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Dynamical Friction in Gravitating Disk Systems
and Radial Migration

ABENRICEITZNENEREBHEARNED

Hidekazu TANAKA
Dept. of Earth and Planetary Sciences, Tokyo Institute of Technology
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Abstract

Studies on dynamical friction in gravitating particle disks are reviewed. Dynamical fric-
tion plays an important role in “the velocity relaxation process” and “radial migration”. In
disk systems, the velocity relaxation can be considered as a local relaxation process and its
characteristic time is given by “Chandrasekhar’s relaxation time”. On the other hand, radial
migration in disk systems is considered as global evolution of disks and the evolution time
is much longer than Chandrasekhar’s relaxation time. The gravitational interaction between
a particle and a gaseous disk is also described. the interaction with gaseous disks is very
similar to that with particle disks. The relaxation time in gaseous disks is given by the same
formula as particle disks if the sound velocity is taken as the relative velocity.
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ABSTRACT

We investigated the orbital evolution of satellite galaxies using numerical simulations. It
has been long believed that the orbit suffers circularization due to the dynamical friction from
the galactic halo during orbital decay. This circularization was confirmed by numerous simula-
tions where dynamical friction is added as external force. However, some of the resent N-body
simulations demonstrated that circularization is much slower than expected from approximate
calculations. In this study we will show that

(1) The discrepancy really exists, in other words, it is not any of error caused during numerical
simulations.

(2) The dominant reason for the discrepancy is the assumption that Coulomb logarithm log A
is constant, which has been used in practically all recent calculations.
Since the size of the satellite is relatively large, accurate determination of the outer cutoff
radius is crucial to obtain good estimate for the dynamical friction. An excellent agreement
between N-body simulations and approximate calculations was observed when the outer
cutoff radius is taken to be the distance of the satellite to the center of the galaxy. When
satellite is at the periastron, the distance to the center is smaller and therefore log A becomes
smaller. As a result, the dynamical friction becomes less effective.

(3) Applying our result to orbital evolution of the Large Magellanic cloud, the expected lifetime
of the LMC is twice as long as that would be predicted with previous calculations.
Previous study predicts that the LMC will merge into the Milky Way after 7 G years, while
we found that the merging will take place after 14 G years from now. Our result suggests
that generally satellites formed around a galaxy have longer lifetime than previous estimates.

Subject headings: celestial mechanics, stellar dynamics — Galaxy:kinematics and dynamics — galaxies:
Magellanic Clouds — Local Group — methods: numerical

1. Introduction predict too many satellite galaxies, about a factor

. of 10 more than the number observed in the Local

Recent observations have revealed that there group (e.g., Moore et al., 1999). A number of ex-

are many satellite galaxies around the Milky Way. planations, including exotic theories which relies

In the hierarchical clustering scenarlo, 1t is ex- on hot or self-interacting dark matter, have been
pected many of such dwarf satellites are formed. proposed.

In fact, one of the most serious problems with the

. R . .. R i h i :
present hierarchical clustering scenario is that it In this paper, we go back to the basic problem

how long are the satellites lives ? In other words,
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how do the orbits of satellites evolve through in-
teraction with the gravitational field of its par-
ent galaxy ? The dominant driving force of the
evolution is the dynamical friction. For satel-
lites like the LMC-SMC pair and the Sagittarius
dwarf, there are many detailed studies of their or-
bital evolution, in which the dynamical friction
is included as the external force operating on the
center-of-mass motion of the satellite. Well known
works include Murai and Fujimoto (MCs) and
Ibata and Lewis (Sagittarius). In both of these
studies, and in all other studies where the dynam-
ical friction formula is used, significant circulariza-
tion of the orbit of the satellite is observed. This
circularization is the natural result of the fact that
the dynamical friction is proportional to the local
density of the background stars, and therefore the
strongest at the periastron.

However, recent N-body simulations of the
orbital evolution of satellites resulted in rather
counter-intuitive result. Van den Bosch et al
(1999, hereafter BLLS) performed the N-body
simulation of the satellite, where the parent galaxy
is modeled directly as self-consistent N-body sys-
tem. The satellite is modeled as one massive
particle with spline potential softening used in
PKDGRAV (Dikaiakos & Stadel, 1996). They
investigated the evolution of the orbit for wide
variety of model parameters such as the mass of
the satellite and initial orbital eccentricity. They
observed practically no circularization in any of
their simulations.

Jiang and Binney (2000, hereafter JB) per-
formed fully self-consistent simulation of the satel-
lite, where both the parent galaxy and the satel-
lite are modeled as self-consistent N-body sys-
tems. They compared their result with the result
of approximate model in which the usual dynam-
ical friction formula is used. Though they argued
that the agreement is good, from their figure 3 it
is clear that approximate models suffer strong cir-
cularization and evolve faster than their N-body
counterpart.

