, we mainly use the first form. Thus 

Tis expressed as the product of involutions H and G. 

T = Ho G, 
G : (x,y)⇔（一x,y+ af(x)) (Mod 21r), 

H : (x, y)⇔ (-x+y,y) (Mod 21r). 

、ー、‘̀
'‘,‘ー、

1

2

3

 

1

1

1

 

f
l、、.¥、.,̀
‘

where G2 = id= H2 and det▽G =det▽H = -1. The sets of fixed points of G and 
H are the symmetry axes. In universal cover, the symmetry axes are expressed in the 

forms 

s1 (m) X = 21rm, (14) 

s~m) X = 27T'm + 7T', (15) 

s3 (m) y = 2(x -2m1r), (16) 

s4 (m) y = 2(x -(2m + l)1r) (17) 
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where m(-oo < m < oo) is an integer. We denote S1 = S~, S2 = S~, Sa = sg, and 
ふ＝ S~. S1 and S2 are symmetry axes of G, whereas S3 and S4 are syn皿 etryaxes of 
H. In order to specify a branch of symmetry axis with y > 0 (resp., y < 0), we add a 
suffix +(-) to the expression of axis. 
A periodic orbit which has points in symmetry axes is called symmetric. A pf q-
periodic symmetric Birkhoff(resp. non-Birkhoff) orbit is denoted by an pf q-SBO(resp. 
an p/q-SNBO). A point of an SBO(resp. an SNBO) is denoted by an SBP(resp. an 
SNBP). Let {Po, pぃ・・ ・, Pq-i} be a set of points from one period of an pf q-SBO or an 
p/q-SNBO. We summarize the relation of these points and the symmetry axes in Table 
1.12),16} 

Table I. The relation of the symmetry axes and the symmetric periodic orbits. 

p(~ 0) q Po Transit p(~ 0) q Po Transit 
Odd 2k S1 Pk E S2 Odd 2k + 1 S1 Pk+l f S4 
Odd 2k S2 Pk E S1 Odd 2k + 1 S2 Pk+l E S3 
Odd 2k S3 Pk E S4 Odd 2k + 1 S3 Pk E S2 
Odd 2k s4 Pk E 83 Odd 2k + 1 S4 Pk E S1 
Even 2k S1 Pk E S1 Even 2k + 1 S1 Pk+l E S3 
Even 2k S2 Pk E S2 Even 2k + 1 S2 Pk+l E S4 
Even 2k s3 Pk E S3 Even 2k + 1 S3 Pk E S1 
Even 2k S4 Pk E S4 Even 2k + 1 S4 Pk E S2 

Here we present an easy way to distinguish SNBPs from SBPs and distinguish two 
types of SNBPs. Let us suppose that a p/ q-periodic point is bifurcated in a symmetry 
axis. We claim that this is a non-Birkhoff periodic point. Indeed, let us suppose the 
point is bifurcated in either S1 or S2. We already have an p/ q-SBP in the axis. This 
means that the whole p/q-periodic orbits are not in the graph of a Lipschitz function,4>16> 
which implies that new born point is a non-Birkhoff point. Next, let us take a positive 
rotation number and suppose a point r is bifurcated in either S3+ or S4+. Let s be the 
Birkhoff point in the axis. Assume that rands satisfy the relation 1r1(r) < 1r1(s). One 
easily confirms that 1r1(T-1r) > 1r1(T-1s). This means either r ors is non-Birkhoff. 
Then r is non-Birkhoff. For a negative rotation number we take points in S3_ or S4_ 
and argue in a similar manner. 
Thus we have proved 

Proposition 2.1. Symmetric periodic points bifurcated in symmetry axes and stay 
there are SNBPs. 

Next let us see, using exa:1:1?,ples,_t_he geometrical difference of SNBPs of Types I and 
II. Suppose that T2r E -T芍屈ns!~. Then r E S1+ is an 1/3-SNBP of Typ~ I, since 
叫r)< 1r1(Tr) and 1r1(Tr) > 1r(T2r). Suppose that T2r E T2S翫S~~ and this point is 
bifurcated via saddle-node bifurcation. Then r E SP+ is an 2/3-SNBP of Type II, since 
1r2(r), 1r2(Tr), 1r2(T2r) are all positive and there are no turning-back points. 
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2.4 Stable and unstable manifolds 

Two saddles P and P'have stable and unstable manifolds. Let W~ be a branch of 
unstable manifold starting at P toward the right direction and W81 be a branch of stable 
manifold going toward P'from the left side in universal cover. Let W,；；加 abranch of 
unstable manifold starting at P'and W.,2 be a branch of stable manifold going toward P 
(see Fig. 1). 

4 ~ s10) 

2
 

y 0 

-2 

-4 

゜
2
 

4
 

6
 x

 
Fig. 1. Structure of stable and unsta~!~ manifolds in the standard mapping at a = 3.2. 

The symmetry axes S炒(i= 1, ・ ・ ・, 4) are also displayed. 

The existence of transverse intersection of W~ and W81 at u has been proved, 18) where 
u is an intersection point of W~ and S翌． Theslope of 1'Vs at u is larger than that of 
Wu. Due to the up-down symmetry, two unstable manifolds WJ and W; are symmetric 
with respect to Q. This is the case also for W81 and W;. Hen~e WJ a~d W; intersect 
transversely at u'where u'is the symmetrical point of u with respect to Q. Due to the 
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reversibility, the stable and unstable manifolds are related by 

GW~ = w;, 
Hwi = u 

wi 
s, 

、
I
J
,
1
J

8

9

 

l

l

 

＇
ー
、
，
ー
、

with i = 1, 2. 
Let r, s E Wu where r is closer to P than s is along W8. A closed arc of Wu between 
r and s will be written as [r, s]w". Open and semi-open arcs are defined similarly. 
Arcs of other manifolds are defined in a similar manner. Points u and v, and their 
forward and backward iterates are the primary homoclinic points. 19) Let和＝ ［u, v]wJ 
and "'ts = [u, v]w}. Let V be an open region bounded by "Yu and "'ts and U an open region 
bounded by [T-1v, u]wJ and [T-1v, u]w.,1. Th ese are primary homoclinic lobes. Due to 
Eq. (18), two lobes U and V are related by 

U=GV. (20) 

We define the open intervals in the symmetry axes. 

I□ =T―nvns｛戸（m ~ 0, n ~ l), 
J『-m) = r-nv n sに；m)(m ~ 1,n ~ 1), 
Ki-m) = r-nv n Sに戸 (m ~ 0, n ~ 0), 
Li-m) = r-nv n si;m) (m ~ 1, n ~ 0). 

(21) 

(22) 

(23) 

(24) 

These may be empty for a certain range of parameter values. In Fig. 2, several intervals 
are displayed. We further introduce 

I←m) = Un~1Ji-m), 

K(-m) = Un~oK『-m)'
J(-m) = Un~lJ『-m),
£(-m) = Un~oLピ-m).

(25) 

(26) 

365 



15 

12.5 

10 

y
 5
 

2.5 

-゚2.5 

s、(
2

 
s
 

s. 
(

l

 
s
 

-2 

゜
2
 

4
 

6
 x

 

Fig. 2. Intervals Jf0>, J~ー 1 ）, K炉， Kf0land L~ー l) are observed at a = 8. 

We write 
p/q E Ii-m) (27) 

if an p/q-SNBP exists in Ji-m>. We use the same notation for other intervals. We define 
the critical parameter values. 

[l] ac(p/q EI『-m))= inf { a > 0 : p / q E /~—m)}. 
(2] ac(JA-m)) = inf{a > 0: Ji-m) =/-0}. 
The critical values for SNBPs in other intervals are similarly defined. 
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3 Properties 

Property 3.1. Let r E V and s E U. Then we have 

1r < 1r1(r) < 21r, 

0 < 1r1(s) < 1r. 

(28) 

(29) 

Proof. We have 1r1 (u) = 1r and 1r < 1r1 (v) < 21r. Thus V is located in the region between 
x = 1r and x = 21r. The first relation is proved. Equation (20) implies the second one. 
Q.E.D. 

Let D be an open region bounded by B1 = [Q, u]5~o>, B2 = [u, v]wJ, Ba = [v, P']wゎ
and B4 = [Q, P'] in the x axis, and let Z be an open region outside D satisfying y > 0 
and y < 2(x -1r). 

Property 3.2. 

TD n Z = 0. (30) 

Proof. T B1 is a line segment of y = x -1T" in D and then T B1 n Z = 0. T B3 is 
[Tv, P']w1. One easily confirms乃(Ts)< 0 for any s E B4¥{Q, P'}. So TB4 n Z = 0. 
Since T B2 n T B4 = 0 holds, TV is located in the region surrounded by T B1, [Tu, P']w:, 
and T B4. Thus we have T B2 n Z = 0. Q.E.D. 

Property 3.3. Any periodic point in primary homoclinic lobe V is an NBP of Type I. 
Proof. Let z E V be a p/q-periodic point. The relation 7f"1(z) -7f"1(Tー1z)= 1T"2(z) > 0 
holds. The orbit of z goes forward from r-1 z to z. Thus the existence of turning-back 
is obvious if p ~ 0. So we take p > 0. A point of TV is either in D or below the 
x-axis. A point below the x-axis is a turned-back point. A point of TV C D under one 
more iterate decreases its y-coordinate but never go into Z by Property 3.2. Since z is 
a periodic point, its finite iterate goes out of D. It necessarily goes below the x-axis. 
Therefore in any case, the orbit of z has a turning-back point. Q.E.D. 

Property 3.4. Ji-m) consists of a unique component. The same is true for other 
intervals. 
Proof. Let 18 = [u, v]w1. The slope of th e graph of, s strictly decreases as x increases. 20) 
The largest slope is at u and is greater than 1. So there is a unique point w E,s at 
which the slope is 1. Then Tー118has a unique poi~~ r-1~ at which the slope diverges. 

(0) :c r(O) This implies that there is only one component in It1 if It1 exists at all. 

If /~o) has two components, th ・has two components, there exist at least three points in the arc r-2,s at which 
the slope diverges. Then T-1,s has at least three points at which the slope is equal to 
1, and thus it has at least three points at which the slope diverges. This contradicts the 
above mentioned property of r-1,s. Repeating this procedure, the statement is proved. 
Q.E.D. 

Property 3.5. The critical values satisfy the following relations. 

ac(l~~;？り <ac(/~-m)), ac(J!~？り <ac(JJ-m)) (m ~ O,n ~ 1), (31) 
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ac(Ktばi))< ac(Ki-m>), ac(L~➔.？り <ac(L~-m)) (m ~ 0, n ~ 0), (32) 

ac(Ji-m)) < ac(Ji-m-l)), ac(JJ-m)) < ac(JJ-m-l)) (m ~ O,n ~ 1), (33) 

ac(J<i-m)) < ac(Ki-m-l)), ac(L~-m)) < ac(L~-m-l)) (m ~ O, n ~ 0), (34) 

ac(Ji-mー1))>ac(L~-m-l)) > ac(Ii-m)) > ac(Kl-m)) (m ~ 0), (35) 

ac(K戸）＞ ac(lば）（m ~ 0), (36) 

叫戸）＞ ac(J~守） （m ~ 0). (37) 

Proof. Equations (31)-(35) follow from the construction of intervals and the lambda 
lemma. 21> We shall give a proof of Eq. (36). Let us increase the parameter and suppose 

(0) 
r-1[u, v)w1 touches s~十 forthe first time at some a. There exist an interval in y = x(x ~ 
0) such that two end points are intersection points of r-1[u, v)wJ and y = x(x ~ 0). 

By definition, the backward image of this interval is 11°>. Thus we have the relation 

ac(K罰＞ ac(I秤）． Repeatingthis, Eq. (36) is proved. The proof for Eq. (37) is 
similar. Q.E.D. 

Property 3.6. 

lim ac(R戸）＝ 0 (38) 
n→OO 

where R = { /, J} (m ~ 0, n ~ I) and R = { /(, L} (m ~ 0, n ~ 0). 

Proof. According to the lambda lemma, the intersection of W~(s) and S｛+m) exists for 
any small a > 0. This implies Eq. (38). Q.E.D. 

Property 3. 7. 
lim Tn R~-m) ~-mJ ='Yu (39) 
n→OO 

where R is defined in Property 3.6. 
Proof. For simplicity let us only consider the case R = I and m = 0. The proof for 
other Rand mis basically the same. Let r = (v, Tu]wJ and let r(-k) be the set of points 
of r shifted to the left by 2k1r, k ~ I. Obviously r(-k)-is an arc of the unstable manifold 
emanating f~o~-a fix~d point at(-？知，0).-~or a given a> 0, there is a min1mum k。 ~1
such that r(-ko) n年＝ 0.Let f'= r(-ko). By the lambda lemma, rn f'has an arc 
arbitrarily close to [P, v]wJ for sufficiently large n > 0. T可~ is sandwiched by Tnf'and 
[P, v)wJ • Q.E.D. 

Property 3.8. If JA-m) exists at all, then it contains SNBPs of Type I. The same 
property holds for other intervals J~-m), I<i-m) and L~-m). 
Proof. In view of Property 3.3, we need only to show that J!-m) contains a periodic 
point, i.e., T勺A-m)intersects another symmetry axis for some k > 0. By the lambda 

lemma, there exists a positive j0 such that T困nS~~ ~ 0 for j ~ j0 and in addition, 
intersections are transverse. By Property 3. 7, T可l-m)is arbitrarily close to'Yu as a 

whole for sufficiently large n. Then one confirms that T勺n-mn s；竺~ 0 fork= n + j 
for sufficiently large j ~ j0. The proofs for other cases are similar and omitted. Q.E.D. 
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Property 3.8 gives two relations for the critical values. 

ac(p/q E Ri-m)) > ac(R戸），
~i!!l_ ac(P/ q E Ri-m) 
q→OO 

) = ac(R~-m)) 

where R is defined in Property 3.6. 

(40) 

(41) 

Property 3.9. The minimum period of SNBPs in Ji-m) n or J!-m) i n is 2n + 1 where n ~ 1. 
The minimum period of SNBPs in Ki-m)。rLt-m)・n n is 2n + 2 where n ~ 0. 
Proof. We know that T可!-m)C V. At least one iteration is needed to go from V to 
U. Due to the symmetry with respect to G, n iterations are needed to go from U to 
J!-m+i), which is /!-m) shifted by 2-,r toward the right direction. Thus the first statement n 

is proved. 
We know that Tn I<i-m> C V. At least one iteration is needed to go from V to U, 
and (n + 1) iterations are needed to go fron1 U to Ki-m+l) due to the symmetry with 
respect to H. The second statement is proved. Q.E.D. 

369 



4 Dynamical ordering 

There are many types of SNBOs with 2n(n ~ 1) turning points if its period is large 
enough. For example, if the period is five, SNBOs with two and four turning points are 
possible. In the following, we restrict our attention to p/ q-SNBOs (p 2:: 0, q 2:: 2) with 
two turning points. 
We introduce two symbols→ （↓） and⇔.Let R, R'be one of I, J, I<, or L. If the 
existence of an p/ q-SNBP in R~-m) implies the existence of an p'/ q'-SNBP in RJ,-m'), 
then we write as 

＇ ~ER戸→ ~ER炉，ーm'),
q ¢ 

(42) 

If both an p/ q-SNBP in Rビ-m)and an p'/q'-SNBP in R~,-m') appear at the same value 
of a, then 

， 
~ E R~-m) •~ E R~,-m'). q ---n --</ (43) 

4.1 Dynamical ordering for p/2-and p/3-SNBOs 

In the dynamical ordering derived in the next subsection, p/2-or p/3-SNBOs occupy 
special positions. We summarize their properties in this s~cti~n. 

(-m) （-m) Property 3.9 implies that an p/2-SNBP appears in /(。 andL。 .Adynamical 
ordering among them proved in Ref. 22) is reproduced in Table II. For completeness 
sake, we cite the short proof. 

Table II. Dynamical ordering for p/2-SNBPs. 

K~o) ← L~ー 1) ← KJー 1) ← Lげ←
0/2 ← 
↓ ＼ 

0/2 ← 1/2 ← 
↓ ヽ ↓ ＼ 

0/2 ← 1/2 ← 2/2 ← 
↓ ＼ ↓ ＼ ↓ ＼ 

0/2 ← 1/2 ← 2/2 ← 3/2 ← 
↓ ＼ ↓ ヽ ↓ ＼ ↓ ＼ 
1/2 ← 2/2 ← 3/2 ← 4/2 ← 

Proof of Table II. We estimate the critical values ac(p/2 E I<i『-m))and ac(p/2 E L&-m)), 
at which an p/2-SNBP appears in the corresponding interval. 

ac(p/2 E I<i『-m)) ~ 21r(3+4m-p) (n ~0,2m+l ~p~O), (44) 

叫p/2EL炉~m)) ~ 21r(l + 4m -p) (n ~ 1,2m ~ p ~ 0). (45) 

370 



The fact that the x coordinate of p/2-SNBP is approximately equal to 37T /2 is used. 
Equations (44) and (45) determine the dynamical ordering in Table IL Q.E.D. 

We consider p/3-SNBPs appearing in 1J-m) an_d.Ii『-m).The detailed discussion has 
been done in Ref. 23). We show in Table III the extended ordering including the case 
with p = 0. 

Table III. Dynamical ordering for p /3-SNBPs. 

110) ← J臼← I戸← JI-2) ←
0/3 ← 
↓ 

0/3 ← 1/3 ← 
↓ ↓ 

0/3 ← 1/3 ← 2/3 ← 
↓ ↓ ↓ 

0/3 ← 1/3 ← 2/3 ← 3/3 ← 
↓ ↓ ↓ ↓ 

1/3 ← 2/3 ← 3/3 ← 4/3 ← 

Proof of Table III We estimate the critical values ac(p/3 E / (-m) 1)  
(-m) and ac(p/3 E J~-m'), 

at which an p/3-SNBP appears in the corresponding interval. 

ac(p/3 E Ii-m)) 

ac(p/3 E Ji-m)) 
~~~～ 

2(3m -p + 9/4)1r 
2(3m -p + 3/4)1r 

(i ~ 0, 2m + 1 ~ p ~ 0) 
(i ~ 1, 2m ~ p ~ 0). 

(46) 

(47) 

The fact that the x coordinate of p/3-SNBP is approximately equal to 31r /2 is used. 
Equations (46) and (4 7) determine the dynamical ordering in Table III. Q.E.D. 

4.2 Two theorems 

Theorem 1. The following dynamical ordering for p/q-SNBPs in Ji-m) and JA-m) holds 
with O ~ p ~ (2m + 1) for Ii一m),and O ~ p ~ 2m for JA-m). 

I『-m),JJ-m): p/3 → p/4 → p/5 → p/6 → 
↓ ↓ ↓ ↓ 

I仁―m),J}-m): p/S → p/6 → p/7 → p/8 → 
↓ ↓ ↓ ↓ 

1J-m)'JJ-m): p/7 → p/8 → p/9 → p/10 → 
↓ ↓ ↓ ↓ 

Proof. The conditions for pare determined by Eqs (46) and (47). We prove the cases 
for SNBPs in Ji-m>. The proof for SNBPs in Ji-m) is similar, and thus is omitted. 
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(1) Proof of p/k E Ji-m)→p/(k + 1) E Ji-m>(k ~ 2n + 1). 
(1-1) Both p and k are odd. 
The assumption p/k E J!i-m) implies the relation T(k+l)/2 Ji-m) n s;~m-(pー 1)/2) # 
0. Relation T(k+l)/2 Jfi-m) n s;~m-(pー 1)/2)

n # 0 follows from the relative positions of 
S—~m-(p-l)l2> and s;~m-(p-l)/2>. In fact. s;~m-(p-l)/2> 2- and S4-.  In fact, S4- is located to the left side of 

s塁m-(pー1>12>.The intersection points are those of SNBO with v = p/(k + 1) start-
ing from Ji-m). 

(1-2) pis odd and k is even. 
The assumption implies the relation Tk/2 Jfi-m> n s;~m-(p-i)/2) # 0. The i . T'he intersection 

points are mapped under T to the left of S -(m-(p-1)/2) 4_ （see Fig.3)．This implies 
T(k+2)/2 J~-m) n s;~m-(pー 1)/2)# 0. 
(1-3) pis even an~ k is odd. 
The proof is similar to (1-1), and thus is omitted. 
(1-4) Both p and k are even. 
The proof is similar to (1-2), and thus is omitted. 

y(k+2)/2 /~ -m) 
n 

S―(m-(p-1)/2) 
2-

S―(m-(p-1)/2) 
4-

Fig. 3. Disposition of S塁m-(p-i)/2)and s;~m-(p-I)/2) and that of Tk/2 J!i-m> and 
T(k+2)/2 J1-m). 

n 
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(2) Proof of p/k E Ji-m)→p/(k+2) E fは；？） （k ~ 2n + 1). 
(2-1) Both p and k are odd. 

The assumption p/k E Ii一m)implies T{k+l)/2 Ji-m) n s.;-~m-(pー l)/2) :/; 0. The relative 
positions of T(k+l)/2 Ji-m) and T(k+3)/2 Iは守 aredisplayed in'Fig. 4. T(k+3)/2凡守 islo-
cated outside the closed area bounded by T(k+l)/2 Ji-m) and an arc of W81. We express this 

configuration T(k+3)/2 Ii~7) -i T(k+l)/2 Ji-m}. This implies T(k+3}/21i~7> n s;~m-(pー1)/2)n+l I...... "n T In+1 ns4- ヂ
0. The intersection points are those of p/(k + 2)-SNBOs starting in I: (-m) n+l ・ 
For the other cases, the proofs are similar to (2-1), and thus are omitted. Q.E.D. 

T 
(k+ l)/2r(-m) 
In 

T (k+3) /2r(-"},) In+1 

Sl 
(1) 

w~ 

P' 

Fig. 4. Relation of T(k+l)/2 Ji-m) and T(k+3)/2 Iは守．
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Theorem 2. The following dynamical ordering for p/q-SNBPs in I<i-m) and L~-m) 
holds where O ::; p ::; 2m + 1 for Ki-m) and O ::; p ::; 2m for L~ -m >. 

K『-mJ,L『-mJ: p/2 → p/3 → p/4 → p/5 → 
↓ ↓ ↓ ↓ 

K『-m),L『-m): p/4 → p/5 → p/6 → p/7 → 
↓ ↓ ↓ ↓ 

K~—m)'L~-m): p/6 → p/7 → p/8 → p/9 → 
↓ ↓ ↓ ↓ 

Proof. Equations (4_4) and (45) determine the conditions for p. We prove the cases for 
SNBPs in Ki-m). The proof for L~-m) is similar. 
(1) Proof of p/k E I<i-m) →p/(k + I) E Kiー・m)(k ~ 2n + 2). 
(1-1) Both p and k are odd. 

implies T(k-l)/2 Ki-m) n S認n-(p-l)/2):/ 0. The in-The assumption p/k E Ki-m) i 

tersection points are mapped to the left of s4jm-(pーl)/2).This implies T(k+l)/2 I<!i-m) n 
Si~m-(p-1)/2) # 0. 
(1-2) pis odd and k is even. 
The assumption implies Tk/2 K!-m>ns4jm-(p-l)/2) # 0. Tkf2 I<!-m>ns;~m-(p-l)/2) 

follows from the disposition o 
-(m-(p-1)/2)... _..J c-(m-(p-1)/2) 
f S2-and  S4- ． 

(1-3) pis even and k is odd. 
The proof is similar to (1-1), and thus is omitted. 
(1-4) Both p and k are even. 
The proof is similar to (1-2), and thus is omitted. 

(2) Proof of p/k E Ki-m)→p/(k + 2) EK~守 (k ~ 2n + 2). 
(2-1) Both p and k are odd. 

#0 

implies r(k-l)/2 I<i-m>ns;~m-(p-l)/2) # 0 and T(k+l)/21<~+7>--t The assumption p / k E }、9(-m）・

T(k-I)/2 J(J-m). This i . This implies T(k+I)/2 J(は7>n s;~m-(pー 1)/2)# 0. 
For the other cases, the proofs are similar to (2-1), and thus are omitted. Q.E.D. 

4.3 Accumulation of critical values 

We now describe the behavior of critical values ac(l/(2i + j) E Il0)) and ac(l/(2i + j) E 
K炒） asfunctions of i and j. We express the numerical results in a three-dimensional 
plot(see Figs. 5(a) and (b)). The maximum is a℃(1/3 E 11°>) in Fig. 5(a) and ac(l/2 E 

K炉） inFig. 5(b). For a fixed i, the critical values decrease as j increases. The 
accumulation value is ac(!}0り(resp.,ac(l{炒））．
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Fig. 5. Three-dimensional plot of (a) ac(l/(2i + j) E Ii0>) and (b) ac(l/(2i + j) E }や）
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In the limit i>>1, the behavior of ac(If0>) and ac(K炒） displayedin Fig. 6 is modeled 
by 

叫Iioり， ac(K炒） 0( 点with a~ 0.93 (48) 

• Here we discuss the meaninf °f taking thelimit i →oofor every j. We shall define 
0) 

two critical values. Let ac(n; sI~l-) be a -critical value at which T巧~ touches S~~l- for 
the first time. Repeating the same discussions in Properties 3.6-3.8, we have 

犀叫1/(2i+ j) E JJ0>) :::;: ac(j; S翌）（j=2n,n~l), (49) 

犀叫1/(2i+ j) E /j0)) ＝叫；S笠）（j= 2n -1, n ~ 1), (50) 

jl→im OO ac(J•• ; S sr(0i) -) = 0. (51) 

The accumulation of ac(j; S昆） inthe limit j→oo is shown in Fig. 7 and is modeled 
by 

1 
叫；S昆）な76with 8 ~ 0.87. 

J 
(52) 
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Fig. 6. Plot of ac(Il0>) (square) and ac (I<l0>) (circle) as a function of i. 
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Fig. 7. Accumulation of criti . Accumulation of critical values ac(i; S 
(0) 
; S~~) (square) and ac(j; S翌）（circle).

5 Braid 

We express the reason why we construct the braid of SNBO. If there exists a particular 
periodic orbit in the system and its braid is pseudo-Anosov (pA) type, the lower bound 
of topological entropy is positive and thus there exists chaos in this system. The concept 
of pA is an extension of Anosov property showing the hyperbolicity of system.28) 

Let us introduce notation. DO品c-m) (R = I, J, I<, or L) represents the dynamical 
order itself realized in R where p shows the numerator of rotation number. DO~<-m> (i,j) 
(R = I, J, K,or L) is the (i,j) element of DO~<-m> where i ~ 1 and j ~ I for J(-m) and 
J(-m), and i ~ 0 and j ~ I for K(-m) and £(-m). 
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5.1 Braid for SNBOs in DO}co> 

For an 1/(2i + j)-SNBO with j = 2k + 1, k ~ 0, i ~ I, we divide its orbital points 
{Po, P1,..., P2i+2k} of one period into four groups A, B, C and V as 

A= {Po,・・・, Pi-1}, B = {Pi,・・・, Pi+k}, 

C = {Pi+k+1, ・ ・ ・, Pi+2k+1}, and V = {Pi+2k+2, ・ ・ ・, P2i+2k} 

where p0 is always taken in Il0), A¥ {p0} and C are located between S~o) and S~o), and B 

and V between S~o) and sP). We have A¥ {po} = GV and B = GC by reversibility. 

4
 

2
 

y 0 

-2 

-4 

゜
ー 2
 
3
 
4
 

-3 
6
 X 

Fig. 8. The orbit of an 1/9-SNBP in I:⑲where an integer k stands for Pk・ The stable 
and unstable man if olds are also displayed. 

Figure 8 displays the orbit of an 1/9-SNBP in /~o) where A = {p0,p1,p2}, B = 
{p3, p4}, C = {Ps洒｝ andV = {p1洒｝． Theschematic -version is illustrated in Fig. 9(a). 
The group A is located to the left of WJ and C is to the right. Due to the reversibility 
with respect to S評， Bis located to the right of vVS1 and V is to the left. 
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(a) 

S1 
(0) 

ふ
(0) 

S1 
(1) 

P' 

(bl戸叫亡可互叫戸コ・
wJ 母o) wJ 

Fig. 9. (a) Configuration of four groups A,B,C and'D, and (b) reconstruction of these 
groups into the fundamental orbital order. 

For the behavior of the orbital points, we observe the following properties. These are 
justified next paragraph. 
[P 1] There is one turing point in B and C. 
[P2] For the points in A and'D, the following relations hold. 

1r1 (Pm)＜町(pm,) (53) 

where O $ m < m'$ i -1 in A and i + 2k + 2 $ m < m'$ 2i + 2k) in'D. 
[P3] For the points in A and C, the following relations hold if the corresponding points 
exist at all. 

1r1(P曰）

町(p口）

く 1T1(Pi+2k+1), 

く 1T1(Pi+2k), 

379 

(54) 

(55) 



[P4] For the points in B and V, the following relations hold if the corresponding points 

exist at all. 

7r1伽）＜町(Pi+2k+2),

町(Pi+l) < 7r1 (Pi+2k+3), 

[P5] The x coordinate of any point in B is larger than those of points in C. 

(56) 

(57) 

Here [Pl] means that one turning-back point is located in Band one turning-forward 

point in C. (P2] means that the orbital points in A and'D are well-ordered. In fact, the 
turning back does not occur since the value of y-coordinate of orbital points is positive. 

Equation (56) in [P4] is true since Pi E V and Pi+2k+2 E TU, and TU is located to the 
right of V. The other inequalities reflect the fact that Pi+2k+2 in TU is mapped to the 
right of Tv and Pi in V is mapped to the left of Tv, and so on. Note that P2i+2k+i E TiU 

is located in S料andPi+k+i E Tk+l V is located in s!~. Operating G to the equations 
of [P4], we have (P3]. [P5] is derived from the reversibility with respect to G. 
Taking into account [Pl] through [P5], we place the four groups of points in a line as 

0。(i,j)= (A↑CtB↓V). (58) 

A schematic illustration is given in Fig. 9(b). We call the expression an orbital order 
of DO}<o> (i, j). The suffix o stands for'odd', i.e., Eq. (58) is for odd periodic orbits. 
Three symbols↑,t and↓in the orbital order represent WJ, S~, and W;, respectively. 
These symbols stress that four groups are separated by three objects. Later, these will 

be frequently omitted. If in particular Pk and Pi+k+i are the two turning points and 
there are no other turning points, then we call the order the fundamental orbital order 
(FOO). The role of the FOO in constructing braids will be seen in what follows. 
Let us consider DO如(3,3). Its FOO(see Fig. 10(a)) is 

0。(3,3) = (012654378). (59) 

There are two additional orbital orders which satisfy (Pl-5] and which can be realized 
by actual orbits(Fig. lO(b) and (c)): 

0~(3, 3) = (012563478), 

o:(3, 3) = (015263748). 

(60) 

(61) 

We can not exchange 1 and 5 due to [P3], and 4 and 8 due to [P4). The orbital order 
directly determined by the orbit displayed in Fig. 8 is 0~(3, 3). 
We describe now the construction of a braid of an 1 / q-SNBO using the information 
on the orbital order. A braid is constructed in two steps. The first step is a construction 
of (q -1) strings from Oto 1, 1 to 2,..., (q -2) to (q -1), and the second step is that 
of the final string from (q -1) to 0. 
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Step [1]. A string corresponding to the forward motion goes behind a string correspond-
ing to the backward motion when they cross. 
Step [2]. The string from (q -1) to O goes behind all other strings when they cross. 
The first rule expresses the twist property and the second one the rigid rotation with 
v = 1/q revolving round cylinder. 
Braid {3(3, 3) constructed from 0。(3,3) is shown in Fig. lO(a). Its expression in 
terms of generators is 

/3(3, 3) = u；切；切；切31び；切；℃，9 (62) 

where (9 ＝ び8・・・a1.Braid /?'(3, 3) constructed from o:(3, 3) and braid {3"(3, 3) from 
o:(3, 3)(Figs. lO(b) and (c)) are expressed in terms of generators as 

/3'(3, 3)＝ずずず651(J';1(J'5兄，9

{3" (3, 3)＝ずずずG;1(J'5写兄，．

These braids are equivalent to ()(3, 3) via the Markov move as 

(a) 

0 126543 7 8 

0 1 2 6 54 3 7 8 

(3（3,3) 

/3'（3,3) =(J'4(J'；頃(3,3)u；滋，

/3＂（3,3)＝0'3(J'71 {3'(3, 3)u3l(J'7• 

(b) 

01256  3478  

01256  3478  

/3'（3,3) 

(c) 

(63) 

(64) 

(65) 

(66) 

0152  63748  

0152  63748  

(3＂（3,3) 

Fig. 10. (a) Braid constructed from 0。(3,3), (b) that from 0~(3, 3) and (c) that from 
oi{3, 3) where an integer k stands for Pk・ 

To obtain {3"{3, 3), we exchange two strings 4 and 7 in/3‘{3, 3). The string from 7 to 
8 gets ahead of the string from 4 to 5 in the upper side. As a result, new intersection 
point appears. We add u71 in the left side of {3'(3, 3). In the bottom, the string from 3 
to 4 and the string from 6 to 7 do not intersect each other. In order to untwist them, 
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we add u7 in the right of {3'(3, 3). Due to symmetry, we add u3 and u31 and thus have 
()"(3, 3). It turns out that the exchange of points in the orbital order does not change the 
braid type if it does not violate [Pl-5]. The construction of the FOO is simple compared 
with that of other orbital orders. This is the reason why we use the FOO to construct 
the braid. 
Let us see what happens if we accomplish inhibited exchanges of two strings 3 and 7 
and of strings 2 and 6 in Fig. lO(a). These exchanges do not satisfy [P3] and [P4]. We 
have an orbital order (016254 738) and have a braid u7惰(3,3)u31. Since the number 
of intersection points of braid is different from that of {3(3, 3), the new braid is not 
equivalent to ()(3, 3). 
Let us next consider periodic orbits of even period. We divide the orbital points (one 
period) of an 1/(2i + j)-SNBO (j = 2k, k ~ I) into {Pi+k} and four sets A, B,C, and 1J 
as 

A= {po,・・・,Piー1}, 8 = {Pi,.. ・, Pi+k-1}, 

C = {Pi+k+1, ・ ・ ・,Pi+2k}, and V = {Pi+2k+1, ・ ・ ・,P2i+2k-1}. 

and arrange them in a line as 

一―-
0ぷ，j)= (A↑C(i + k)B↓V). (67) 

where (i了k)stands for Pi+k E S~~. The symbols have the same meaning as before. 
---→-(i + k) plays the role oft. The FOO is defined as the orbital order in which turning 

points are Pi and Pi+k・
Now the expressions of braids for 0。(2,3) = (0154326) and Oe(2, 4) = (01654327) 
are determined. 

(3(2, 3) = u31u41u；切；切51゚；兄7,
- 9；切；165165切；切；兄7,

(3(2, 4) = u3切4lU5lU6切；切；切；切；l(s,
ーがずU3lずずずず6［し，

(68) 

(69) 

where Reidemeister and Markov moves5>,24) are operated to derive the second equation 
in Eqs. (68) and (69). As a result, the expression of braid for 0。(i,j)or Oe(i,j) is 
derived. 

/3(i,j)＝＜砧p昇ふi+i (70) 

where Pk = <71 ・ ・ ・ uk-1 and (k = uk-1 ・ ・ ・ <71・

Here let us compare/3(i,j) and braids investigated by Boyland.8) Consider two annuli 
and (2i+ j) strings connecting them. The braid (砧p比meansthat the first string passes 
behind the second through (j + I)-th strings, and then passes in front of these strings. 
This twisting is caused by the non-Birkhoffness of the orbit. The braid (2i+i represents a 
rigid rotation of a 1/(2i+ j)-Birkhoff orbit. According to this geometrical interpretation, 
the braid/3(i, 1) corresponds to the braid constructed by Boyland. 
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5.2 Braid for SNBOs in DO}く(0)

5.2.1 Braid for SNBOs in DO知 withi ~ 1 

Figure 11 displays SNBOs starting in $翌． Thepoints of one period of an orbit are 
grouped into four sets A, B, C and V. For even period q = 2i + j + 1 (j = 2k-1, k ~ 1), 
we define the orbital order. 

Oe(i,j) (A↑CtB↓V), (71) 

A= {Po,・・・,p曰｝， B＝｛pi, ・ • ・, pi+k-l}， 
C = ｛Pi+K, ・ • •,pi+2kー 1}, and V = {Pi+2k, ・ ・ ・,P2i+2k-1}-

The FOO is such that Pi and Pi+2k-l are the turning points. For odd period q = 
2i + j + 1 (j = 2k, k ~ 1), we define the orbital order. 

0。(i,j) = (A↑C(i+k)B↓V), (72) 

A= {po,・・・,P曰｝， B＝｛Pi, • ・ •,pi+k-l}, 
C = {Pi+k+1, ・ ・ ・,Pi+2k}, and V = {Pi+2k+1, ・ ・ ・,P2i+2k}, 

The FOO is such that Pi and Pi+2k are the turning points. Note that A = GV and 
C = GB hold in both Oe(i,j) and 0。(i,j).

i (a) 
•3 
加） /I  l • • 

3 3 
2 21 0/ 5 
y 1 y 1 

゜ ゜-1 -1 
-2 -21 3. t 2 乙
1 2 3 4 5 6 7 1 2 3 4 5 6 7 

X x 

1 (c) •4 訂(d) ／ 2• •5 
3 3 
2 2 
y 1 •l 

y 1 

゜゚ ゜-1 
--21 | -2 •4 

3 l 乙
1 2 3 4 5 6 7 1 2 3 4 5 6 7 

X X 

Fig. 11. (a) 1/4 E 1<!0¥ (b) 1/5 E Ki0>, (c) 1/6 E /{J0) and (d) 1/7 E K~o)_ 
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Using the same rules as in §5.1, the braid/3(i,j) for DOk<o>(i,j) is derived. 

/3(i,j)=（応ぶふi+j+l・ (73) 

5.2.2 Braid for SNBOs in DOkco> with i = 0 

In Fig. 12, two orbits with v = 1/2 and 1/3 are displayed. For both orbits, the turning 
back of the orbit occurs at p0 (symbol O in the figure). 

10 (a) 
8 

10 8 I (b) 

6 6 
4 4 
y 2 y 2 

゜ ゜-2 -21 2. i1乙

゜
2 4 6 8 10 12 

゜
2 4 6 8 10 12 

X X 

Fig. 12. (a) 1/2 E J(~o) and (b) 1/3 E Kd0>. 

In order to have a braid of pA from an 1/2-SNBO (DOK<o>(O, 1)), we need at least one 
more string. To accomplish this, we use the information in the vicinity of the period-2 
orbit. We first deform cylinder to annulus. Next we shrink the inner circle of annulus to 
a ・point (termed as c). The point c stands for the fixed point at infinity. A string from 
c to c is the additional string. We construct the braid of three strings connecting two 
annuli. Let a string from Po to p1 be A, a string from p1 to p0 be B and a string from c 
to c be C. Two strings A and B revolve round c. This gives how to intersect two strings 
(A and C, B and C). If A and B intersect each other, we draw the string of the forward 
motion behind the string of the backward motion. This intersection corresponds to the 
twist property. As a result, we have the expression of braid. 

{3(0, 1) = 0-1U21U11U西＝ U~0-21・ (74) 

The braid (3(0, 1) expresses the tangled structure of the braid of the period-2 orbit and 
that of c. 
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(a) 

Orbit on 
cylinder 

Cut and open 

(b) ~ I＼、

一To annulus 
After 
modification 

Rotate 
180° 

•-• ■,9. 

(c) 

・・ー

1
,
．▼
Reconnect 

Fig. 13. Deformation of cylinder to annulus ((a)→(b)). Cutting and recombination of 
annulus ((b)→(c)). After rotating (c) by 180°, we have (d) 

Next we construct the braid for an 1/3-SNBO. The orbital order is 0。=（↑2io↓)， 
and this gives a braid可切乳 Butthis braid is not pA. We apply th e transformation 
illustrated in Fig. 13. The first step is the deformation of cylinder to annulus. We cut 
open annulus and glue both borders at the opposite side so that the inner and outer 
circles exchange their role. Thus we have new orbit in the modified annulus and have 
the expression of braid. 

邸，2）＝ずずずずずず，
＝ （ずず）％ず．

Equation (75) implies that (3(0, 2) is pA. 
The orbital orders for the elements with j (~ 2) of q = j + 1 are derived. 

0。(O,j)=（↑Bふ4↓)， 

(75) 

(76) 

where A=  (po,・・・,pk-1), B = (Pk+i,・・・,p2k) (j = 2k,k ~ 1) and p。andp2k are the 
turning points, and 

Oe(O,j) =（↑BtA↓)， (77) 

where A=  (Po,・・・,Pk), B = (Pk+i, ・ ・ ・,P2k+i) (j = 2k + 1,k ~ 1) and p。andp2k+i are 
the turning points. In both expressions, B = GA holds. 
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These determine the braids u11 • •・ 6；； 1. Unfortunately these are not pA. Therefore, 
we apply the transformation mentioned above and then have the braids of pA. 

(78) 

6
 

邸， j) ＝畷鵡 (j・~ 2). 

Topological entropy 

We have derived braids of SNBOs in §5. In this section, we use these to estimate the 
lower bound of the topological entropy of a system which possesses an SNBO with braid 
{3. The lower bound h(/3) of the entropy can be estimated by the maximum absolute 
eigenvalue (,¥maェ＝ Max(I入I))of the reduced Burau matrix representation Mp(t).25),26) 

(79) 

The reduced B urau matrix representation Mf3(t) has a parameter t defined by t = 
exp(i0) (0 ~() ＜21r). In order to calculate h(/3）， we need the value of Max(l..¥il) as 
a function of t or()．For the braid of the third order,入maェisobtained at t = -1.23> We 
need numerical calculations for the braids of arbitrary orders. In Appendix, we give a 
sample program written by MATHEMATICA 21> to construct the reduced Burau matrix 
representation and to calculate its eigenvalues. Figure 14 displays the numerical results 
of Max(l..¥il) as a function of 8. 

h(/3）＝ lnAmaェ・
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6.1 Topological entropy estimated by using SNBO in DO}co> 

We observe the following property for braids of odd orders through numerical calcula— 
tions. Proof is in order. The property is generally not true for braids of even orders. 
Then we only calculate h(f3) for SNBOs with odd periods. 

Observation.入maェisdetermined by the maximum absolute value of the real root(> 1) 
of eigenfunction at t = -1. 

We__ derive the eigenfunction of the reduced Burau matrix for braid (3(1, j) = <応p井1(j+2
in DO如(1,j)where j is assumed to be an odd integer satisfying j ;?: 1. For example, 
Eq. (80) gives the reduced Burau matrix with t = -1 for {3(1, 3) = C131 C121,「1C14of 
1/5 E If0>, and Eq. (81) is i is its eigenfunction. 

MP(1,3)(-1) ＝(i ]10~1)' (80) 

入4_か＋3入2_3入＋ 1= 0. (81) 

The eigenfunction for any j is obtained in Eq.(82). 

砂＋3I:（一入）k+l=
(入-2){_xj+l -2) -3 

狂 1
= 0. 

k=l 
(82) 

It is easy to see that the value of入maェaccumulatesat 2 as j→oo. Equation (82) 
corresponds to the expression derived by Boyland. s) 
In order to estimate入maェfor(i,j) element, we shall derive the eigenfunction for the 
cases with j > i. 

2i-2 2i+j-1 
I:(2k + 1)（況＋（4i-1) こ（ーザ＋ I: (4i + 2j -2k -1)（一入）k= 0. (83) 
k=O k=2i-1 k=j+l 

Our main purpose is to estimate the topological entropy in the limit i, j→oo. Here we 
consider the limit j→oo. We keep the most divergent terms in Eq. (83), and let these 
be zero. 

炉—1 （入— 1)= 2. (84) 

Next we consider the cases with i > j and thus have 

j-1 2i-l 2i+j-l 
L(2k + 1)（ーが＋（2j + 1) L（一入）k+ L (4i + 2j -2k -1)（一入）k= 0. (85) 
k=O k=j k=2i 

We also have 
（一入）i(l-入） ＝2. (86) 
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For the cases with j = 2i -1, the accumulation values h of topological entropy h(/3(i,j)) 
at the i-th row and the j-th column are same. Let us consider .. the limit i, j→oo. Put 
入＝ 1+ €(€ > 0). In the case with € << 1, we have the relation h ~ €. Equations (84) is 
rewritten in the form: 

k ln(l + e:) = ln(2/e:) (87) 

where k = 2i -1. In the limit k→oo, we have the topological entropy h: 

k ＝字）＋ 0 （In(lni2k) ））• (88) 

Numerical results of Eq. (87) are shown in Fig. 15. For large values of k, these results 

are in agreement with Eq. (88). 
Equation (88) gives that the topological entropy is zero in the integrable limit and 
also means that the sys~em with a > 0 is pA. Combining Eqs. (48) and (88), we have 
the topological entropy has a function of a in the limit a→0. 

く．'．.． 

0.7'" 

0.6 

0.5 .. 

0.4 

0.3 [ 

0.2 ~ 

O.lf~ 
． ．． 

0.1 

... ln{l/ a) 
h ex: (1/a)l/o" 

． 
． ． ． ． ． ． ． 

0.2 0.3 0.4 0.5 

ln(2(2i-l))/(2i-l) 

． 
＾ i=l,h=ln2 

． 

0.6 0.7 

Fig. 15. A . Accumulation of topological entropy h. 

{89) 

6.2 Topological entropy estimated b_y using SNBO in DO}＼・(0)

The topological entropy for DO_kco> (0, 1) has been already estimated in Ref. 22). 

h(/3(0, 1)) = 2＋汎． (90) 
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We derive the eigenfunction of DOk・(o)(0, j) for even j since Observation of §6.1 is true 
in these cases. 

（入＋3）入j+l= 1 + 3入．

In the limit j→oo, we have I..¥I→3. 
Next we study the topological entropy for DO}qo)(i,j)(i ~ 1). In these cases, Ob-
servation of §6.1 is not true (see Fig. 16). Thus we calculate the topological entropy 
numerically. The accumulation value of the topological entropy of the limit j→oo at 
i = 1 is In 1.63, and that of the limit i→oo at j = 1 is In 2. The topological entropies 
hi(i 2:: 1,j→oo) and h;(j・~ 1, i→oo) are displayed in Fig. 1 7, and accu~ulate to ~ero 
in the limit i,j→oo showing the integrable limit. 
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Fig. 17. Accumulation of topological entropy. 

7 Remarks 

We refer to several points to be pursued. 
[1] Forcing relation between different dynamical orderings, for example, DO~co> and 
DOP 
K(O)・

To establish the relation, p/2-or p/3-SNBOs plays an important role. 
[2] Dynamical ordering for the SNBOs with 2n (n 2: 2) turning points and the estimation 
of topological entropies for these orbits. 
[3] Appearance order of NBOs not having points in symmetry axes. 
We have a hypothesis for their appearance, i.e., all NBOs not having points in sym-
metry axes are bifurcated from mother SNBOs. 
[4] Dynamical ordering for SNBOs of Type II. 
This will be useful to investigate the breakup of KAM curves. 
[5] Appearance of NBOs in the systems not having the left-right symmetry. 
We believe that two theorems proved in §4 are true if the symmetry breaking per-
turbation is weak. 
[6] Forcing relation between the braids obtained in §5. 
Can we derive the dynamical ordering of SNBOs by using it? This is a reverse 
approach. 
[7] Theoretical explanation of the power law decay of critical values obtained as Eqs. 
(48) and (52). 
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Appendix 

A MATHEMATICA (Trademark of Wolfram Research) program which constructs 
the reduced Burau matrix representation and calculates its eigenvalues as a function of 
8 is shown below. 

Explanatory note. 
[1) In the first block, input two values of n (~ 4) and ma where n is an order of braid 
and ma is a number of division of 8. 
[2] The second block is a preparation of generators. 
[3) In the third block, inl?ut a braid by using s[k] and is[k] where s[k] is a generator Uk 
and is[k] a generator u；；1● 
[4) In the fourth block, the eigenvalues are calculated and MaxlAil is displayed as a 
function of 8. Final output is入maェ・
A sample program determines the eigenvalues of a braid u1u21u31. 

Sample program 

(* 1st Block*) 

(* Input an order of Braid*) 
n = 4; 

(* Input a number of division*) 
ma= 360; 

(* 2nd Block*) 

(* Construction of generators s [1] -s [n -1] and is [1] -is [n -1] *) 
Clear[t]; 

nn = n -1 ; m = 1 ; v = { 0} ; 
Do [v = Append [v, OJ, {k, 1, nn -1}] ; 

Do [d [i] = ReplacePaヰ[v, 1, i], { i, 1, nn} J ; 
d [m] = ReplacePart [d [m], -t, m] ; 

d [m] = ReplacePart [d [m], 1, m + 1] ; 
s [m] = Table [d [k], {k, 1, nn}] ; 

m = 1; v = {O}; 
Do [v = Append [v, OJ, {k, 1, nn -1} J; 

Do [d [i] = ReplacePart [v, 1, i], {i, 1, nn} J ; 
d [m] = ReplacePart [d [m], -1/t, m] ; 
d [m] = ReplacePart [d [m], 1/t, m + 1]; 
is [m] = Table [d [k], {k, 1, nn} J; 
Do [v = {O}; 

Do[v = Append[v, OJ, {k, 1, nn -1}]; 
Do [d [i] = ReplacePart [v, 1, i], {i, 1, nn}]; 
d [m] = ReplacePart [d [m], t, m -1] ; 

d[m] = ReplacePart[d[m], -t, m]; 
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d [m] = ReplacePart [d [m], 1, m + 1]; 

s [m] = Table [d [k], {k, 1, nn}], {m, 2, nn -1}] ; 

Do[v = {O}; 

Do[v = Append[v, OJ, {k, 1, nn -1}]; 

Do [d [i] = ReplacePart [v, 1, i], {i, 1, nn}]; 

d [m] = ReplacePart [d [m], 1, m -1] ; 

d[m］ ＝ReplacePart[d[m］, -1/t, m]; 
d[m] = ReplacePart[d[m］， 1/t, m + 1]; 

is[m] = Table[d[k], {k, 1, nn}], {m, 2, nn -1}]; 

m = nn; v = {O}; 
Do[v = Append[v, O], {k, 1, nn -1}]; 

Do [d [i] = ReplacePart [v, 1, i], {i, 1, nn}] ; 

d [m] = ReplacePart [d [m], t, m -1] ; 

d [m] = ReplacePart [d [m], -t, m] ; 

s[m] = Table[d[k], {k, 1, nn}]; 

m = nn; v = {O}; 
Do [v = Append [v, O], {k, 1, nn -1}]; 

Do [d [i] = ReplacePart [v, 1, i], {i, 1, nn}]; 

d [m] = ReplacePart [d [m], 1, m -1] ; 

d [m] = ReplacePart [d [m], -1/t, m] ; 

is [m] = Table [d [k], {k, 1, nn}]; 

(*end*) 

(* 3rd Block*) 

(* Input a braidtype *) 

b = s[1].is[2].is[3]; 

(* 4th Block*) 

(* Calculation of Eigenvalues*) 

Do[ 

theta= 2Pi/ma*k; 

t = Cos [theta] + I*Sin [theta] ; 

gg = Eigenvalues[N[b]]; 

Do[e[i] = Abs[Part[gg, i]], {i, 1, nn}]; 

y[k] = Max[Table[e[k], {k, 1, nn}]]; 

x[k] = N[theta], {k, 0, ma}]; 

(*Output*) 

g1 = Table[{x[k], y[k]}, {k, 0, ma}]; 

ListPlot[g1, PlotStyle -> {RGBColor[1, 0, OJ}]; 
gg = Table [y [k], {k, 0, ma}] ; 

Max[gg] 
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If the eigenfunction of the reduced Burau matrix with t = -1 is needed, delete the 
fourth block and add the following statements. 

(* Eigenfunction: f(x) = 0. Output is f(x). *) 
t = -1; 

Det [b -x* !dent i tyMatrix [n -1]] 
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Abstract 

Birkhoff and Non-Birkhoff types of periodic orbits are defined in circle map-
pings. The dynamical order relation of non-Birkhoff periodic orbits {NBOs) with 
period longer than equal 3 is proved. The braids are constructed for NBOs and 
the topological entropy is estimated. 

1 Introduction 

Dynamics of one dimensional circle mapping offer useful information on periodic orbits, 
quasi-periodic and chaotic motions.1-3) In many cases, systems with one external pa— 
rameter have been the target of research. The parameter region pertaining to the local 
motion4>。rto the Arnold tongues3> has been investigated. Properties of systems in the 
parameter region where local and global motions mix are not made clear. By the global 

motion, we mean that of revolving the circle. In this situation, the mixing of the local 

and global motions (t~is will be called the mixed state) induces complicated phenomena. 
In this paper, we pay attention to the appearance of periodic orbits (called windows in 
the bifurcation diagram) in the parameter region of mixed state, and try to estimate the 
topological entropy of complicated motions. 
We consider C0 mapping f on circle S1 defined by 

()n+l = f(()n) (Mod 1), 

where f (8) is assumed to satisfy the following conditions. 
(1) f(fJ + 1) = f(fJ) + 1, 

(1) 

(2) / (8) has one local maximum point at()m心 E(0, Be) and has one local minimum point 
at Bmin E（似1)for some O < 8c < 1. 
[3] There exist two fixed points 81 and Or satisfying (Jc < 8,く 0rく 1.Note that Or is an 
unstable fixed point. 
Since we discuss periodi,.c orbits revolving the circle, we work,. in universal cover R 1 
of S 1. In R 1, we use a lift f : R 1→R1 of/: S1→S 1. The lift f is chosen to keep the 
fixed points for f fixed, so it is uniquely defined. 
We address the following questions on the circle mappings satisfying (1] -[3], and 
answer partially to them. What periodic orbits exist in the mixed state, and what 
types of dynamical order relation between them hold? What is the topological entropy 

in the system? We use, in obtaining periodic orbits, the standard tools in the oner 

dimensional mappings such as primitive mappings, covering relations, oriented graphs 
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and so on. Construction of braids and estimation of topological entropy follow those of 
our preceding articles. • 12)，13),14) 

In §2, we introduce several definitions and notation, and prove the dynamical order 
relation for non-Birkhoff type periodic orbits (NB Os). In §3, the braids for NBOs are 
constructed, and the topological entropy is estimated. In §4, we give several remarks. 

2 Dynamical order relation 

2.1 Definition and notation 

Birkhoffness or ~?n-Birkhoffness of periodic orbits has been introduced in two-1imensional 
twist mappings. 5) The notion is most releva.nt to circle mappings. A point 8 E R 1 is 
called a p/q-periodic point for j if 

jq(B) = {J + p. (2) 

The orbit of /J is 0(0) = { ・ • •, j-1 (0), 0, j(8), • • ・} ・ ・ ・ l. The extended orbit of()is 

＾ ^  EO((}）＝ ｛Jk(()）＋m : k, m E Z}. (3) 

A p/ q-periodic point {J is called Birkhoff if for any r, s E EO(0) 

f < 3 ⇒i(r) < i(s). (4) 

If the extended orbit of a periodic point has a couple of points not satisfying Eq.(4), 
we call it the non-Birkhoff periodic point anq its ~~bi,.t the non-Birkhoff periodic orbit 
(NBO). From now on, we u;e the co~ventio!_l()k ＝戸（Oq_).
Let us consiqer a p/ q-periodic orbit 0(0t。)． IfoK> I)k-1̂and 0K >［k+1 hold at some 
k (1 ~ k < q),()k is c~ljed a turning-back・ p~int. If舷<()が一1and()がく ok'+lhold at 
some k'(0 ~ -k'< q)，舷 iscalled ~ turning-forward point. We call these the turning 
points. In this paper, we ~onsider NBOs wi~h turning points. Note that there are NBqs 
with no turning points.12> We can choose()。asa starting point of the orbit so that 01 
be t~e first tL1rning-back point. Let 0知＋1(ka ~ 1) be the first turning-forward point, 
and 0kb+1 (kb ~ If be the last turning-forw~rd poi~t. If the orbit has ~nly two t~rning 
points, then ka = kb. We restrict our attention to NBOs satisfying the condition 

0。<Okb+l~ 0知＋1<釘 (5)

Later, we categorize NBOs with 2n (n ~ 1) turning points by ka and the number of 
turning points. 
If a closed interval / C R 1 contains one turning point, we denote it by j_ Let /1 and 
/2 be two closed interva!s satisfying Int(/1) n lnt(/2) = 0 where Int(/) is the interior of 
/. If the relation /2 C /(/i) holds, we write /1 >-/2, and we say /1 covers /2. We also 
call /1 >-/2 the oriented graph of interval~, or the covering relation. 
The rotation number v of an orbit of () E R is defined by 

j噸）一°v = lim sup 
n→oo - n (6) 

A 1/q-NBO with ka and two turning points is denoted by 

．
 
a
 

2

k

 
、
t
1
-
q
 
（
 

(7) 
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If the existence of a 1/ q-NBO with ka and two turning points implies the existence of a 
1/q'-NBO with k~ and two turning points, then we write as 

(}）2K。→（点）： (8) 

and_ we sjmply say that (1/q)t implies (1/q'）私． Wealso say that (1/</)i~ is dominated 
by (1/q)t. 

2.2 NBOs with period-3 

We assume that there exists.a 1/3-NBO in the universal cover R1 of S1 in some parameter 
set satisfying the orbital order 

0~ 島＜む <81 < 1 ~ 83 = 9。+1, (9) 

where(Ji = f̀（(J0) and ka = kb = 1. Th~s orbit is (1{ 3n follo":ing the convention adopted 
in §2.1. Since the orbit turns back at(J1, we have(Jlく(J1く(Jr.We define four intervals: 

11 

12 

[3 

S11 

[O, Bmax), 

[Bmax, Bmin], 

[Omin, 1), 

[ 1, 6 min + 1] • 

(10) 

(11) 

(12) 

(13) 

One observes that a (1/3n exists if the covering relation 

11 >-/3 >-12 >-S11 (14) 

holds. In order to guarantee {14), we use three conditions. 

j(O) 

＾ ^ f(Omin) 
＾ ^ f(Bmax:) 

VI 
V
I
＞
- 5

 
m
 

9̂
"^》

.
m
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m

m

 

^
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^
O
1
 

(15) 

(16) 

(17) 

11 
→ ~
h
0
 

< ~120 

→ ll 

↓

S
 

Fig. 1. The oriented graph of the intervals. 
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Equations (1.5）-（17) give an oriented graph of intervals shown in Fig. 1. This graph 
contains the covering relation (14) as a subgraph. Analysis of Fig. (1) gives Proposition 
1. 

Proposition 1. (1/3)i implies 1/n-NBOs (n ~ 4). 

Proof. A cycle 11>-K >-J3>-i2>-S/1 gives a 1/4-NBO. Similarly, we can construct 
a cycle with period longer than 4. (Q.E.D.) 

2.3 Theorem 

In this section, we elaborate the appearance order or the dynamical order of NBOs found 
in Proposition l. 

Lemma 1. For 1/q-NBOs with q ~ 3, ka(~ 1) and with two turning points for the 
circle mapping / satisfying (1 ]-(3], the following dynamical order relation holds. 

{1/3)i → (1/4)i → (1/5)i → (1/6)i →・・・
↓ ↓ ↓ ↓ 

(1/5)弓 → (1/6)弓 → (1/7)至 → (1/8)弓 →・・・
↓ ↓ ↓ ↓ 

(l/7)3 → (l/8)5 → (1/9)5 → (1110n →・・・
↓ ↓ ↓ ↓ 

Remarks. We will use the matrix notation to specify the position of NBOs in Lemma 

1. Regarding the above table as a matrix, we take (1/(2i + j))~ as the (i,j) (i,j ~ 1) 
element. Thus, for example, we say (1, 1)→(1, 2) if the forcing relation (1/3)i→(1/4)i 
holds. 

Proof: In order to prove Lemma 1, we use the primitive tight mapping2),s),7) which is the 
simplest piecewise linear mapping having a periodic orbit with the given orbital order. 
Using the information of the NBO defined by Eq. (9), we can construct the primitive （） 