Neither of above two papers discussed the rea-
son of this rather serious discrepancy between the
result of N-body simulations and previous ana-
lytic prediction. The purpose of this paper is to
understand its cause. In section 2, we describe our
model experiment designed to reproduce the dis-
crepancy observed by BLLS and JB. In section 3
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we show our result. Our result is consistent with
both of the previous works. N-body simulation
showed only marginal circularization but approxi-
mate calculation using dynamical friction formula
showed strong circularization. In section 4, we in-
vestigate the reason. There are several possible
candidates for the reason. We consider a few of
them, and found that a simple modification of the
conventional form of the dynamical friction for-
mula results in a quite remarkable improvement of
the agreement between N-body and approximate
calculations. In section 5 we apply our formal-
ism to the LMC. In this cases, orbital evolution
becomes significantly slower than prediction by
previous calculations using conventional formula.
The lifetime of LMC was 7 Gyr with conventional
formula, but is 14 Gyr with our formalism. We
also discuss the implication of our result to the
so-called “dwarf problem”.

2. Numerical Simulation

We carried out a set of numerical simulations to
see whether the results obtained by BLLS and JB
are really true or not. In this section, we describe
the models we used.

2.1. N-body simulation

We performed N-body simulations of the evo-
lution of a satellite orbiting in a massive dark halo
of a galaxy.

The massive halo is composed by IV equal mass
particles, while the satellite dwarf is modeled by
a single particle with a certain softening length.
The softening is used to mimic the finite size of
the satellite.

We adopted a King model of the concentration
ratio ¥y = 9 as a model of the galactic halo. The
system of units is the Heggie unit (Heggie and
Mathieu (1986)) where the gravitational constant
G is 1, the mass and the binding energy are 1 and
0.25, respectively.

JB used a composite disk+halo model in which
the halo is expressed by particles and the disk is
assumed to be rigid. BLLS used a single spherical
halo. In both works, the halo density profile has
the form

2 . k
L



where 7. and r; are the core radius and the outer
scale radius of the halo and py is the central den-
sity of the halo. BLLS adopted k = 2 while JB
adopted k= 1.

We did not follow the models in their works.
The standard dynamical friction formula is de-
rived for the case of field stars with the Maxwell
distribution. However, the distribution function
associated with eq. (1) is rather different from
the Maxwell distribution. This may cause dif-
ference in the effect of the dynamical friction.
Also, the distribution function would relax to the
Maxwellian through two-body relaxation, causing
a small change in both the distribution function
and the density profile.

In addition, the range of radius for which the
density slope is approximately —2 is rather nar-
row with this model, since the slope is noticeably
shallower than —2 for r < 10r..

The distribution function of the King model
is a simple lowered Maxwellian. Therefore the
agreement with the true Maxwellian is very good
within the half-mass radius. Also, since the distri-
bution function is practically as close as the true
Maxwellian as we can make, thermal relaxation is
minimized, though it still present (see e.g., Quin-
lan 19967). Also, the King model with Wy = 9
has fairly wide range of radius in which the slope
of the density is approximately —2. So it is a fairly
good model for a spherical halo with flat rotation.

The satellite galaxy is modeled by a single par-
ticle with mass M, and softening length ¢;. The
force on the satellite from a particle in the halo is
calculated as follows

_ GmM, (rsa'. - rhs\.lo)
(ITsat — Thato|? + € + €,,) ¥

F @)

Here epa)0 is the softening length for the particle
in the galactic halo. The value of the gravitational
constant G is 1 in the standard units.

In our simulations, equations of motions of all
particles in a dark halo and the satellite, i.e., N+1
particles, are integrated self-consistently. In other
words, the dynamical friction effect from halo par-
ticles to the satellite is included naturally.

We used GRAPEG to calculate the acceler-
ation. We adopted simple O(N?) direct sum-
mation, to avoid any possible numerical artifact
caused by the approximations made in force cal-
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culation. BLLS used the treecode and JB used a
composite grid-based code. We do not think the
numerical method caused the difference, but we
want to be absolutely sure that our N-body sim-
ulation is as accurate as possible. The number of
particles N used in the simulations shown in this
paper is 32768. We varied N from 8192 to 32768,
and found any noticeable difference in the orbit of
the satellite. We integrated the orbits of the satel-
lites and halo particles using the standard leapfrog
scheme.

2.2. Semi-analytic Integration

We performed semi-analytic calculations to fol-
low the evolution of satellite orbits.

In these calculations, the model of the satellite
is the same as in the N-body simulations, i.e.,
a single particle with mass M, and the softening
length €.

Instead of being represented by IV particles, the
potential of the galactic halo is evaluated by using
the gravitational potential of King 9 model with
the same mass and scales as those adopted in N-
body simulations.

In this integration, the force to the satellite due
to the dynamical friction from the halo is evalu-
ated by using an analytical formula, too.