tight mapping F, shown in Fig. 2. In the figure, the relation S Ii = Ii + 3 holds and the 
orbital order of the period-3 orbit is expressed by 0→ 2 → l →3. Figure 3 is an oriented 
graph showing the covering relation between intervals. Each interval Ii in Fig. 2 has a 
unit length. We can change the length and use another continuous function connecting 
adjacent two points. However, new oriented graph for such mappings contains Fig. 3 as 
a subgraph. The oriented graph shown in Fig. 3 implies the existence of a cycle from I1 
to S/1・
Using the oriented graph, we can determine periodic orbits dominated by (1 /3H. The 
following cycle gives a period-4 orbit. 

- -
/1 >-/3 >-/2 >-/3 >-S/1・ (18) 

The rotation number of the orbit is 1/4 since S11 Cた(Ii).The orbit is non-Birkhoff 
because there are turning points in /2 and /3. Obviously we have知＝ 1.Then the 
orbit is (1/4)i. Thus (1, 1)→(1, 2) is proved. It is to be noted that the orbital points 
of (1/4)i are not at the endpoints of intervals since these are points of (1/3)i. (This fact 
is true for cases treated below.) 
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We have two cycles for period-5 orbit satisfying S Ii Cた(/1)-

11 >-l3 >-12 >-12 >-l3 >-S11, 
11 >-l3 >-l3 >-12 >-l3 >-S11・

These give the same 1/5-NBOs with ka = 2. Thus (1, 1)→(2, 1) is proved. 

(19) 

(20) 

●ー・＋
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Fig. 2. Primitive tight mapping constructed by (1/3H. 

11 
→ 

Sll↑

~
h
0
 

<—> ~120 Fig. 3. The oriented graph of the intervals, and the unnecessary arrows are o面tted.

Next we prove the general cases of (i,j)→(i,j + 1) and (i,j)→(i + 1,j). The 
existence of {1/(2i + j))1 gives the primitive tight mapping shown in Fig. 4, in which 
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闊）＝ If+2 and lf +2 C扉） hold.The relation between the intervals is displayed i~ 
Fig. 5, where unnecessary arrows are omitted. We want to find the cycle from If to Slf. 
The shortest orbit has a period (2i + j + 1) and ki = i. Thus the relation (i, j)→(i, j + 1) 
is proved. There are two ways to construct an orbit with period (2i+j+2) and kB= i+l. 

If we use If +2 twice, then we have If ~ if +2 >-If +2>-li+l>-．．． >-Sif.. If we use /2 
twice, we have I f >-・ ・ ・ >-I3 >-I2>-I2 >-．．．>-S If. These orbits are expressed by 
(1/(2i+ j +2)H+i・ As a result, (i,j)→(i + 1,j) is proved. The proof completes. Q.E.D. 
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Fig. 4. Primitive tight mapping constructed by (1/(2i + j))l where /2 = /~ U /2 and 
li+2 = If +2 U 1[+2-

゜l ~l h → Ii+2 → Ii+1 ゜～ •..•• I → I →R  3 2 

R → 恥 → li+3 →・・・→ l2i+j→ SI1 

゜Fig. 5 The oriented graph of the intervals, and the unnecessary arrows are omitted. 
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We have two ways to obtain NBOs of higher periods. One observes this by looking 
at Fig.5 carefully. For example, the cycle 

Il > I{＋2 >．．． >I3 > I2 > I2 > I2 > I[＋2 >．．． >SIl (21) 

constructed by using the oriented graph shown in Fig. 5 gives an NBO with four turning 
points,枇＝ iand kb = i + 2. Using /2 repeatedly, we can prove the existence of NBOs 
with 2n (n ~ 2) turning points. Next using lf+2 or 1[+2, we construct cycles of longer 
periods without increasing the number of turning points. This property comes from the 
fact that either of /2 and li+2 contains a fixed point. 
In the oriented graph constructed by the primitive tight mapping for (1/q)~:, the 
shortest cycle of an NBO from /1 to S /1 with 2n turning points not using the edgepoints 

is (q + I). In fact, the orbit of (1/ q)f~ passes one edgepoint of li+2, and the cycle not 
using edgepoints passes li+2 twice such-that it passes If+2 to turn back and 1[+2 to go out 
from the localized region. If we increase the number of turning points by 2, the period 
of a new cycle increases by 3. Summarizing these facts, we have Lemma 2. 

Lemma 2. For i 2:: 1 and j ~ 1, the forcing relations hold. 

（土）`2→(22+lj+3)t4→(2i+lj+6)：→ (22) 

Here we construct the order relation of NB Os with 2m (m ~ 1) turning points. 

Lemma 3. For NBOs with v = 1/ q (q ~ 3)，ka (~ 1) and 2m turning points in the 
circle mapping f satisfying [1 ]-[3], the following dynamical order relation holds. 

(1/(3m)）和
↓ 

(1/(3m + 2)）和
↓ 

(1/(3m + 4)nm 

↓ 

→ 

→ 

→ 

(1/(3m + 1)）和
↓ 

(1/(3m + 3)）和
↓ 

(1/(3m + s)nm 

↓ 

→ 

→ 

→ 

(1/(3m + 2)）和
↓ 

(1/(3m + 4)）和
↓ 

(1/(3m + 6))~m 
↓ 

→・・・

→・・・

→・・・

Proof. The proof is similar to that of Lemma 1, and thus is omitted.(Q.E.D.) 

From now on, the dynamical ordering in Lemma 3 will be called the dynamical 
ordering on the m-th floor. m is the number of turning-back or equivalently turning-
forward points in an orbit. Consequently, the dynamical ordering on the m-th floor is 
that for orbits with 2m turning points. Using Lemma 2, we can construct the dynamical 
ordering between the orderings on adjacent two floors. vVe introduce three dimensional 
notation (i, j, m), and specify the position of NBOs, for example, (1 / (3m))2m at (1, 1, m), 
(1/{3m+ l))rm at {1, 2, m) and {1/(3m+2)）至”̀at(2, 1, m). As a result; we have theorem 
1 on the three dimensional dynamical ordering for NBOs. 
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Theorem 1. The following dynamical orderings for NBOs hold. 

(i, j, m)→ (i,j + 1, m), 
(i, j, m)→ (i + l,j, m), 
(i, j, m)→ (i,j,m+l), 

(23) 

(24) 

(25) 

where i,j, m ~ 1 and an NBO of (i,j, m) element has a rotation number v = l/(2i + j + 
3(m-l)). 

2.4 Existence of B0s and their dynamical ordering 

According to a theorem by Boyland,6),7) if a 1/n-NBO exists, then there is a rotation 
band defined by (0/1, 1/(n -1)], and there exists a BO with a rotation number in the 
rotation band. Combining our results and this theorem, we have Proposition 2. 

Proposition 2. A 1/n-NBO (n ~ 3) implies a 1/(n -1)-BO. 

Let us denote a 1/q-Birkhoff periodic orbit (q ~ 2) by (1/q)B. There exist q points 
in the region (0, 01) U (0r, 1) E S1. Using this fact and the condition (3] of J, we can 
determine the dynamical order relation of them. 

Proposition 3. The following dynamical ordering for BOs holds. 

(1/2)B→(1/3)B→(1/4)B→ •... 

Proof. We prove the relation (1/2)B→{1/3)B, The others are similarly proved and 
then the proof is omitted. The primitive tight mapping allowing {1/2)B is displayed in 
Fig. 6 where two fixed points are located in /2 due to [3] and this interval is divided 
into I~ and /2. The oriented graph is obtained in Fig. 7. The existence of loop I~ >-I~ 
depends on the parameters and thus this loop is omitted. There exist two cycles not 

containing turning points /1 >-I~ >-12 >-S /1 and /1 >-/2 >-/2 >-S /1. This implies 
(1 /3)B,(Q.E.D.) 
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゜Fig. 7. The oriented graph of intervals constructed by using Fig. 6. 
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3 Braid and topological entropy 

3.1 Braid 

We construct braids from periodic orbits by using information on the order of orbital 
points.6-8•12> From now on, we use NB Os in the first floor (i, j, 1). The periodic points 
are located in the circle. Thus we connect Bn and Bn+l by an arrow. Examples are 
displayed in Fig. 6 where symbol i stands for 0i. In Fig. 8(a), an arrow from 1 to 2 
intersects that from k to k + 1. In the braid, a string from 1 to 2 does not intersect 
that from k to k + 1. This displays a braid for BO. Figs. (b) and (c) correspond to 
braids for NBOs. In each braid, two strings intersect each other. If the orbit (fast orbit) 
goes over the slow orbit or the backward orbit, the string of fast orbit passes behind the 
string of slow orbit or backward orbit. Using this rule, two braids of Figs. (b) and (c) 
are constructed. 

ヽK:,+l l k 2 k+l lヽ

(a) （、 ） 

2 

~,.2 I k k+I 2 1、
¥＼ (b) （ ） 

1 k k+I 2 
k+l 

ー

(c) 

1 k+l 2 k 

＼ズ
1 k+l 2 k 

K+1 2
 

Fig. 8 Fig.(a) shows a part of BO and its braid, and Figs. (b) and (c) display the 
intersection of braids due to non-Birkhoffness. 

We show two braids for 1/5-NBOs expressed by the generator of braid.11) 

/3(1,3,1) ＝び；切iし＝可沿，
/3(2,1,1) =(1;1(151(1［1(1;l(s =(111(1;1(1;1(1［1<5 
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where (s = <74 • • • u1, and Reidemeister and Markov moves9) are operated to derive the 
second expression. The difference of braids comes from that of kB. We have the braid 
for an NBO of（らj,1) element in Lemma 1. 

[j(i,j, 1)＝（砧p悶ふi+i (28) 

where Pi =(J1・・・(J,-1and (i =(Jiー1・・・(J1.The part (2i+i is the braid of 1/5-Birkhoff 
orbit and the part (i+11p砧representsthe non-Birkhoffness. 

3.2 Topological entropy 

We show the procedure to estimate the lower bound of topological entropy by using NB Os 
in Lemma 1. First, we construct the Burau matrix representation8),9) corresponding 
to the braid of an NBO.. Next, we calculate the eigenvalues of Burau matrix. The 
maximum (Amaェ）ofthe absolute values of eigenvalues gives the lower bound of topological 
entropy, io),n) expressed by h = ln入ma:c・
Numerical results for topological entropy are shown in Table I. The maximum value 
is ln（渥＋3)/2= 0.962 ・ ・ ・ estimated by using (1/3n.s> The entropy h(l,j, 1) is not a 
strictly decreasing function of j, but it accumulates at ln 2 in the limit j→oo. This fact 
implies that the entropy is larger than ln 2 for finite j. Finally it is noted that we can 
not determine the forcing relation of NB Os by using the topological entropy estimated 
in Table I. 

Table I: Topological entropy h（らj,1) calculated by using the program in Ref. 12). 

j=l 2 3 4 5 6 7 
i ． = 1 0.962 0.776 0.767 0.713 0.714 0.694 0.698 
2 0.652 0.575 0.558 0.530 0.512 0.508 0.499 
3 0.562 0.499 0.491 0.462 0.460 0.445 0.446 
4 0.465 0.422 0.416 0.398 0.389 0.382 0.373 
5 0.413 0.379 0.375 0.355 0.354 0.342 0.343 
6 0.364 0.338 0.334 0.321 0.315 0.310 0.304 
7 0.332 0.310 0.307 0.293 0.292 0.282 0.283 

4 Remarks 

Suppose that f has one bifurcation parameter a, and assume the existence of a critical 
value ac such that the mixing of the local and global motions exists at a > ac. The 
transition from a local state to a mixed state is called the crisis. Let ac(l / q凡） with
q = 2i + j be a critical value at which an NBO of (1/ qH。appearsdue to the tangent 
bifurcation. For BOs, the critical values ac{l/qlB) (q ~ 2) are also defined. 
In the limit i→oo, 01 tends to Or from the left side. In the limit j→oo, Oi+2 tends 
to Or from the right side. The converged situation is that of crisis. We have the relation: 

9J•i~00 ac(l/ql;) = ac for fixed j, (29) 

JJ•i~ OO ac(l/ qi~) = ac for fixed i, (30) 

q弛應伍(1/q|B)＝ a: (31) 
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where a critical value a~ is the value for which f (()maェ） ＝Br holds. The topological 
entropy is larger than ln 2 at a > ac since the limiting value is In 2 for i = 1 and j→oo, 
and Eqs. {29) and {30) hold. 

We have used only the continuity of mapping function to prove Lemmas. Then 
Theorem 1 holds for a climbing sine-mapping (CSM) defined by 

K 
J(fJ) = fJ + ~ sin 21rfJ十n,

21r 
(32) 

where K > 0 and n ~ 0. This mapping satisfies the conditions [l]-[3] where()c = 1/2. 
In the case that n is fixed, we can regard K as a bifurcation parameter a mentioned 
above. Thus Eqs. (29)-(31) hold for CSM. There exists the parameter region satisfying 
ac = a;. Using CSM, we can draw the bifurcation diagram and confirm periodic windows 
corresponding to NBOs in Theorem 1 and to BOs in Proposition 3. However the structure 
of windows after the crisis is beyond all imagination. 
The structure of dynamical ordering in Lemma 1 is similar to those derived in the 
standard mapping, 12) the standard-like mappings, 13) and the forced oscillator.14> The 

dynamical ordering similar to Lemma 1 may hold in the systems possessing the mixed 
state. 
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Relaxation in Hamiltonian systems with 
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Kyoto University, 606-8501, Kyoto, Japan 

Abstract 

Relaxation process of kinetic energy to canonical temperature is investigated through 

anomalous diffusion and local Lyapunov exponent in Hamiltonian systems with 

long-range interactions, in which a second order phase transition occurs. We find, 

near and below the critical energy, that {i) anomalous diffusion occurs even in 

equilibrium states, and {ii) the value of local Lyapunov exponent goes to the value 

of Lyapunov exponent at the earlier time than the relaxation time of the kinetic 

energy. 

1 はじめに

長距離相互作用をしている系は、臨界現象などの協同現象を起こし非常に興味

深い。もしこれらの系が拡張性を持つ、つまり自由度に比例してエネルギーが増

えるような系であれば、平衡状態は統計力学によって知ることができる。一方で、

非平衡状態から平衡状態への緩和過程など、系の時間発展を追うためには正準方

程式を数値的に積分するという方法がある。ここでは、系のダイナミクスを理解

するため、後者によって緩和過程を調べる。

長距離相互作用ハミルトン系における緩和過程は、例えば重カシートモデル

N 

H(q,p) = ~四＋（加G而） I:lx; ー叫
i=l i<j 

(1) 

* yyama@i.kyoto-u.ac.jp 
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において詳しく研究されており、緩和は何段階かに分かれて行われることが報告

されている [TGK96]。また、平均場XYモデル (HamiltonianMean-Field model) 

N 

H(q,p)＝岳pf＋命t[l-cos(q;喝）］
i=l -- i,j=l 

(2) 

においては、自由度と温度の関数としての緩和時間が示されたり [AR95]、異常拡

散との関係が議論されたりしている [LRR99b]。後者においては、運動エネルギー

がカノニカル温度に向けて緩和している間は異常拡散が起こるが、緩和してしま

うと異常拡散は起こらないとしている。しかし、重カシートモデルにおいて緩和

が何段階かに分かれていることを考えると、温度の緩和と異常拡散がそれほど密

接に関係しているかどうかは確認するべき事項であると思われる。そこで本報告

の目的の一つは、温度が平衡に達した後にも異常拡散が見られるかどうかを調べ

ることである。

一方、軌道不安定性解析、いわゆるリアプノフ解析によって緩和過程を調べる

研究もある。大域結合している各粒子が平面上の卵バックのような形をしたポテ

ンシャルを持っている系

1 
N 

1 
H(q,p) = ~ t(p~,,. ＋出）＋茄土[3-cos(Xi-Xj) -cos(Yi喝）

i=1 i,j (3) 

-cos(xi一巧）cos(yi-Yi)] 

において、局所リアプノフ数の時間発展と温度ならびにオーダーパラメータの時

間発展の様子が調べられている [TA99]。温度やオーダーパラメータが緩和を開始

する時刻に軌道不安定性が増大し始め、緩和が終了すると不安定性も一定値に落

ち着くことが示された。しかし、系(3)は一次相転移系であるため、二次相転移系

である系(2)で同じことが観測されるかどうかは自明ではない。これを調べること

が第二の目的である。

2
 
モデルと初期条件

考えるモデルは、系(2)である。ここで、 m;= (cosq;, sinq;)を導入すると、

H(p,q)＝応＋ 1 N 茄 L[l-mi• 四］
j=l i,j=l 

と書けるため、位相 qjを持つ単位長さの回転子が内積相互作用をしている系と見

ることができる。ポテンシャルを Nで割っているのは拡張性を保つためである

[AT98]。
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オーダーパラメータとして、つぎの量を導入する。

1 
N 

M ＝吟苔九＝（Mcos¢, M sin¢) (4) 

系(2)は大域結合系であるため、運動方程式は平均場M、すなわち M と¢のみ

を用いて
轟
dt2 
—= -M  sin(qi -</>) 

と書ける。
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図 1:Fig.I. (a) Caloric curve (temperature T vs. canonical average of energy 

〈U〉0).The solid curve is obtained from both of canonical and microcanonical 

ensembles, and we find a jump in the specific heat Cv = (8T / 8〈U〉c)-1at〈U〉c=

0. 75. The dashed line is another stationary brunch obtained from microcanonical 

ensemble, but it is not stable since the corresponding entropy is not maximal. (b) 

The modulus of order parameter (M〉0vs. energy〈U〉C

初期条件は以下のようにして設定する。系(2)は拡張性を持つため統計力学を適

用することができる [LRR99a]。カノニカル統計によって得たカロリック曲線、つ

まり温度をエネルギーの関数として書いた曲線より、〈U〉c=〈E〉0/N=3/4に
おいて二次相転移を起こすことがわかる（図 l(a)）。ここに、〈•〉C はカノニカル統

計による平均を表す。一方でミクロカノニカル統計を用いると、エントロピーの

停留点は極大と極小の二種類あることがわかる。安定なブランチであるエントロ

ピー極大条件からはカノニカル統計と同じカロリック曲線が得られるが、メタ安

定なブランチであるエントロピー極小条件からはそれとは別の M=Oとなるブラ

ンチ〈T〉MC=2U-1 が得られる [AHR02]。記号〈•〉MC はミクロカノニカル統計
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による平均を表す。そこで数値計算の初期条件としてはこのメタ安定なブランチ

を選択し、安定なブランチヘの緩和過程を観察することとする。

カノニカル平衡状態においては、〈K〉C を運動エネルギーのカノニカル平均値

とするとT=2〈K〉c/Nなる関係が成り立っため、緩和の様子は運動エネルギー
（の2/N倍である） 2K(t)/Nの時間変化を通して親察する。

また、異常拡散については、位相 qiの平均分散

N 

叶(t;T)＝iv L(qi(t)―Qi(r))2 (5) 
i=l 

を調べる。ここで、分散を調べ始める時刻を t=Oと限定せずTとしていること

に注意されたい。通常拡散では分散が tに比例して大きくなるが、異常拡散では

t0(a # 1)に比例して大きくなる。 a>lのことを速い拡散、 a<lのことを遅い
拡散などと言う。

以下の計算では、自由度を N= 1000とし、エネルギーを臨界エネルギーU=

E/N = 0.75よりわずかに小さいU= 0.69とする。数値計算のアルゴリズムは、 4
次のシンプレクティックインテグレーター[Yos93]を用い、時間刻み幅は△t= 0.2 
と設定した。このときエネルギーの誤差△Eは 1△E/El<5x10―7となる。

3 運動エネルギーの緩和と異常拡散

本節では、運動エネルギー 2K(t)/Nの緩和と位相の異常拡散について述べる。

なお、これら 2つの量の関係を議論している文献[LRR99b]においては、 2K(t)/N

のかわりに

il国 dst。N
が用いられているが、ここでは異常拡散と相空間内の状態との関連を重視して、時

間平均ではなく各時刻での運動エネルギーを観察することとする。

図2{a)には運動エネルギーがカノニカル温度に緩和する様子が、図2{b)には位

相の分散吋(t;0)の時間変化がそれぞれ示されている。運動エネルギーは、およそ

treに＝6x104でカノニカル温度に緩和しており、一方位相の分散はtcross= 2 X 105 
で異常拡散から通常拡散へ移行しており、おおざっぱには温度の緩和と異常拡散

とが同じ時間スケールで起こっているように見える。これら二つの現象が密接に

関係しているかどうかを調べるため、吋(t;T)において分散を計算し始める時刻T

を0でない次の 2つの時刻に設定してみる。一つは運動エネルギーの緩和が終了

した時刻 trel匹で、もう一つは異常拡散から通常拡散へ移行した時刻 tcrossよりも

先の時刻 106である。

それぞれの結果を図3に示した。これら 2つの時刻 Tに対しても、吋(t;r)は

異常拡散から通常拡散への移行を示しており、異常拡散がかならずしも緩和過程

においてのみ現れるわけではないことがわかる。
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なお、 T= 0, 6 X 104, 106のそれぞれに対する異常拡散の指数 aは、それぞれ
おおよそ 1.6,1.4, 1.3となる。つまり、運動エネルギーがカノニカル温度に達し

たあとでも異常拡散は起こっているが、時間が経てば経つほど拡散は遅くなるこ

とがわかる。

4 局所リアプノフ数

リアプノフ数とは軌道の線形不安定性を長時間平均した量であり、 6の(t)を線形

化運動方程式に従う 2N次元ベクトルとすると次のように定義される：

入＝ lim -ln 
1 L 118ェ(t)11 

t→oo t ||6X(O)||． 

モデル系(2)におけるリアプノフ数のエネルギー依存性はすでに調べられており、エ

ネルギーが臨界エネルギーUc=3/4に向かって大きくなるにつれてリアプノフ数も

大きくなり、熱力学極限(N→00)においてはU>Ucで0となる [Yam96,Fir98]。

ここでは、軌道不安定性と緩和過程の関係を調べるため、局所リアプノフ数と言

われる次の量を観測する：

入local(t;T) = ~ ln 1 ||6の(t)11 
T II如 (t-T)II. (6) 

これは、時間間隔Tを設け、時間Tでの軌道不安定性を時系列として表した量で

ある。
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図 4:Fig.4. Time series of local Lyapunov exponent入local(t;T) with T = 100. 
It converges around t = 104, which is much earlier than the first passage time of 
2K(t)/N to the canonical temperature. N = 1000 and U = 0.69. 

図4には、図2と同じ初期条件のもとでの局所リアプノフ数の時系列を示して

ある。これによると、局所リアプノフ数は、運動エネルギーが初めてカノニカル
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温度に達する時刻（およそt= 6 X 10りよりもずいぶん早く t= 104あたりで収束
しており、緩和の終了と軌道不安定性の収束に関連がないことが見られる。これ

は、一次相転移を起こす系（3）との大きな違いである [TA99]。

5 まとめと課題

長距離相互作用のモデルのひとつである、平均場相互作用系において運動エネ

ルギーの緩和過程と異常拡散、局所リアプノフ数との関係を調べた。その結果、次

のことがわかった。 (i)運動エネルギーの緩和過程において異常拡散が見られる。

しかし、異常拡散は運動エネルギーの緩和過程が終了したあとでも見られる。 (ii)

異常拡散を観測し始める時刻を後ろにずらしていくと、異常拡散のベキ指数は徐々

に小さくなっていく。 (iii)一次相転移系では緩和の終了時刻と局所リアプノフ数の

収束時刻がほぼ同一となるが、二次相転移系では後者の方が前者よりも早い。こ

れらの結果から、二次相転移系においては緩和過程を異常拡散や局所リアプノフ

数といった概念で捉えることは難しいことがわかる。

課題としては、重カシートモデルにおいて見出された何段階かの緩和過程をこ

のモデル系においても見出すことにより、今みている緩和がどの段階にあたるの

かを同定しなければならない。また、結果(ii)をより精緻に調べることにより、定

性的ではなく定盪的に緩和過程を特徴付ける可能性について考察することが挙げ

られる。
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ABSTRACT 

We describe modified time-symmetric Hermite integrators specialized for long-term inte-

gration of planetary orbits. Our time-symmetric integrators have no secular errors in the 

semimajor axis and the eccentricity for the integration of two-body Kepler problems as 

usual time-symmetric and symplectic integrators. Usual time-symmetric or symplectic in-

tegrators, however, show a secular drift in the argument of pericenter. Our new family 

of integrators has one free parameter, which we can adjust to eliminate the error in the 

argument of pericenter without breaking the time-symmetry or changing the order of the 

integrator. The value of the free parameter for which the error is eliminated shows very 

weak dependence on the size of the timestep and the eccentricity. We analytically show 

that the leading term of the error vanishes for a unique value of the parameter. We describe 

the second-and the fourth-order schemes. Extension to higher order is straightforward. 
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1 ・ INTRODUCTION 

Time-symmetric (e.g., Quinlan and Tremaine 1990, Calvo and Sanz-Serna 1994) and sym-

plectic (e.g., Kinoshita, Yoshida, and Nakai 1991, Saha and Tremaine 1992) integrators 

have recently been used for the study of the long-term stability of planetary orbits. Both 

integrators have a desirable property that they have no secular errors in the semimajor axis 

a and the eccentricity e when Keplerian orbit is integrated with a constant timestep, while 

widely used high-order multi-step integrators, such as the Stormer-Cowell integrator, show 

secular errors. On the other hand, there are linear errors in the argument of pericenter w 

and the time of pericenter passage T for the time-symmetric and the symplectic integrators, 

while the high-order multi-step integrators show quadratic errors in the time of pericenter 

passage. For the long-term orbital stability problem, in particular for resonance related 

problems, an integrator that has no secular errors in either action variables (a, e) or angle 

variables (w, T) would be extremely useful. 

In the field of the structure engineering, numerical integration methods for the dynamic 

vibration equation (second-order linear differential equation) has been investigated in detail 

(e.g., Wood 1990). The Newmark method (Newmark 1959) is the most popular integrator 

for the dynamic vibration equation. It is a family of second-order one-step integrators 

that has two parameters, which includes the leapfrog (Verlet) scheme and the trapezoidal 

formula as special cases. It is known that by choosing appropriate parameters, we can 

remove the error in the phase of the vibration. 

In the present paper, we apply this concept of the Newmark method to higher order time-

symmetric Hermite integrators. The 4th-order Hermite integrator (Makino and Aarseth 

1992, Kokubo, Yoshinaga, and Makino 1998, hereafter referred to as KYM98) is widely 

used for the relatively long-term calculation of planetary systems from its simple yet ac-

curate algorithm (e.g, Alexander and Agnor 1998, Yoshinaga, Kokubo, and Makino 1999, 

Iwasaki et al. 2001, Kominami and Ida 2002). KYM98 presented the time-symmetric Her-
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mite integrator that shows no secular errors in (a, e) when two-body Kepler problems are 

integrated and demonstrated that their integrator is effective in planetary N-body prob-

lems. Our purpose here is to remove or reduce the errors of the angle orbital elements in 

the time-symmetric Hermite scheme without losing the time-symmetry. We focus on the 

error of the argument of pericenter in this paper. 

The time-symmetric integrators require constant timesteps to avoid secular errors in 

(a, e). In collisional N-body problems, however, the individual (variable) timestep scheme 

(Aarseth 1985) is indispensable to resolve close encounters of particles accurately and eco-

nomically. KYM98 showed that in planetary N-body systems such as planetesimal and 

protoplanet systems, particles share the same constant timestep except for the relatively 

rare cases of close encounters even though the hierarchical individual timestep (Makino 

1991) is adopted. This almost constant timesteps over particles and time are the reason 

the time-symmetric Hermite integrator greatly reduces the integration error of the plane-

tary N-body systems. In case of close encounters, the orbits are integrated accurately with 

small timesteps in the individual timestep scheme. Thus, their time-symmetric integrator 

with the individual timestep is effective in planetary N-body problems. For the same rea-

son, our new integrators are also effective not only in two-body Kepler problems but also 

in planetary N-body problems. 

In section 2, we describe the Newmark method and demonstrate how to optimize the 

integrator for the Kepler problem. In section 3, the fourth-oder scheme based on the time— 

symmetric Hermite scheme (KYM98) is presented and its behavior is investigated. Section 

4 is devoted for summary and discussion. 
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2 THE TIME-SYMMETRIC NEWMARK METHOD 

We describe the time-symmetric Newmark method and apply it to planetary orbital cal— 

culation. The Newmark method {Newmark 1959) takes the form 

1 
X1 = Xo + Vo△t+-a。△t2+ f3a。△t39

2 

V1 v0+a。△t+,知△t叫

(1) 

(2) 

where a:, v, and a are the position, the velocity, and the acceleration, respectively. The sub-

scripts O and 1 indicate time,△t is the timestep, and /3 and, are the Newmark parameters. 

The time derivative of the acceleration a。isgiven by 
. a1 -a。
ao = △t. (3) 

In order to keep the time-symmetry, 1 should be 1/2. The time-symmetric Newmark 

scheme takes the implicit form 

X1 

V1 

1 1 
:z:o+『伍＋Vo)△t+(/3ーサ (a1-ao)△t2, 
vo + ~(a1 + ao)△t. 
2 

(4) 

(5) 

The/3 ＝0 scheme corresponds to the leapfrog scheme and/3 ＝1 / 4 the trapezoidal formula. 

The accuracy of the Newmark method is second-order as seen in Eq. {2). This means 

that the last term of the r.h.s. of Eq. {1) does not affect the order of accuracy. In other 

words,/3is a free parameter. We can vary the value of/3without changing the order of 

accuracy or losing the time-symmetry. Skeel, Zhang, and Schlick {1997) analyzed the same 

algorithm but in a slightly different representation. They found that this family of schemes 

can be regarded symplectic when associated with an adequate variable transformation. 

Figure 1 shows the error in the osculating orbital elements for the two-body Kepler 

problem solved by the time-symmetric Newmark scheme with/3 ＝0, 1/12, 1/6 for 10 

orbital periods {201r time units). The initial orbital elements are a = 1, e = 0.1, w = 1r, 
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and T = 1r. The orbit is integrated with a constant timestep△t = 2-5, in other words, 

about 200 integration steps per orbit. There are no secular errors for a and e but periodic 

changes for all the values of (3. In time-symmetric integrators with a constant timestep, 

the periodic errors in a and e cancel out in an orbit. 

For w, the result for (3 = 1/12 shows no secular error for this time scale, while those for 
(3 = 0 and 1/6 show linear drifts. Figure 2 shows the result of time integration same as 
Fig. 1 but for 106 orbital periods with (3 = 1/12. In Fig. 2,△w is visible. However, the 
error is far smaller than those by the (3 = 0 and 1/6 schemes. For (3 = 0 and 1/6, I△wl per 
orbit is of the order of 10-3, while for (3 = 1/12, it is of the order of 10-1. 

This "magic number", (3 = 1/12, can be derived analytically through the evaluation 
of the leading term of the error. The leading terms of the local truncation errors of the 

time-symmetric Newmark scheme are given by 

△ェ

△o 

(!3-¼) a。△t3,
1 ー魯△t3.
12 

(6) 

(7) 

As the eccentricity has no secular error, it is sufficient to evaluate the error of one component 

of the eccentricity vector. Here we take the y-component of the eccentricity vector ey = 
e sin w which is given by 

ey = -v:i::(xvy -yv:i::) -:-, 
y 

r 

where r =（丑＋炉）1/2.The leading term of the error of ey is given by 

△ey = 8ey A_, 8ey A-・, 8ey A-・. 8ey —△x 十一—△y+-—△% +——• vy· 
釦 8y-.,'av:& --w'8vy 

(8) 

(9) 

The symmetry of the Kepler orbit requires that△w should cancel out in half an orbital 

period. This leading error of w vanishes if/3satisfies the following linear equation: 

［午△eydt＝△t3lo~ [ (/3-i)（誓圧＋誓圧）＋合（差忍＋詈aり）］ dt= 0, 
Y /J (10) 

419 



where TK is the Kepler period. We see in Eq. {10) that/3is not a function of△t. Eq. (10) 

leads to 

/3＝i＿上9(臼忍＋后）dt
6 12 fo'!f（缶＋詈％）dt

(11) 

Substituting Kepler solutions for Eq. (11) and integrating for half an orbit (for details, see 

Appendix A), we have 

/3 
1 
＝ー．
12 

(12) 

For/3 ＝1/12, only the leading term of△w vanishes. Therefore, for a finite step size, the 

next term in the error should become visible. Figure 3 shows the dependence of I△wl per 
orbit on△t. The initial conditions are the same as those for Fig. 1. It is clearly shown that 

I△wl for/3 ＝1/12 is 0（△t4), while I△wl for other values of/3is 0（△t2). This means that 
not only the 0（△t3) term of the local truncation error but also the 0（△t4) term vanishes 

for/3 ＝1/12. The global error is one order lower than the local truncation error since the 

number of steps for a period is inversely proportional to△t. This behavior is quite natural. 

For any symmetric scheme, the coefficient of the local error is exactly zero for even orders 

(Kinoshita 1968, Cano and Sanz-Serna 1997). Thus, if the 0（△t3) term vanishes, the next 

term is 0（△t5). 

We have shown that with an appropriate value of/3we can reduce the secular error for 

w drastically. On the other hand, there are linear errors for T for all the/3schemes as 

opposed the quadratic errors of non-time-symmetric schemes. 

The second-order schemes are often insufficient in simulations with a wide range of length 

and time scales because of its low accuracy. We investigate the property of the fourth-order 

generalized scheme in the next section. 
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3 FOURTH-ORDER INTEGRATOR 

The time-symmetric Newmark method can be extended to higher order integrators. As 

the simplest example, we apply it to the implicit Hermite scheme, a fourth-order time-

symmetric scheme {KYM98). 

The Hermite integrator is based on the Taylor series up to the order of the third time 

(3) derivative of the acceleration a。,givenby 
(3) (2) 

a。 a。 a。
X1 = X。+Vo△t十一△t2十一△t3+ a。

2 6 24 
—△t4+a-—△t尺

120 
(2) （3) 

a。 a。 a。
叫＝ v0+a。△t+ —△t2+ ――△t3+ ――△t49

2 6 24 

(13) 

(14) 

(2) （3) 
where a。anda。areobtained by the 3rd-order Hermite interpolation constructed from 
a and a at time t。andt1 as 

a。(2) 

a。(3) 

-6(ao -a1)―△t(4知＋2a1)
△t2 

12(a。-a1)+6△t(a。＋釦）
△t3 

(15) 

(16) 

and a is a new parameter introduced to control integration errors. The role of a is the 

same as that of/3of the Newmark method. The order of the accuracy of the scheme is 

determined by the 0（△t5) term of the velocity. We can, therefore, change the weight of 

the 0（△t5) term of the position without changing the order of the accuracy. 

as 

From Eqs. (13) through (16), the Hermite integrator can be rewritten in an implicit form 

l a 6a-5 
X1 = Xo+-（妬＋Vo)△t-~(a1 -ao)△t2+~(a1+a。)△t3,f 10 120 

1 
叫＝ Vo+~(a1 + ao)△t -~(a1 -a。)△t2.

2 12 

{17) 

{18) 

It is clear in this formula that the Hermite integrator is time-symmetric, in other words, 

the physical values with subscripts O and 1 are used symmetrically. Note that the a = 1 

421 



scheme corresponds to the Hermite scheme of Makino and Aarseth (1992) and a = 5/6 

that of Hut et al. (1995). 

We determine a in the same way as the time-symmetric Newmark scheme. The leading 

terms of the local truncation errors of the implicit Hermite scheme are given by 

a-1 
_ （3)△t尺
120 
a。
1 

720 
a炉△t5.

The leading term of the error in ey is 0（△t5) that is given by 

△ェ

△v 

(19) 

(20) 

9△e泣＝詈9[（a-1)（詈紗＋詈吟3))-i（茄魯＋詈aり）］ dt. (21) 
Therefore, the leading term vanishes when a satisfies (for details, see Appendix B) 
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(22) 

As/3for the time-symmetric Newmark method, a is independent of e and△t. 

Figure 4 shows the error in the osculating orbital elements against time for 10 orbital 

periods for the a= 5/6, 1, 7 /6 schemes. Time-symmetry is realized by applying 5 iteration 

of corrections, namely P(EC)5 scheme. The initial conditions and the timestep are the same 

as those for Fig. 1. No schemes have secular errors in a and e. The scheme with a = 1 / 6 
has no secular error in w, either. In this time scale there seems to be no secular error in T 

for the case of a= 7 /6. Figure 5 is the same as Fig. 2 but for the a= 1 /6 scheme. In this 

time scale, we can see the small linear error in w. This is due to higher order errors of w 

that do not cancel out in half an orbit with a= 1 /6 because a is determined so that the 

leading error term of w vanishes. 

The dependence of△w per orbit on△t is shown in Fig. 6 for a= 5/6, 1, 7 /6. It is clear 

that I△wl for a = 7 /6 is 0（△t6), while I△wl for other a is 0（△t4). This means that not 
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only the 0（△t5) term of the local truncation error but also the 0（△t6) term cancels out 

in an orbital period as does the 0（△t4) term of the time-symmetric Newmark scheme. We 

also show the same plots for the 4th-order symplectic integrator (e.g., Kinoshita, Yoshida, 

a~d Nakai 1991) for comparison. The error I△wl for the symplectic integrator is 104-5 

times larger than that for the Hermite scheme with a = 7 /6. Figure 7 shows I△wl per 
orbit against e. The errors monotonically increase with e. Since I△wl increases linearly 

with t as shown in Fig. 5, we can estimate△w after any orbital periods based on Fig. 7. 

The fact that our scheme with a=  7 /6 gives very high accuracy for pure Kepler problems 

does not necessarily guarantee that it gives good results for systems with more than one 

planet. In order to test our scheme, we integrate a planar Jupiter-Saturn like system 

for 300,000 years. The masses and the initial orbital elements of the two planets are 

M1 = 2 x 1030g, a1 = 5AU, e1 = 0.05叫＝1r/2, T1 = 0 and M2 = 5 x 1029g, a2 = lOAU, 
e2 = 0.05, w2 = 31r /2, T2 = 0 (the sun is fixed at the coordinate origin). The evolution of 
the eccentricity vector (e cos w, e sin w) averaged over 500 years is plotted in Fig. 8. As the 

reference, the result obtained by the standard a = 1 scheme with the timestep△t = 0.125 

(562 steps per T K for planet 1) is plotted. The results for the implicit Hermite scheme with 

a = 1 and 7 /6 and the 4th-order symplectic integrator with△t = 1 are plotted. Though 

the ti~esteps are different by a factor of 8, the reference result and the result for a=  7 /6 

are indistinguishable. Their difference in w after 300,000 years is about 0.00041. On the 

other hand, the difference in w between the reference result and the result for a = 1 is 

about 0.15. The drift in w is faster than that of the reference result by about 3%, which 

is due to the integration error. It is shown that the good property of the a=  7 /6 scheme 

is retained even when it is used for this kind of three-body problem. The result for the 

symplectic integrator shows a completely different pattern. In particular, the eccentricity 

vector rotates in the opposite direction of the results for the implicit Hermite scheme. 
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4 SUMMARY AND DISCUSSION 

We developed new modified time-symmetric Hermite integrators specialized for planetary 

dynamics. The new time-symmetric integrators have no secular errors in the semimajor 

ax.is and the eccentricity. The new time-symmetric schemes have one free parameter, o:, 

which we can adjust to reduce the error of the argument of pericenter drastically without 

breaking the time-symmetry and changing the order of accuracy. The free parameter a is 

the coefficient of the highest order term of the position that is one order higher than that 

of the velocity. In the case of the second-or the fourth-order scheme, the error order of 

w becomes two-order higher for a unique value of o:. These values of o: are independent 

of orbital elements or the size of timestep. We presented the second-and the fourth-

order schemes. It is, however, straightforward to apply our method to higher order time-

symmetric integrators. 

It is possible to adjust a: to reduce the error in the time of pericenter passage. However, 

in this case, the optimal values depend on the eccentricity. It is also possible to choose a so 

that the secular error in w becomes exactly zero for a given timestep and eccentricity. This 

value is slightly different from the value for which the leading term of the error vanishes 

and depends on the eccentricity and the size of the timestep. 

Our method is not limited to the Kepler problem. It is possible to apply the method to 

any periodic systems. We can optimize integrators for a given problem easily by choosing an 

adequate value of one free parameter so that one additional constant of motion is conserved 

well. 

We can also use the time-symmetric variable timestep scheme (Hut et al. 1995) with 

our method. The merit of our method remains with the time-symmetric variable timestep. 

However, with the time-symmetric variable timestep, the optimal value of a depends on 

both the eccentricity and the way to determine the timestep. 

We showed that the accuracy of the 4th-order Hermite integrator with a = 7 /6 is higher 
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than the 4th-order symplectic integrator of Kinoshita, Nakai, and Yoshida (1991). The 

mixed-variable symplectic integrator (Kinoshita, Nakai, Yoshida 1991) or Wisdom-Holman 

map (Wisdom and Holman 1991), however, has the accuracy much higher than our 4th-

order Hermite integrator when orbits are nearly Keplerian. We agree that for the very-

long-term integration of relatively stable planetary systems such as the solar system, the 

mixed variable method is suitable. For the moderately-long-term integration of relatively 

unstable planetary systems such as protoplanet systems, the Hermite integrator has been 

used by many authors (e.g., Alexander and Agnor 1998, Yoshinaga, Kokubo, and Makino 

1999). We can not use the above symplectic integrators for this collisional (unstable) N-

body systems where close encounters of bodies are important, because they do not allow 

the individually variable timestep that is necessary to resolve close encounters accurately 

and economically. 

We emphasize that one of the important merits of our method is that this scheme can 

be used for planetary N-body simulation. As discussed in KYM98, in planetary N-body 

systems, most particles are on nearly circular orbits because the gravitational interaction 

among particles are weak compared with the gravity of the central body except for close 

encounters of particles. Those orbits are integrated by constant timesteps even though 

we allow variable timesteps. In this case, by adopting a scheme, we can integrate indi-

vidual orbits more precisely than by usual time-symmetric scheme, which is important for 

resonance related problems. The application of our method easily improves the accuracy 

of the calculation such as the stability of protoplanet systems (e.g., Yoshinaga, Kokubo, 

and Makino 1998) and the accretion of protoplanets (e.g., Alexander and Agnor 1998). 

The implementation of our method is simple and easy. One has only to introduce a in 

time-symmetric integrators and set an adequate value. 

425 



A DERIVATION OF (3 

In the orbital reference system, the Kepler solution takes the form, 

工＇ a(cos u -e), 

y = avl -e2 sin u, 
na 2 

＂ェ -―sin u, r 
na2✓1 -e2 

Vy cosu, 
r 

{23) 

{24) 

{25) 

{26) 

where u is the eccentric anomaly and n is the mean motion. The time derivative of u is 

given by 
du n 
＝ dt 1-ecosu 

The acceleration by the central body is 

r 
a=-μ― 
r 3' 

(27) 

(28) 

whereμ is constant. The first and the second time derivatives of the acceleration are given 

by 

0 3(r. V)r 
a = -μ― 

r3 
+μ 

5 
-;:F-, {29) 

(2) a 3(~-''~ 
a = -μ戸十μ T5 —µ~. {30) 

The derivatives of the y-component of the eccentricity vector are given by 

___:!_ 8ey= -V:cVy＋ーxy 
ax r3' 

{31) 

8e y X 2 
8y -- V IJ -:i: 2 - r3' (32) 

枷8eェy ＝一XVy +2yvz, {33) 

8枷e y u ＝ -xv z• {34) 

426 



Substituting the Kepler solutions into Eq. (11) with Eqs. (29) through (34) and trans-

forming the integral variable from t to u with Eq. (27), we obtain 

1r -3e cos2 u + cosu + 2e 

/3 ＝~-上 fo (1 -ecosu)5 du 1 
6 12J7r (12e -14e)cos u +（5e -1)cosu -15e3 + 13e ＝一．

du 
12 

o (1 -e cos u) 6 

{35) 

B DERIVATION OF a 

The third and the fourth time derivatives of the acceleration are given by 

a(3) = a I..  3(3v • a+ r • a)r + 9（炉＋r• a)v + 9(r • v)a 
―μ― 
r3 
+μ 

r5 

45(r ・ V)但＋r・ a)r + 45(r ・ v)2v. __ 105(r ・ v)3r 
―μ +µ~, (36) 

a(4) a<2>... 3(3a2 + 4v •a+ r • a<2>)r + 12(3v •a+ r • a)v + 18（炉＋r• a)a + 12(r • v)a 
—µ— 
r3 
+μ 

r5 

45（炉＋r．a)%+ 60(r. V)（30. a+ r. a)r + 180(r. V)（炉＋r．a)v+ 90(r. o)2a 
―μ 

r7 

630(r ・ザ（炉＋r• a)r + 420(r • v)3v _. 945(r • v)4r 
+μ -µ~. (37) 

Substituting the above derivatives to Eq. (22) and in the same way as the derivation of 

/3，we obtain a= 7 /6. 
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Fig. 1: The errors of orbital elements a, e, w, and T from top to bottom for the time— 

symmetric Newmark scheme with{3 ＝0 (dotted curve),{3 ＝1 / 12 (solid curve), and 

{3 ＝1/6 (dashed curve) against time for 10 orbital periods. The Kepler period is 21r and 

the timestep is△t = 2-5. 
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Fig. 2: The same as Fig. 1 but for/3 ＝1/12 for 106 orbital periods. 
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Fig. 4: The same as Fig. 1 but for the errors of the implicit Hermite scheme with a = 5 /6 
(dashed curve), a = l (dotted curve), and a = 7 / 6 (solid curve). 
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Fig. 5: The same as Fig. 2 but for the Hermite scheme with a = 7 /6. 
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Fig. 6: The same as Fig. 3 but for the implicit Hermite scheme with a = 5/6 (triangles), 
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Secular numerical error in H = T(p) + V(q) symplectic 
integrator: simple analysis for error reduction 

Taka.shi I to and Kiyotaka Tanikawa 

National Astronomical Observatory, Mitaka, Tokyo 181-8588, Japan 

titoccc. nao.ac.j p 

A simple error analysis for H = T(p） ＋V(q) symplectic integrator (i.e. not mixed-variable 
type) is presented. The truncation error in a second-order integrator is analytically analyzed 
up to first-order approximation for the two-body problem using a canonical perturbation 
theory. In H = T(p) + V (q) type integrators, we cannot employ sophisticated techniques such 
邸 warmstart or symplectic corrector for the reduction of secular numerical error. But we 
have confirmed that so-called "iterative start," where we repeat many short-term numerical 
integrations while gradually changing initial orbital configuration and searching a point with 
minimum numerical error, may reduce the secular numerical error in angle variables under 
certain conditions. According to our numerical integrations on two kinds of three-body 
planetary systems (wealdy and strongly perturbed), simple H = T(p) + V(q) symplectic 
integrators are still useful when employed together with the iterative start. To obtain a 
simple interpretation how the errors are reduced (or not reduced in most systems), we take 
a nonlinear pendulum system with one degree of freedom for an example, and illustrate 
that the reduction of the numerical error in H = T(p) + V(q) symplectic integrator occurs 
when the potential energy of the system is not an "isochrone" one -when the fundamental 
frequency of the system depends on initial amplitude of oscillation. 

1. Introduction 

In dynamical studies of solar and extrasolar planetary objects, analytical complexity of per-

turbation techniques and development of fast computers has led us to the investigation by 

numerical methods. One of the promising ways for long-term numerical integrations is sym-

plectic integrator designed specifically to maintain the Hamiltonian structure of equations of 

motion (Yoshida, 1990b; Gladman et al., 1991; Kinoshita et al., 1991; Kinoshita and Nakai, 

1992; Yoshida, 1993; Sanz-Serna and Calvo, 1994). One of the the typical types of the symplec-

tic integrators splits the Hamiltonian H into two integrable parts as H = T(p） ＋V(q) where 
T, V, q, and p are kinetic energy, potential energy, canonical coordinate and conjugate mo-

・mentum, respectively. On the other hand, so called Wisdom-Holman map (also called "mixed 

variable symplectic integrator," and hereafter we call it "WH map") by Wisdom and Holman 

(1991, 1992) can be more accurate by a factor of the ratio of planetary to central mass than 

the general-purpose symplectic integrators of H = T + V type. The principle behind the WH  
map is to split the Hamiltonian into an unperturbed Kepler part and a perturbation part as 

H = Hkep(L) + Hint(l), where Land l denote canonical variables for Keplerian motion symbol-
ically. In each step of the integration, the system is first moved forward in time according to 

Kepler motion Hkep, and then a kick in momentum is applied which is derived from the pertur-

bation part of the Hamiltonian, Hint• Not only the Keplerian part, but also the interaction part 

is analytical since the perturbation Hamiltonian is basically a function of only relative Carte— 

sian coordinates. The coordinate transformation between L in Hkep and l in Hint is efficiently 

encapsulated using the Gaufi's f-and g-functions (cf. Danby, 1992). 
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Also, there are many peripheral techniques for the WH  map for the purpose of reducing its 

numerical error especially in angle variables. They work mostly owing to the smallness of the 

perturbed part of Hamiltonian (Hint) than Keplerian part (Hkep)-Saha and Tremaine (1992) 

have devised a special start-up procedure to reduce the truncation error of angle variables, 

called "warm start," utilizing one of the characteristics of Hamiltonian system - existence 

of adiabatic invariant. They have also invented a symplectic scheme with individual stepsizes 

(though not variable stepsizes), dividing the whole Hamiltonian into each planet's Keplerian 

and perturbation parts (Saha and Tremaine, 1994). Wisdom et al. (1996) found a canonical 

transformation of variables that eliminates error Hamiltonian and greatly improves the accuracy 

of symplectic integration. This transformation is expressed in terms of a Lie operator that must 

be applied before each step, and an inverse transformation at the end of each step. This 

operation is called "symplectic correction." Some notes on the dependence of the numerical 

error on initial starting conditions in the WH-type symplectic integrators is also mentioned in 

Michel and Valsecchi (1996). 

There are also many other variants of and modifications to the WH  map for the applications 

in dynamical astronomy. Those kinds of enhancement in symplectic integrators, especially of 

the WH  map, now enable us to perform very long-term numerical integrations ten to hundred 

times faster than before. With the WH  map, timescale of numerical integrations of solar system 

planetary orbits have reached the age of the solar system, i.e. 4.5 Gyr (Ito et al., 1996; Duncan 

and Lissauer, 1998; Ito and Tanikawa, 2002). 

Now, let us be back at the general-purpose symplectic integrators, H = T(p)+ V(q) type. For 
problems proxy to the Keplerian motion, the general-purpose method is less efficient than the 

WH  map is. However, the general-purpose method has their literal advantage, i.e. generality: 

they can be adapted to general dynamical problems which are far from integrable and whose 

zeroth order approximate solutions are not known. We can think of many of such far-integrable 

problems, as we discover more and more extrasolar planetary systems, since many of the ex-

trasolar planetary orbital configurations so far discovered are significantly unlike ours (Boss, 

1996; Marcy et al., 2000; Marcy and Butler, 2000). Typical ones are the planetary systems in 

or around binaries. In such systems where the ratio of interaction Hamiltonian Hint and Kepler 

Hamiltonian Hkep is generally not sufficiently small, we cannot exploit the near-integrability of 

the system which the WH  map requires. Also, it is generally not easy to apply the WH  map to 

situations with a lot of close encounters among particles. Though several variants of the WH  

map are now proposed to handle such collisional systems (Levison and Duncan, 1994; Mikkola, 

1997; Lee et al., 1997; Duncan et al., 1998; Chambers, 1999; Mikkola and Tanikawa, 1999), such 

symplectic schemes might be highly complicated and lose computational efficiency. 

Standing on the above viewpoints, we present in this paper a simple error analysis on the 

T(p)+V (q) type symplectic integrator (hereafter we call it "TV method" in contrast to the 

"WH map"). Since many researches have been already done so far on characteristics of the TV 

symplectic method, this paper may be in a sense an expository one. Hence, to make the way of 

the error analysis as transparent and general as possible, we take a few very simple dynamical 

systems as examples: two-body problem, perturbed three-body problems, harmonic oscillator 

with low degrees of freedom, and a nonlinear pendulum with one degree of freedom. Most of 

them are nearly integrable, or even analytical solutions are already known. In the former half 
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of this manuscript, our approach is somewhat close to Kinoshita et al. (1991)'s one. Thus we 

have felt it advisable to give more details than would otherwise be necessary. This is also in 

keeping with the view of this paper as an expository one. 

In Section 2., we present a brief review of symplectic integrators, especially of the TV method. 

In Section 3., we will discuss the error Hamiltonian for a first-and second-order TV symplectic 

methods for the planar two-body problem. Based on the result obtained in this section, we 

demonstrate to calculate some analytical expressions of numerical symplectic solutions using a 

canonical perturbation theory in Section 4.. Particularly in the subsection 4. 7, we confirm the 

dependence of numerical longitudinal error on initial orbital configuration. In certain configu-

rations we can significantly reduce the longitudinal error arising from the symplectic integrator; 

in other words, the iterative start works. While in most configurations, we cannot. In Section 

5., we argue on the way of error reduction in angle variables by the iterative start in the TV 

method. Demonstrations by some numerical experiments in two kinds of three-body systems 

are described: One is the orbital motion of a "massive" asteroid perturbed by Jupiter, and the 

other is the orbital motion of an extrasolar planet orbiting around a binary system, MACHO-

97-BLG-41. We also mention slightly the "warm start" and its relationship to the topic in this 

manuscript. Finally in Section 6., we try to illustrate how the errors are reduced or not reduced 

in various dynamical systems. To explain this qualitatively, we have taken a few systems with 

low degrees of freedom as examples. We have so far found that we can possibly reduce the 

numerical error in TV symplectic method considerably by the iterative start when the poten-

tial energy V of the system is not "isochrone" - when fundamental frequency of the system 

depends on initial amplitude of oscillation. 

2. Symplectic integrator 

First we present a brief review of the generic type of symplectic integrator. 

According to Yoshida (1993), explicit symplectic integrators can be reformulated by the Lie 

algebra (Neri, 1987). We rewrite the Hamilton equations 

in the form as 

dq 8H 
dt - 8p' 

dz 
＝ 
dt 

dp 8H 
＝一dt - 8q' (1) 

{z,H(z)}, {2) 

where z = q or p, and the braces {, } stands for the Poisson bracket. When we introduce a 

differential operator Da by 

恥 F三 {F,G}, 

then (2) i is rewritten as 
dz 
dt 
7. = DHz, 

so the formal solution, or the exact time evolution of z(t) from t = 0 tot= r is given by 

z(r) = [e-rDn] z(O). 
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(4) 

(5) 



For a Hamiltonian of the form 

H=T(p）＋V(q), (6) 

加＝巧＋Dvand we have a formal solution 

z(r) = [e-r(A+B)] z(O), (7) 

where A三 DTand B三 Dv.Operators A, B are non-commuting in general. 

Kinetic energy T(p) and potential energy V(q) are individually integrable, so we can get the 

exact solutions 

叩）＝［eTA]叫 0),

碕）＝［叫ZB(O).

(8) 

(9) 

Here we should remark that the time evolution of z under er A。rerB keeps the symplecticity 
of the system. This fact is one of the most essential cores of symplectic integration theory. For 

example, let us take (8) as an example and see how the symplecticity is kept. The symplectic 

map (8) is a kind of contact canonical transformation under the Hamiltonian T(p）． Writing 

down the canonical equation of motion concerning T, we have 

dq 8T(p) dp 8T(p） 
＝ dt - 8p' ＝一dt - 8q. 

Since T(p）does not contain q, we get 

dp 
-＝ 0, 
dt 

. ・. p = constant, 

hence we know that T(p) is also a constant. This leads us to 

dq 8T(p) 

dt 8p' 

is a function of p and also a constant. 

:. q =Ct+ qo, 

(10) 

(11) 

{12) 

(13) 

(14) 

where C and qo are certain constants. (14) means that a particle in phase-space (q,p) moves 

linearly with time having a constant velocity. Such an equi-velocity linear motion in phase-space 

obviously preserves any volume in phase-space. Then the contact transformation (8) preserves 

the symplecticity of the system whatever value r has. We can apply the same discussion on 

the contact transformation (9), leading to the conclusion that (9) preserves the symplecticity of 

the system. Since a product of two canonical transformations is found to be canonical, a map 

e7Ae-rB also preserves the symplecticity. This argument is applicable to other systems with any 

degree of freedom. This fact ensures us the area (or volume) preservation property of symplectic 

schemes. However, note that this character does not directly lead to the conservation of total 

energy and total angular momentum of the system in symplectic integration. 
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Now, what we need is the solution under H = T(p）＋V(q). But since the operators A and B 

are not commutable, we have to find a product which approximates eT(A+B) to an appropriate 

order. 

There is a formula which exactly answers to our question: Baker-Campbell-Hausdorff (BCH) 

formula (Dragt and Finn, 1976; Varadarajan, 1974) about a product of two exponential functions 

of non-commuting operators X and Y; when we write the product as 

X Y Z e--e-= e ， (15) 

Z turns out to be as follows according to the BCH formula 

1 1 1 
Z = X + Y + ~[X, Y] + ~ ((X, (X, Y]] + (Y, [Y,X]])＋ー[X, [Y, [Y, X]]]+…, （16) 2L--•-J. 12,L--•L--,- JJ.  L'L,---JJ,. 24 

where (X, Y]三 XY-Y X. For a first-order symplectic integrator, we can apply the BCH 

formula to eT(A+B) as 
TDT TDv TD-e e = e Hlst ， (17) 

and obtain 

T T2 

且1st= T + V + ~ {V, T}＋ー({{T, V}, V} + {{V,T},T}) + 0（社）．（18)
2 12 

For a second-order symplectic integrator, we obtain 

efDTe-rDv eiDT = erDf12nd, {19) 

where 
1 1 

知＝T+V+＃伍{{T,V}, V}-~{{V, T}, T}) + O(r4). (20) 

Similarly in general, for an n-th order symplectic integrator, we find the Hamiltonian Hn as 

凡＝H+Herr+ O(rn+l), (21) 

where H = T(p) + V(q) and Herr=〇伊）． Wecall hereafter打theHamiltonian of a surrogate 

system. We notice that the error of the total energy (fl -H) remains of the order of Herr, i.e. 

rn. Herr is a set of terms which consist of n-fold Poisson brackets and called error Hamiltonian. 

Note that rigorous convergence of the series (18)(20)(21) is not guaranteed for general nonlinear 

systems. 

3. Error Hamiltonian of the two-body problem 

The purpose of this section is to express the error Hamiltonian Herr in a second-order sym-

plectic integrator (20) as a function of Kepler orbital elements. ¥Ve need the error Hamiltonian 

to estimate numerical error by symplectic integration in later sections. We take a planar two-

body problem (masses mo and m1 with μ, = G(mo +叫）） asan example whose dynamical 

characteristics is very well known. 
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The Hamiltonian for a two-body problem is written in the heliocentric coordinates (q, v) 

2 

H=in 仕—;), {22) 

where 
mom1 

in= ~'v = lvl, r = lql, 
mo+m1 

with a set of canonical variables (q,p) and p = ihv. Without loss of generality, we can consider 
the factor m in the right-hand side of (22), the reduced mass of the two-body system, as 
unity. This is possible because there are three units to be determined for a two-body system 

to dynamically work: mass, length, and time. The determination of μ, semimajor axis a and 

the reduced mass m corresponds to the determination of these three units we use. Thus the 
Hamiltonian of the two-body problem (22) is reduced to that of a system where a infinitesimally 

small mass particle orbits around a central mass (say, the Sun) whose mass is mo+ m1 as 

V 
2 

H=---， 
μ 

2 r 
(23) 

with canonical variables (q,v). See Appendix A for more details. 

Since the kinetic energy T(v) = v2 /2 is a function only of canonical momentum v, and the 
potential energy V(q) = -μ/r is a function only of canonical coordinate q, it is clear 

8T(v) 

8qi 
= o, 
8V(q) 

8vi 
=0, (i=l,2) (24) 

Hence the actual expression of the second-order error Hamiltonian up to 0(r2) approximation 

becomes from (20) 

匹一
2
T

1 1 
＝ 酎{T(v),V(q)}, V(q)｝一酎{V(q),T(v)}, T(v)} 

＝上［（雪竺＋2竺空 82T+（冒竺
12 8q1 8v召 8q18q2 8v18v2 8q2 8v22] 

責［（互） 2 応＋ 2芸芸8:：；；q2+ （紐） 2 応］•
We need partial derivatives of the kinetic energy 

2 2 

T(v) = 附＋v2
2'  

and the potential energy 

V(q) = -!!:. ＝一噌＋ q~)土
r 

in (25). They become as follows: 

(25) 

(26) 

(27) 

8T 
- ＝ V1, 
8v1 

戸）2= vf 
8v1 1' 

8T 

枷 2
= v2, (28) 

虞）口， (29) 
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a2T a2T 

8v12 av社
= 1, 

8牙
= o, 

如 8v2

紐＝四1 （叶＋ q~戸＝翌紐＝ µq2 （叶＋ q~戸＝翌

置）2=µ埼（叶＋ q~) ―3=# （紐）2=µ%耀＋社）―3 ＝字，
82V 1 2 
勾＝μ(戸―控）＝;i(-2ql + q~), 

~=µ仕—翌）＝合（髯＋ qo.
Substituting (28)(29)(30)(31)(32)(33)(34)(34) into (25), we get 

、
`
’
/
｀
‘
l
‘
,
＇
’
‘
,
'
’
‘
,
'
’

0

1

2

3

4

 

3

3

3

3

3

 

(

（

（

（

（

 

(35) 

如
一
召

1 2 2 μ q1 2 2 ＝豆丘+g)-~ ［峠（ー2qf +q多）＋2vW2(_3μ竺）鳴(-磁＋qf)］
1 μ2 1 μ ＝声百―叩 (-2v紺＋Viqiー6v坪2証＋v紺ー2v紺）． （36) 

Now, expressing the angular momentum integral has 

h2 = lq X叫2
2 = (q1v2 -q2v1) 

= q詞ー2姻 2叩 2+q詞・

We know that h can be also expressed by Kepler orbital elements as 

h=/;冨二り．
Similarly, the energy integral can be expressed as 

V 
2 

ァ[=—贔 (1-e2) 

{37) 

(38) 

(39) 

:. v2 =翌—心 (1 -e2), (40) 

Using (37), (38) and (40), we can rewrite the quantity in the parentheses in the second term 

of the right-hand side of (36) as 

-2viqi + vf q~ -6v1v2紐＋ o紺ー 2吋q~

= 3 (qiv~ -2q1q2v1 v2 + q~vf) -2 (qfv~ + q多Vi+Viqi + V多q多）
= 3h2 -2 （叶＋ q~) （叶＋ v~)
= 3h2 -2r2v2 

= 3μa (1 -e2) -2社．2（[ -2μμ2此―_e:]）
= 3μa (1 -e2) -4μr十三．

a 
(41) 
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From (36) and (41), the final form of the error Hamiltonian expressed by the Kepler orbital 

elements becomes 

Herr ＝話畠 (3μa(1 -e2) -4μr十字）
＝土に— 3a(1-e2) ＿上
24 T4r5aT3)  • (42) 

2 

The unperturbed or Keplerian part of Hamiltonian isー与 sothe surrogate Hamiltonian且2L, 

in the second-order symplectic integrator ends up with 

月＝ H+Herr+O（内
μ2 #μ2 (63a(1-e2) 2 
＝ー正可戸― r5 ― ~)+o（社）． (43) 

Next, let us calculate the secular (i.e. time-averaged) value of the error Hamiltonian (42). To 

do this, time-averaged values of占，古，fsare necessary. Using the relationship 
dl 2 

＝ df -a2戸' (44) 

they can be obtained as follows: 

じ〉 1［宵a3戸＝云戸dl

= (1-&）―§’ (45) 

じ〉 1fo2" a4 -r 4 ＝ - -dl 21r r4 

= (1 -e2戸(l+f), (46) 

じ〉 lf。2"a5 戸＝云戸dl

= (1ーe2rt(1＋号） • {47) 

Substituting (45)(46)(4 7) into (42), the secular part of the error Hamiltonian becomes 

匹〉＝〈誓 (]-3a(1r：内＿i）〉
2 2 2 

= 2乙（1＋号）， (48) 

where 

n三戸． (49) 
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Now we can calculate Herr for the first-order symplectic integrator as well. Similar to {20), 

the error Hamiltonian for the first-order symplectic integrator becomes according to the BCH 

formula邸
T T2 

Herr,lst = ;;. {V, T}＋ー({{T, V}, V} + { {V, T}, T}) + O(r3). 
2 12 

For the first term in right-hand side of (50), we get 

{V(q), T(p)}＝（空竺＿竺町＋（空竺＿竺竺）
8q1 8p1 8p1 8q1 J. ¥ 8q2 8p2 8p2 8q2 
8V 8T 8V 8T 
= --+--
8q1 8p1. 8q2 8p2 
μqi. μq2 

＝ー・附＋ー •V2r3 -J., r3 

(50) 

μ 
＝戸(r・v). (51) 

Each component of the velocity vector v is expressed by the Kepler orbital elements on orbital 

plane as (Danby, 1992) 

with 

which leads to 

an ． 
町＝ー―sinf,
n 

an 
V2 = = (COS f + e), 
n 

q1 = rcosf, q2 = rsin/, 

r ・ v = q1v1 + q匹2

= rcosf(―竺sinf)+rsinf仁(cos/+e) 
n 

＝一詈sin2f＋詈sin2f＋三sinf ) 

earn 
=―sin/. 
n 

(52) 

(53) 

(54) 

We already knew the components of the second term in right-hand side of (50) by (42) as 

2 

{{T, V}, V} = ~ 
r4' 

(55) 

and 

{{V, T}, T} =~ (3μa (1 -e2) -4μr十字） • (56) 

Adding all the relevant terms, we get the final form of the error Hamiltonian up to 0(r2) as 

T T2 
Herr,lst = ;; {V, T}＋ー({{T, V}, V} + { {V, T}, T}) 

2 12 

＝鰭字sinf+ ~（且＋長（如 (1 -e2) -4μr十字））
rμean 召μ2{ 3, 3a (1 -e2), 2 =~sinf 十了(-戸十 r5 十戸）． （57) 
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We can calculate the secular part of Herr,lst by averaging (57) over the period of mean anomaly. 

First, as for the term of 0(T), 

〈詈sinf〉＝止ーJ27f'□dl
加 2TJ Jo r 

＝止二J2:ロ-df
21r 2TJ Jo r a2rJ 

． 
1 r μean a (1 -e 2¥ r21r 
=---（  

Slnf 
2T 2n a2n) ［ 1+ ecosfdf 
= 0. (58) 

As for the terms of 0(72), we can calculate them as in the same way with (48). Hence 

〈Herr,lst〉=〈官sinf喜(-]＋ 3a(1r5-e2)十i)〉
＝翌(1ー：い [-3□)＋3 (1＋手）＋2 (1 -e2)] 
μデ (1-e2) —½ f n,  _2 
＝万 r(2 + e2) 
＝立こ(2+ e2 12a切s(2 + e2). {59) 

Therefore we can proceed the same discussion using the secular error Hamiltonian for the 

first-order symplectic integrator (59) as well as that for the second-order symplectic integrator 

(48). In the following discussion we focus on the second-order symplectic integrator, so-called 

"leap frog," using the error Hamiltonian (48). 

4. Analytic solution by a canonical perturbation theory 

Based on the result obtained in Section 3., we demonstrate to calculate analytical expressions 

of symplectic numerical solutions using a canonical perturbation theory. We can apply the 

treatment in this section to symplectic integrators of any order and to perturbation theory to 

any order, though it immediately leads to a terrible increase of relevant terms. 

4.1 Canonical perturbation theory by the Lie transformation 

Hori {1966, 1967) has developed a perturbation method with unspecified canonical variables 

utilizing the Lie transformation, and has presented several sample problems by his method (Hori, 

1970; Hori, 1971). Hori's method is characterized for its explicitness of canonical variables; the 

bothering inversion of old and new variables after obtaining analytical solution is no longer 

necessary. This is one of the major differences of Rori's new method from traditional canonical 

perturbation theories such as by Delaunay or von Zeipel (cf. von Zeipel 1916, Shniad 1970, 

Yuasa 1971. Consult textbooks by Boccaletti and Pucacco {1998) or Lichtenberg and Lieberman 

(1992) for their general introduction). Let us briefly summarize the Rori's perturbation method 

before applying it to our problem in the next subsection. 
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Let !, 11 be a set of 2n canonical variables and J(e, 11), S(!, 11) be arbitrary functions of e, 11・ 
Differential operators n:(n = 0, 1, 2, • • •) are defined as 

D打＝ f,

D;J = {f,S}, 
D訂＝ n:-1(D;J). (n ~ 2) 

(60) 

{61) 

(62) 

Then, the following theorem is due to Lie {1888): A set of 2n variables x, y defined by the 

equation 
oo cn 

f(x,y)=区-D訂(e，叫
n=O 
n! 

(63) 

is canonical if the series in the right-hand side of (63) converges. € is a small constant indepen-

dent of e and 11. 
Let us consider a nearly integrable Hamiltonian system which is described by two-dimensional 

Delaunay variables (L, G, l, g) as 

H(L, G, l, g)＝恥（L)+ H1(L, G, l, g), (64) 

where R。(L)is the integrable part and H1(L, G, l,g) is the perturbation part. Then, let us 
apply the Rori's perturbation method to the Hamiltonian system {64) to obtain the solution of 

the system. The general policy to apply canonical transformation here is to remove all angles 

and to make the system be integrable, such as 

H*(L*, G*)＝閲(L*)+ H;(L*, G*), (65) 

where a superscript * symbolically denotes that the variables (or functions) have been canoni-

cally transformed. 

As for the zeroth order Hamiltonian, the function form is the same before and after the 

canonical transformation: 

Ho(L*) = Ho(L*). (66) 

Next we introduce a parameter t* which satisfies the following relationship and is removed 

later on as 
dL* 8H0 
＝一dt* - 8l*' 

dG* 8H0 
＝一dt* - 8g*' 

dl* 

dt* ＝ 
8H* 

゜8L*' 
dg* 8H0 
dt* 8G*. 

(67) 

(68) 

It is clearly seen that the system H0 is integrable since H0 is a function of only L *. Then we 

get the following solution with constants of integration C1, C2, C3 and C4 as 

L* = C1, g* = C2, G* = 0ぁ

dl* 8H0 

dt* 8L* 
= constant ， 

・＊ ＊ :. l"'= constant x t"'+ C4. 
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As you can see, t* is a time-like variable which describes the evolution of the non-perturbed 

(or integrable) system, H0. 

To the first-order, Hi becomes the t* -averaged part of H1 as 

Hj = (H1(L*,G*,l*,g*）〉＝把叶f。TH1 (L*, G*, l*, g*)dt*, 
or, if H1 is a periodic function oft*, then 

I fTp 
H; = (Hi(L*,G*,l*,g*）〉＝-J凡(L*,G*, l*, g*)dt*, 

Tp Jo 

(72) 

(73) 

where Tp is the period. Fortunately, the error Hamiltonians Herr we consider here is nearly 

periodic in most cases of planetary dynamics, so (73) is convenient instead of (72). 

In the actual two-body problem, time tis related only to the mean anomaly l. Hence dt* can 

be transformed into dl* /n* in (73) as 

1 
H;=〈H1(L*,G*, l*, g*）〉＝戸［凡(L*,G*, I*, g*)dl* 

= Hj(L*, G*, -, g*), (74) 

where the sign‘‘―’'in Hi denotes the absence of a variable l* by elimination. 
Thus the canonically transformed Hamiltonian H* in (65) up to the first-order finally becomes 

H*(L*, G*, -, g*)＝罵(L*)+ Ht(L*, G*, -, g*), 

using the first-order generating function S1 to transform H into H* 

(75) 

ふ(L*'G*'l*'g*) = I (H l (L *'G*'l*'g*）―町（L*,G*,-,g*))dt*. (76) 

Higher-order solutions can be obtained by similar ways. 

4.2 Solution for L 

Now let us apply the Hori's method to symplectic integrators. Here we consider that the 

integrable part of Hamiltonian lL。in(64) corresponds to H =ー和 in(43), and the perturbed 
part of Hamiltonian H1 in {64) corresponds to Herr in (43). Henceforward we use the notation 

H。asthe integrable part and H1 as the perturbed part of Hamiltonian in this section. In 
summary, 
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(77) 

Using the Lie transformation (63), we obtain final solutions for L, G, l, g. As for L up to the 

first-order, 

L = L * + { L *, S1} 

= L*+ (8L* 8S1 8L* 8S1 8L* 8S1 8L* 8S1) 
す茄―茄寄＋否応―志否
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= L* 8S1 
8l* 
8 

= L*＿赤／（H1-H;)dt* 
1 d 

= L*―予記／（:1-Hj)dt* 
= L*-一(H1-H;), 

n* 
(78) 

where希isreplaced by,!.希sincet* affects on H1 only through l*. Note that since the second 
term of the right-hand side of the analytic solution (78) is a small quantity of first-order, we 

can replace n * by no here. 

In (78), L* and n* are constants which should be determined by their initial conditions (or 

observation values). Representing the initial conditions by subscript O as Lo and lo, we get 

1 
L。=L*-~(H1,t=O -Hり，

n* 

1 
.・. L* =Lo+ ~(H1,t=O -H;), 

n* 

where H1,t=O is the initial value of H1 when t = 0. 

(79) 

(80) 

Now we can compare the analytic solution of L (80) with a solution by numerical symplectic 

integration. Substituting L* of (80) into (78), we have plotted the time variation of the analytic 

solution of L in Figure 1 together with a solution by numerical symplectic integration using 

the second-order symplectic integrator. We have chosen the value of stepsize r as 1/100 of the 

orbital period T, i.e. r/T = 0.01. Initial conditions of the two-body system are listed in Table 

1. The analytical solution by (78) and the numerical solution coincide very well within the 

first-order approximation. A higher order analytical solution will further reduce the difference 

between these two solutions indicated in the lower panel of Figure 1. 

． ． 
sem1maJor axis 

eccentricity 

argument of pericenter (degrees) 

initial mean anomaly 

mass coefficient 

a 1.0 

e 0.5 

w 20.0 

l。0.0
μ 1.0 

Table 1. Initial conditions for the two-body system used in this section. 

Incidentally, from (78) and (80) we obtain 

1 1 
L = Lo+ ~(H1,t=O -Hi) -~(H1 -H;) 

n* n* 
1 

= L。+-（H1,t=O -H1). 
n* 

(81) 

This means that the secular error of the action L can be removed up to the first-order by an 

appropriate selection of the initial value of H1 so that (H1,t=O -H1〉=H1,t=O-Hi = 0. It is 
the essential idea of the "iterative start" in Saha and Tremaine (1992) intending to reduce the 

secular numerical error in the angle l. We will discuss this fact in later sections. 
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Periodic variation of L (L0=1.0) 
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Figure 1. (Upper) analytic and numerical solutions of the Delaunay element L in the system 

described in Table 1. The squares denote numerical solution by the second-order symplectic 

integrator and the lines denote solution by the first-order perturbation theory. (Lower) the 

difference of the two solutions (numerical -analytical) magnified by 1010. 
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4.3 Solution for G 

Similar to L, solution for G can be obtained up to the first-order as 

G = G* + { G*, S1} 
= G* + (8G* 8S1 8G* 8S1 8G* 8S1 8G* 8S1) 
赤玩―玩亦―＋西寄―諾寄

= G* 8S1 
8g* 

8 
= G*＿否／（H1-H;)dt*. 

However, since H1 does not contain g* at all, it becomes 

which means 

8 ー／（H1-H;)dt* = O, 
89* 

G = G* = Go = constant. 

(82) 

(83) 

(84) 

Hence there are no secular nor periodic numerical errors in G in the second-order symplectic 

integrator considered here. Actually, it is proved that any type of explicit symplectic integrator 

rigorously preserves the total angular momentum of system within the range of round-off errors 

(Yoshida, 1990a; Gladman et al., 1991). In Figure 2, we have plotted relative error of the angular 

momentum of the two-body system, G/G。-1,by the symplectic numerical integration. We 
can see the relative error of G is very close to the order of the round-off of the computation 

system, O(lo-16). 

4.4 Solution for l 

Same as Land G, 

= l* + { l*, 81} 
= l* + (8l* 8S1 8l* 8S1 8l* 8S1 8l* 8S1) 
茄玩―玩亦―十否而―応窃了

= l* + 
8S1 

8L* 
8 

= l*＋町／（H1-H;)dt*. {85) 

Now the secular error of l is caused by I*, and the periodic error of l is caused by舒． We
show the specific derivation for each of them in the next sections. 

4.4.1 Secular error of l 

The canonical equation of motion on l* using the new Hamiltonian (75) is 

dl* 

dt ＝ 
8H* 

8L* 
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Figure 2. The relative error of total angular momentum, G / G。— 1. The quantization around 