For the dynamical friction formula, we follow
JB (and also Murai and Fujimoto) to use the
standard “Chandrasekhar’s dynamical friction for-
mula”. It is expressed as

Vrnax d
Z—: = -16a%G*m(M; +m) mAfilv’;—g”)v(s)

where My and M,,, are the masses of host galaxy
and its satellite galaxy (Chandrasekhar 1943; Bin-
ney and Tremaine 1987). Here In A is the Coulomb
logarithm

In A = In(Rhao/€:V52), (4)

where Rp,), is the scale length of the galactic halo.
This formula has been adopted by many semi-
analytic studies of the orbital evolution of satellite
galaxies (e.g., Murai and Fujimoto 1980; Helmi
and White, 1999; Johnston et al.., 1995). It is
also used in cosmological studies of galaxy forma-
tion in order to estimate the merging time scale of
satellite galaxies (e.g., Kauffmann, et al.., 1994).



3. Result

Figure 1 shows the orbital evolution of a model
satellite galaxy. The ordinate and abscissa are
the distance of the satellite from the center of the
galaxy and time in the N-body units. The solid
and dashed curves correspond to result of N-body
simulation and that of semi-analytic model with
standard dynamical friction formula (3).

In Figure 1 two curves are in good agreement
only for a first few dynamical times. After a few
orbits, two curves deviate from each other. Figure
1 shows that the orbital decay calculated with for-
mula (3) is faster than that obtained by N-body
simulation. If one measure the orbital eccentricity,
it is clear that N-body result shows only a small
change in the eccentricity, while semi-analytic re-
sult shows significant circularization.

Thus, even though we used completely differ-
ent initial models and numerical method, we con-
firmed previous results by BLLS and JB that N-
body simulation shows little circularization while
semi-analytical calculation with standard dynam-
ical friction formula shows strong circularization.
In the next section, we discuss the possible causes
of this discrepancy.

4. Possible causes of discrepancy

Since we have obtained quite different results
with N-body and semi-analytic models, at least
one of them must be wrong. Since N-body cal-
culation can suffer many numerical problems due
to limited resolution and particle noise, one might
think N-body result is probably wrong. However,
additional tests with different number of particles
and different sizes of timestep showed very good
agreement (Hashimoto et al., 2002). Therefore it
seems our N-body result is sound. In addition,
as we stated in the previous section, our N-body
result is in good agreement with BLLS and JB.
Though it is not impossible, it is certainly unlikely
that all of these three works are wrong.

So let us now consider the possibility that the
standard dynamical friction formula is wrong.

The standard dynamical friction formula is ob-
tained under the assumption that the massive ob-
ject moves straight in a uniform and isotropic dis-
tribution of field particles. Field particles are also
assumed to be moving straight, and any interac-

33

tion between field particles is ignored. Clearly, the
satellite does not move straight, but circle around
the center of the parent galaxy. The distribution
of field stars within the parent galaxy is far from
uniform, and field stars also circle around in the
parent galaxy. Thus, it is not really surprising
that the naive use of the dynamical friction for-
mula gives rather bad result.

One obvious way to improve the accuracy of
the dynamical friction formula is to calculate the
linear response of the global distribution function
of the parent galaxy to the presence and the orbit
of the satellite (Weinberg, 1995). This approach
would certainly give accurate and reliable result
which agrees well with N-body result (Hernquist
and Weinberg 1989). However, since the global
response depends on the distribution function it-
self, the result cannot be expressed in a compact
and form. So here we consider the possibility to
improve the standard formula.

As we noted above, there are at least two prob-
lems with the standard formula. First, it as-
sumes that both the satellite and field stars move
straight. Second, it assumes that the density of
the field star is the same everywhere.

The first assumption is clearly wrong, but its
effect is difficult to estimate. Let us consider the
effect of the second assumption, which is much
easier to evaluate. In previous works, the outer
cutoff radius of the Coulomb logarithm is taken to
be the scale length of the halo, while the repre-
sentative density of the field stars is taken to be
the local density around the satellite. This would
clearly cause an overestimate of the Coulomb inte-
gral, for the case of the singular isothermal sphere
(or the King model we used), since the stellar den-
sity drops off as fast as 1/r2. This means the log-
arithmic divergence of the Coulomb integral does
not actually occur if we takes into account the ef-
fect of the density gradient.

To correctly take into account the effect of the
density gradient is a tricky problem, since for en-
counters with impact parameter comparable or
larger than R,, the distance to the center of the
galaxy, we cannot really use the straight line ap-
proximation. On the other hand, just to ignore
any encounter with impact parameters R, might
not be too bad assumption, since density drops off
rapidly and realistic effect is unlikely to enhance
the effect of the encounter (except for the small



fraction of the orbits in resonance with the orbit
of satellite).

Thus, it might be more sensible to use R, as
the outer cutoff radius for the Coulomb logarithm,
that to use the traditional Rpq,- In fact, this use
of R, is first proposed by a pioneering work by
Tremaine (1976) on the effect of the dynamical
friction to the orbit of LMC-SMC pair.

To use ¢, as the inner cutoff is okay as an order-
of-magnitude estimate, but can be improved by
actually integrating the effect of all encounters
with small impact parameters for Plummer poten-
tial, following the treatment by White (1976). For
Plummer model, the integration can be performed
analytically and the result is that inner cutoff ra-
dius is r;j, = 1.4¢,.