10-16 denotes that the error、isdue only to round-off because the machine-epsilon of double 

precision is 2.2204460492503131 x 10-16 in our system (HP-UX 11). 
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＝品(-甚＋ 24Ta：ら（1 ＋~))
＝芦誓品［が―4(1 -e•2戸（1+~)]
μ2,,.2μn* (... 5e*2 

＝戸― 12a*3n*5(1+T)  • (•••合＝亨＝心＊）
Now we substitute L* in (80) into the first term of the right-hand side of (86), 

μ 2 

L*a 
μ 2 

(Lo十 ;!.(H1,t=O-Hi)) 3 

μ2 3μ2 
～―-一(H1,t=O-Hり，

L~ L3n* 

up to the leading order term of H1/ Ho. 

Therefore (86) becomes 

dl* 

dt ＝叶—羞 (H1,t=O -H;) -~ (I十字），
μ 2 ＝耳＋心(-予凡，t＝o+24a*μ3n*3)．

.・. I* =分＋占＊（デ恥o+~)t+lo.

(86) 

(87) 

(88) 

(89) 

The second term in the right-hand side of (89) represents the secular error of l up to the 

first-order of the perturbation theory. 

4.4.2 Periodic error of l 

The periodic error of l is more complex to calculate. From (85), 

Sl-
じ

8

8

 

8 
= aT-I (H1 -Hi)dt* 
＝品I［各（長ー 3が (:;e*2)声）―記謡］ dt*. (90) 

It is clear that we have to perform following two calculations successively: 

1. Indefinite integration of 

J芸＝点J芸，（n= 3, 4, 5) 
2. Partial differentiation of the indefinite integrals by L *. 

Since all the periodic terms are of the first-order, the variables with superscript * can be 

replaced by those without *. We neglect most of the superscripts * in the following discussion 

for simplicity. 
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Indefinite integrals of 1/r*n We know relationships between r, f, and l as 

a(l -eり
r= 
1 + ecos/' 

dl r2 

df a2r,' 

and the relationships of cosines 

1 1 
cos2 J =~(I+ cos2f), cos3 J = ~(cos3f + 3cosf). 

2 4 

Using above equations, 

／喜＝ ／鱗門
＝士(f+ e sin f) + constant, 
a n 

I且＝ ／誡門
= ~ [(1+:;) +2esinf+~sin2/] +constant, 

f塁＝ ／贔応

{91) 

(92) 

(93) 

(94) 

= -h[(1+号）い（知＋¥)sin/ ＋千 sin2/ ＋~sin 3 /] + constant. 
(95) 

Substituting (93)(94)(95) into (86), 

! （土ー 3a(1r5-e2)＿i)dl = 6信— 3a(1 -e2) ／塁— ;j 且

=-h［（心） f+ (e -~) sin f —千 sin2 f -~ sin 3 f]. {96) 

Hence, the first-order generating function S1 becomes by (76) with the superscript * as 

S1 = j (H1(L*,G*,l*,g*) -H;)dt* 

= f［字（長ー 3が (:;e*2)声）誓悶$]dt* 
＝点！［字（占— 3が (:;e*2) ＿~)―笠二］ dl*

= 24n::［い［（1+切 r ＋じ—名） sinf* —芋sin2 J* -~ sin 3 /* -(1十切叶・
(97) 
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Partial derivatives by L* Next we have to calculate the partial derivative鮭江8L* • All the 

necessary partial derivatives are given in Appendix C. As for the coefficient part in (97), it 

becomes (neglecting superscript *) 

召μ2 μ4 μ4 
＝ ＝ 

珈＊a*4T/*s-(μa (1 -eり）I-G5' 

Hence 
a μ2 4 a 
8L na4n5 

= μ4 G-5=0. 
1/5 r 8L 

Similarly, periodic terms of f and l can be differentiated using the relationship 

as 

翡＝化贔）sinf, 8l ＝ 8L 0, 

羞（1+砂 - f羞(1+:)+（心）紐
＝ 翌f＋岳（口嘩）sin/,

羞(e-~sin/) = sin/羞(e-~) + (e -~) cos/瓢

＝岳［（1-¥)sin/+(e―り（;+ f;) sin f cos f], 

8 
玩 (e2sin2f)

立 (e3si 
8L 
e3 sin3f) 

= sin2f~e2 + e2 ・ 2cos2J竺8L -. - -----., 8L 

G2 aL2  ＝平 •2e [sin2/ + e(;+~) cos2/ sin/], 

8e38f  
= sin3f— +e3 ・ 3cos3J~ 

8L 8L 
G2 aL2  ＝字 •3e2 [sin3f + e (~＋司 cos3fsinf], 

羞（1＋訃＝囁（心）
G2 
＝ 
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L3 
l. 

(98) 

(99) 

(100) 

(101) 

(102) 

(103) 

(104) 

(105) 



Adapting (99)(101)(102)(103)(104) (105) for (97), we get the partial derivative of S1 by L (or 

L*) as 

8S1 T2 μ2 r G2 r'G2 (a'L2 
可＝ 24na4ふ豆＋字い司sinf
国（1-弓）sinf+ (eーり（□＋贔）sinfcosf} 
器•2e{ sin 2J + e(：十贔） sinfcos2J} 
1 G2 a び G2冨•3e2 { sin3J + e(；＋百)sinfcos3f}-万ll

= ＃μ2 5 ［芦（J-l）＋岳｛（1-千）sinf+ (e ーり（~+給） sinf

+ (1+ り（~+贔）ー：・ 2e (sin 2j + e (;＋贔）cos2J)
-~. 3e2 (sin 3 f + e (;＋贔） cos3f)}]. {106) 

Therefore, from (85) and (89), the final solution for l up to the first-order perturbation in 

this theory becomes as follows: 

= l* + { l*, S1} 

= l*＋竺
8L* 
μ 3a* 

= lo＋耳t＋占＊ （―了凡，t=o+~)t

T̀n2aμ42n5［靡（f-l)＋畠｛（1-¥)sinf + (eーり（;+贔）sinf
+ (1+ り（;+贔）ー¾ • 2e (sin 2 f + e (;＋贔）cos2f)

-~. 3e2 (sin3f + e (;＋贔）cos3f)}]・ (107) 

The errors of l are plotted in upper panels of Figures 3, 4, and 5. The upper panel of Figures 

3 shows the secular and periodic errors of l by the numerical symplectic integration and the 

analytical perturbation theory, compared with the exact solution of the Keplerian motion. The 

upper panel of Figures 4 shows only the periodic errors of l. The upper panel of Figures 5 shows 

the difference of the periodic errors of l by the numerical integration and analytical perturbation 

theory. Higher-order analytical solution will reduce the difference between these two. 

4.5 Solution for g 

Same as l, 

g = g* + {g*, S1} 
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Figure 3. The numerical and analytical solution of the secular + periodic errors in l (upper) 
and g (lower), compared with the exact solution of the Keplerian motion. The squares denote 

the numerical solution by the second-order symplectic integrator, the lines denote the solution 

by the first-order perturbation theory. 
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Periodic error of mean anomaly I (10=0) 
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Figure 4. The numerical and analytical solution of the periodic errors in l (upper) and g 

{lower), subtracting the secular error shown in Figure 3. The squares denote the numerical 

solution by the second-order symplectic integrator, the lines denote the solution by the first-

order perturbation theory. 
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= g*＋ （8g* 8S1 8g* 8S1 8g* 8S1 8g* 8S1) 
赤訪―玩亦—＋否茄―詞否

= g*＋翌
8G* 
8 

= g*+a?F j(H1 -H;)dt*. (108) 

Now we know that the secular error of g is caused from g*, and the periodic error of g is 

caused from斜!-.

4.5.1 Secular error of g 

The canonical equation of motion using g* using the new Hamiltonian (75) becomes 

dg* 8H* 

dt 8G* 

＝品(-芦＋ 24Ta：ら（ご））
= -4a:：い (1+ ~) n. (109) 

2 -r-μ I 1.  e *2 
.・. g* = -~ (1十了）がt+90・ 

The second term in the right-hand side of (110) represents the the secular error of g up to 

the:first-order of the perturbation theory. go is the initial value of g when t = 0. 

(110) 

4.5.2 Periodic error of g 

The periodic error of g can be obtained as the same way as l. From (108), 

dS1 
dG* 

8 
= fiQ* j (H1 -n;)dt* 

＝品I［字（長ー 3が (:;e*2)声）誓話］ dt*. (111) 
Same as l, it is clear that we have to perform the following two calculations successively: 

1. Indefinite integration of 

！芸＝点！芦，（n= 3,4,5) 
2. Partial differentiation of the indefinite integrals by G*. 

The first task has been already done. The second task is given as follows: 
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where :F(f*, l*) denotes the periodic function off* and l* described in the integrand of (97) as 

e*2e*3  3e*2 e*3 e*2 
F(f勺＊）=(1+~) r+(e• ＿丁） sin/*＿丁 sin2/*＿丁 sin3j*-(1+ ~) l*. (113) 

Henceforward, the variables with superscript * are replaced by those without * since all the 

periodic terms are of the first-order of perturbation. We neglect * in the following discussion 

for simplicity. 

As for the coefficient part in (112), 

2 3 

μ 2 

a2 μ = μ4加(1-e2)] = ~ 
4 

= - - =—. 
na4沖砂aザ G5 

Therefore 

8S1 
8G =羞／（Hi-Hj)dt* 
＝閤［嘉（Zfs):F(f, l)＋加羞:F(f,l)].

It is possible to calculate the partial derivatives of :F(f*, l*) in the same way as in l: 

嘉（1+砂＝ 8e ". (... e2'¥ a f 
e刷＋（1＋山）志

= e(—岳） f ＋畠 (1+:) （□ ＋贔） sinf,

嘉（1＋訃＝e蒜＝e（一ゑ） l,

羞□）sin/=(1一千）嘉sin/+□）cosf翡
＝烏［（e-子）sin/+(e -~) cos/（言＋贔）sin/],

8 8f ~ (e2sin2/) = 
8G 

2e竺sin2/ + 2e2 cos 2/ 
8G 

＝畠 [2esin2f+2&cos2f8[;＋贔）sin/],

8 
~ (e3sin3f) = 
8G 

2 8e 3 
3e sin3f + 3e cos3f 

町
8G 8G 

＝烏[3e2 sin 3/ + 3e3 cos 3/(:＋贔）sin/].
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(116) 

(117) 

(118) 
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Substituting (116){117)(118)(119)(120) into (112), periodic errors of g becomes 

竺＝ ¾.J(H1-8G* 8G* 
(H1 -H;)dt* 

辛［一合｛（心）（f -l) + (e -f) sin/ —千 sin2/- f sin/} 

哨｛羞(f-l)一-?v((1＋り（三＋贔）
+ (1-平）sin/+(e -f) cos/(:＋贔）
-;e (sin2/ + ecos2/(：＋贔））
ヤ(sin3/+ ecos3/ (~＋贔）））｝］•(121) 

Therefore, from (108) and (121), final solution for g up to the first-order perturbation can be 

obtained as follows: 

g = g* + {g*'81} 
＊ as = g + 1 
8G* 
2 

= go-~い (1+:）がt
辛[-点{(1 + ~) (f -l) + (e -f) sin f一¥sin2/-fsin/} 

責信(j-l) —品（（1+ り（□ +贔）
+ (1-子）sinf + (e -f) cos f (~＋贔）
―;e (sin2/ + ecos 2/(;＋贔））

-~e2 (sin3/ + ecos3f (~＋贔）））｝］• (122) 

The solution for g is plotted in the lower panels of Figures 3, 4, and 5. The lower panel of 

Figures 3 shows the secular and periodic errors of g by the numerical symplectic integration 

and analytical perturbation theory, compared with the exact solution of the Keplerian motion. 

The lower panel of Figures 4 shows only the periodic errors of g. The lower panel of Figures 5 

shows the difference of the periodic errors of g by the numerical integration and the analytical 

perturbation theory. Higher-order analytical solution will reduce the difference between these 

two. 
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Figure 5. The differences of the periodic errors of l (upper) and g (lower) obtained by the 

numerical and analytical methods, which are equivalent to the differences in two data (squares 

and lines) in Figure 3. 
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4.6 A nother interpretation of the numerical error source 

The principle source of the numerical error by symplectic integration is that of mean anomaly 

l, which grows linearly in time. According to Kinoshita et al. (1991), we can derive the source 

of the secular numerical error of l (89) as follows: The mean anomaly f of the surrogate system 
is dominated by the surrogate Hamiltonian fI, and the mean anomaly l of the real system is 
dominated by the real Hamiltonian H. The equations of motion which f and l follow except for 
periodic parts would be 

dl 8月
dt. 8L' 

dl 8H 
-=  dt -8L' 

respectively. Subtracting {124) from {123), we get 

dd t (¥ h l -l・) ; ＝ 88H L ＿ 88H L 

8Herr 

8L 

在μ,n (5e2) 
= -12a3仲 1+-4'  

(123) 

(124) 

(125) 

which is equal to Eq. (19) in Kinoshita et al. (1991), and a.lso coincides with the second term 

of the right-hand side of our (86) except for the superscript *. 

In addition to (125), there is another source of the secular truncation error in the mean 

anomaly l due to the constant part of the truncation error the total energy, E. Since the 

surrogate Hamiltonian fl is strictly preserved by symplectic integration, we have 

打＝H(q。,Po)+Herr(q。,Po)= H(q,p) + Herr(q,p), (126) 

to O{r2) approximation. (q。,p0)are initial values, and {q, p) are the approximate solutions 
obtained by the symplectic integration. From {126), the truncation error of the total energy 

{i.e. secular part of Hamiltonian) becomes 

△E = H(q,p) -H(q。,Po)=Herr(q。,Po)-Herr(q,p). 

Since Herr(q。,p0)is fixed, constant part of△Eis given by 

△Ee三〈△E〉= （Herr(q。,Po)-Herr(q,p)〉
= Herr(q。,Po)-〈Herr(q,p)〉
= H.rr(q。,Po)ーぷ (1+t)• 

{127) 

(128) 

In general, we can derive the constant bias in semimajor axis（△a) due to the constant part 

of orbital energy offset（△尻） asfollows: 

μ 
E=--
2a 
， (129) 
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μ 
. •. a = --

2E' 

.•.• a= 
μ 

2E2 
△Ee・

Hereafter we use△尻 insteadof△E in order to remark explicitly it is constant. 

(130) 

(131) 

From the Kepler's third law, n2a3 =μis fixed in the gravitational two-body problem. Then 

the secular error of l due to△a can be obtained by taking a variation of the Kepler's third law: 

2△n・&＋沿． 3a△a=O, 

... 2△na+3n△a= 0. 

If we are to express the variation of the time derivative of l as 

d --（l-l) ＝△i＝△n, 
dt 

the secular error of l becomes from {133) 

3n△a 
△l＝△n ＝ -．  

2a 

(132) 

(133) 

(134) 

(135) 

Hence the additional secular truncation error of the mean anomaly l due to△Ee is from {128) 

and {131) 

△i -
3n△a 

2a 
3n μ 

＝ー・ ・
2a 2E2 

△Ee 

=—ぞ（宮［知(q。,Po)-2;:：：口）］
3an TT,,.  r2μn {... e2 =―了叫(q。,Po) ＋ ~(1 十ァ） • (136) 

Now we have the total secular truncation errors for the mean anomaly l by adding (125) and 

(136) as 

△l = -~(1＋子）＋ ［—弓如(q。 ,Po) ＋国 (1+~)]
2 3an T μn 

= -了-Herr(q。,Po)＋戸，（137)

which is equal to the second term of the right-hand side of our (89). 

However, this derivation in Kinoshita et al. (1991) is somewhat confusing in spite of its 

correct solution in (137). Especially, the appearance of the second source of the secular error 

△i (136) seems to be too abrupt. This is caused by the confusion of L and L* in (125). After 
the operation of time-averaging (by a certain canonical transformation), L*, instead of L, must 

be used to describe the canonical equation of motion; (125) should be derived correctly from 

the canonically transformed equations of motion such as 

dl* 8H* 
＝一dt - 8L*. (138) 
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Moreover, the averaged value of L is not equal to L*; L* has a constant bias to L, which 

is the true reason of the "another source of the secular truncation error in the mean anomaly 

due to the constant part of the truncation error in the energy" in Kinoshita et al. (1991). The 

detailed and exact form of L* is presented in (80) in the previous sections. 

4. 7 Dependence on initial configuration 

As you can see in the equation (107), the secular numerical error in l arises from the coefficient 

oft, namely 

如 ec三 T%（予恥o十品）． （139) 

Hereafter we call the coefficient (139) Onsec• Note that in the expression of Onsec in (139) we 

neglected all of the superscripts *. 

Not only Onsec has a dependence on the initial longitude in H1,t=O as discussed in the previous 

sections, but this has a dependence on the initial orbital shape, e. The e:ffect of a is only to scale 

the unit of time, so we can neglect it from the discussion of numerical error here. We plot this 

6nsec's dependence on initial eccentricity as well as initial starting longitude in the two-body 

problem in Figure 6. We can anticipate from (139) that there are certain initial mean anomalies 

(lo) which make Onsec very small, possible zero. Actually in some cases of higher eccentricities, 

Onsec becomes zero at certain values of initial mean anomaly in Figure 6. However, generally 

Onsec does not become zero whatever we change the initial mean anomaly. 

In Figure 7, we exaggeratedly illustrate the trajectories of (l, L) of the two-body system 

described in this section. "Exact" denotes the exact solution which goes from (1, 0) and comes 

back at (1, 0) again. "Numerical" denotes the symplectic numerical solution which goes from a 

di:fferent point from (1, 0) and does not come back at the starting point. "Synthetic" denotes 

the analytical secular solution obtained by the perturbation theory which is close to the time-

average of the numerical solution. As we see, the exact and the synthetic solutions are far from 

coincidence when the initial mean anomaly lo = 0 (left panel), while they coincide pretty well 
when the initial mean anomaly lo = 180° (right panel). This result corresponds to the result 
shown in Figure 6 in terms of the numerical error of the symplectic integrator. 

5. Reduction of errors by the iterative start 

In the examples of Kepler problem in the previous sections, we could find an approximate 

analytical solution of symplectic numerical error by a perturbation theory. However in general 

many-body systems, it is quite difficult, or virtually impossible, to obtain an analytical form 

of the numerical error; hence we cannot know which initial mean anomaly would reduce the 

numerical error of symplectic integrator in analytical way. Thus we have to depend on a 

numerical way to look for the initial conditions which reduce numerical errors. This kind of 

numerical method we use when we start our integration has been originally proposed by Saha 

& Tremaine (1992) under the name of "iterative start." Our method is essentially the same 

with their iterative start, but a bit different in its way of implementation. We mention our 

method and results in two kinds of three-body dynamical system: Sun-Jupiter and a fictitious 
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Figure 6. (Upper) the secular error coefficient of mean anomaly in the two-body problem {139) 

as a function of initial mean anomaly lo. Five curves show the results when e = 0, 0.1, 0.3, 0.4, 
and 0.5. {Lower) an enlarged panel of the central part of the upper one. 
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middle-sized body in the asteroidal belt, and a planet orbiting around a binary system named 

MACH0-97-BLG-41 which has been discovered by a gravitational microlensing event. 
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Figure 7. Exaggerated illustration of the trajectories of (l, L) of the two-body system (see 

Table 1). (Left) when l。=0. (Right) when l。=180°. The line denoted "Exact" shows 
the exact solution which goes from (1, 0) and comes back at (1, 0) again. The line "Numerical" 

denotes the symplectic numerical solution which goes from a different point from (1, 0) and does 

not come back at the starting point. The line "Synthetic" means the analytical secular solution 

obtained by the perturbation theory which is close to the time-average of the numerical solution. 

We have intentionally exaggerated the deviation of the numerical and synthetic solutions from 

the exact ones in order to bring out the difference. 

5.1 

5.1.1 

Perturbed motion of a middle-sized planet 

Settings of numerical experiments 

First we consider a weakly perturbed three-body system, Sun-Jupiter and a fictitious middle-

sized body in the asteroidal belt {see Figure 8). The fictitious middle-sized body has a finite 

mass of 1/10 MJupiter, hence the problem is not a restricted one. The initial orbital elements 

of the middle-sized body are similar to those of Ceres: when e = 0.1 and e = 0.4, a= 2.6AU. 

When e = 0.6, a = 2.2AU so that we avoid its close encounters with the outer planet. The 

values of other orbital elements than a or e are the same as those of Ceres. The mass and 

initial orbital elements of the outer massive planet in this system is just the same as those of 

Jupiter. These initial orbital elements of the bodies are basically taken from the Development 

Ephemeris of JPL, DE245 {Standish, 1990). 

A principle way to execute the "iterative start" in this section is as follows: 

1. Given a nominal set of initial orbital elements, perform an integration with a very high 
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accuracy covering a shorter timespan than the main integration. 

2. Choose several initial conditions of all relevant bodies from the results of the accurate 

integration. 

3. Perform several short-term integrations with a normal accuracy using the initial conditions 

selected above. 

4. Calculate the numerical differences between the accurate integration and each of the short-

term integration. 

5. Select an initial condition which produces the least numerical error as the set of starting 

orbital elements of the main integration. 

6. Perform the main integration using the initial condition selected above. 

Note that the integration periods of the accurate integration and the short-term integrations 

are much shorter than the period of the main integration. For example, when the period of 

the main integration is 1 x 108 years, we would take a 104-year for the accurate and the short-

term integration periods. The initial conditions for the short-term integrations are chosen while 

the Jupiter-like planet orbits the Sun once (about twelve years). Interval among each initial 

condition is ~ 1 ° in the Jupiter-like planet's longitude, or about ten days in time. We have 

illustrated the situation in Figure 9. 

When perturbation to the Kepler motion is very small, we may be able to implement the 

"iterative start" on the system in a simpler way as follows: 

1. Given a nominal set of initial orbital elements, we can fix the Keplerian osculating orbital 

orbits of each body. 

2. Let each body move on its osculating orbit by a small interval (see Figure 8). 

3. Name each position as 1, 2, 3,..., n. At each position, perform two sets of numerical 

integrations of a short period: one is a very accurate integration, and the other's accuracy 

is the same as that of the main integration. 

4. Compare the two sets of integrations and calculate their numerical difference at each 

position from 1 ton. 

5. Repeat the above comparison until we reach a certain point, n. 

6. Select an initial condition which produces the least numerical difference as the starting 

orbital elements of the main integration. 

7. Perform the main integration using the set of initial condition selected above. 

In the discussions below, we choose the latter procedure. Note again that the procedure is 

valid only for a slightly disturbed system such as the Sun-Jupiter-a middle-sized planet. We 

cannot apply this simplified procedure to a significantly perturbed system like the planetary 
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system around a binary which we will discus later. This is due to a stronger perturbation on 

the planetary orbit from the short-term orbital motion of binary. 

We fix the period of the accurate and the short-term integrations as 2 x 104 years. We take the 

time interval of each set of initial condition as PJupiter/360 where PJupiter is the orbital period 

of Jupiter. We choose 360 sets of initial conditions for comparison, meanwhile Jupiter rotates 

around the Sun once, and the middle-sized planet does twice or more. 

n
 

•Su 
middle-
sized body 2

 ー

Jupiter 

Figure 8. A schematic illustration of the Sun-Jupiter-a middle-sized body system. Each 

short-term integration starts at the numbered position from 1,..., n. See also Figure 9. 

5.1.2 Results of the numerical experiments 

We have performed numerical experiments for the three-body planetary system using the 

second-order explicit symplectic integrator described in Section 3.. As for canonical variables 
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short-term integrations 

longitude of planets 

Figure 9. A schematic illustration of our way of implementation of the "iterative start." Each 

short-term integration starts at a different time (or a different orbital position) on a same 

dynamical trajectory. See also Figure 8. 

used in the scheme, we have adopted the Jacobi coordinate. The shorter integrations are done 

with a stepsize of 4 days. As the standard numerical integration with a high accuracy, we 

have performed an integration over 2 x 104-year period with a stepsize of 0.0625 = 1/16 days. 
We consider this standard integration much more accurate than the shorter integrations, and 

calculate the longitudinal difference of the middle-sized planet between the standard integration 

and the shorter integrations. We have chosen 360 sets of initial orbital conditions while Jupiter 

revolves once around the Sun from its initial position. We have tested three sets of numerical 

integrations, changing initial eccentricity of the middle-sized planet eo; eo = 0.1, 0.4, and 0.6. 
For eo = 0.6 set, the initial semimajor axis of the middle-sized planet is set as ao = 2.2AU so 
that we avoid its close encounter with Jupiter. In other sets, ao = 2.2AU which is similar to 
the semimajor axis of Ceres. 

The root-mean-square (RMS) of the longitudinal error of the middle-sized planet per year is 

shown in Figure 10. Here the horizontal axis is denoted邸 theinitial mean longitude of Jupiter, 

but note that the initial mean longitude of the middle-sized planet changes accordingly. If we 

fix the mean longitude of one planet and change that of another, it ends up with integration of 

the orbital motion in many different dynamical systems. This is not what we mean to study in 

this manuscript. 

In Figure 10, we notice three interesting characters. First, root mean square (RMS) of the 

longitudinal error of the middle-sized planet differs a lot, depending on initial starting point 

on the dynamical system. Second, the rate of error reduction is much larger when the initial 

eccentricity of the middle-sized planet (eo) is large. When eo = 0.6, maximum difference of the 
RMS is nearly two orders of magnitude. Third, there are some spike-like features on the RMS 

curves, especially when eo = 0.4. 
As for the first point, we can understand it in analogy with the similar analysis in the two-

body problem discussed before. Since in Figure 10 there is no zero-axis in ordinate because 

the figure draws the RivIS of the planet's longitudinal error, we drawn a simple average of the 

longitudinal error when eo = 0.6 in Figure 11. We clearly see that under certain values of 
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the initial conditions, the longitudinal error crosses zero axis. This means when we start the 

integrations from such initial conditions that lies on the zero-axis in Figure 11, we can reduce 

the longitudinal error of the planet to a large extent. In contrast when we choose a bad initial 

condition, the longitudinal error of the planet increases terribly, which degrades the accuracy 

of numerical integration very much. 
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Figure 10. The RMS numerical error of the middle-sized planet (deg/year) as a function of 

Jupiter's initial mean longitude. eo is the initial eccentricity of the the middle-sized planet. 

As for the second point, we see the same trend as in the two-body problem discussed below 

(see Figure 6). We chose some of the typical numerical results of time-series and showed them 

in Figures 12 (e0 = 0.1), 13 (eo = 0.4), and 14 (eo = 0.6). When the initial eccentricity of 
the middle-sized planet is not so large as eo = 0.1, the degrees of the error reduction by the 
iterative start is not prominent. However as eo grows, the degree of the error reduction becomes 

larger, even up to two orders of magnitude (the lower panel in Figure 14). We could find five 

initial conditions where the longitudinal error of the middle-sized planet becomes very small (or 

possible zero) when e0 = 0.6 as in Figure 11. But there is only one condition when eo = 0.4 
(near lJo = 360°). When e0 = 0.1, we could not find any of such appropriate initial conditions. 
At present we do not have a definite answer why these numerical errors can be significantly 

reduced much when the initial eccentricity is low in the two-body and weakly perturbed three-

body systems such as discussed above. It may be related to a kind of geometry in phase-space 

of the dynamical system. A simple guess goes on like this: when the eccentricities of bodies 

are large, geometry of the trajectory in phase-space is somewhat distorted or warped. This 

distortion could be common in both the real system dominated by Hamiltonian H and the 
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Figure 11. The averaged (simple sum) numerical error of the middle-sized planet (deg/year) 

as a function of Jupiter's initial mean longitude when eo = 0.6 in Figure 10. 

surrogate system dominated by surrogate Hamiltonian fI in (21). The initial conditions by 
which we can significantly reduce numerical error may be intersection points (possibly lines or 

plains if dimension of the phase-space is large) of the two distorted trajectories. On the other 

hand when the initial eccentricities of the bodies are small, the trajectory may be very smooth, 

and the possibility that the two trajectories intersect with each other may become lower, which 

leads to the non-existence of the initial conditions that reduce the longitudinal error to nearly 

zero in our numerical experiments. This discussion is still a simple guess. We have to seek a 

definitive answer confirming the structure of the phase-space in detail. 

As for the reason of the third point of the spike-like feature, it is not obvious to explain. 

We took an example result of such spike-like features and showed what was going on there 

(Figure 15). The figure can be a counterpart of Figure 13 which shows an example time-

series when eo = 0.4 with lJo = 358° and lJo = 5°. When lJo = 148° that is just on the 
spike-like area, at the beginning the longitudinal error increases similarly to the results when 

lJo = 5°. However when when t > 5000 years, the slope of the curve of lJo = 148° suddenly 
increases, and the error increases rapidly afterwards. This nonlinear behavior of the numerical 

error may be similar to the stepsize resonance phenomena reported in WH-type symplectic 

integrator (Wisdom and Holman, 1992; Rauch and Holman, 1999) or symmetric multistep 

methods (Quinlan and Tremaine, 1990; Fukushima, 1998; Fukushima, 1999). But it would be 

not easy nor straightforward to understand why these spike-like features occur only in e0 = 0.4 
systems, and why the spikes can work as not only to decrease the errors but also to increase 
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Figure 12. An example of the numerical error in the mean anomaly of the middle sized planet 

when eo = 0.1. 10 denotes the initial mean longitude of Jupiter. The unit of the vertical axis is 
deg/year, and the unit of the horizontal axis is year. 
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Figure 13. An example of the numerical error in the mean anomaly of the middle sized planet 

when eo = 0.4. 10 denotes the initial mean longitude of Jupiter. The units of axes are the same 
with those of Figure 12. 
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Figure 14. An example of the numerical error in the mean anomaly of the middle sized planet 

when eo = 0.6. The lower panel is a logarithmic version of the upper one. The units of axes are 
the same with those of Figure 12. 
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them (cf. Figure 10). Detailed inspection of what is going on in these spike-like regions and of 

its dependence on various orbital parameters are necessary to definitely answer our question. 
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Figure 15. Another example of the numerical error in the mean anomaly of the middle sized 

planet when eo = 0.4, near the spike-like area in Figure 10. The units of axes are the same with 
those of Figure 12. 

5.2 A planet around a binary star 

When we execute numerical integrations in a dynamical system with a small deviation from 

a certain integrable system (such as Kepler motion or free rotation of rigid bodies), it is not 

so efficient and operative to resort to the iterative start in order to reduce the numerical er-

rors in symplectic integrators. When the motion of planet deviates little from Keplerian, we 

should utilize the standard WH  map or its variants and extensions, in which we can use many 

sophisticated techniques which are easy to implement such as the warm start or the symplectic 

corrector (Wisdom et al., 1996). But when we take care of a system which is not so close to 

be integrable, we cannot use the method which supposes near-integrability of the system. We 

anticipate that the iterative start would have its largest effect in such a far-integrable dynamical 

system. 

From this viewpoint, we already have a good example of such non-integrable dynamical 

systems: An extrasolar planet orbiting around a binary star system, MACH0-97-BLG-41 

(Bennett et al., 1999; Albrow et al., 2000). The planetary system around MACH0-97-BLG-41 

was discovered by a gravitational microlensing event. Another planetary system (single planet 

+ single star) was also found around MACH0-96-BLG-35 (Rhie et al., 2000), which is expected 
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to be a kind of solar system kin comprising a low-mass terrestrial planet and a solar-type star. 

As for the planetary system around MACH0-97-BLG-41, the lens system is expected to 

consist of a planet of about three Jupiter masses orbiting a binary stellar system comprising 

a late-K dwarf star and an M dwarf star. The stars are separated by 1 f",J 2AU (nominally 

f",J 1.6AU in Bennett et al. paper), and the planet is orbiting around them at a distance of 

about several astronomical unit (nominally 7 AU in Bennett et al. paper). Since binary stars 

are expected to be much more common in the universe than single stars, it is likely that we find 

many more of this type of extrasolar planetary systems in the future. 

One of the demerits of the extrasolar planet detection by microlensing events is that the 

accuracy of orbital determination is not so high. This is because it is quite hard and generally 

impossible for us to re-observe a planetary system which has been found by a microlensing 

event. We have to determine the orbital elements of planets through a set of observational data 

covering a very short range. Thus orbital elements of extrasolar planets found by microlensing 

events should contain large errors. We list the possible range of dynamical parameters of 

MACH0-97-BLG-41 planetary system which are taken from Bennett et al. {1999) in Table 2. 

Distance to the lens 

Total mass of the lens 

Mass of the primary star 

Mass of the secondary star 

Mass of the possible planet 

Separation between two stars 

Distance between planet and the 

center of mass of the lens 

6.3唱 kpc
0.8士0.4M。
M1 = 0.6士0.3M。
島＝ 0.16士0.08.M;。
狛＝0.033士0.017Mi。
(= 3.5士1.8MJ)

1.5!晶AU

5.7!~:~AU 

Table 2. Masses and orbital parameters of MACH0-97-BLG-41 planetary system taken from 

Bennett et al. (1999). Mi。isthe Sun's mass, and MJ is the Jupiter's mass. 

Among the rather uncertain orbital elements of the planetary system, we have chosen a set 

which is shown in Figure 16: the mass of the primary star M1 = 0.6U。,themass of the 
secondary star M2 = 0.16U。,themass of the planet M3 = 0.028M0 = 3MJ, the separation 
between two stars is 1.6AU, and the semimajor axis of the planet in terms of the barycentric 

frame of the lens system is 6A U. Since our present integrations for this system are still prelim-

inary, we have fixed the initial eccentricities e, longitudes of ascending nodes n, inclinations I, 
arguments of perihelion r:v, and mean anomalies l of the secondary star and of the planet as 

eplanet,O = 0, esecondary,O = 0.1, 

lplanet,O = lsecondary,O = 0.1 degrees, 

口planet,0＝匂secondary,O= O, 

Oplanet,O = Osecondary,O = 0, 

lplanet,O = 0, lsecondary,O = 180 degrees. 
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We have selected the non-zero values for inclinations I so that the system composes a three-

dimensional point mass system. By choosing these orbital elements, the ratio of瑾 ntand 

Hkep in (141) becomes l"V 0.3, which is much larger than the perturbed Keplerian motions as 

described in the previous sections. Thus we think it is worth applying the iterative start when 

numerically integrating this system. 

Several researches have been already done on the dynamical stability of planetary motion in or 

around binary stars (Wiegert and Holman, 1997; Holman et al., 1997; Mazeh et al., 1997; Hol-

man and Wiegert, 1999). Based on these previous researches, Moriwaki (2001) has investigated 

on the stability and instability of the MACH0-97-BLG-41 planetary system using a high-order 

symplectic integrator. Also, Moriwaki and Nakagawa (2002) have performed long-term numer-

ical integrations of the planetary motion with various initial conditions of binary eccentricities, 

planetary semimajor axis, planetary eccentricity, and longitude of planetary perihelion. The 

aim of their research was to see which kind of initial configuration produces stable orbits over 

the whole timespan of their integrations (106 binary periods). Their numerical results show 

that the upper limit of the binary eccentricity in this system is 0.4 when the planet starts from 

a circular orbit. When the initial eccentricity of the planet becomes large, the stability of the 

planetary motion is deteriorated. Hence their numerical integration gives us a hint to deduce the 

upper limit of the initial planetary eccentricity (l"V 0.3 in Moriwaki and Nakagawa's estimate). 

The specific way to implement the iterative start on the planetary system around MACHO-

97-BLG-41 is just the same as before: 

1. Given a nominal set of initial orbital elements of the planet and the binary stars, we 

perform an integration with a very high accuracy covering a shorter span than main 

integrations. We fix the period of this accurate integration as 2 x 104 years, similar to the 

integrations described in the previous section. 

2. Choose several initial conditions among the results of the accurate integration for all 

relevant bodies. We determine the interval of initial conditions for each shorter-term 

integration as Pptanet/360 where Pptanet is the orbital period of the planet around the 

center of mass of the system. Until the planet gets back to its original longitude, the 

secondary star rotates around the primary several times. 

3. Perform short-term integrations with a normal accuracy using the initial conditions ob-

tained above. We fix the period of this short-term integrations as 2 x 104 years. This 

period should be nearly equal to that of the accurate integration so that we can compare 

them afterwards. 

4. Calculate numerical difference between the accurate and each of the short-term integra-

tions. 

In Figure 17 we show the result of the accurate numerical integration of the planetary system 

around MACH0-97-BLG-41. More specifically speaking, the "accurate" calculation means 

an numerical integration using a fourth-order generic (TV type) symplectic integrator with a 

stepsize of 0.0625 days. The planetary orbit rapidly precesses due to the strong perturbation 

from the binary stars inside. In contrast, we show several examples of the short-term numerical 
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Figure 16. A schematic illustration of the planetary system around MACH0-97-BLG-41 

binary. The orbital elements are taken from Table 2. Ms denotes the Sun's mass(= M0). 
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Figure 17. The result of our accurate numerical integration of the planetary system around 

MACH0-97-BLG-41 binary stars. Eccentricity of the binary stars is 0.1. Only the planetary 

orbit is drawn here, omitting orbit of the binary stars. The origin of the coordinate is fixed on 

the center of the mass of the system. The unit of axes is AU. 
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integrations with a moderate accuracy (using the second-order symplectic integrator with a 

stepsize of 1.0 days) in Figure 18. Although our numerical integrations are still preliminary, 

we can easily find some very interesting results. Among the short-term numerical integrations, 

the planetary orbital trajectory is very similar to that of the accurate integration only when 

lplanet,o = 16°. Other trajectories are quite different, as if each of them shows the orbit in totally 
different dynamical systems. 

There are two possible causes for the above phenomenon. One is the strong dependence of 

the numerical error in symplectic integrator which we have discussed in the previous sections. 

Since the disturbance to the planetary orbital motion by the inner binary stars is very large, 

the "distortion" of the trajectory in phase-space may be remarkable, which leads to the extreme 

difference in enhancement or reduction of the numerical error shown in Figure 18. 

The other reason concerns the reliability of the accurate numerical integration. If the accurate 

integration is literally "accurate"; that is, exactly expresses the true solution of the differential 

equation, there is no problem when using the iterative start. The strong dependence of the 

numerical error such as in Figure 18 can be all ascribed to the difference in the initial orbital 

positions chosen for the symplectic integration. However, if the accurate integration is not that 

"accurate": i.e. if the solution by the accurate integration contains somewhat "inaccurate" 

compositions compared with the true solution, it is not easy for us to distinguish whether the 

strong dependence of the numerical error such as in Figure 18 is all due to the difference of chosen 

initial orbital positions, or due to the chaotic dynamical character which the system involves. 

In other words, when the accurate integration is not sufficiently accurate, we may be comparing 

the integration results of many different (and mutually less relevant) dynamical systems, which 

is not what we meant. Although we have employed a fourth-order symplectic integrator・ with 

a relatively smaller stepsize in our accurate integration in Figure 17, the accuracy may not 

be sufficient. We are now going to confirm the accuracy of our "accurate" integration using 

ever higher and more precise integration method, such as a sixth-or an eighth-order symplectic 

integrator with some appropriate start-up procedures. 

In Figure 19, we show the relationship between the initial mean longitude of the planet 

(lplanet,o) and the RMS numerical errors of the mean longitude and the semimajor axis of the 

planet using the same procedures as described in the previous sections. We have extracted 

three examples from the results in Figure 19 and drawn the time evolution of the numerical 

errors in mean anomalies and semimajor axes in Figures 20 and 21. What we notice first when 

viewing these figures is the irregularities of lines; we can hardly see any systematic trend in 

the graphs, unlike when we have taken care of a slightly perturbed three-body system in the 

previous section. This is we think probably due to the larger perturbation to the planetary 

orbit by the inner binary stars. We have to check whether this irregular trend is real or not 

using more accurate numerical integrations. 

Another difficulty when we adopt the iterative start on a strongly perturbed dynamical system 

such as the planetary system around MACH0-97-BLG-41 binary stars is related to its non-

integrability. A weakly perturbed system such as what we have described in the previous sections 

is also a non-integrable system, but we call it "nearly integrable." In nearly-integrable systems, 

especially those which are close to the superposition of the two-body system, we know that 

many of angle variables degenerate. Hence there is a considerable difference in the timescale of 
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Figure 18. Some example results of the short-term numerical integrations (2 x 104 years) of the 

planetary motion around MACH0-97-BLG-41 binary stars when the eccentricity of the binary 

stars is 0.1. Upper left: lplanet,o = 16°, upper right: lplanet,O = 34°, lower left: lplanet,O = 198°, 
and lower right: lplanct,o = 360°. Only the planetary orbit is drawn here, omitting the orbit of 
the binary stars. The origin of the coordinate is fixed on the center of mass of the system. The 

unit of axes is AU. 
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Figure 19. The relationship between the initial mean longitude of the planet (lplanet,o; degree) 

and the RMS numerical errors of the mean longitude (upper; degree) and semimajor axis (lower; 

AU) of the planetary orbit in the MACH0-97-BLG-41 system. Each length of numerical data 

used for the comparison between the accurate and the short-term integrations is 2 x 104 years. 

The origin of the orbital elements is the center of mass of the system. 
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Figure 20. The numerical difference of the planetary mean anomaly in the MACH0-97-BLG-

41 system when lplanet,o = 198°, lplanet,o = 360°, and lplanet,o = 16°. The unit of the vertical 

axis is degree, and the unit of the horizontal axis is year. The origin of the orbital elements is 

the center of mass of the system. 
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Figure 21. The numerical difference of the planetary sernimajor axis in the MACH0-97-

BLG-41 system: (upper) when lplanet,O = 198°, (middle) when lplanet,O = 360°, (lower) when 
lplanet,O = 16°. The unit of the vertical axis is AU, and the unit of the horizontal axis is year. 
The origin of the orbital elements is the center of mass of the system. 
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each variable in the system. Then it is enough for us to focus on a variable having the shortest 

timescale in error reduction procedures such as the iterative start (for example, mean anomaly 

in the Kepler motion). In other words, it is easy for us to guess by which variables we should 

evaluate numerical errors. However, in strongly perturbed systems such as the planetary system 

around MACH0-97-BLG-41 binary stars, it is not so easy to determine a variable by which we 

evaluate numerical errors. As we can see in Figure 18, such a system dose not degenerate any 

longer, with all angle variables changing quickly. Then, it is not clear whether or not an initial 

orbital position which reduces the numerical error of one variable also produces the minimum 

of the numerical error of other variables. In addition, orbits may not be bounded in such a 

strongly perturbed system: For example, in Figure 22 we show three example results of the 

"accurate" integrations when the eccentricity of the inner binary stars of MACH0-97-BLG-41 

increases to 0.15 from 0.10. We see that the semimajor axis of the planet changes rapidly and 

secularly, which may indicate that the planetary motion is unbounded and unstable. We think 

it is still an open question what kind of variable should be used in such systems to reduce the 

numerical error most efficiently. 

As for a planetary system around or inside a binary such as MACH0-97-BLG-41, a dedicated 

symplectic algorithm developed recently is available (Chambers et al., 2002; Quintana et al., 

2002). However, Chambers'algorithm still exploits the fact that the system is nearly integrable 

and bounded. If planets goes out or into binary stars, or if the actions of planets change secularly, 

it is not sure that the dedicated algorithm works as well. The iterative start works possibly well 

even in such a system keeping the symplecticity, since it is derived from the general-purpose 

symplectic integrator, H = T(p) + V(q) type. 
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Figure 22. Three example results of the short-term numerical integrations (2 x 104 years) of 

the planetary motion around MACH0-97-BLG-41 binary stars when the eccentricity of the 

binary is 0.15. Left: lplanet,O = 40°, middle: lplanet,O = 96°, and right: lplanet,O = 221°. The unit 
of axes is AU. 

5.3 Relationship to the "warm start" 

It is meaningful to consider whether there is any relationship between the items in this 

manuscript and a special start-up procedure called "warm start" (Saha and'I¥・emaine, 1992; 
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Saha and Tremaine, 1994). 

The discussion below follows Saha & Tremaine (1992). As we have seen in the previous 

sections, Hamiltonian且fora surrogate system dominating the WH-type symplectic map can 

be written as follows. 

月＝H+ Herr, 

H = Hkep + €Hint, 

€T 2 

Herr=~{ {Hkep, Hint}, Hkep} + 0（左）．

(140) 

(141) 

(142) 

We define the actions and the angles in a real system as J = (J1, J2, Ja) and 8 = (01, 02必）．

Also, the Kepler Hamiltonian Hkep is described by Delaunay variables as usual L = (L, G, H) 

and l = (l, g, h). Although the Delaunay variables are dedicated to the Kepler motion, the 

discussion here can be extended to any kind of nearly integrable problems. 

We know that the difference between H and Hkep is only 0(e) where e is the order of magnitude 

of the perturbation we consider now. Then we can write as 

J1=L+O(e), 01=l+O(e), 

み＝ G+ O(e), 02 = g + O(e), 

み＝H+ O(e), 03 = h + O(e). 

(143) 

Since Hkep is a function of L only (i.e. Hkep = -Ei奇）， allthe dependencies of Hkep on 
み，J3,81，約，約 arerestricted to 0(€). Then we get 

8Hkep 

8Hkep 

8J2 
= 0(€), 

8Hkep 

8Hkep 

8J3 
0(€), 

8Hkep = 0(€), --＝ 0(€), 
801 802 803 

(144) 

= 0(€). (145) 

Substituting (144) and (145) into (142) and evaluating the Poisson bracket {,} by canonical 

variables of the real system (J, 8), we can rewrite the error Hamiltonian Herr• Then we imme-

diately find that only a term including常巴 remainsup to 0(€) approximation since the error 

Hamiltonian Herr originally has a factor € (142). 

Herr＝ー詈（寄）2(芸）＋0（左）． (146) 

Here we are supposed to concern only bounded motions such as a stable planetary dynamics 

or a rotational motion of planet. Then, 炉H•詞 in(146) consists of only periodic terms: if there 

is a constant term in 

which leads to 

炉H•詞， e.g.C1 as 

82 Hint 

8012 
C1, 

8Hint 

801 
= C101 + C2, 
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where C2 is another constant of integration. Let us define J1,Hint as an action due to Hint・ 

Then, from (148), 
dJ1,Hint ~ 8Hint = --= -l11n1  -
dt 80 

= -C101 -C2, 
1 

.". Jl,Hint = -C2t + /(01; t), 

(149) 

(150) 

where J(01; t) is a function of 01 and t. Equation (150) means that there appears a secular 
. 82H・

motion in the action J1,Hini if there is a constant term in--—if!. in (146), which leads to a 
8(J1 

possible secular collapse of the system. Thus 唱~ in (146) must consists of only periodic 
炉H・terms. The fact that 両~ is expressed only by periodic terms indicates that there are no 

"raw" angles 8 in the disturbing function which describes planetary perturbation. All of the 

angles appear as the form of periodic functions such as sin 8 or cos 8. 

From (146), we can decompose the error Hamiltonian Herr into the superposition of Fourier 

components as 

加＝ €T屯Xm(J)eim-8+ 0（左）， (151) 
m 

where m = (m1,m2四） isa integer vector and each mj takes any value from -oo to +oo, 
and X m is the coefficients of Fourier transformation. Since Herr has no secular term other than 

O(eデ）， andsince only 01 is directly related to time, Xm should be zero when m1 = 0. Hence 
the time-averaged (i.e. secular) value of Herr should be 

(Herr〉=0（左）．

The fact described by (152) plays an essential role in the principle of the warm start. 

If we define the canonical frequency of the real system H as 

8H 
し三—
8J' 

the formal solution for the action would be 

j= J-€＃区：ざ竺竺eim-8,
m w・m 

and the canonical frequency of the surrogate system H becomes 

8H(J) 8 
叩）三 8:, ＝ fy(H(:,)＋〈叫(:,)〉）

8H(:,) 

8:, + 0(€2衿）

- w(:,) ＋ 0(€2社）．

(152) 

{153) 

(154) 

{155) 

The fundamental idea of the warm start described in Saha & Tremaine (1992) is to make 

the difference between j and J as small as possible at the start of symplectic integration, and 

keep the difference small all through the integration using the adiabatic invariant character of 

Hamiltonian systems. 

Thus we can understand that the warm start is effective only when the error Hamiltonian 

consists only of periodic terms as in (151), and when its averaged value becomes far smaller 
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(as in {152)). In this case, the warm start is more effective and easier to implement than the 

iterative start. However, when the error Hamiltonian does not consist only of periodic terms 

such as in (48), the warm start is no longer valid. We have to resort to other general method, 

such as the iterative start. 

6. Interpretation and other analytical examples 

As discussed above, we can reduce the numerical error of H = T(p) + V(q) type symplectic 
integrator by choosing certain starting conditions. But mostly, the numerical error does not 

decrease significantly (cf. when eo = 0.1 in Figure 10). What is the difference between systems 
where we can and cannot reduce the numerical error of the symplectic integrator? 

To answer this question, we have applied a canonical perturbation theory to several simple 

dynamical problems. We consider a symplectic integrator dominated by a surrogate Hamiltonian 

月＝H+ Herr as a kind of nearly-integrable, disturbed Hamiltonian problem. If the Hamiltonian 
of the real system H is integrable (e.g. the Kepler motion or the harmonic oscillator) and Herr 

is sufficiently small, we can obtain approximate solution of the system, i.e. numerical solution 

by symplectic integrator including numerical errors. 

Suppose the surrogate Hamiltonian takes the following form: 

打(0,J) = H(J) + Herr(O, J), (156) 

where 0 and J are the angle and action variables of the real system, H. J is an integral (or 

constant) in H, hence H includes no angle, 0. J would be no longer a constant (nor action) in 

the surrogate system fI, but J and 0 still serve as canonical variables in the surrogate system 
as H(B, J). 

Here we suppose that the degree of freedom of the system is one for simplicity. Extension 

to problems with larger degrees of freedom is in principle possible, though it generally requires 

formidable algebra. Since we focus ourselves on a first-order solution here, using a traditional 

theory (von Zeipel, 1916) or a standard theory exploiting Lie series (Hori, 1966; Deprit, 1969) 

makes no difference. 

Averaging Herr by the angle 0, we obtain the new Hamiltonian且＊ ingeneral as 

且＊（J*) = H*(J*) + (Herr(0*, J*）〉
= H*(J*) + ~ふ(J*).

Then we get the canonical equations of motion for the new system as 

d0* 

dt 

一dJ* 8H*(J* （） 

＝ 

＝一dt - 80*' 

8打＊

8J* 
8H*（J*） 8Hふ(J*)
＝ ＋ 
8J*'8J*' 
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but since且＊ includesonly J* and does not include the angle variable 8*, J* is a constant (or 
an integral) and 8* exhibits a equi-velocity linear motion in phase-space as 

J* = constant, 0* = wt + constant, (161) 

where w is the canonical frequency of the new system defined as 

w(J*)三
8且＊（J*)
8J*. (162) 

In the following subsections, we take several simple Hamiltonian systems as examples, and 

see how the solution (i.e. the numerical solution by the symplectic integrator) would be by the 

canonical perturbation theory. 

6.1 Harmonic oscillator 

Let us begin with the simplest system, the harmonic oscillator with one degree of freedom. 

The Hamiltonian of the system is 

2 2 p-, mw。
H = T(p) + V(q) =— +--q, 2 

2m ・ 2 
{163) 

where q and p are canonical coordinate and momentum. wo is a constant which describes 

the oscillation frequency of the system, and m corresponds to the mass of the oscillator. The 

angle/action variables (0, J) of the harmonic oscillator are obtained, for example, through the 

Poincare transformation as 

q=戸sin8, p =戸cos8. 
mwo 

(164) 

The Hamiltonian {163) becomes now 

H = woJ. (165) 

Thus we found the system integrable. 

6.1.1 Numerical errors of the first-order formula 

According to the BCH formula, the error Hamiltonian of the first-order symplectic integrator 

becomes as follows: 

2 
T T 

Herr=~ {V,T}＋ー({{T, V}, V} + { {V, T}, T}) + O(r3), 2,.'.,. 12 

where r is the stepsize of integration. Each Poisson bracket becomes 

{V,T} ＝ 8T8V 一8T8V 
8q 8p 8p 8q 

＝ -w。2qp 
= -w5J sin 20, 
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{T, V} = w5qp = w5J sin 20, (168) 

{{T, V}, V} =｛碕qp匹古2｝ 
= -mw。4q 2 
= -2叫Jsin2 0, (169) 

{{V, T}, T} = {-wiqp，丘｝
研p2

＝一 m 
- -2wgJ cos2 0. (170) 

Hence 

Herr 
T ____, r2 
= ~ {V,T}＋ー({{T, V}, V} + { {V, T}, T}) + O(r3) 
2 12 
T T2 

= -i碕Jsin20十五(-2碕Jsin2 0 -2碕Jcos2 0) + 0（社）
T T2 
= -~w5J sin 20 -~wgJ + 0（社）．
2 V 12 

(171) 

Hereafter we write the Hamiltonian fl = H + Herr for simplicity as 

H(0, J) = Ho(0, J)＋凡(0,J), (172) 

according to the way in the previous section (see (77)). 

Then we get 
7".., -. -- 72 

H(0, J) = woJ -.;;wiJ sin 20 -~wgJ + 0（73). 
2 12 

(173) 

We transform the original Hamiltonian H(0, J) into an integrable form H*(J*) through a 

canonical transformation. If we assume that the new Hamiltonian H* would be expanded into 

the form 

H*(J*）＝罵(J*)＋町(J*)＋巧（J*)+・・・，

and the generating function S of the transformation could be the form 

8(0*, J*) = So(0*, J*) + S1(0*, J*) + S2(0*, J*)＋・・・，

(174) 

(175) 

where the order of magnitude of Hi+1/Hi and Si+1/Si (i = 0, 1, ・ ・ ・) equals to that of the 
perturbation, i.e. 0(r). 

Omitting all the algebra on the way, we would obtain 

罵(J*)= Ho(J*) = woJ*, (176) 

hence the zeroth-order Hamiltonian is uniquely determined. As for the first-order Hamiltonian, 

H; (J*) = {Ho (0*, J*), So (0*, J*)} + H 1 (0*, J*). (177) 
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Here we have to determine both Hi(J*) and So(0*, J*) simultaneously. Thus we request 

Hi(J*) not to contain any angle variables as 

町（J*)=〈H1(0*,J*）〉()*9 (178) 

and let S。includethe rest of periodic terms as 
{Ho (9*, J*), S 1 (9*, J*)}＝〈H浪＊，J＊)〉。.-H 1 (9*, J*). (179) 

Now let us remember the canonical equations of motion for unperturbed part of the Hamil-

tonian in the transformed system 

d0* 8H。
dt* 8J*' 

dJ* 8H。
=-
dt* - 80*' 

(180) 

where t* is the "time" for this system. Using (180), the Poisson bracket in (177) becomes 

{Ho(0*, J*), So(0*, J*Hco•,J•) = 
8H。8S。8H。8S。
80* 8J* 8J* 80* 
8So dJ*. 8So d0* 

= -（戸す＋戸記）
dS。
= -．  dt* {181) 

Thus (179) becomes 

盟＝一｛恥(0*,J*), So (0*, J*)｝＝凡(0*,J*) -〈H1(0*,J*）〉(J*，（182)

:. s。=／ （H1-Hり・ (183) 

Substituting the specific form of H1 (I 73) into (178), we obtain 

Hi(J*) =〈-i心 sin211*＿砂〉＋0（井）
(J* 

2 
T 
= --WiJ+0（社）．
12 

The final Hamiltonian up to the first-order approximation is thus 

T 
2 

H*(J*）＝罵(J*)+ Ht(J*) = woJ*―豆叫l*+0（衿）．

The canonical equations of motion for (B*, J*) system are 

d0* 8H*（J*） T23 
- ＝ ＝ Wo --W。,dt 8J* --v 12 

and 
dJ* 8H*(J*) 
＝一dt 80* 

=0. 

Thus J* is a constant, and the canonical frequency of the new system w(J*) becomes 

8H*（J*） T2 
w(J*）三＝か＝Wo --Wi, 

8J* 12 
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which is also a constant. Since the relationship between the new and old variable has the form 

() ＝ (}* ＋periodic terms, J = J* + periodic terms, (189) 

the secular numerical error in the angle 0 is produced from the second term in the right-hand 

side of (188)，ーサwぶwhichis a constant. In this sense, we cannot manage to reduce the 
secular numerical error of the angle 0 when we solve the motion of the harmonic oscillator by 

the first-order symplectic integrator; the error does not depend on initial starting conditions. 

6.1.2 Numerical errors of the second-order formula 

The error Hamiltonian of the second-order symplectic integrator can be obtained by the BCH 

formula up to 0(r2) as 

如＝｀ （｛｛T, V}, V}-½ {{V, T}, T}) ・ (190) 

We have already calculated the Poisson brackets { {T, V}, V} and { {V, T}, T}, so 

12 1 
万Herr = { {T, V}, V} -i { {V, T}, T} 7'1. -'-• • l, l, - 1 - ~ 1 ~ 2 

2 2 
4 2 WoP 

= mw。q-― m 
= mwi （旦） sin2。~ (2mwoJ) cos2 

mw 
。―—(2mwoJ)cos;t 0 

2m 

＝髯Jsin2 0 -w8J cos2 0 

w~J 
＝一(1-3 cos 20). 
2 

Averaging this error Hamiltonian, we obtain 

T賛 J*
H;(J*) =〈Herr(0*,J*）〉

24' 

which leads us to the final Hamiltonian as 

T 
2 

H*(J*）＝罵（J*)+ H;(J*) = woJ* + ~w訂＋ 0（社）．
24 

The canonical equations of motion for (0*, J*) system are 

d0* 8H*(J*). -. r2 
＝ 
dt 8J* 

=wo+~wg+o（社），
24 

and 
dJ* 8H*(J*) 
＝一dt 80* 

= 0. 
Thus J* is again a constant, and the canonical frequency of the new system becomes 

8H*(J*) 2 

w(J*) = ~ = 0・* = wo十一 3 W。
8J* 24 

(191) 

(192) 

(193) 

(194) 

{195) 

(196) 

which is also a constant. Since the relationship between the new and old variable has the form 

0 = 0* + periodic terms, J = J* + periodic terms, (197) 

the secular numerical error in the angle f) is produced from the second term in the right-hand 

side of (196)，知wg,which is a constant. Thus we know that we cannot reduce the secular 
numerical error of the angle f) arising from the second-order symplectic integrator. 
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6.2 Nonlinear pendulum 

As seen before, the harmonic oscillator produces no secular numerical error in the first-and 

second-order symplectic integrator. We guess this is ascribed to the isochrone character of the 

potential of the harmonic oscillator―eigenfrequency of the system does not depend on the initial 
amplitude of oscillation. The eigenfrequency of the harmonic oscillator does not contain action 

variables; wo is a pure constant, not a function of action variable such邸 wo(J).The isochrone 

characteristic is typical of the harmonic oscillator. In contrast, the Keplerian potential, -μ/r, 

is not isochrone. The eigenfrequency of the Keplerian motion (i.e. mean motion n) depends on 

the initial amplitude of oscillation (i.e. semimajor axis a) as n = -1,iTc況 Wealready knew that 
the Keplerian motion produces the secular numerical error in angle variables when we use a 

first-and second-order symplectic integrator. In this subsection, we check whether a nonlinear 

and non-isochrone pendulum causes any secular numerical error in symplectic integrators. 

6.2.1 Angle and action variables 

We begin with the following Hamiltonian 

2 2 2 4 p-'w。q- eq 2 6 

H(q,p) =—+―--＋ー
e-q 

2. 2 4!. 6! ＋ 
{198) 

which is originally derived from the Hamiltonian of a pendulum having the form of H = ~十
2 

bcos q, but with a slight modification (Boccaletti and Pucacco, 1998). We recognize E as a small 

and constant parameter. The unperturbed part of the Hamiltonian (198) is 

2 2 2 p 
Ho(q,p) = ~ + 

W。q
2 I 2' (199) 

which is identical to the Hamiltonian of the harmonic oscillator. Since we already knew the 

relationship between (q,p) and the action-angle variables (0, J) of the harmonic oscillator as 

{164), we can rewrite the Hamiltonian (199) as 

恥（J)= woJ, {200) 

which leads to the new form of the whole Hamiltonian as 

cJ2 €2J3 
H(0,J) =woJ-~+ ・・・

16 ・ 256wo 
＋．  (201) 

Now we start to obtain the action (J*) for the Hamiltonian system {201) which allows us to 

write 

H(0, J) ＝ H*(J*) 

＝ 罵（J*)+ €H;(J*) + €2Hi(J*) ＋・・・， (202) 

through the canonical transformation of Hori (1966). Note that we implicitly assume that the 

Hamiltonian H(0, J) nor H*(J*) does not contain time explicitly, 

Let the generating function S of the transformation (0, J)→(0*, J*) as 

S (0*, J*) = S1 (0*, J*)＋函(0*'J*)+ €塙(0*'J*) ＋・・・． (203) 
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We apply the Lie's expansion theorem to H(0, J), and get 

€2 
H (0, J) = H (0*, J*) + e { H (0*, J*), S (0*, J*)} + ~ { { H (0*, J*), S (0*, J*)}, S (0*, J*)} + ・ ・ ・. 

2 (204) 

Substituting {201) and {203) into {204), we get 

H(0,J)＝恥(0*'J*)＋晶(0*,J*）＋⑱(0*, J*) +.・・

+€ ｛恥＋晶＋⑱＋・・・，S1+函＋ぶ＋・・・}

€2 
万｛｛恥＋函＋ ⑱+・・ •,S1+函＋ぷ＋・・・}, S1 +心＋ €2ふ＋・・·}＋・・・
= Ho(0*, J*) + e凡(0*'J*)+ €面(0*,J*) ＋・・・

十E{Ho(0*, J*), S1(0*, J*)} + e2 { {Ho{0*, J*), S2(0*, J*)} + {H1 {0*, J*), S1(0*, J*)}) 

€2 
+-{｛H。ぼ，J*),S1(0*, J*)}, S咽＊，J*)}+ O{e3). 
2 

{205) 

Equating the two Hamiltonians H(0, J) and H*(J*), comparing the terms of each order of E 

in {202) and {205), we obtain the result for 0(€0) as 

写（J*)= Ho(J*) = woJ*. {206) 

For 0（内， weget 

Hi (J*) = {Ho (0*, J*), H 1 (0*, J*)} + H 1 (0*, J*). (207) 

Let us consider the canonical equations of motion of the unperturbed system玲 (J*),intro-

ducing a time-like variable t* as 

d0* 8H0(J*) d.r8H0(J*) 
＝ ＝一dt* - 8 J*'dt* - 80*' 

(208) 

:. J* = constant, 0* =wot*+ 0ふ (209) 

which leads to 

｛的（J*),S 1 (0*, J*) } 
8Ho 8S1 8Ho 8S1 
＝一80* 8J* 8J* 80* 

= -（竺竺＋竺竺
8J* dt* 80* dt*） 
dS1 

．—-一dt*. (210) 

As a rule of usual perturbation theory, we request Hi(J*) not to contain t* as 

H;(J*) ＝〈H咽＊，J＊）〉が

lf[J*2 ] = ~ T --;;-6 sin4 (wot*+ 00) dt* 

＝―-一sin40* — dB* w l" [.r2 ] dt* 
21r 6 d0* 

＝―-一sin40* d0* wo l" [ J*2 ] 
21r 48 

J*2 
(211) ＝一

16 
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The leading term of the generating function S1 becomes 

ふ(0*,J*) = I (H; -(Hり）dt*
= ／直
dt* 
t 

J*2ld0*  ＝丘 (cos20* -¼ cos40*)言

= ~ (sin20* -½ sin40*), 
neglecting a constant of integration. 

For 0び） terms,we get 

(212) 

巧（J＊)＝ ｛H。ぽ，J*),82(『,J*)}+｛凡(0*'J*)'s1 (0*'J*) } 
1 
十一{{H。ぽ，J*),S 1 (0*, J*)}, S1 (0*, J*)}＋比(0*,J*), (213) 
2 

and we request again 

and 

H2(J*) = (H2(0*, J*）〉が 9

｛的(J*),s姐＊，J*)}=-—. dS2 
dt* 

(214) 

{215) 

Thus we can calculate ever higher-order components of Hl and Si in similar ways. The new 

Hamiltonian and canonical frequency of the system up to 0(€) now become 

and 

J*2 
H*(J*）＝閲(J*)+ €Hi(J*) = woJ* -€~ 16. 

J* 
w(J*) = 8H*(J*) 

8J* 
=wo-€一．

8 

(216) 

(217) 

The canonical equations of motion written in the new variables are 

d0* 

dt 

8H*(J*) 
= 8J* 

= w(J*) = constant, 

dJ* 8H*(J*) 
=-
dt 80* 

= o, 

. ・. J* = constant. 

(218) 

(219) 

(220) 

The relationship between old (0, J) and new (0*, J*) variables is now explicit using the Poisson 

bracket operator D s三{,S} as 

0 = efDs9* 
8 €2 

= 0* + € ~ S (0*, J*) + ~ { { 0*, S (0*, J*)}, S (0*, J*)} ＋・・•, （221) 
8J* 2 

J = eeDsJ* 
8 €2 

= J* -€—S (0*, J*) + ~ { { J*, S (0*, J*)}, S (0*, J*)} ＋・・•. （222) 
80*2  
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Substituting the specific form of S1 {212) into {221) and {222), we get 

J *1  
0=0*＋雷 (sin20* -~ sin40*) + 0（内，

J*1  
J= J* ー E~ (cos20* -~cos40*) +0（内．

(223) 

(224) 

Since (fJ, J) are the angle and action variables in the Hamiltonian system Hi。ofthe harmonic 
oscillator, the relationship between (q,p) and (fJ, J) has been described in (164). Now in the 

perturbed system (198), (fJ, J) are no longer angle/action variables, but are still canonical 

variables described in (223) and (224). Hence we obtain the final solution (q,p) for the system 

(198) by substituting fJ and J of (223) and (224) into the (q,p)-(fJ, J) relationship of the system 

H。,i.e.(164). Thus we get 

q=王［1-;fa (cos 20• -¼ cos 40*)] sin [0*＋蓋 (sin20*-¼ sin40*)] + 0（召），

(225) 

p= w2Jw。 [1 —羞 (cos20 -¼ cos40)] cos [0+ ~ (sin 20 -¼ sin40)] + O(e2). (226) 

Hereafter we consider (0, J) as (0"', J*), neglecting the superscript * attached. Hence we get 

q= 巳［1-~ (cos 28 -¼ cos 49)] sin [ (I +~ (sin28-¼sin4ll)] + O(e2), (227) 

€J 1 €J 1 
p = 1f2Jw。 [1 ー~ (cos20-¼ cos40)] cos [o 十~ (sin20-~ sin40)] + O(Eり．（228)

6.2.2 Error Hamiltonian in symplectic integrator 

Let us consider a situation where we numerically calculate the solutions of a system dominated 

by the Hamiltonian (198) up to first-order, namely 

2 2 2 4 p 
H(q,p) = ~ + 

W。q- eq 
2 I 2 24 • (229) 

When we write the Hamiltonian as H = T(p) + V(q), 

2 2 2 4 p w。q • cq 
T(p)=- V(q) ＝ ----2'. ¥'1/ - 2 24. (230) 

The error Hamiltonian for the first-order symplectic integrator thus becomes 

T 
Herr,lst = 2 {V(q), T(p)} 

r8V8T 
＝一2 8q 8p 

,,.(w~ €3) = 2 q -6q p. (231) 
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By (227), 

砂＝戸sin30+ O(e) 
W。
1 /8J3 
= ¼石(3sin0-sin30) + O(e), 

W。 (232) 

which leads to 

ふ—；村＝亭 [sin疇Gsin0 + ¼ sin30)］-；虞(3sin 0 -sin 30) 

= sin0 ［亭（1 ＋岸）—且昌］＋sin30 ［亭囁｝＋且昌l
=sin0 ［亭＋€（い亨—臼~)] +rnin30（予バ訊得），

(233) 

up to 0(€). Thus the error Hamiltonian in (231) becomes 

2 丑rr,lst= （ふ—；が）p 

= [sinO （氾＋€（い言 i年））＋ €sin30 （竺三昌）］
€J 5 

x ⑫二[cosO十五孟Gsino+ ¼sin30)] 

5 1 ＝犀{sinOcosO ［応＋€（涵亭云— 8麿）］

+ €[（竺＋訊昌） sin30cos0 
＋土応sinO G sin O + ¼ sin 30)] } 

＝犀{isin20［阿＋ € （贔麿云— i麿）］

+ €[（竺＋犀呂）½(sin40 + sin20) 
＋土亭G-~ cos 20 -¼ cos 40 + ¼ cos 20)] }, (234) 

up to 0(€). Hence if we average Herr,lst over 0, then we get 

(Herr,lst〉
5T = €--
42 
¢ J 二面亙
5 = €T-WoJ乞
96 

(235) 
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In order to estimate the numerical error of the first-order symplectic integrator when adopting 

to the nonlinear pendulum system, we now apply the Hori's perturbation theory to a Hamilto-
. 
n1an 

2 2 2 4 
H=  
p-'w。q €q 
—+—--2. 2 24 + Herr,lst• (236) 

We rewrite the above Hamiltonian as 

H = Ho(J) + H1(B, J), (237) 

where 
p2'w5q2 Eが J2

Ho= —+—-- ＝woJ-e― 
2 2 24 16' 

(238) 

from (216), and 

H⑲,J) = Herr,lst(0, J), (239) 

from (234). Since we already knew the averaged perturbation Hamiltonian as (235), applying 

the perturbation theory gives us a new transformed Hamiltonian as 

J*2 5 
H*(J*) = woJ* -€— +€T~woJ*2, 

16. 96 

and a new canonical frequency as 

w(J*）三
5 8H*(J*).. € 

J* 
8J* 
= Wo -- - -
8 

€T 
192 
woJ*. 

(240) 

(241) 

Now that the canonical frequency w includes the action J* as w(J*), we may be able to make 

it approach the real value, wo -!Ji。whereJi。isthe initial (or "observed") value of the action 
in real system. 

The canonical equation of motion for J* becomes as 

dJ* 8H*(J*) 
＝一dt - 88*' 

{242) 

from which we know that J* is a constant. According to the relationship between old and new 

variables of (222), we get 

J = eEDsJ* 

8 €2 
= J* -€—S (0*, J*) + ~ { { J*, S (0*, J*)}, S (0*, J*)} 
80*2  
8 

= J*＿亨／（Hl-Hりdt*
= J* -~ (H 1 -Hi). 

Wo 

Suppose J = Ji。whent = O, then 
1 

J。=J*-~ (H1,t=O -Hり，
wo 

since J* and Hi are constants, so 

1 
. ・. J* = Jo + ~ (H1,t=o -H;). 

wo 
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As for 0*, the canonical equation of motion becomes 

dB* 

dt 

暉＊（J*)

= 8J* 
5wo = Wo --J* + €T-J* 

8 

= Wo-i (J。+f6(H1,t=O -Hり） ＋€誓 (J。心 (H1,t=O -H;)) 
= wo-fJo+ （け三＿り凡，t＝0-Hi 十 €T竺

8 96 8 Wo 96 J。. (246) 

In (246), the first two terms in the right-hand side (wo -fJo) denote the canonical frequency 

of the unperturbed Hamiltonian system, (238). Other terms denote numerical secular error of 

the angle variable, 0. What is most important here is that the secular (or constant) numerical 

error 
(€T~ ＿丁） H1,t=0-Hi 三
96 8 

+ CT J。,Wo.  -96 (247) 

may depend strongly on initial values of J, 0, and parameters €, r, and wo. Although we do 

not demonstrate here, certain combinations of these parameters may reduce the secular error 

of (247) nearly equal to zero. Other combinations may terribly increase the secular numerical 

error. This kind of error reduction happens only when the canonical frequency of a Hamiltonian 

system depends on its initial oscillation amplitude; in other words, when the potential of the 