Figure 2 is the same as Figure 1 but for the
above discussed choice of the Coulomb logarithm

1nA=1n(li;8)- ()

When the R; becomes smaller than 1.4¢,, we sim-
ply put the dynamical friction term to be zero,
since it is clearly unphysical to apply dynamical
“acceleration”.

The agreement between the N-body result and
semi-analytic treatment is quite remarkable.

Figure 3 shows evolution of eccentricities. In
Figure 3, solid, thin dashed and thick dashed
curves corresponds to the result of N-body simu-
lation, that of semianalytic formula with constant
A and that with varying A, respectively. The re-
sults of N-body simulation and that obtained us-
ing varying A formula demonstrate good agree-
ment, while the result of calculation using a con-
stant A does not.

In Figure 4, evolution of eccentricities are plot-
ted against that of apogalactic distance Rpax- In
Figure 4, curves are the same as those in Figure
3. The results of N-body simulation and that ob-
tained using varying A formula demonstrate good
agreement, while the result of calculation using
a constant A does not. Figure 4 shows that quick
circularization appearing in result of semi-analytic
integration using constant A is not a matter of
time-scale of orbital evolution. Instead, there is
a qualitative difference in the understanding and
use of dynamical friction.

Figures 2 and 3 show that the discrepancy
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Fig. 1.— Time evolution of radius of satellite po-
sition from the galaxy center. Solid: result of N-
body simulation. Dashed: semi-analytical integra-
tion using constant A.
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shown in Figure 1 is caused by an inadequate es-
timate of A. Figure 4 shows that the difference
between Figure 1 and Figure 2 and the reason for
the discrepancy in Figure 1 are never a matter
of time-scale of orbital evolution. Other possi-
ble reasons, such as the effect of the global re-
sponse of the distribution function, might still be
important, but they are clearly not the prime rea-
son of the discrepancy between N-body and semi-
analytic works which we discussed in the introduc-
tion and section 3.

The improved agreement with the N-body re-
sult is explained as follows. With bpngr; = Rey,
the semi-analytical treatment causes strong circu-
larization and faster orbital evolution. This im-
plies that the the semi-analytical treatment over-
estimated the dynamical friction around the pe-
riastron. Around the apoastron, the error might
exist, but relatively small compared to that at the
perigalacticon The use of variable b,,,, reduces the
value of In A both at perigalacticon and apogalac-
ticon, but by a much larger factor at the peri-
galacticon simply because R, is smaller. Thus, ef-
fectively we reduced the dynamical friction around
the periastron, which resulted in the improvement
in the agreement with the N-body result.

In hindsight, it looks too obvious that the tra-
ditional use of the dynamical friction formula was
inappropriate. Theoretically, it is clearly not justi-
fiable to assume that the stellar density is the same
up to the outer cutoff radius of the halo. From
comparison between the N-body result and those
of semi-analytic treatment, it also is clear that pre-
vious semi-analytic treatment overestimates decel-
eration due to the dynamical friction around the
perigalacticon.

To summarize our result, the orbital decay of
satellites is slower than ever estimated, the eccen-
tricity of orbit of revolution of a satellite around
the host galaxy is almost constant. The reason
why previous estimates are wrong is that previ-
ous studies overestimated the effect of dynamical
friction at the perigalacticon.

5. Summary and Applications

We performed N-body simulations of satellite
orbits. We found that the circularization of the
orbit due to the dynamical friction is much slower
than commonly believed. This discrepancy was
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also reported by BLLS, and we can see the same
tendency from the numerical result reported by
JB.

Previous studies of satellite orbits used the
outer cutoff radius of the dark halo as byq,. We
found that the effective by, should be of the or-
der of R,, the distnce of the satellite from the cen-
ter of the galaxy, which varies as the satellite or-
bits around the galaxy. Our formula results in a
greatly improved agreement with the N-body re-
sult.

5.1. Application to the Milky Way

We investigated the orbital evolution of the
Large Magellanic Cloud and the Sagittarius; two
of the most famous satellites of the MW.

5.1.1. the Large Magellanic Cloud

The Large Magellanic Cloud is the most fa-
mous satellite of Milky Way. Its orbit has been
investigated from both observation and numerical
simulations (e.g., Toomre, 1970; Tremaine, 1976;
Lin and Lynden-Bell, 1977; Murai and Fujimoto,
1980). The importance of the effect of dynamical
friction from the galactic halo on the orbit evolu-
tion LMC is first emphasized by Tremaine (1976).

By using numerical simulation, Murai and Fuji-
moto (1980) (hereafter MF80) determined the or-
bital elements and the present phase of the LMC.
They performed a number of backward numerical
integrations of the orbits of the LMC and SMC
from various initial conditions, and integrated or-
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bits of test particles in the LMC and SMC for each
condition. Comparing the result of distribution of
test particles and the observed Magellanic stream,
they choosed the initial condition which gives the
best fit.