Hamiltonian is not isochrone, and dependent on J. The reduction or non-reduction of the 

secular numerical error in planetary longitudes seen in the previous sections is thus qualitatively 

understood to some extent. 
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Appendix A. Jacobi coordinate 

We request a Hamiltonian used in the WH  map to have the following properties: 

1. As for the Keplerian part, it should have the same form as the Hamiltonian of the two-body 

problem,届ー片， orthe sum of this form. 

2. As for the interaction part, it should be described only by the relative distance, such as 

V(r). 

3. The magnitude of the interaction part should be much less than that of the Keplerian 

part (Hkep>>Hint), 

However, simple heliocentric or barycentric coordinate does not satisfy the above requests. 

For example, writing the Hamiltonian using the barycentric coordinate ends up with 

H = t p1 (t伽 omi N Gmomi N N Gmi叫
i=0戸十一i=1|ri-ro| t戸）ー五恥iー巧1
=且+t□-Gmomi)ふ Gmomi-(t珈 omj N NGmi叫
2mo ＋ここ
i=1 2mi |ri -To| i=1 |ri-ro| i=1 |ro -rj| i=1j=i+1|ri -rj|） 

P5, ~ (Pl Gmomi N N 

＝三舌（三― |ri-ro|）ー瓦亨imー雰 (248) 

where we cannot classify the kinetic energy of the Sun (p5/2mo) into Hkep nor Hint• One of 

the canonical variables which suits our request is the Jacobi coordinates (Plummer, 1960). The 

Jacobi coordinates Ti are defined as 

where 

i-1 
1 

和＝ri-―Lmザが
Ui-1 j=l 

Ui＝咋1+叫， 6o= mo= M。'U-1三o,
びi-1

加＝一mゎ
びi

びi
P,i=―G, 

びi-1

Canonical momenta which are conjugate to Ti are 

- -Pi = mふ，

and the velocities are 
dri 

'Vi=―・ 
dt 

(249) 

(250) 

(251) 

(252) 

(253) 

(254) 

In this manuscript, we have utilized the Jacobi coordinate system in our symplectic numerical 

integration of the H = T(p） ＋V(q) type. Thus the discussion below has a certain sense to 

describe our method of numerical integration in detail. 
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The advantage of transforming to the Jacobi variables is that in the barycentric frame, the 

kinetic energy of the N + 1-body system becomes 

N -2 

こ五，
i=l 
2ihi 

without terms of the central mass as follows (Plummer, 1960). 

When we represent the position of the barycenter of the particle of 1 to i as凡，

<Ti~ = moro + m1 r1 + m2r2 + mi-1 Ti-1 + miri, 

びi-1~-1 = m。ro+ m1 r1 + m2r2 + mi-1 Ti-1・
Subtracting (257) from (256), 

0-iふ— ai-1X曰＝ miri = (ai -a曰）ri,

which is due to the definition of ai (250). By the definition of the Jacobi coordinates rゎ

Ti = Ti -Jl,i-1, 

. •. ri=ii + R-1・

Substituting (260) into (258), 

Uill,i -Ui-lll,i-1 = (ai -Ui-1)伍＋R-1），

.', Ui(R,i -Jl,i-1) = (Ui -Ui-1)ri. 

(255) 

(256) 

(257) 

(258) 

(259) 

(260) 

{261) 

{262) 

Hereafter we concentrate on the xーcomponentsof the vectors rゎri,~:叩，ふ， and Xゎ

respectively. Taking the square of (258) and (262), 

(ai -Ui-1)鸞＝（6ふ—びi-1Xi-1)2,

伍—年1賢＝ al(Xi -Xi-1)2. 

Performing the operation (263) -(264) x告1.,we get 

((J'i-6虚 (xf —ぞ甜）
= (uふ—年1ふ訊—年~ (Xi -X曰）2

Ui 
2 

＝叶X;-2UiUi-1ふX曰＋叶＿1Xl＿亡年1叫X;-2Xぷi-1＋ふ）
=Xf(6f -6げi→)＋ Xl-1 （心—叩i-1)

(263) 

(264) 

= (ui -Ui-1)（びiX[-Ui-1Xl-1). (265) 

In the case of finite-mass system, ai #年1,then 

(6i-6i-1) 信ー詈叫＝ 6ぷf —年1XL1 ・ (266) 
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Addition of all the equations of the type (266) from i = 0 to i = N, 

N 

翌6i-6i-1) （rf —臼）
= (uoXJ -u_1応）＋（び1X;-uoXJ) + (u2Xi -u1X;) 

＋・・・＋（UN-1X和ー1―UN-2Xん＿2)+ (uN蹂ーUN-1X和ー1)
＝びNX和ーuoXJ

＝びNX私（マ U-1= 0) (267) 

Sinceびi-Ui-1 = mゎ

岱f
N 

= Lmi~埼＋邸xJv
i=O Ui 

N 

= I:m摩詞＋uNX和
i=l 6i 

(...(J'-1 = 0) 

N 

= I:加砕十UNX和
i=l 

(268) 

The relations between the coordinates have been written down for one kind only. But they 

are linear and the same for all three coordinates Ti =（叩，Yi,Zi), Ti=（社妬ぷ）， and凡＝

(X凶，Zi)separately as 

as 

N N 

区m函＝こ疇f+(J'遁，
i=O i=l 

N N 

Lmぷ＝こm濁＋びNz'Jv.
i=O i=l 

Above derivation can be applied also to the velocity components 

dr 
叫＝ー＝（年初，ぢ），
dt 

dr.:. ．． 
6i= - ＝ （Xi,如，み），
dt 

dR 
vi = ~ = (Xi, t, 2 

.. 
• = = 
dt 
（ふ，Y匹），

N N 

戸函＝こ西封＋UNX和，
i=O i=l 

N N 

こ疇＝区疇＋叫，
i=O i=l 

N N 

I:mi紆＝こm畠＋6NZ和．
i=O i=l 
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(269) 

(270) 

(271) 

(272) 

(273) 

(274) 

{275) 

(276) 



Adding (274), (275), (276), we can represent the kinetic energy of the system 

岱（蒻噂＋zf)＝丘（封＋尻＋号）＋竺（緑噂噂）
i=l 2 

(277) 

or using the momentum Pi and Pi 

N 2 N-2 こPi=こ Pi 2 

—+ PR 
i=O 2mi i=l 2加 2Mtot'

(278) 

where PR is the total momentum of the barycenter {total momentum of the whole system), and 

Mtot is the total mass of the system, Mtot＝江。mi.Then, the general Hamiltonian for the 
N + I-body (one central mass and N planets) becomes 

2 N.::.2 N N 
H=  
PR Pi 一＋こ―-

K五mi
2Mtot. t:': 2加 ここi=l -··-• i=O j=i+l lri -ril 

(279) 

By construction, the total momentum PR is an integral of the motion, which means that the 

center of mass moves as a free particle. Hence the center of mass contribution to the Hamiltonian 

Pk/2Mtot will be omitted. Thus the problem of N + 1 bodies is reduced to a problem of N 
fictitious bodies with mass加， andthe total order of the differential equations of motion is 

reduced by 6. In view of (253) and (254) we can rewrite the full Hamiltonian as 

H ＝ 

＝ 

N -2NN2  

こ生--2加 ここ kmi叫i=l -••v~ i=O j=i+l lri一巧l

を且＿ N炉m叩 0_ N N K2匹叫
2=1 2加苔 ri 苔五1|riー巧l (280) 

where Tj denote the heliocentric distance, lri -rol-Note that we have changed the index j to 

i for simplicity in the second sum of (280). Adding and subtracting the quantity 

t k五im。9
i=l Ti 

into the righthand-side of (280), the Hamiltonian becomes 

H ＝ 
N ~2 

こPi
N 
炉mimo

N 2 
k m叩 0

N 炉mi
N N 
炉mi叫

i＝口（ー苔 fi 十苔 ~)―苔了筵1|r→|
＝ 孟（長— K2了゜）＋宝（炉了°-K2了゜）—言え1 「:2m：言
＝ t （長— µ2芋） ＋ k2 言m2m。(ロ)—豆孟］r22mー冒•

The relationship 

k2叫 ＝ k 
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2mi ~ 
-::.-n 
mi 

(281) 

(282) 



k 2 Ui m__ i 
Ui-1 

k 2μ～ i m~ i 
k2 

= μ-im-i, 

is used in the first sum in the righthand-side of (282). 

Thus the Hamiltonian in (282) becomes a desirable form for the WH  map as 

where 

H = Hkep虹 Hint,

Hkep 国（贔—~~),
嘩 nt= H direct + Hindirect, 

N N 
炉mi叫

Hdirect= —ここ
i=l j=i+l lri -ril' 

N 

Hindirect = k2 L mim。f-=). 1 1 

i=1 (riTi) 

{283) 

(284) 

(285) 

(286) 

(287) 

(288) 

The magnitude of Hdirect is 0(mり． Themagnitude of Hindirect is also O(mりbecauseof the 
difference of close terms 1/fi -1/ri, O(m). Hence the magnitude of直血 becomesO(m) times 

smaller than that of the Kepler Hamiltonian, Hkep• 

Note that some numerical inaccuracies can arise from Hindirect in which a subtraction of two 

quantities at the same order is performed. Straightforward evaluation of these expressions can 

be avoided by certain reformulation as used in Encke's method (Battin, 1987). 

We can also obtain expressions for the angular momentum by the Jacobi coordinates. See 

Plummer {1960) for detail. 

Two-body Hamiltonian in the Jacobi coordinates and energy integral 

Consider the Hamiltonian of the two-body problem written in the Jacobi coordinates using 

μ=炉（mo＋叫）． From(285) when N = 1, we can easily obtain 

耐＿和mo
H2body=―-．―・ 2m1 

μi--:: 
r1 

Using the following relationships 

<J'o mom1 
m1 = -m1 = 

び1 - mo +m1 

ji,1 = ~炉＝ mo +mlk2 
6o mom1 9 

r1=r1, v1=v1, p1=m1v1, 
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{289) 

(290) 

{291) 

{292) 



we get 

H2body 
= mo+m1 (m四 1m)2 -mo +mlk2m四 1四
2mom1 ¥mo＋叫 mo mo +m1 r1 

l mom12 炉m1mo
=— 町一2mo +m1 ・.1 r1 

＝ こ°十二（誓ー青）
2 

= in1（翌ー孔）， (293) 

with a set of canonical variables（五i>1)= (r1，加v1).
The equation (293) indicates that the general two-body Hamiltonian H2body is not identical 

to the usual "energy integral," 告一~, by a factor of the reduced mass,和＝品翌t-・ When we 
analyzed the error Hamiltonian Herr in the previous sections, we have taken that this reduced 

mass m1 = ~ as unitv for simolici mo+m1 
as unity for simplicity, and treated 

2 
附~ μ 

H2body =---， 
2 r1 

(294) 

with canonical variables (r1, v1); i.e. usual heliocentric position and velocity. We can normalize 

the two-body Hamiltonian (293) into the form of (294) through a certain conversion of units. 

Appendix B. Canonical relative (DH) coordinates 

Let the coordinates and velocities of planets viewed from barycentric frame as Pi and Pi・ The 

relationship between the coordinates and velocities based on heliocentric frame Ti and Ti is 

Pi= Ti -
謬 1叫巧
M+E羹占'

Pi= Ti -
四=1ザ j
M十巧ダ=1叫'

(295) 

where N is the number of planets and M is the central mass. If we denote the position of the 

central mass by Pc, 

認 1叫巧
Pc =代一

M十四ダ=1叫

四似mm
M十四似 fflj'＝ 

since obviously r c = 0 in heliocentric coordinate. 
Below, we consider separately the kinetic energy and potential energy of the system. 

Total kinetic energy of planets Tp is 

N 1 
芥＝ーこ・ 2
2 
mjPj 

j=l 
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The kinetic energy of the central mass Tc is 

Tc = M.2 ァc

＝判— E似m出 2
2 M+E似mi)

M(E似mjTj)・ (Eダ＝1mjTj) 
＝ 
(M＋認＝1巧）22

 

(298) 

Hence the total kinetic energy of the system T becomes 

T=Tp+Tc 

=½宝［→；- m]（立誓i2)•ち
2 

(E似m出）2+(E似疇）＋（E似m出
2 

+ (M+Eい）2 ）mil 

M(E似m西）2+(E似疇）2+(E似miち）2
＋ー
2 (M+E似四）2

1 N 1 
N 

＝ーこm1号一一こmj2E似m出．2 巧
i=1 2i=1 M十江似mi

+~·½{（合叫:i)2+（柔叫99)2+ （言叫ち）2}.(299) 
The second term in the right-hand side of the equation (299) becomes 

-i孟 m;_(；予呈£：ナi2)、ち＝—i(；予呈：：こ）乳四ち
independent of j 

＝ 

＝ 

M+；似m2（炉）•（も介］）
M+；似m2[（魯吋2+（正）2+（全砧『］， (300) 
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which ends up with the final form of the total kinetic energy T as 

T
 
＝ Tp+Tc 

＝ 
(E似m西）2+(Eふ疇）2+(E似mizi)2 

M+E似mi

1 
N 

i~mi号一
j=l 

＝ 

1 （江三）2+ (Ef:1疇）2+（こ似miち）2
+5 M+E似mi

1 
N 

Lmi号ー ・一！（江三）2+（E似疇）2＋（E似m占）2．
2j=1 2 M十四似mi

(301) 

Thus we can express the total kinetic energy T only by the heliocentric velocities，れ

If we consider r as a canonical coordinate, the canonical conjugate momenta p to r are derived 

from Lagrangian 

L(rふ）＝T(r) -V(r), 

where T(r) is kinetic energy and V(r) is potential energy. 

If we define a temporary coordinate r* as 

1 
N 

r*三
M＋こ似mり＝1

区mjTj,

then the kinetic energy T(r) is expressed as 

1 
N 

T(r)＝ーLm吋ー M+E似mi・*2 r 2 2 .  
j=l 

Hence the canonical momenta p become 

(302) 

{303) 

(304) 

Pi 

＝ 

＝ 

＝ 

＝ 

＝ 

＝ 

8L 

妬
8 
-;;;;:-(T(ri) -V(ri)) 
苑
8T 

始

m出ー M+]似m冶＊．贔 (M+；似m1ジ）
mふー（心）ャi*.M +；似m3叫
叫（ヤi-r:)

m;(ヤt- M + ；似m1t吋・ (305) 

The canonical momenta Pi in (305) are equivalent to those of what are used in so-called 

"democratic heliocentric" or "mixed-center" coordinate, which are 

N 

pi三 p}°ert mi 
・ 一戸~p『rt'

total ~ j=O 

(306) 
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N 

Mtota]三 M 十I:mi, 
i=l 

(307) 

where Ptert denotes momenta reckoned from a certain fixed point in the inertial frame (for 

example, barycenter, i.e. essentially the same as miPi in (295)). We now show that the momenta 

in (305) and momenta in (306) are rigorously equivalent. 

Since r are the heliocentric coordinate, 

inert 
Pi Po 

inert 

Ti = <Ji―%＝―-―’ mi m。 (308) 

where we define qi as the coordinate reckoned from certain fixed point in the inertial frame 

(this is equivalent to Pi in (295)). Then, r* becomes by (303) as 

が＝亡乳m凡＝土を1(ご-て）•
This leads to the expression of Pi in (305) as 

． 
Pi = miri -miri 

= m; （亡—て）ー mt亡土吋亡—~)
N I _inert 

= p}nert ＿亨rt ＿こ臣（王— ~Pbnert)
mi NN  

= Pi inert 
Mtotal ~ 
LP}°ert＿四p『rt十二こ叫bnert
3=1 mo Mtotal i=1 mo 

N I N 

= P}nert＿亡芦P;nert+（ーミ＋亡芦）叫nert
N 

= p~nert ＿炉—こずrt 叫 =.-{ Mtotal -mo)} l Pbnert 
total ~ j=l 

+ ［一盃い― Mtotal(Mtotal-mo)}]Po

= P:nert＿こ炉rt＿□（1-(1-己））pしnert
N 

= Ptert -ュ~LPtert -二Pbnert
Mtotal. 3 
j=l Mtotal 

inert mi ~ 
= Pi ― 

Mtotal 
LP}°ert, 
j=O 

(309) 

(310) 

which is rigorously equivalent to the momenta used in "democratic heliocentric" (DH) coordi-

nate, Pi in (306). The idea of the democratic heliocentric was first advocated by Poincare and 

have been described in detail in Charlier (1902) as a name of "Canonische relative Coordinaten." 

Later, this coordinate was born again to be used in SyMBA in Duncan et al. (1998)邸 follows.
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Below, Qi and Pi are canonically conjugate each other. 

Qi=｛ 

Pi= 

qi―q。,
1 N 

Mtot 
Emj約9
j=O 

，
 

i
 
p
 

．゚
 

＝
 
.
3
 

z
▽
.
J
 
t

p

 

mi-Mtoz

芦

.,” p
 

(i = 1,.. ・, N) 

(i = 0) (311) 

(i = 1, ・ ・ ・, N) 
(312) 

(i = 0) 

The Hamiltonian described by the DH coordinate is邸 follows:

H = Hkep +Hsun+ Hint, 

Hkep 国（巴— G悶゜），
N 2 

H 
1 

sun＝三臣

(313) 

(314) 

(315) 

Nー1 N 

Hint=―ここ 3 

Gm叩・

i=1j=i+1厄ーQj|
(316) 

Note that the Hamiltonian is now divided into three parts, not into two parts as in the 

generic WH  map in (141). This is because of the existence of the Sun's kinetic energy Hsun・ 

The amount of computation does not increase significantly by the additional procedures due to 

this new division, since the procedure which involves Hsun is summing up of linear terms of P. 

Appendix C. Partial derivatives of Kepler orbital elements 

The partial derivatives of true anomaly f by the Delaunay variables L and G end up with 

瓢＝岳（口斎） sinf, (317) 

8/ G { a. L2 ¥. 応＝一砂＋司 sinf,
from the relationship 

8/ L2 _. 
8e G2 

sin f. 

However, we are likely to obtain wrong solutions such as 

嘉＝岳（竺＋贔） sin/,

{318) 

(319) 

{320) 
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or 

翡＝—贔（竺＋贔） sin/, (321) 

instead of the correct (317) or (318) due to the usual expressions of虹 insome of the standard 8e 

celestial mechanics textbooks (e.g. p. 567 in Brouwer and Clemence (1961), p. 349 in Nagasawa 

(1983), and Eq. (2.104) at p. 39 in Kinoshita (1998)) as 

誓＝ （~+贔） sinf. (322) 

To avoid such confusion, we must derive統and胎throughthe definition of differential 
transformation: using Jacobian matrices.統and胎areobtained through a differential trans-
formation of variables from Kepler orbital elements to Delaunay elements as 

(da, de, dw, dl, dfl, df)→(dL, dG, dH, dl, dg, dh) (323) 

However, the relationship between f and l is not explicit because of the existence of Kepler's 

equation u -e sin u = l. We have to calculate the following three conversion matrices 

(da, de, dw, dl, dn, df)→(da, de, dw, dl, dn, du), 

(da, de, dw, dl, dn, du)→(da, de, dw, dl, df2, dl), 

(da, de, dw, dl, dn, dl)→(dL, dG, dH, dl, dg, dl), 

and multiply them to reach our final goal, (323). 

{324) 

(325) 

(326) 

As a set of independent variables to describe the Kepler orbital motion, we consider the 

following four sets: 

• Using mean anomaly l as (a, e, w, I, n, l) 

• Using true anomaly f as (a, e, w, I, n, J) 

• Using eccentric anomaly u as (a, e, w, I, n, u) 

• Delaunay canonical variables (L, G, H, l, g, h) 

Hence there are 4杓＝ 12differential transformations among them: 

(da, de, dw, dl, dO, df) → (da, de, dw, dl, df2, du) 

(da, de, dw, dl, dn, df) → (da, de, dw, dl, dO, dl) 

(da, de, dw, dl, dfi, df) → (dL, dG, dH, dl, dg, dh) 

(da, de, dw, dl, dn, du) → (da, de, dw, dl, dn, dl) 

(da, de, dw, dl, dfl, du) → (da, de, dw, dl, d!l, df) 

(da, de, dw, dl, dn, du) → (dL, dG, dH, dl, dg, dh) 

(da, de, dw, dl, df!, dl) → (da, de, dw, dI, dO, df) 

(da, de, dw, dl, dn, dl) → (da, de, dw, dl, dO, du) 

(da, de, dw, dl, dfl, dl) → (dL, dG, dH, dl, dg, dh) 

(dL, dG, dH, dl, dg, dh) → (da, de, dw, dl, dO, dl) 

(dL, dG, dH, dl, dg, dh) → (da, de, dw, dl, dn, du) 

(dL, dG, dH, dl, dg, dh) → (da, de, dw, dI, dO, df) 
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This section gives the forward transformations such as 

(da, de, dw, dl, dn, df) 

↓ 

(da, de, dw, dl, dn, du) 

↓ 

(da, de, dw, dl, dn, dl) 

↓ 

(dL, dG, dH, dl, dg, dh). 

The latter half can be done similarly, and omitted here. 

Note that the lines and columns in the Jacobian matrices described here may be transposed 

from those in usual textbooks. In the following discussion, 

a(l -eり
r = a(l -ecosu) = 

1 + ecos/' 

n三凶て百．

{327) 

(328) 

We frequently consult the relationship between eccentric anomaly u and true anomaly / 

． 
• 1J sinf 
Slil U = ， 
1 + ecosf 
. 
1J Slil U 

sin f = ~' 
1 -ecosu 

e + cos/ 
cosu = 
1 + ecos/' 

cosu -e 
cosf = .  
1 -ecosu 

(329) 

{330) 

Appendix C. 1 (da, de, dw, dl, dn, df)→(da, de, dw, dl, df2, du) 

Since the Kepler orbital elements a, e, w, I, n are independent with each other, 

8a 8a aa 8a 
＝ ＝ ＝ 
8e 8w 81 an 

= 0, 
ae ae ae 8e 
=-=-=  
aa aw 81 an 

= o, 
aw aw aw aw 
盃＝盃＝可＝而＝o,
a1 a1 a1 a1 
＝ ＝ ＝ 
8a ae aw an 

= 0, 
80 89 89 89 
=-=-=  
aa ae al aw 

= o, 

'

1

 

9

,

1

,

 

1

1

ー

＝

＝
 

叩
一
ぬ

＝

＝

＝

 

aa-aaae-aeaw-awal-81 

(331) 

Hence the differential transformation matrix in this case becomes 

Ida~ (da ¥ 

de de 

dw 8(a,e,w,I,n,J) dw 
＝ 
8(a, e, w, I, n, u) dl dl 

dn dn 

¥ df) ¥ du J 
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I 茄aa 茄aa 如8• 可可88a e 叩面aaa e 茄西aaa e ‘ / d a ¥ 
茄8e 茄8e 忘8e de 

= I 些珈 布8u 茄au 可au 叩8u屡茄8紐u dw 
＼ 茄a紐紐0 布8絲脆9 加貼胎89 可8紆肪o 胎諏胎all 1 ¥ ぬddul ) 

/ 1 0 0 ¥ 1 da ¥ 
1 0 de 

1 

゜dw I. (332) = I 
1 

゜
dl 

゜
1 

゜
dO 

¥ 0 紐 0 0 0 紐I ¥du/ 

Only給and紐shouldbe taken into account in all the components of (332)．紐 canbe 
obtained as 

8 

8e 
—cosf 

. 8f 
= -Slnf-

8e 
8 
＝玩 ((cosu-e)(l -ccosu戸）
= -1・(1-ecosu)ー1+ (-e + cosu)・(-1)・(1-e cos u)-2(-cosu) 
-1 -e + cosu 

= ＋ )2 cosu 1 -ecosu ・ (1 -ecosu 

1 

(1 -ecosu)2 
= ~ [-1 + ecosu + (-e + cosu) cosu] 

= ~(cos2u-l) 

• 2 -Slnu 
＝ 
(1 -ecosu)2 

= -(sinu)2 
1 -ecosu 

= -（字）2 じ(329))

. 8f1  sin2 f 1. L2. ．．盃＝（＝）（―ァ）＝ ~sinf=f;sinf
Similarly,紐isobtained as 

a ―COS au f = -sinf竺8u 
8 
＝玩（（cosu-e)(l -ccosu)-1) 

= -sinu(l -ecosu)―1 + (-e + cosu)・(-1)・(1-e cos u)-2 e sin u 
-sin u -e + cos u 

＝ 1 -ecosu―(1 -ecosu2 ） 
esmu 
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1 = ~ [-sin u(1 -e cos u) -e sin u(-e + cos u)] 
(1 -ecosu)2 

Sin U 

＝ (1-ecosu)2 (1 -eり
2. 2 
，，， sin" u { l 

= (1 -ecosu)2 （ーニ）
sin2 f 
＝一 (..・ (329))

Sin U 

. 8 f _ { I ¥ { sin2 f ¥ _ 1/ sin u I 

...西＝（一□）（―二）＝ 1-ecosu二＝竺• （・・・ (327)) 
Therefore (332) becomes 

Ida' (da ¥ 

de de 

dw 8(a, e, w, I, n, f) dw 
＝ dl 8(a, e, w, I, n, u) dl 

dn df2 

¥ df) ¥du) 

/ 1 

゜
0 ¥ 1 da ¥ 

1 

゜
de 

1 

゜
dw 

＝ l 1 

゜
dl 

゜
1 

゜
dO 

¥ 0 紐 0 0 

゜
色珈 I ¥ du / 

/ I 

゜
oヽ1da ¥ 

1 

゜
de 

1 

゜
dw I ＝ ＇ 1 

゜
dl. 

゜
1 

゜
df2 

¥ 0 伯inf O 0 

゜
乎1,du J 

Note that at this point 
8f L2 
-8e ＝ -G2 sinf, 

{335) 

(336) 

(337) 

(338) 

in the final result (337). This expression is due that we consider the true anomaly f as a 

function of (e, u), not (e, l) as in (322). 

Appendix C. 2 (da, de, dw, dl, dfl, du)→ (da, de, dw, dl, dfl, dl) 

When we consider the independence of the mean anomaly l from any other Kepler orbital 

elements as 
8l 8l 8l 8l 8l 玩＝盃＝元＝可＝而＝0, 8l ＝ 8l 1 ， (339) 
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the differential transformation matrix in this case becomes 

Ida¥ (da ¥ 

de de 

dw 8(a, e, w, I, n, u) dw 
＝ 

dl 8(a, e, w, I, n, l) dl 

dn dn 

¥du) ~ dl I 

｛続紐紐紐箭斜斜 絣＼ ／ da ¥ 
和8e 姦肥8 e 可8e 可8 e d e 

＝ aa茄a88llりaa 1 8au e 可au 諏aa8ll り1 88u l dw 

痴81 姦如8紐891 四可a8I1 可81 dl 
迅8e2889  9889 l dn 

＼紐紐 絣斜絣 1 ¥ dl / 
/ 1 

゜
0 ¥ 1 da ¥ 

1 

゜
de 

1 

゜
dw | (340) ＝ dI. 1 

゜
゜

1 

゜
dO 

¥ 0 紐 0 0 

゜
絣I ¥ dl J 

Only紐and冊should be taken into account in all the components of {340).~ 8e can be 
obtained from the partial derivative of the Kepler's equation 

bye 

． 

． 
u -esinu = l ， 

8u I _ 8u¥ 8l 盃― (sinu + ecosu盃）＝玩＝0.
8u 

:. (1 -e cos u) ~ = sin u 
8e 

au sinu sinf 
＝ ＝ ・ ・ 8e -1 

．（・.・ (330))
-ecosu TJ 

(341) 

(342) 

(343) 

(344) 

Similarly,俯canbe obtained from the partial derivative of the Kepler's equation by l as 

8u 8u 8l 
- -ecos - ＝ -＝ 1, 
8l 8l 8l 

8u 
:. (1 -ecosu) ~ = 1, 

8l 

au 1 a ． - ＝ = -． ．． 
8l 1 -ecosu r 
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Therefore the final form of the transformation matrix (340) becomes 

(da ¥ 

de 

dw 

dl 

dn 

＝ 

Ida¥ 

8(a,e,W,I,9,u) | :: 
8(a,e,w,I,n,l) I dl 

dO 

¥

J

¥

 

d
a
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e
d
w
d
l
d
n
d
l
d
a
d
e
 

/
 .
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i
_
|
．
¥
(
 

、
¥
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！
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．
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＼

ー

/

0

0

0

0

0

珈可。。
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o

 

0

1

0

 

＼
 

1

0

 

1

0

 

1

迦

釦

ー

1

0

0

1

 

I

_

＼

/

 

＝
 

／
 
u
 
d
 
＼
 

＝ 

1

0

 

1

0

 

1

0

 

宇
0

。
＼
 

0

0

0

 

dw 

dI 

dn 

序J¥ dl J 

(348) 

Appendix C. 3 (da, de, dw, dl, dn, df)→ (da, de, dw, dl, dn, dl) 

This transformation matrix is obtained as a product of the two matrices 

8(a, e, w, I, n, J) 
8(a, e, w, I, n, u) 

and 
8(a, e, w, I, n, u) 
8(a, e, w, I, n, l) 

as 

(da ¥ 

de 

dw 
I = 

dl 

dn 

¥ df J 

＝ 

/ da ~ （血8a 血8e 血8w 血81 血an.~ 8l ¥ 1 da ¥ 

de 迦西88•e 迦函/J8ee 灰迦88ue 迦可/J/JIe 甜諏a/Jue 些丙88e 1 de 
8(a,e,w,I,f!,J) I dw dw 

＝ 
8(a,e,w,I,n,l) dl 茄81 茄81 否81 可81 諏81 丙81 dl 

df2 
＼ 四虹/J珈a 迅虹88e• 坐虹釦如 四虹/J8II 虹皿/Jalln 四虹/JaI I I ¥ ddQ l J 

¥ dl) 

(da ¥ 

de 

8(a, e, w, I, n, J) 8(a, e, w, I, n, u) dw 

8(a, e, w, I, n, u) 8(a, e, w, I, n, l) dl 

d!1 

~ dl J 
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ー
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de 

dw 

dl 

dn 

＼
 
d
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d
e
d
w
d
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J
 

9
.
|
 

¥

|

 

dl ¥
o
o
o
o
 ゚

J
 

珈
一
机

J
 
d
l
¥
 

¥
d
a
d
e
 

}
（
 
¥
i
 

a
-
r
 

皿
r

0

0

 

1 0 dn 

乎J¥。宇 0 0 0 きJ¥ dl J 

゜
ヽdad
e
d
w
 

ー・・・・
1
1
1
-

¥_.|＇’ 

0

0

0

 

゜＝ {349) 

Note that at this point 

誓＝ （~+贔） sinf, (350) 

in the final result (349). This expression is due that we consider the true anomaly f as a 

function of (e, l), which is different from the results in (337) where f is a function of (e, u). 

Appendix C. 4 (da, de, dw, dl, dO, dl)→(dL, dG, dH, dl, dg, dh) 

This transformation matrix contains the differential transformation from Kepler orbital ele-

ments to Delaunay canonical variables as 

Ida~ (dL ¥ 

de dG 

dw 8(a, e, w, I, n, l) dH 
＝ 
8(L, G, H, l, g, h) dl dl 

df2 dg 

¥ dl) ¥ dh J 

(351) 
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＝ 

aa-OLae-aLaw-aLol-OL

紛
m-OL

/

＼

‘

 

aa-agae-agaw-8981-ag叩一
agal-ag

Appendix C. 4.1 

Appendix C. 4.2 

aa-aGae-BGaw-BGaJ-aG

賠
胎

紛
新
務
81-BH
叩
祁

al-BH

Partial derivatives of a 

Representing a by L using its definition, 

L2 
a=一・
μ 

We then know that a depends only on L. Hence 

8a 2L 
8L - μ' 

8a 8a 8a 8a 8a ＝ ＝ ＝ ＝ 8G 8H 8l 8g 8h 
=0. 

Partial derivatives of e 

aa-alae-m
如
可

81-81

盤
翡

Representing e by Delaunay elements using its definition 

G2 
2 - ＝ 1 -e, 

L2 

:. e＝↑亨
We then know that e depends only on Land G. Hence 

J
 

d
g
d
h
 

L
!
＼
 

＼

ー

―

-I

aa-ohae-ohaw-ohol-oh
叩一
Ohol-oh

(dL ¥ 

dG 

dH 

dl 

嘉＝瓢〖い（1- 靡）―½翌＝畠

畠＝羞〖戸＝；（1- 農）―□ (-翌）＝—羞
8e 8e 8e 8e 茄＝百＝西=玩 =0.

(352) 

(353) 

(354) 

(355) 

{356) 

(357) 

(358) 

{359) 

(360) 

Appendix C. 4.3 Partial derivatives of w 

Since the argument of perihelion w is equal to g by its definition, w is independent from all 

the other Delaunay variables than g as 

aw aw aw aw aw 玩＝志＝茄：＝可=ah=o, 8w -＝ 1 8g.  {361) 
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Appendix C. 4.4 Partial derivatives of I 

Representing J by Delaunay elements by its definition 

H 
cosl = -
G' 

which means that J depends only on G and H, which leads to 

81 81 81 81 
- ＝ - ＝ - ＝ - ＝ 0. 
8L 8l 8g 8h 

Partial derivative of {362} by G gives 

H 8I 
--＝ -sinI-
G2 8G' 

81 H Gcosl I 
＝ ＝ ＝ .. 8G -G2 sinl -G2 sinl -G tanl' 

Similarly, the partial derivative of {362} by H becomes 

1 8I 
-＝ -sinl-
G 8H' 

. 81 _ I 
＝一.. 8H. Gsinl・ 

(362) 

(363) 

(364) 

(365) 

{366) 

{367) 

Appendix C. 4.5 Partial derivatives of n 

Since the longitude of ascending node n is equal to h by its definition, n is independent from 
all the other Delaunay variables than h as 

89 89 89 89 89 
=-=-=-=  
8L 8G 8H 8l 8g 

= 0, 
8w 
＝ 8h 
1. (368) 

Appendix C. 4.6 Partial derivatives of l 

Since the mean anomaly l is identical to a Delaunay variable l, 

8l 8l 81 8l 8l _ 8l 
-＝-＝-=-＝-＝ 0, ― 8L 8G 8H 8g 8h -1 8l 

=l. 

Using results of (354), (355), (358), (359), (360), (361), {363), (365), (367), {368), and {369), 

the transformation matrix (352) becomes as 

/ 8a 

屈
可

゜

(369) 

(da ¥ 

de 

dw 

dl 

dO 

¥ dl J 

＝ 

＼

ー

＝ 

＼
 

0

0

0

江
＿
μ
が
字

0

0

0

0

oae-aGoal-BGo 

゜

゜゚
oaH-BGo 

。゚
品
。
ー
一
〗

o
o

゜゚
゜00
1

 

゜゚
ー

0

0

0

 

ーn
 

0

0

0

ー＿Gsioo

0 ¥ 

。
゜
J
 
0

0

0

0

0

1

 

0

1

0

 

I dL ¥ 
dG 

dH 

dl 

゜

dg 

¥ dh} 

o ¥ I 
0

1

0

0

0

 J
 

0

0

0

1

0

 

dL ¥ 

dG 

dH 

dl 
(370) 

dg 

¥ dh J 
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Appendix C. 5 (da, de，血，dl,dn, df)→(dL, dG, dH, dl, dg, dh) 

This transformation matrix is obtained as a product of the three matrices of 

I 茄8a 万8a 茄8a 可紆8 a 面8a 茄a a ＼ 

茄茄8灰8au1 e 姦8姦布a8u e 1 如8e 祁ae 茄a e 
8(a,e,w,I,!1,f) = I 肥舒僻肥胎
8(a, e,w, l, !1,u) ＼ 碧虹aa 紐虹ae 胎侶虹如 僻可肋8f 僻虹胎8n 促虹au J 

/ 姦aa 西aa 和aa 可8可8a • 即函胎88 a • 商aa ＼ 
茄8e 生8e 旦8u2 可8e 

8(a,e,w,I,n,u) = I堕促茄88a1 侮茄81 肥 舒 皿僻百88l 1 
8(a,e,w,I,n,l) 胎肪胎盤

a加紐n 萩an 5 万an T 

＼紐8a 血8w 迦8/ 血89 些8l / 

and 

I 万8a 祁8a 誼8a 可8a 迦8h＼ 

58e 志8e 誼8e 可8e 菰8e 

8(L, G, H, l, g, h) 弱胎絲絲 絲
百80 祁80 誼80 可80 菰80 

＼況8l 茄8l 祁8l 可8l 那8l／ 

as 

8(a,e,w,l,f2,J) 8(a, e, w, I, n, f) 8(a, e, w, I, n, u) 8(a, e, w, I, n, l) 
＝ 

8(L, G, H, l, g, h) 8(a,e,w,I,n,u) 8(a,e,w,I,n,l) 8(L,G,H,l,g,h) 

/ 1 

゜
oヽ/1 

゜
0 ¥ (万8a 

゜゚
0 0 0 ¥ 

1 

゜
1 

゜
万ae 志ae 

゜
0 0 0 

1 

゜
1 

゜゜゚ ゜
0 1 0 

＝ 
志81 祁8H ゜゚゚1 

゜
1 

゜゜゜
1 

゜゜
I 

゜゜゚ ゜
0 0 1 

¥ 0 紐 0 0 

゜虹a-ii I ¥ 
紐゚ 0 0 

゜紐） ＼゚ ゜゚
1 0 0 / 

/ 1 

゜
0 ¥ I 1 0 ° ¥ 

1 

゜
1 

゜1 

゜
1 

゜＝ 
1 

゜
1 

゜
゜

1 

゜゜
1 

゜¥ 0 約inf O 0 

゜皿r I ¥ ゜
血 0 0 
n ゜

色J
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0 ¥ (dL ¥ 

dG 

dH 

dl ゜゚
゜

(371) 

J
 

1

0

 

dg 

¥ dh J 
(372) 

Thus we have reached the conclusive partial derivatives of (317) and (318). 

521 



Appendix C. 6 (da,de，血，di,dO, du)→ (dL, dG, dH, dl, dg, dh) 

This transformation matrix is obtained as a product of the two matrices of 

8(a, e, w, I, n, u) 

8(a, e, w, I, n, l) 

and 
8(a, e, w, I, 0, l) 

8(L, G, H, l, g, h) 

as 

8(a,e,w,I,n,u) 8(a, e, w, I, n, u) 8(a, e, w, I, n, l) 
＝ 

8(L, G, H, l, g, h) 8(a,e,w,I,n,l) 8(L,G,H,l,g,h) 

斑 儲統胎新儲脈
= I 迦8a 迦8e 迦8w 迦8I 迦89 辿8l 沈8w 祁8w 祁8w 可8w 保
茄8I 茄aI 面aI 可8I 諏aI 可8I 窃8I志8I 誼aI 可aI 菰8I 

担紐aa 挫ae 担釦 挫al 坦an 可an 祁an 祁aO 堕aH 四al 菰an 
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Thus finally, 
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dg 

¥ dh J 

Now the forward six transformations in 

(da, de, dw, dl, df2, df)→(dL, dG, dH, dl, dg, dh) 

have all been completed. 
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Construction of Heterogeneous Computer System with 

GRAPE-5 and VPP5000 by Using IMPI 

Mitsuru Hayashi *, T., Ito t, E.,Kokubo t, H., Koyamat, K., Tomisakat, 

K., Wadat, N., Uchidat, N., Asait, E., Uemurat, K., Sugimoto! 

Abstract 

We construct Heterogeneous Computer System with a special purpose computer for astrophys-
ical many-body simulation,GRAPE-5 and a general purpose vector parallel computer VPP5000 
and evaluate the performance of the system. We use IMPI to connect the computers. This 
study is a fundamental experiment to realize a simulation of particle-gas systems by useing the 
characteristics of GRAPE and VPP. We carry out a calculation of self-gravity on the GRAPE-5 
and a calculation of hydrodynamics on the VPP 5000 to solve the physics of a self-gravitating 
contraction of a uniform gas sphere. The evaluation shows that the speed of the communication 
between GRAPE and VPP by using IMPI is slow and the calculation of self-gravity by using the 
straightforward approach on the GRAPE-5 occupies the most part of the calculation. 

1 序論

重力多体専用計算機GRAPEは数万体以上の粒子間に働く重力相互作用を解くシミュレーショ
ン研究において効率の良い計算を実現し、多くの研究成果をもたらしている。一方ベクトル型スー

パーコンピュータは、格子点上の物理量の変化を時間追跡する流れの計算に代表される様な、各格

子点上で同質の演算パターンが繰り返される計算に於いて効率の良い計算を実現し、天体物理学に

限らず、多くの科学技術分野で様々な成果が得られている。年々、計算機能力が向上する中で、粒

子計算、流体計算各々で計算を大規模化し、新たな知見を得る方法に加えて、上記の異なる計算機

を連携し、従来にない計算を高効率に実現し、新たな知見を目指すことは非常に興味深い問題であ

る。特に，銀河団ガスと銀河、 AGN近傍のガスと恒星系のダイナミクス、分子雲からの星団形成、
原始惑星系における微惑星とガス等に代表される粒子ーガスの相互作用を扱う問題に上記システム

の特性の活用が期待される。更に重力多体専用計算機GRAPEを自分の重さで演れるガスのシステ
ム（自己重力流体システム）において、自己重カソルバーとして採用し、特にAMR(AdaptiveMesh 
Refinement)、NG(NestedGrid)等の複雑な構造を持つ格子を用いた流体計算に活用することも、プ
ログラミングが他の手法と比較して容易なことから興味深い。本研究では、上記GRAPEとVPP
の連携計算を実現するための基礎研究として、システムを構築し、具体的に自己重力が考慮された

物理問題の計算を実行し、システムの性能評価を行なった。

* Japan Science and Technology Corporation and National Astronomical Observatory 
fNational Astronomical Observatory of Japan 
tFujitsu Limited 
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2 自己重カソルバーの比較

上記の通り、 GRAPE-VPPの連携によって最終的に実現を目指す計算は粒子ーガスシステムのシ
ミュレーションである。一方、今回は、 GRAPE-VPPでGRAPEに自己重カソルバーの役割を持
たせて実行したシミュレーションを用いで性能評価を行なった。そこで、 GRAPEを自己重カソル
バーとして用いたプログラムと、他の手法による自己重カソルバーを採用したプログラムに関して、

規則的な構造を持つメッシュと、不規則な構造を持つメッシュの場合でプログラミング、パフォー

マンスに関して比較する。

規則的なメッシュの場合プログラミングに関しては、 GRAPE-VPPの連携は自己重カソルバ一部
分のプログラミングに大きな困難はなく、容易と言って良い。一方、自己重カソルバーとして採用さ

れる代表的な手法、 FFT(FastFourier Transform、高速フーリエ変換）， CG(ConjugateGradient、
共役勾配法）、 MG(lVIultiGrid、多層格子）等は高度なプログラミングを必要とする。プログラミ
ングの容易さと言う点では GRAPE-VPPの連携にメリットはある。又、他の方法も高度なプログ
ラミングを必要とはするが、規則的なメッシュの場合実現困難ということはない。

規則的なメッシュの場合パフォーマンスに関しては、 GRAPE-汎用機の連携は直接全ての粒子に
関して自己重力を計算する場合は非常に計算コストが大きくなってしまうが、遠方にある粒子はま

とめて扱う Tree法を用いることで計算コストは軽減できる。一方、 FFT,CG,MGの場合は、計算
コストは、自己重力部分以外の主要部分と同程度以下である。

不規則なメッシュの場合、 GRAPE-VPPの連携はプログラミングは規則的なメッシュの場合同
様容易であるといえる。一方、 FFT,CG,MGは、規則的なメッシュより高度なプログラミングが必
要となり、実現の見通しが極めて良くない場合もある。

不規則なメッシュ、特にAMRの様に位置情報もダイナミックに変動する場合の自己重力流体の
問題に於いてはGRAPEの特性が十分に活用され、 GRAPE-VPPの連携が有効であると言える。

3 異機種計算機システム構築

次に構築したシステムに関して述べる。異機種並列環境をIMPI(Interoperable
Message Passing Interface)を用いて構築した。 IMPIは（閉じたシステムの）並列スーパーコンピュー
タ等で用いられる並列化ライブラリ MPI(lvlessagePassing Interface)を拡張したもので、アーキテ
クチャの異なるスーパーコンピュータ、 WSクラスタ、 PCクラスタ等を結合して並列計算環境を実
現できる。 MPIは個々のスーパーコンピュータ等で用いられる並列化ライプラリーのディファクト
スタンダードとなっているが、 IMPIも米国NIST(NationalInstitute of Standard)によって標準化
を目指して開発された。

構築したハードウェアの構成は、 PentiumIII 1GHzのPCにLinuxをインストールしたものを
GRAPE-5（ピーク性能38.4GFlops)のホストマシーンとして、ギガビットイーサで国立天文台天文学
データ解析計算センターのVPP5000に接続した。本研究に於いては、 VPP5000の1プロセッサを流
体計算に割り当て、 1プロセッサをIMPIのサーバとして用いている。 VPP5000のlPE(Processing
Element)あたりのピーク性能は9.6GFlopsである。

4 GRAPEによる流体の自己重力計算

流体計算の自己重カソルバーとしてGRAPEを用いる方法に関して述べる。流体計算では格子点
上の流体の密度が計算される。格子点周辺には空間きざみから決定される、ある体積を持ったセル

が定義される。そこで、上記VPP上の密度とセルの積から求められる質量が、質点として格子点
上に存在すると仮定して、 GRAPEの計算で必要な入カデータである（粒子の）位置情報、粒子数、
質量をGRAPEのホストに転送し、 GRAPEで重力を計算することで、自己重力の計算が可能とな
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る（図l)。
特に、後述する自己重力収縮のシミュ レーションは、 Cartesian座標を採用しており、座標は固

定されている。そこで、上記シミュレーションでは、GRAPEのホストと VPPに共通の座標梢報、

格子点数（粒子数）を持たせたプログラミングを行なった。

実際にVPPから転送が必要なデータは密度とセルの租から求められる質凪であり、GRAPEで
計算された璽カポテンシャルをGRAPEから VPPに転送する（図2)。

ぐニコ

゜
格子点上に

質畏mの質点
げ セル

図1 ．粒子の質量イメージ (GRAPE計算イメ—::/)

G5+Linux PC 
← 

グリッド情報 …'共通…

I4質量受信(IRECV) 〈
|5.CRAPE5（質量 位置、粒子勁|GbitEther 
6置カポテンシャル送信
SEND' 

VPP 

こグリッ月ド情報

I 
1.（流体計・算）積分エンジン

心量計算 ｀占

”量送信(lSEND)

7重カポテジシャル受信
ャ a去(IRECV)

8重カポテンシャルから

図2.データフローイメージ

5 一様球自己重力収縮の計算

実行した物理計算に関して述べる。初期条件は半径 1，質屈 1の一様ガス球で、ジーンズ波長は

約0.2である。VPPで計鍔される流体コードは時問、空間2次精度のI湯的差分法2段階修正Lax-
Wenclroff法を採用し、上述の通り自己重カソルバーとしてはGRAPE-5を用いた。下区lは、中心密
度の時問変化のとに関して、解析解と解像度の異なるシミュレーション結果を比較したものである。

解像度はそれぞれ413,493,573で、解像度が向上することで、解析解に近付いて行くことが分かる。
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図3．解析解とシミュレーション結果の比較

6 性能評価

計算サイズと計算コストの一覧表を表1に示す。 GRAPE-5の計算を直接計算で実行しているた
め、 GRAPE-5の計算コストが非常に大きなものとなり、通信コストも、流体計算で殆どの計算コ
ストを占める積分エンジンのコストよりも大きなものとなっている。

GRAPE-5の計算に関しては、直接法ではなく、遠方の粒子をまとめて扱う Tree法を採用する
ことで、計算コストを軽減することができる。又、 GRAPE-5はGRAPE-6に変更することで、 10
倍以上のパフォーマンス向上が見込める。

通信コストに関しては、ギガビットイーサのMPIを用いた通信は、生のTCP/IPソケット通信
と比較して通信が劣化する計測結果が得られている。将来的にはGRAPEのホストとVPP間の通
信はMPIではなく、 TCP/IPベースの通信を採用することが望まれる。又、本研究の計測におい
ては、共同利用の通常運用時で、 VPP5000プライマリ PEの負荷が大きな状況で計算実行を行なっ
たために通信性能が低下したことも考えられる。特別にプライマリ PEの負荷がない状況で実行し
た計測では通常時における計測の場合よりも高い通信性能が示された。
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サイズ 173 333 493 653 

積分エンジン 0.007 0.02 0.06 0.13 

通信 0.08 0.13 0.25 0.54 

GRAPE-5 0.04 1.13 11.19 61.0 

サイズ 73a 813 893 97;:S 

積分エンジン 0.19 0.21 0.26 0.32 

通信 0.73 1.00 1.31 1.70 

GRAPE-5 121.5 226.95 398.21 665.62 

表l．計算サイズと計算コスト一覧表

7 GRAPE-6採用時の予想パフォーマンス
本研究ではGRAPE-5を用いて計算を行なったが、既に開発段階から実用段階に入ったGRAPE-6
を採用した場合 {8モジュール構成の GRAPE-6ボードの場合）、ピーク性能の比較から予想され
る性能向上はGRAPE-5の約27倍となる。計測結果より 1293の計算サイズの場合GRAPE-5の計
算時間は約3600秒であることから、 GRAPE-6採用時の予想パフォーマンスは約 139.5秒となる。
Tree法の採用により更に約10倍のパフォーマンス向上が予想され、 GRAPE-6、Tree法を採用した
場合、 1293の計算サイズでのパフォーマンスは約14秒と予想される。通信に関してはギガビット

イーサを用いた場合、 MPIでなく TCP/IPの生のソケット通信を行なうことで60MB/s程度のパ
フォーマンスが実現されていることが、他のプロジェクトで確認されており、 1293の計算サイズの

場合に適用すると双方向で0.56秒となる。以上より、 GRAPE-6、Tree法、生のTCP/IPソケット
通信を採用した場合、 1293の計算サイズの自己重カソルバーとしてのパフォーマンスは約15秒と
なる。一方、 12炉の計算サイズで数値計算ライプラリ FujitsuSSLII VPPを用いた場合のパフォー

マンスも約 15秒であり、 GRAPE-6、Tree法、生のTCP/IPソケット通信で自己重カソルバーを
構築することで、ベンダー提供のライプラリ程度の効率が見込める、

8 まとめと今後

粒子ーガス系のシミュレーション実行のための基礎研究として、重力多体専用計算機GRAPE-5と
ベクトル型並列計算機VPP5000の連携システムをIMPIを用いて構築し性能評価を行なうことで、
上記シミュレーション実現のために有用な知見を得ることができた。特に通信に関しては、 MPI通

信ではなく、 TCP/IPのソケット通信を用いて通信することで、効率の良い連携計算が実現できる

ことが予想される。 GRAPE-6（ピーク性能約lTFlops／ポード）の採用、 Tree法の採用によって、ベ
ンダー提供の共役勾配法を用いて自己重力の計算を実行する場合と同程度の効率が期待できる。今

後は、 GRAPE-6を用いた性能評価を実行、 AMRを用いた自己重力問題のためのプログラム開発

と性能評価の後、粒子ガス系を解くためのアルゴリズム、プログラム開発を計画している。
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地球の時間暦の非線型調和解析

Non-linear harmonic analysis of the time 
ephemeris of the Earth 

原田渉（東京大学）

Wataru Harada(Tokyo University) 

福島登志夫（国立天文台）

Toshio Fukushima(National Astronomical Observatory of Japan) 

abstract 

A time ephemeris of the Earth is related with a relativistic time-dilation and is represented 

by the solar system barycenteric time(TCB) and the geocentric coordinate time(TCG).At 

present a time ephemeris of the Earth is obtained by numerical integration（恥kushima

1995 A&A;Irwin &恥kushima1999 A&A), but it is inconvenient for practical use. In 

this paper, we decomposed the results of the numerical integration into the Fourier series 

and the mixed secular terms. Because the frequency in the series was generally unknown 

we tried non-linear harmonic analysis by which the frequency was solved simultaneously. 

Actually we adopted the data calculated from the JPL's development ephemeris,DE405, 

and estimated parameters by using non-linear least square method.Our calculations re-

produced the time ephemeris of the Earth more accurate than that obtained the previous 

analytical theory {Fairhead, Bretagnon & Lestrade 1995) 

1 Introduction 

研究の目的は非線型調和解析プログラムの確立である。つまり解析的理論があまり正確であるとは言い難

く、数値積分でしか求められないようなデータがある時、このプログラムが確立されていれば、そのデータの

平均値が精度良く求まるばかりでなく、数値積分では難しい長期予測も可能になる。そこで今回の物理ター

ゲットとして地球の時間暦を選んだ。地球の時間暦、すなわち太陽系重心座標時TCBと地心座標時TCGと

を結びつける関係式

TCB -TCG = I g(t)dt, g(t）三i（咋(t)＋芋） (1) 

は、現在、数値積分 (Fukushima1995 A&A; Irwin & Fukushima 1999 A&A)で求められているが、その

ままでは使いづらい。ただし、 UE(t)、VE(t)は地心における重カポテンシャルと地球の速度で、 tはTCBで

ある。ここで平均値はLc=〈g(t)〉で与えられ、過去の研究として