In their numerical integration, they assumed
a halo expressed by a singular isotermal sphere,
which is a simple flat-rotation halo. In their pa-
per, it is not clear what assumption is used for
In A, since there is no discussion on how they de-
termined In A though it appeared in their equa-
tion (13). However, the fact that the orbit of
the LMC obtained in their calculation shows sig-
nificant circularization strongly suggest that they
treated In A as constant.

In order to see the effect of changing In A, we in-
tegated the orbit of LMC both forward and back-
ward in time, using both the constant A and vari-
able A (b = R,;). In this study, we express
LMC as a single Plummer-softened particle with
mass 2 x 10'°M¢, and softening length 5 kpc. The
rotation velocity of the halo is 250 km/s, same as
what is used by MF. We simulated the orbit of the
LMC only, since our purpose here is to demostrate
the effect of A and not the accurate determination
of the orbits of the Clouds.

The solid curve in Figure 5 corresponds to the
orbit obtained when the dynamical friction is cal-
culated using equation (5). The dashed curve in
Figure 5 correspond to the orbit obtained using
the formula (3). The backward part of this dashed
curve is in very good agreement with the result of
MF, indicating that what MF used is indeed a
constant A.

Figure 5 shows that real evolution of the orbit of
LMC (with variable A) is significantly smaller than
what is obtained by MF. 10 Gyrs ago, the “true”
apocenter was only 160 kpc, while the solution by
MF was 180 kpc.

A more remarkable difference is in the future of
the LMC. With the constant A. The LMC will fall
to the galactic center in only 7 Gyrs with constant
A, while our result suggests that it will take more
than 14 G years for the LMC to fall to the galactic
center.

5.2. [Eccentricity Distribution of Satellites

Our study shows that the time evolution of the
eccentricity of satellites is rather small. Thus, we



may assume that the distribution of eccentricities
of satellite galaxies at present directly reflects that
at the formation epoch of the Galaxy. Therefore
the distribution of eccentricities of satellites galax-
ies can be an important clue to the formation of
the Galaxy.

5.3. Number Evolution of Faint Galaxies

Cosmological studies on galaxy formation are
based on this estimate and discuss the number
evolution of galaxies.

The lifetime of the satellite is estimated using
the dynamical friction timescale with In A taken to
be My /M, (Lacey and Cole 1993; Kauffmann et
al. 1994). This would cause a quite serious over-
estimate in the dynamical friction timescale, since
the factor one should use is the ratio between the
size of the halo and the size of the satellite. If
we assume M « o4, we have R oc M*/2. Thus,
there is at least a factor of two difference in the
value of In A. Since there are too many other un-
certainities in the semi-analytic modelling of the
galaxy number evolution, how serious this differ-
ence is is not clear. However, it certainly affects
the estimate of presently observed satellites rather
strongly. A more detailed study on this aspect is
clearly necessary.
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ABSTRACT

We set new limits on the mass of the Milky Way, making use of the
latest kinematic information for Galactic satellites and halo objects. Our
sample consists of 11 satellite galaxies, 137 globular clusters, and 413 field
horizontal-branch stars at large distances from the sun. Roughly half of the
objects in this sample have measured proper motions, permitting the use of their
full space motions in our analysis. Two alternative methods of mass estimation
are explored in this paper. First, the constraint that rest-frame velocities of the
sample objects be lower than their escape velocities at their estimated distances,
provided by prescribed Galactic potentials, provides a lower limit on the total
mass of the Galaxy of 1.3 ~ 1.4 x 10'2M,. We demonstrate that this mass
estimate is basically determined by the motions of seven high-velocity objects
(Leo I, Pal 3, Draco, and four horizontal-branch stafs), not by a single object
alone (such as Leo I), as has often been the case in past analyses. We also
find that a gravitational potential that gives rise to a declining rotation curve
is insufficient to bind many of our sample objects to the Galaxy. Second, for
a family of phase-space distributions in a potential with a flat rotation curve,
a Bayesian likelihood approach is used to reproduce the observed distribution
of current positions and motions of the sample. This method enables a search
for the most likely total mass of the Galaxy, without suffering a large influence
in the final result due to the presence or absence of Leo I, provided that both
radial velocities and proper motions are used. Although the best mass estimate
depends somewhat on the model assumptions, such as the unknown prior
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probabilities for the model parameters, the resultant systematic change in the
mass estimate is confined to a relatively narrow range of a few times 10! M,
The most likely total mass derived from this method is 2.575 x 10'2 Mg
(including Leo I), and 1.8%34 x 10'> My (excluding Leo I). The mass estimate
within the distance to the Large Magellanic Cloud (~ 50 kpc) is essentially
independent of the model parameters, yielding 5.5%99 x 10! Mg (including
Leo I) and 5.4%3} x 10" M (excluding Leo I). Implications for the origin of
halo microlensing events (e.g., the possibility of brown dwarfs as the origin of the
microlensing events toward the LMC may be excluded by our lower mass limit)
and prospects for more accurate estimates of the total mass are also discussed.