Le = 1.48082685594 X 10-B士1.x 10-17 (Irwin & Fukushima 1999) (2) 

が求められている。目標としてはこの平均値Leのuncertaintyを目安に、残差を過去の研究で行われたもの

よりも小さくなることを目指す。それはつまり、今回の調和解析による結果が過去の研究よりもより精度良

く求められていることを意味する。

533 



2 非線型最小二乗法

JPLの月惑星暦DE405を用いてg(t)を3日おきに表として求め、残差平方和¢を

N K 

</> = L [a1 + a2tn＋L { a2k+1 sin(21r J山）＋a2k+2cos(2弘 tn)}-g(tn)]2 (3) 
n=l k=l 

とする。これはデータ g(t)をlinearな部分 (a1+ a2tn)とFouriertermでfittingしたときの残差平方和で
ある。この残差平方和を最小にするようなパラメーター推定を行いたい。ここで未知数はそれぞれの項の係

数ai、Fouriertermの周波数成分fk、そしてFouriertermの項数Kである。ここで¢が最小になるにはai

の偏微分が0となるようなaiを求めればよい。それぞれの項の係数aiに関して残差平方和は線型なので、¢

をaiで微分することによって次式(4)の正規方程式を求め、それを解くと aけま一意的に求まる。

A•a=b, Aii 
82¢ 
・ • = 
8ai8ai 

(4) 

しかし、周波数成分は非線型になるので一意的には求めることはできない。そこで次式(5)のようにテイラー

展開から△fを求め、それを繰り返して真値に近づける。
82¢ 

△f=-H一色 ， Hnm=― 
紆 8fn8fm

(5) 

また、未知数である Fouriertermの項数Kは求めることができない。そこでk= 1から 1つずつ増やし、
その都度、非線形最小二乗法を行うことを考えた。その非線形最小二乗法と全体のアルゴリズムをまとめた

ものがFig.Iである。

No 

Fig.1 Algorithm of non-linear harmonic analysis 

534 



2.1 fKの推定

Fig.1から分かるように、非線型最小二乗法を行う前には必ずfKの推定を行わなくてはならない。精度良
く推定してやるために、精度がデータ数に左右されてしまう FFT(Fast Fourier Transform)を使わずにペ

リオドグラムを使った。その時の最も大きい振幅を持つ周波数を新しいfKとした。さらに精度良くするた
めに、ヒ°ークの位置付近で放物線近似 (Brent,R.P. 1973)を使って周波数を求めている。 Fig.2はK=5の

ときの残差、つまり周波数成分を 5つ取り除いた後の残差をペリオドグラムにかけたものである。

apr1111dEe 

6e-13 

5e-13 

4e-13 

3e-13 

2e-13 

1e-13 

°。 50 100 150 200 250 300 350 400 450 500 
period(day) 
Fig.2 Estimation of J K 

2.2 H-1の更新

上式(5)に示した方法を逆Hesse法と呼ぶ。また別の方法として、周波数空間における¢の傾きを計算し

て、最も傾きの大きい方向を選び、その方向で1次元の最小値探索をする。これを繰り返して真値に近づけ

る方法を最急降下法という。しかし、これらの方法は周波数空間において最小値付近の形状が複雑な場合、

Fig.3のように無駄な繰り返しを行ってしまう (Fig.3の曲線は周波数空間における¢の contour)。今回は

Hesse行列Hを容易く計算できることから、無駄な繰り返しを極力抑えることのできる準ニュートン法を

使う。これは反復にしたがって Hesse行列の逆行列の近似を高めていく方法である。代表的な準ニュートン

法として DFP法 (Davidon-Fletcher-Powellalgorithm) とBFGS法 (Broyden-Fletcher-Goldfarb-Shanno

algorithm)があり、ここでは後者のBFGS法を使った。

start 

Fig.3 Iteration of frequency space 
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3 混合永年項 (Mixedsecular term)問題

3.1 混合永年項の出現

周波数成分が非常に近接している場合

(a＋△a) sin { (w十△w)t}-asin(wt) ~ a△wtcos(wt) (6) 

となり tsinやtcosの項（混合永年項）が現れてしまう。これはデータ区間を区切ってしまったために見え

るもので、 Fouriertermのみでfittingしようとしてもなかなか収束しない。

3.2 拡張ペリオドグラムの共嗚現象

fKの推定のために、今まで使ってきたペリオドグラムから混合永年項を基底関数に含む拡張ペリオドグラ
ムを考えてみた。

¢'＝L { S sin(21r ft) + C cos(21r ft) + S't sin(21r ft)+ C't cos(21r ft) -g(t)} 2 (7) 

つまり、上式(7)で正規方程式を立て、そこから S、C、S'、C'を決定して vs2+C2をFouriertermの振

幅、 VS’2+C’2を混合永年項の振幅とした。そして、 Fourier成分に関するペリオドグラム、混合永年項成

分に関するペリオドグラムを作った。これらをまとめて拡張ペリオドグラムと呼び、それらの最大振幅を持

つ周波数を見積もることによって、 fKの推定を行う。

～テスト～

9test(tn) = Ssin(21rfitn) + C'tcos(21rhtn), (Ji= h = 0.1) (8) 

この拡張ペリオドグラムを使って式(8)のテストデータで確認してやると、 Fig.4に見られる共嗚

現象のような偽の信号が見えた。（図①④のdoublepeakが偽の信号）

s = 0, c'= 0.5 s = 1.0, c'= 0.5 

1I① 
0.8 

..;s吐び名言.a届 0.6 
0.4 

0.2 

秤゚
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✓s, 2 + c' 2 晋喜̀’ 0 . 6 
0.4 

0.2 

゜0.09 0.095 0.1 0.105 

③
 

④
 

0.11 0.09 0.095 

frequency 

Fig.4 Test of extended periodogram 

0.1 

frequency 
0.105 0.11 
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3.3 共鳴現象の解決策

この共嗚現象は単一周波数で同時にパラメーター推定することによって起きている。同一周波数で考える

なら、 Fouriertermの方が必ず混合永年項よりも大きいと仮定すると、先に fittingされるのは必ずFourier

termで、そのとき混合永年項のペリオドグラムに偽の信号が見えていても関係がない（図③④）。またFourier

termがfittingされた後 (S= 0)は混合永年項に偽の信号は見られない（図①②）。よって、今回のalgorithm
(K を1つずつ増やす）を使えば、共嗚現象による偽の信号に惑わされることはない。

4 結果

まず、時間暦の式における租分する前の関数g(t)をこの非線型調和解析プログラムに適用した。この時の

得られたパラメーターa，、方を手で積分してやり、解析解 (Fairhead,Bretagnon & Lestrade 1995)と数値

積分との比較を行った。これら 3つの中で、 DE405を直接数値積分したものが最も信頼できるものである。
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Fig.6 Comparison our results with numerical integration 
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これらの図 (Fig.5Fig.6)から明らかなように解析鮨より精度良く求まっていることが分かる。しかし、 Fig.6

を見るとまだ引ききれていない周波数成分があるようである。そこで、この比較したものの残差をペリオド

グラムにかけてやると下図が見えた。
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Peridogram 

このペリオドグラムを見ると低周波数成分（長周期成分）が引ききれていないことが明らかである。これは

和分前にScos(2冗ft)で得られたデータは、籾分してやると S/(21rf) sin(21r ft)となり振幅が1/(21rf)倍され

てしまう。つまり租分する前と禎分した後では周波数に対して璽みが変化するということである。具体的に

は稼分前のデータを調和解析すると、短周波数（長周期）成分の方が長周波数（短周期）成分より軽視され

るといえる。よって無駄な項を拾わないように租分後のデータに同様にして、非調和解析解析を行った。そ

の時の残差の図がFig.8である。ここでの Kは籾分前も積分後もほぽ同数とした。そしてその残差をペリオ

ドグラムにかけたものがFig.9である。
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このペリオ ドグラムは明らかに Fig.7より whiteであるといえるので、これは明らかに租分後のデータを非

線型調和解析した方が少ない項数で精度良い結果を得ることができるといえる。このことはLeの推定誤差と

パラメーター数の関係からも明らかでその図はFig.IOである。

1 e-1 O 

__JC.J 1 e-12 

ち
如 1 e-14 
e 
i.... 

① 

c: 1 e-16 
0 

忌
1 e-18 E 

ぢ
Q.) 1e-20 

1e-22 
1 

一l-
ヽ
ヽ
ヽ
ヽ
ヽ
ヽ

l-
一一

j
 

ヽヽ

一ヽ

‘‘‘‘‘L2) 

‘‘̀  

‘‘‘‘‘‘‘̀ 

・・・... p) ．． 

.、

10 100 1000 10000 

number of parameter 
Fig.10 Estation error of Le 

This figure show (l)analysis of data without mixed secul紅 terms(full

line), (2)that of data with mixed secular terms(dashed line),and (3)that 

of integratede data with mixed secular terms(dotted line) 

このLeの推定誤差の結果と残差の結果 (Fig.8)は、明らかに過去の研究（恥kushima1995 A & A ; Irwin 

＆恥kushima1999 A&A)よりもより精度の良い結果が得ることができた。
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5 まとめ

5.1 結論

今回作った非線型調和解析プログラムにより、地球の時間暦をよりよい精度で解析することに成功した。こ

れは、数値積分とは違いデータがFouriertermや混合永年項のパラメーターとして得られているので長期予

測も可能である。また、 g(t)の平均値である Leも精度良く求めることができた。

Le = l.48082684872271 X 10―8士6.X 10―22 

付け加えるなら、混合永年項による共鳴現象に対して、プログラムに内装した拡張ペリオドグラムのアルゴ

リズムもまとめることができた。

5.2 今後の課題

まずは月・惑星暦DE405の全範囲 (1600-2200)において、非線型調和解析の計算しなおさねばならない

だろう。他には非線型調和解析プログラムの他の物理現象へ適用することが課題である。また、今回の地球

の時間暦は 1次元の調和解析であったが、物理現象によっては多次元の調和解析が必要になることもある。

よってこの非線型調和解析プログラム自体のベクトル化も課題となる。

6 References 
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ケプラー運動に対する対称線形多段法の問題点

Problems of Symmetric Mulistep Methods for Keplerian Motion 

山本一登（総研大／国立天文台）
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tadato. yamamotocnao. ac. j p 

Department of Astronomical Science, Graduate University for Advanced Studies, 
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ABSTRACT 

Symmetric mulistep methods can avoid the linear energy error, but these methods suffer 

damages of resonances and instabilities at special stepsizes when integrating with non-

linear equations like Keplerian motion. We consider whether there would be any method 

of avoiding this phenomenon. 

1 はじめに

対称線形多段法の特徴と今日までにされてきた研究についてまとめておく。

◆主な特徴

〇線形多段法なので任意の次数の公式が作れる

◎エネルギーや角運動量などの保存量の誤差がある範囲内に留まる

X ケプラー運動のような非線形な系に使用すると刻み幅共鳴を起こすことがある

x離心率が大きくなるにつれて安定な刻み幅の最大値が小さくなる
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●これまでの主な研究の流れ

• 1976年、 Lambert,J.D. and Watson, I.A. 
対称線形多段法に関する最初の論文

• 1990年、 Quinlan,G.D. and Tremaine, S. 
8、10、12、14次の公式が導かれ、ケプラー運動に対する数値実験が行なわれた、

しかし刻み幅共鳴の存在には気が付かなかった

• 1998年、 Fukushima,T. 
Quinlan達よりも良い性質の公式を導くが、ケプラー運動に対してはうまくいかない

• 1999年、 Quinlan,G.D. 
刻み幅共鳴の存在を知り、その起源と対処についての研究だが、

プレプリントのみで論文にはなっていない

• 2000年、 Arakida,H. and Fukushima, T. 
K-S変換によりケプラー運動を調和振動子化（正則化）することで

刻み幅共鳴の問題は解決した、ただし N体問題には適用が困難

K-S変換によりケプラー運動を正則化すればこの刻み幅共鳴の問題は回避できるのだ

が、適用範囲が限られてしまう。今回の目的は適用範囲を広げるため、ケプラー運動のま

まで使用したときに刻み幅共鳴を回避および減少することができないか考えてみた。

2
 
刻み幅共鳴

刻み幅共鳴がどのように現れるのかを Quinlanand Tremaineの公式を例に見てみる。
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Harmonic Oscillator 

ケプラー運動の場合、次数および離心率の大きさに依存して共嗚現象が現れるのがわか

る。調和振動子の場合は共鳴現象は現れない。 K-S変換によってケプラー運動を調和振

動子化した場合でも、方程式の性質が調和振動子と同じになるため共鳴現象が起こらなく

なる。
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3 対称型公式の作り方

まず、良く知られている Stormer-Cowell型の Explicitの場合の一般系は以下のような

形である。

Xn+l -2Xn + Xn-1＝が（f3ofn+ ・ ・ ・ +/3kfn-k) 

次数によって右辺の項の形が変わる。

一方、対称型公式の Explicitの場合は次のような形になる。

Xn+1 + a。%+01Xn-l + 0匹n-2+a江n-3+a。Xn-4+ Xn-5 = 

(1) 

= h2(f3ofn + f31fn-l + f32fn-2 + f31fn-3 + f3ofn-4) (2) 

右辺の項の個数＝左辺の項の個数ー2

係数 0の値は母関数 G(t)を使って簡単に求められる。
例） Quinlan and Tremaineの8次の公式

G(t) = 
1 -2t + 2t2 -1 t3 + Ot4 -1柱＋2t6-2t7 + t8 

t(logt)2 
(3) 

これを t=lのまわりでテーラー展開すれば係数が得られる。 tの0次の係数が fnの係

数に対応する。

Xn+l -2Xn + 2Xn-1 -Xn-2 + OXn-3 -Xn-4 + 2Xn-5 -2Xn-6 + Xn-7 = 

17671 _ 3937 _ 20483 _ 12629 
＝西酎n一面い＋而西い—面~fn-3

20483 _ 3937 _ 17671 
+~fn-4- — fn-5 +―  
4032 2016 12096 

fn-6 (4) 

次に、新しく作った公式の安定な刻み幅の最大値を解析的に調べる。

それには調和振動子x= -x = fを用いて

Xn+l + Q。%＋・..+ Q。Xn-k+l+ Xn-k = (5) 

＝ーが((3。%＋(31Xn-l +.'. +(31Xn-k-2 +(3。％-k-1) (6) 

叩 ⇒がと置き換えてがの値による zの多項式の根の振舞いを考える。

初期値 H2=0のときの根の場所

・対称型

複素平面の実数軸上の 1に重根、他は単位円上

• Stormer-Cowell 
複素平面の実数軸上の 1に重根、 0に多重根
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Fig.6 Quinlan and Tremaine 8th Order 

Position of the roots by the value of H2 in a complex plane 

がの値を増大させていき多項式の根が一番最初に単位円の外に出るときの値が安定な

刻み幅の最大値になる。 Fig.6参照

4 刻み幅共鳴の出現場所

Quinlan and Tremaine 8次の場合のが＝0の根は

z8 -2z 7 + 2z6 -z5 + Oz4＿分＋2z2-2z + 1 = 

= (z2 -2z + 1) (z2 -2 co岳＋i)(z2-2co岳＋1)(z2 -2co岳＋1)
(7) 

Quinlanによると共鳴は

Steps 21r 

Period 0 
=— x n , n = 1, 2,・・・ '0は上の場合

21r 21r 41r 

6'5'5 

の場所に出現し nが大きくなるにつれて共鳴の大きさは小さくなっていく。
2T 2T 

6 
また、 一 x6、— x5 でそれぞれ 1 周、 5、 6 の最小公倍数 30 の倍数で共鳴が起こる

5 
となっている、これを不安定と呼び、運動方程式を離心率の幕乗で展開したものに由来す

るとなっている。こちらのほうが仕組みが複雑である。
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●数値実験

8次の場合はフリーパラメターは3つ、値は 0< 0 < 2rrでそれぞれ異なるものを選ぶ。
刻み幅の増分を0.1／周期、離心率は e= 0.3、積分期間は1000周で計算する。

1e+01 

1e+OO 

1e-01 

―JO』
』

W
U
O
!
J
!
S
O
d

1e-02 

1e-03 

1e-04 

1e-05 

9

9

9

9

9

9

9

9

9

9

9

9

9

9

9

9

9

9

9

9

9

9

9

9

9

9

9

9

9

9

9

9

9

9

9

,

 工
6

—
↓

2
 

•••••••••••• 

↑
竺
5

．．．．． 

1e-06 
50 

Fig.7 

60 

Example 1 

90 100 110 

Steps per Period 

Quinlan and Tremaine 

70 80 120 130 140 150 

60、90、

―JO』
」

W
U
O
!
l
!
S
O
d

120が不安定によるもの、

1e+01 

1e+OO 

1e-01 

1e-02 

1e-03 

1e-04 

1e-05 

41r 

5 
ーに由来する共鳴はこの条件では判別できない。

9

,

 

．．．．．．．．．． 
,., ••••••••••••• 

,＇ 

…・:・:＇9
9

9

,

＇：・…・:＇’，＇八

ii．芦l
:

9

9

,

．

• 

竺
4

＾
 

1e-06 
50 60 70 80 

Fig.8 Example 2 
21T 
0=-
8 

90 100 110 

Steps per Period 

21r 21r 
4'4  

5 

120 130 140 150 

547 



1e+01 

1e+OO 

1e-01 

0
2
0
3
 

―

―

 

e

e

 

1

1

 

-」

0
ヒ
w
U
O
!
J
!
S
O
d

1e-04 

1e-05 

1e-06 
50 60 

Fig.9 Example 3 

70 80 

2tr 
0=-
7 

90 100 110 120 130 140 150 

Steps per Period 

2-,r 21r 

6'5  

5 問題点

・根の配置を工夫しても共鳴を除去することはできないが、

共鳴と共鳴の間隔の調節は可能である。

・無摂動のケプラー運動に対して共鳴の場所が予測できたとしても、

摂動がある場合周期の変動とともに共鳴の位置が移動してしまうと

使用する刻み幅の決定が困難になる。

•今の時点で対称型の多段法を使う場合、 K-S 変換が可能な問題には適用可能だが、

K-S変換せずに対称型の多段法を使うことは危険である。

6 今後の方針

対称型の多段法をケプラー運動に対して安心して使用できるようにするために

・線形多段法の公式を拡張

・要素変化法に一階の微分方程式用の多段法の適用

等を考えている。
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abstract 

A relation between lifespan of a species and its environment is studied using a 

dynamical model. We malce a simple model of a species under single parameter envi-

ronment. Our model has parameters which describe the dispersion of character taken 

over between a parent and a child, width of allowance to survive under a given envi-
ronment, changing rate of the environment, and energy flux to support whole bodies 

in a species. We do not introduce any direct interaction between any individuals or 

any other species to focus our attention on lifespan by environment. 
Under linearly changing environment the population of a species grows exponen-
tially or extinct without any limitation of reproduction. With limit of energy supply 

the population can be stable and optimal lifespan always exists which gives the largest 

population. 

1 Introduction and Background Questions 

We believe all species evolve through mutation and natural selection. Variety of species 

is throught to be a result of combination work by heredity, mutation and natural 

selection. 

Using technology in molecular biology we can read DNA code itself. One of the 
important results in this field is that many species have a telomere in its DNA, which 

is reduced at a cell division and limits the number of cell divisions. The function of 

telomere seems irrational, because due to the function every individual of a species can-
not keep itself forever even under an ideal environment; it requires reconstruction of 

individuals from the first stage. Why individuals of actual life form has finite lifespan? 

Is it possible to understand this is a result of competition between species with differ-

ent lifespan under the same environment? Is there any optimal lifespan to maximize 
population of a species? 
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On the early physical and chemical Earth environment around organisms, or lifef or-

m, has secularly changed: the amount of dangerous radiation (Boothroyd et al., 1990), 

total area of continents (Condie, 1989), the total amount of carbon dioxide in the atmo-
sphere and in the sea (Tajika, 1992), the avarage temperature of the atmosphere and 
in the interior of the earth, the amount of atmospheric ozone, the spin rate of Earth 

(Tajika, 1992), strength and frequency of tidal force by the Moon, the gravitational 

flattening of the Earth, and solar insolation (Ito et al., 1993) 

To suvive for a long time any species must have adapted to the changing envi-
ronment (Losos et al., 1997), although a species must keep its character over many 

generations to identify itself. A genetic system and reprodution with dispersion of 
genetic characters should overcome this contradictory requirement. If it is, an origin of 
telomere's function should be thought as a result of an evolutional process and there 

should be some relations between environment and lifespan. 
To access this problem we make simple evolution models of a species and study 
its response of the number of individuals to a change of environment. Our models 
consider effects of heredity and natural selection by a given enviromnent but are not 
introduced any direct competition between any individual of a species. Our models are 

not introduced any direct effect of rival species. 
In this report we construct an analytic model and its response under secular (linearly 
changing) environment as a first step. 

2 Constant Reproduction Rate Model 

2.1 Basic A ssumptions 

To construct a model we put the following assumptions. 

Basic assumption 1. (one-dimensional environment) Environment around the 

species can be parametrized along a single dimentional axis. The parametrized en-
vironment is asigned by a parameter x, and a genetic character of an individual is 

parametrized along the same axis. 

Basic assumption 2.(neutral evolution) (Kimura, 1983) A genetic character of an 
individual is independent of its environment. Propagation of a genetic character of 

individuals follows a stochastic process. 

Basic assumption 3. {Markov process) A genetic character of an individual is set 

only by that of its direct parent but it diviates from parent's character as a stochastic 
process. 

Basic assumption 4. (statistical approach) The character of an individual is 
only evaluated whether it will survive until it will reproduce its own children. The 
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survivability is determined only by a difference between the genetic chararacter of an 

individual and an environment. 

Basic assumption 5. (characterization of a species) The species is characterized 

by a property of propagation of a genetic character and survivability of individuals. 

2.2 Assumptions and Parameters for Formulation 

Under the basic assumptions mentioned above we set following parameters and func-
tions of their relations. 

Assumption for formulation 1. (instantaneous evolution) All perants of a 

species are extinct just after birth of their children. Overlapping period between two 

generations is negligibly short. Natural selection is done just after the birth time of 

individuals under the environment at that time. 

Assumption for formulation 2. (Gaussian dispersion of a genetic character) 

Based on the basic assumptions of neutral evolution, Markov process, and character-

ization of a species, a parent with character x'bears a child with character x at a 

probability of g（の一x').The probability g(x -x') is assumed to be a Gaussian with 
an e-folding width Ugo 

Assumption for formulation 3. (Gaussian survivability) Based on the basic 

assumptions of neutral evolution, Markov process, and characterization of a species, a 

child with character x can survive until making next generation under environment咋

with a probability s(x -xE), The survivability s(x -x') is assumed to be a Gaussian 
with an e-folding width aE・

Assumption for formulation 4. (the same number of child for each indi-

vidual) The number of children for an individual parent, or reproduction rate, is c. 

Based on the basic assumption of statistical approach, the value of c is the same for all 
individuals of a species. Based on the basic assumption of characterization of a species 

c is constant for any generation. 

Using them we will derive a population equation between two generations. We use 

the following notation. 

• Population of generation k is Pk. 

• Environment at the time t is互 (t).

• Distribution of a character for generation k is N(k, x). 

• The origin of time t = 0 is set to the birth time of generation O. The origin of 
environment is set to be the value of XE(t) at t = O, or xE(t = 0) = 0. 
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• Lifespan of an individual, which is defined the time between two generations, r. 
The lifetime r is constant for all generations based on the basic assumption of 

characterization of a species. It means birth time of generation k is t = kr. 

Using all these notations the distribution of a character for generation k + 1 is given 
by 

N(k + 1,x) = s(x —在）／ N(k,x')cg(x -x')dx'. (1) 

Population of generation k + 1 is 

Pk= f N(k,x)dx 
恥＝［N(k + 1, x)dx. 

(2) 

2.3 R ecurrence relations between two generations 

We derive a recurrence relations between generations k and k + 1. For the first step 
we derive a steady state solution under steady environment to find a basic property 
of solutions. We set a genetic character distribution of generation k is a Gaussian 
distribution at first. (Actally this is a weak constraint as shown in a later section.) If 

the center and e-folding width of the distribution are Xk and(J'k, respectively, we get 

N(k,xー叫）＝PkGauss(x一叫心），

where Gauss(x, u) is a nomilized Gaussian defined as 

Gauss(z,u)＝六expげ）．
Using assumptions for formulation we put 

g(x -x') = Gauss(x -x'，町）

and 

s(x —咋(t)) ＝ふ西Gauss(x —咋(t)，昨）．

Using the basic邸sumptionsu E, u 9, and c are constant. 
With (5) and (6) Equation (1) gives a recurrence relation, 

N(k + 1,x) = s(x —在(t))f N(k, x')cg(x -x')dx' 
= PK缶Gauss(z —咋(t)，咋）／ Gauss(x'-Xk, uk)cGauss(x -x'，町）dz'

=CPk一ユ—exp （一与ユ畔 Gauss(x―土ヰ丘⇒早立五五叩詞 ％＋吋十~) （ ％＋吋＋砂’況叩リ
= Pk+1Gauss(x一叫＋1ぷ＋1）
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This means the distribution of generation k + 1 is also Gaussian if that of generation 

k is Gaussian. And the last equality in (7) comes, therefore, from the corresponding 
expression of (3) for the generation k + 1. Comparison of both sides of the recurrence 
relation of distributions gives three recurrence relations between parameters. 

恥＝C (1E exp (-（zkー咋(t)）2
団 (1t+(1；+(1危）凡， (8) 

四
(1k+l =(1E 
占＋6；＋(1ぶ

(9) 

and 

吐叫＋（吐＋外）咋
Xk+l = 

吐＋吋＋6危・
(10) 

3 General Property of the Constant Reproduction 

Rate Model 

3.1 Convergency of distribution 

3.1.1 Width of distribution 

The recurrence equation of uk (9) shows that a width of the genetic character dis-
tribution, or u k, is independent of current environment在， andits numerical trend 

depends only on two generation-independent parameters u9 and uE, We can easily get 

the general solution of Equation (9) as 

where 

2 
6k = 

1 

（こ丁(1+ 1) 2 
+(J' 00' 

I 
(Ti 巧荘戸可― 2(T迄十(T;

(11) 

吐＝塁（□可— 1) ， or %＝↓び（□召— 1)- (12) 
This always converges to a finite value, uk→ (1oo, because the base of the power, 
叶＋叶＋心＞ 1.
,L・ 
If means that width of the final distribution converges to u00, if the initial distri-
bution is Gaussian with any width u。orcenter position x0・
For large k it is enough to only consider the case of Uk = <100・
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3.1.2 Center of distribution 

Using the result of Uk = u00 for large k we can rewrite the recurrence relation (10) 
of the paramter Xk, which represents the center of a genetic character distribution for 

generation k, as the following: 

(J'和＋（吐＋叶）在
Xk+l = 吐＋6；＋(J'危． {13) 

This is reduced to 

は＋吋＋6社）叫＋1=<T和＋（吐＋外）咋(t)

(u~ ＋叶＋ 6危）（Xk+l -XE(t)) = <T危（叫— XE(t)).
(14) 

In this report we only consider the following two simplest cases on a change of the 

environment as a first step of studies. 

Case of steady environment (constant互 (t)for t) 

A steady environment is represented by咋(t)＝咋(0)= XE-Using Equation (14), 
the parameter叫ーxE is a geometrical series with a constant ratio 

社．
L 2 

9品＋咋＋9E
く 1,and

Xk always converges as Xk→xE(t) = XE-Note that互 (t)is a constant because of a 
steady environment. 

Case of linearly changing environment (xE(t) changes with a constant velocity) 

A linearly changing environment is represented by xE(t) = XE(kr) = k(xE(l) -

XE(O)) = k出ET.In this case Equation (14) is reduced to be 

必＋吋＋咋． 6危吐＋叶＋ 6危．
叫＋1- (k + 1)知＋吐＋6; 年＝吐＋6；＋6み(xk-k如＋（吐＋吋如） • 

Then a general term of the series is 

叫—咋(t) ＋ミ霊u危年＝ （吐＋U6い）k-1(Xo —咋（0) ＋ミ言：：危社r).
Considering a base of the power term is 

託．
L,  

(T迄＋吋＋咋
く 1,the series of x kー咋(t)always 

converges Xk —咋（t) →-全苔牙如atk→oo. That is xk → (k —宅旦差）年．
This means that center of the cμstribution Xk asymptotically converges to the po-

sition with constant offset (1＋示）年 fromthe envirorunent咋(t)in the case of 
a linearly changing envirorunent. 

Therefore we define a new notation x。fTselby 

吐＋叶＋咋．
叫恥＝ 吐＋6； X訂＝ （1+6:ら）如 (15) 

in the case of linearly changing environment. 
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3.2 Dependence on an Initial Distribution 

In the previous section we show that any Gaussian distribution of the model converges 

to a Gaussian distribution with the same width and the same offset from an environ-

ment at t→oo, or k→oo, if the environment changes linearly. 
We will show that a convergent distribution is also the same for any practical distri-

bution. From a view point as a transformation on the function N(k, t) the recurrence 

equation (7) is a linear process. If we take Dirac's delta function as a initial distribu-

tion, or N (0, x) = 8 (x) at k = 0, N (1, x) is obviously a Gaussian. Therefore any linear 

combination of the delta functions, which can be called as any practical functions, con-

verges to the same Gaussian. The converged distribution N (k = oo, x) depends only 

on genetic character dispersion width u g and width of survivability u E for any initial 

distributions. 

3.3 Population under Linearly Changing Environment 

3.3.1 Growth of population of a species 

Through the discussion above we get that any actual distribution of genetic character 

alway converges to a Gaussian distribution with Uk = u 00 for large k. If the environment 

is steady, the center of the distribution is Xk =XE= 0 for large k. If the environment 

changes linearly,叫一咋(t)＝名。ITsetfor large k. 
In this section we discuss population of a species Pk. V sing converged values u k = 

Uoo and Xk -XE(t)＝の。rr匹 tthe recurrence equation (8) is reduced to be 

恥＝C (J'~exp(-~恥 pk戸吐＋6；＋(J'f)

=C苧exp□9)且 (16) 

This is a simple geometrical series. Growth of Pk is dependent only on a value of 

c 声 exp（一苧）． Inother words growth of Pk is categorized by the following 
咋・

three cases using a parameter Csしatas defined by 

Cstat = 1 + 6ビ戸expい亨）． (17) 

• In the case of c > Cstal: Population Pk grows exponentially, and Pk→oo at 
K →00. 

• In the case of c = c叫al:Population Pk is constant. 
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• In the case of c < Cstat: Population Pk decreases exponentially, and Pk→0 at 
K →oo. In this case the species will be extinct. 

In this model a population of a species is constant only c = ~stat• The system is 
exponentially unstable. 

3.3.2 Relation between population and model parameters 

Using expression of Cst.at. in (17) we discuss the response of population of a model species 
and its physical interpertations. 

Using Equation (12) we get 

心＋叶 16: 
6危＝』碍＋1), (18) 

and 

が（~)2q,L・  ． 
2 ＝ っ

6E1+ 
, OO +¢• ？ 
り 'q

勺；•

(19) 

心＋9；
Then Equation (17) is expressed by u =--p as the following: 

,L・ 

心＝（u+l)exp (2¥？年）， (20) 

where△咋＝（芍）2.
The equation (20) clearly shows Cstat becomes minimum at△UE = 0, or切戸＝ 0,

because u is independent of△UE = 0. 

Using 
8 du 8 (u+1)2 8 

亨
＝ ＝ 

(T}）惰）i) 8u u(u + 2) 8u 
we get 

8(c:tat) （U+ 1 (U+ 1)2 
噸）
=exp(2 年）（ 3u2 --z:,) u4(u + 2} u3 -2△uE(u + 2)(u + 1)). (21) 

A right hand of Equation (21) shows that a sign of言り isthe same as that of 
u3-2△咋(u+ 2)(u + 1), because of u > 0. Using△uE ~ 0 only one positive solution 
on u of 

u3 -2△匹(u+2)(u+l)=0 (22} 

always exists for any value of△咋＝¥> 0. Setting the solution as u = u。凶9
(TJ:.’ 

c!Lal is minimum at u = u。pl• We can include the same statement formally for the case 
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of △咋＝~ = 0, because it gives c;tat = u + 1 from Equation (20) and Cstat is 
咤・

minimum at u・ = 0. 
Using Equation (19), we get（合）。ptcorresponding to u。pt,and if Uopt ~ 0,（号）。pt
is always positive or zero. This means that there is only one ;; =（ユ） ＞ o which 

吐吐 opt一
gives minimum Cstat for any午uf. • 
Using Equations (18) and (19), Equation (22) is written by y =叶／6危as

炉ー4△u危(y+ 2) = 0, 
or 

国正）冨＋2)= 0. 
6E (J'E 

2 
(J'E 

{23) 

At the only one solution of Equation (23) on号，thereproduction rate Cstat is minimum. 
Using Equations (12) and (17) 

Cい（綺（1＋い）＋1)exp （考）•
The partial derivative with respect to(J危is

8(c;tat) 
＝一

8(u1) 
4吐
1 +4;f u! (1 十□い（叫~)<0. 

It means that Cstat always decreases if only u E increases. 
Summary of parameter depedences of Cst.at and its physical interpretation are the 

following: 

velocity of environment change: Comparison between two species with the same 

model parameters under different velocities of environment change x E gives that the 
faster change requires the larger Cstat. The higher reproduction rate is required under 

the faster changing enviromnent to keep the species. This is a trivial result. 

width of survivability: Comparison between two species with different widths of 

survivability u E under the same conditions for other parameters gives the smaller咋

requires the larger Cstat・ Under the same enviromnent the severer or wealcer species for 

deviation from the environment is required the higher reproduction rate. This is also 

a trivial result. 

lifespan: Comparison between two species with different lifetimes r under the same 

conditions for other parameters gives the longer T requires the larger Cst.at.• Under the 
same enviromnent the longer-lived species requires the higher reproduction rate. 

~~!c ch~er dispersion: Comparison between two species with d-
面erentwidths of genetic character dispersion的 underthe same conditions for other 

parameters gives that a species with ug given by Equation {22) has the smallest Cstat• 
This means that there is a preferable value for u g to minimize c. 
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4 Adaptive Reproduction Rate Model 

Our model species with the assumptions given in the section 2 are exponentially un-

stable. To get a stable model we modify one of the as~umtions for formulation. 

Assumption for formulation 4'. (adaptive reproduction rate) The reproduction 

rate c may change between different generations, although the basic assumption of 

characterization of a species is still valid for other parameters. It should be written as 

Ck to show dependence on generation k. By the basic assumption of statistical approach 

Ck is the same for individuals of the species in a single generation. 

In this section we assume that reproduction rate Ck depends on population Pk, If 

population increases, reproduction rate decreases, and vice versa. It can be interpreted 

as an indirect effect of limited logistics. 

We investigate models with the following three types of functions. 

Ck = Cstat (1 + 
Po-Pk 

Tfeedback 

Ck = ＆tat (exp (Tfeedbackp。P-0p叫：
Ck = Cslat (1 + ~ arctan (rreedback:!:l。P-0pk)）．

In these functions a parameter rree<lback controls strength of response. 

(24) 

(25) 

(26) 

Under linearly changing envirorunent we estimate genetic character distributions 

with three types of Ck's by numerical calculations. 

The results of simulations have been reported in Tanikawa, Handa, and Ito (2000). 

Figures 6 and 7 in the report shows that final populations are categorized into four 

types; extinction, dumping to non-zero value, dumped oscillation, and chaotic oscilla-

tion. It depends on the feedback factor rree<lback, which is noted as a in the report, for 

eachだand△UE,which is noted as _uE and△咋 respectivelyin the report. 

5 Supply Limited Model 

5.1 Additional assumptions and modeling 

The adaptive reproduction rate models can show stable population, although its pop-

ulation sometimes changes chaotically. 

However, the relation between population and reproduction rate is excessively in-

timate, so we cannot get any explicit relation between lifespan and population. To 

get such a relation we do not take adaptive reproduction rate but add the following 

three assumtions for formulations on energy supply for reproduction to the original 

assumptions. 
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Assumption for formulation 5. (constant cost for reproduction) 

Reproduction of a child by an individual parent requires a constant energy e. 

The required energy comes from a stock which an individual parent has gotten 

during its lifespan. An actual reproduction rate of generation Ck is limited by a required 

energy which must be smaller than energy stock of an individual parent. Using the 

basic assumption of statistical approach the values of € and ck are the same for all 

individuals in a species. 

Assumption for formulation 6. (constant rate to energy collection) 

An individual of a species can take energy for its own stock at the rate of皿 per

unit time. 

This means that an individual can make a stock of WkT, The value of wk is limited 

by wru11-Using the basic assumption of statistical approach the value of Wk is the same 

for all individuals in a species. Using the basic assumption of characterization of a 

species the value of Wrull is constant for a species. 

Assumption for formulation 7. (limited supply) 

Environment can supply a limited energy per unit time W for total requirement by 

all individuals of a species. 

Using the basic assumption of statistical approach this means that the value of Wk 

is limited by W / Pk for each individual in a species. 

Using these assumptions we modify the equation of population evolution. 

Using the assumption for formulation of constant rate to energy collection the total 

energy stock of an individual is WkT• By the assumption for formulation of constant 
cost for reproduction the reprodution rate ck is as 

W灯
g =—. 

€ 

By the assumption for formulation of limited supply 

叫 Pk=min(W, WrunPk), 

叫＝min（況，Wfull)，
r.  /W 

Ck= ;min（訂’Wrull)．
Using these equations we modify the recurrence equation (8) and get 

麟＝ ~exp(-~ —互(t) ）2三exp(-~+ 叶 +6お）凡CK
= 6E exp (-（m —咋(t) ）2) 竺主
占＋6；＋吐吐＋吋＋6危€

= ~ exp (-~ー在~) min(W,wru11Pk); 
げ＋叶＋6危

exp I -
吐＋吋＋6危

min(W, WrullPk)~. 
€ 
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5.2 Response under linearly changing environment 

Using Equation (29) 
WrullT W 

, ck = ~ is constant if Pk <—.In this case growth of 
Wfull 

population is the same as constant reproduction rate model discussed in the section 

2. To avoid the extinction a species must satisfy Ci: ~ Cstat• Using Equation (17) this 
criterion is 

字2'.~l+`;叶 expげ9) ． (31) 

The criterion (31) is equivalent to 

Wr ull 1 U g,  exp（的― -l!.... > 
€ ／咋ヰ五．十 1切E― く
,L・ 

社
where { = ==:.r. The right hand side of the equation exp（ぐ）==:.r. The rie:ht hand side of the eauation ~ has a皿nimumvalue of Uy --------o------------- ------ --.1.------- { 

exp（ぐ）
{ 
こ¢

1 
at {=― where e is Napier's constant. Therefore lifespan r > 0 which satisfies the 
../2' 

criterion (31} can be exist, if 

Wfull 1 
了三;;~ ✓玩． （32) 一＋1咋” 

As shown in the section 2, if the crietrion (32) is satisfied, Pk always grows expo-
nentially. 

After the exponential growth. population should reach Pk ~ w . In this case 
u.'full 

Equation (30) is reduced to 

恥＝
咋（叫—咋(t))2\nrT~exp（ー吐＋叶＋ 6危） w;

＝亨exp （ー（悶：；）~)w;, 
(33) 

using Uk = 0-00 and (xk —咋(t))2 = x~ffset for large k. The right hand side of Equation 
(33) is independent of k. This means population Pk is constant, and we put this value 

as.Psat.• Then 

応＝げ臼戸可exp(―円）叫• (34) 
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5.3 Relation between lifespan and population 

We derive a relation between population Pk and lifespan r. 
Using Equation (34) we get 

警＝ェ］口;exp□f)(1-2げ）2). (35) 

This means Psat has a maximum at T ='Topt = 
6, 

¢互
We should check whether r = Topt satisfies the criterion (31) or not. At r = Ti。pt.
the criterion {31) is reduced to be 

Wfull U，吐＋が
丁亭；吋1十咋 9年，

and this is equivalent to the criterion (32). 
The criterion (32) is deformed to 

c 1 (ユ
＜ 
1 9E  ） 

Wrull―年戸（約）＇

or 

ー
一
年
VI 

€
一
〗
} （叶）
l ほ．
色1+4吐＋1，E

(1'； ） 
(36) 

The left hand side of the criterion {36) can be evaluated by observations and the right 

hand side is a value related to the distribution or width along x. 

Therefore we conclude that a species of which population Pk grows maximum must 

satisfy the criterion {36) and its lifespan is 

6q 
T = Topt =・¢妬．

The equation (37) shows relation between observable parameters and P¥"ameters along 

(37) 

x. 
We call the maximum population species as a dominated species, because it has 
the largest population under the same enviromnent. 

5.4 P roperties of dominant species 

For dominant species what are relations between parameters under steady population? 

Because lifespan of a dominant species is given by Equation (37), the criterion (36) 
is reduced to 
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This is reduced to 

丘<cfull―1 
咋― J;Crull,

(38) 

where 
Sfull'ropl 

Crull= ． 
€ 

(39) 

If all present species are dominant species, their parameter distribution on a c —丘
(T 1:: 

plane must be restricted in a region shown by the criterion (38). 

6 Summary 

Using a simple dynamical model of a species with propagation of genetic characters 

between generations we evaluate a behavior of its population under linearly changing 

environment. 

Without any limitation of reproduction, population of a species grows exponentially 

or extinct if parameters are not well tuned; the system is exponentially unstable. 

With limited energy available for reproduction of a species, its population can be 

stable. In this case only one optimal value of lifespan always exists which gives largest 

population. For such a species there are two criteria between parameters on genetic 

characters and observable parameters. 
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