Subject headings: Galaxy: halo — Galaxy: fundamental parameters — Galaxy:
kinematics and dynamics — stars: horizontal-branch

1. INTRODUCTION

Over the past decades, various lines of evidence have revealed that the mass density in
the Milky Way is largely dominated by unseen dark matter, from the solar neighborhood
to the outer reaches of the halo (e.g., Fich & Tremaine 1991). Moreover, the presence
of a dark component similar to that found in our own Galaxy appears to be a generic
feature in external galaxies, as inferred from, e.g., flat rotation curves in their outer
parts, the presence of (a gravitationally bound) hot plasma in early-type galaxies, and the
observed gravitational lensing of background sources (e.g., Binney & Tremaine 1987). A
determination of the extent over which such dark-matter-dominated mass distributions
apply for most galaxies, including our own, is of great importance for understanding the
role of dark matter in galaxy formation and dynamical evolution. In particular, the mass
estimate of the Galaxy is closely relevant to understanding the origin of the microlensing
events toward the Large Magellanic Cloud (LMC) (e.g., Alcock et al. 2000; Alcock et al.
2001).

While mass estimates of external galaxies can (in principle) be obtained in a relatively
straightforward fashion using various dynamical probes, the total mass of the Galaxy
remains rather uncertain, primarily due to the lack of accurate observational information
for its outer regions, where the dark matter dominates. The precise shape of the outer
rotation curve, as deduced from H II regions and/or H I gas clouds (e.g., Honma & Sofue
1997), is still uncertain because its determination requires knowledge of accurate distances
to these tracers (Fich & Tremaine 1991). Also, interstellar gas can be traced only up to
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~ 20 kpc from the Galactic Center, and hence provides no information concerning the large
amount of dark matter beyond this distance.

The most suitable tracers for determination of the mass distribution in the outer halo
of the Galaxy are the distant luminous objects, such as satellite galaxies, globular clusters,
and halo stars on orbits that explore its farthest reaches (e.g., Miyamoto, Satoh, & Ohashi
1980; Little & Tremaine 1987; Zaritsky et al. 1989; Kochanek 1996; Wilkinson & Evans
1999, hereafter WE99). However, the limited amount of data presently available on the full
space motions of these tracers, and the small size of the available samples, have stymied
their use for an accurate determination of the Galaxy’s mass. In particular, most previous
mass estimates (except for WE99, see below) depend quite sensitively on whether or not a
distant satellite, Leo I, is bound to the Galaxy. Leo I has one of the largest radial velocities
of the known satellites, despite its being the second most distant from the Galaxy (Mateo
1998; Held et al. 2001). As a consequence, estimates of the total mass of the Galaxy are
much more uncertain (by as much as an order of magnitude) than, for instance, the value of
the circular speed in the solar neighborhood (Kerr & Lynden-Bell 1986; Fich & Tremaine
1991; Miyamoto & Zhu 1998; Méndez et al. 1999).

Recently, by making use of both the observed radial velocities and proper motions of
six distant objects, WE99 demonstrated that the use of full space motions can provide
a reliable mass estimate of the Galaxy without being largely affected by the presence or
absence of Leo I. They also argued that the primary uncertainties in their mass estimate
arose from the small size of the data and the measurement errors in the full space motions,
especially the proper motions. This work motivated us to investigate a much larger data
set, with more accurate kinematic information, to set tighter limits on the mass of the
Galaxy. Specifically, as we show below, there are two objects among'the WE99 sample
(Draco and Pal 3) that have relatively large velocity errors, yet still play crucial roles in a
determination of the Galaxy’s mass, so the addition of more (and better data) is important.

Over the past few years, the number of distant satellite galaxies and globular clusters
with available proper motions has gradually increased (e.g., Mateo 1998; Dinescu, Gerard,
& van Altena 1999; Dinescu et al. 2000; Dinescu et al. 2001). In addition, another tracer
population that is suitable for exploring mass estimates of the Galaxy has become available
from the extensive compilation of A-type metal-poor stars by Wilhelm et al. (1999b), which
provided radial velocity measurements, as well as estimates of the physical parameters of
these stars (e.g., [Fe/H], T¢ss, log g). Among the Wilhelm et al. sample, the luminous
field horizontal-branch (FHB) stars are the most useful mass tracers, both because of their
intrinsic brightness, and the fact that accurate distance determinations can be inferred from
their absolute magnitudes on the horizontal branch (e.g., Carretta et al. 2000). Moreover,
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there exist proper-motion measurements for many of these stars, provided by both ground-
and space-based proper-motion catalogs (Klemola, Hanson, & Jones 1994; Réser 1996;
Platais et al. 1998; Hog et al. 2000), from which full space motions may be derived.

In this paper we re-visit the mass determination of the Galaxy, based on a sample
of 11 satellite galaxies, 137 globular clusters, and 413 FHB stars, out of which 5 satellite
galaxies, 41 globular clusters, and 211 FHB stars have measured proper motions. We
adopt two different methods for obtaining this mass estimate: (1) A method based on the
requirement that the rest-frame velocities of observed samples objects be less than their
escape velocities at their present distance from the Galactic center (e.g., Miyamoto et al.
1980; Carney, Laird, & Latham 1988), and (2) A method, based on a Bayesian likelihood
analysis, that seeks to reproduce both the current positions and velocities of the sample
objects (e.g., Little & Tremaine 1987; Kochanek 1996; WE99). Because our present sample
of tracers is, by far, the largest and most accurate one available, it is possible to place more
reliable limits on the total mass of the Galaxy. In § 2 we describe our sample objects and
the assembly of their kinematic data. In § 3 and § 4 the results on the mass estimates of
the Galaxy are presented. § 3 is devoted to the method of mass estimation based on escape
velocities; in § 4 we adopt a Bayesian likelihood method to obtain the most likely total mass
of the Galaxy. In § 5 we discuss implications for the origin of the halo microlensing events
toward the LMC and the mass estimate of the Local Group, and consider the prospects for
more obtaining more accurate estimates of the total mass of the Galaxy in the near future.

2. DATA

We consider a sample of objects that serve as tracers of the Galactic mass distribution
consisting of 11 satellite galaxies, 137 globular clusters, and 413 FHB stars. In the case of
the satellite galaxies, all of the basic information for our kinematic analysis, i.e., positions,
heliocentric distances, and heliocentric radial velocities, are taken from the compilation
of Mateo (1998). For the globular clusters, we adopt the information provided by Harris
(1996), including their positions and heliocentric radial velocities, their metal abundances,
[Fe/H], and the apparent magnitude of the clusters’ horizontal branch (HB). The catalog of
Wilhelm et al. (1999b) is our source of similar information for the FHB stars. We derive an
internally consistent set of distance estimates for the globular clusters and the FHB stars
from the recently derived relationship between the absolute magnitude of the HB, My (HB),
and [Fe/H], by Carretta et al. (2000),

My (HB) = (0.18 £ 0.09)([Fe/H] + 1.5) + (0.63 £ 0.07) . (1)
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Clearly, we have assumed that there is no large offset between the absolute magnitudes of
FHB stars and their counterpart HB stars in the globular clusters (a view also supported
by the recent work of Carretta, Gratton, & Clemintini 2000). Figure 1 shows the spatial
distribution of the globular clusters, satellite galaxies, and FHB stars on the plane
perpendicular to the Galactic disk, where X axis connects the Galactic center (X=0) and
the sun (X=8.0 kpc). The filled and open symbols denote the objects with and without
proper-motion measurements, respectively. Satellite galaxies are the most distant tracers,
with Galactocentric distances 7 greater than 50 kpc. The globular clusters extend out to
almost r = 40 kpc, while the present sample of FHB stars are confined to locations within
10 kpc of the sun. Thus, our sample objects are widely, though not uniformly, distributed
throughout the volume of the Galaxy. ‘

Among these sample objects there exist proper-motion measurements for 5 of the
satellite galaxies, 41 of the globular clusters, and 211 of the FHB stars. The proper
motion data for LMC, Sculptor, and Ursa Minor are taken from WE99, whereas those
for Sagittarius and Draco are taken from Irwin et al. (1996) and Scholz & Irwin (1994),
respectively. The proper motions for most of the globular clusters have been compiled
by Dinescu et al. (1999). We adopt the data from this source, except for two globular
clusters with recently revised proper-motion measurements (NGC 6254: Chen et al. 2000;
NGC 4147: Wang et al. 2000), and for three additional globular clusters compiled recently
(Pal 13: Siegel et al. 2000; Pal 12: Dinescu et al. 2000; NGC 7006: Dinescu et al. 2001).
Proper motions for 211 of the FHB stars in the Wilhelm et al. (1999b) sample are available
from one or more existing proper-motion catalogs. These include the STARNET Catalog
(Roser 1996), the Yale-San Juan Southern Proper Motion Catalog (SPM 2.0: Platais et
al. 1998), the Lick Northern Proper Motion Catalog (NPM1: Klemola, Hanson, & Jones
1994), and the TYCHO-2 Catalog (Hgg et al. 2000). Many of these FHB stars have been
independently measured in two or more catalogs, so that by combining all measurements
one can reduce the statistical errors, as well as minimize any small remaining systematic
errors in the individual catalogs, as was argued in Martin & Morrison (1998) and Beers et
al. (2000).

We estimate average proper motions, < g >, and their errors, < o, >, weighted by the
inverse variances, as

<u> = (Z uf/af,.-)/(él/az..), (2)
<o,> = (ij 1/02)7'2, (3)
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where n denotes the number of measurements. Table 1 lists these compilations, as well
as the estimated distances to the FHB stars, where r and RV denote the Galactocentric
distances and heliocentric radial velocities, respectively. Typical errors in the reported
proper-motion measurements range from 1 ~ 5 mas yr~! for individual field stars, whereas
those for satellite galaxies and globular clusters are about 0.3 mas yr~! and 1 mas yr—!,

respectively.

We assume a circular speed of Visp = 220 km s~! at the location of the sun (i.e.
R = 8.0 kpc along the disk plane) and a solar motion of (U, V, W)= (-9, 12, 7) km s™*
(Mihalas & Binney 1981), where U is directed outward from the Galactic Center, V' is
positive in the direction of Galactic rotation, and W is positive toward the North Galactic
Pole. We then calculate the space motions and their errors, fully taking into account the
reported measurement errors in the radial velocities of the individual satellite galaxies
(typically a few km s™!), adopting a typical radial-velocity error for other objects (10
km s~!), the measurement errors assigned to the proper motions of each object (when
available, adopting a mean error for the source catalog when not), and distance errors for
the satellite galaxies (10 % relative to the measured ones), or as obtained from eq. 1 for the
globular clusters and FHB stars.

It is worth noting that the reported proper motions of the FHB stars in our sample
may yet contain unknown systematics with respect to their absolute motions in a proper
reference frame; this caution applies to the globular clusters and satellite galaxies as well.
It is an important goal to make efforts to reduce the systematic, as well as random, errors
in the proper motions upon which studies of Galactic structure and kinematic studies are
based, using much higher precision astrometric observations than have been obtained to
date.

3. MASS DETERMINATION BASED ON ESCAPE VELOCITIES
3.1. Methods and Mass Model

If we model the Galaxy as an isolated, stationary mass distribution, and assume that
all of our tracer objects are gravitationally bound to it, then the rest-frame velocities of
all objects, Vgr, must be less than their escape velocities, V., = /2%, where 7 denotes
the gravitational potential of the Galaxy. A number of previous researchers have adopted
this method for obtaining mass estimates of the Galaxy (e.g., Fricke 1949; Miyamoto et al.
1980; Carney et al. 1988; Leonard & Tremaine 1990; Dauphole & Colin 1995). We first
follow this procedure using the sample described in §2.
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Here we adopt two different mass models, in order to investigate the difference in
estimates of the Galaxy’s mass obtained by the use of different potentials. Our models,
hereafter referred to as Model A and B, are the same as those adopted in WE99 and
Johnston, Spergel, & Hernquist (1995) (and also used by Dinescu et al. 1999), respectively.

Model A has spherical symmetry, and results in a flat rotation curve in the inner
regions of the Galaxy. The gravitational potential and mass density are given as

P(r)

_GM log<\/'r2+a2+a> M a?
T

==__° 4
a A 4w r2(r? 4 a2)3/2’ 4)

where a is the scale length of the mass distribution, and M is the total mass of the system.
The central density of this model is cusped (like 72) and falls off as 73 for r > a. As M
is derived by integrating p(r) from r = 0 to oo, this model contains one free parameter, a.

Model B consists of realistic axisymmetric potentials with three components (the bulge,
disk, and dark halo) that reproduce the shape of the Galactic rotation curve (Johnston
et al. 1995). The bulge and disk components are represented by Hernquist (1990) and
Miyamoto & Nagai (1975) potentials, respectively. All of the parameters included in these
potentials are taken from Dinescu et al. (1999) (see their Table 4). In order to obtain a
finite total mass, we assume the following modified logarithmic potential (corresponding to
an isothermal-like density distribution) for the dark halo component:

vglog[l + (r/d)’] — v,  at T <rew

Yratelr) = { )

_21)(2) Tc:t —lqc.—éa at r Z Teut »
20 3+7/d
o) = TG L+ /P ©)
where )y is defined as
Yo = vi[log(l +¢) +2¢/(1 + ¢)], c= (Tew/d)?, (7

and we adopt vo = 128 km s™! and d = 12 kpc (Dinescu et al. 1999). This model contains
one free parameter, namely the cutoff radius of the dark halo, r.,. Figure 2 shows the
rotation curves for 0 < R < 20 kpc, provided by Model A with a = 200 kpc (thick solid
line) and Model B with 7., = 170 kpc (thin solid line), where both curves shown at R < 20
kpc remain unchanged as long as a, 7., > 20 kpc. The circular speed at R = R is 220
km s™! for both mass models. Also shown is the declining rotation curve with increasing
radius, as obtained from Model A with a = 20 kpc (dashed line).
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3.2. Results

Figures 3a and 3b show the relationship between the derived escape velocities, V.,
and the rest-frame velocities, Vgp, when we adopt Model A with a = 195 kpc and Model B
with ¢, = 295 kpc, respectively. For the objects without available proper motions (open
symbols), we adopt the radial velocities alone as measures of Vpr, hence their estimated
space velocities are only lower limits. The solid line denotes the boundary between the
objects that are bound (below the line) and unbound (above the line) to the Galaxy,
respectively. By selecting the smallest scale length, a, that places the sample objects inside
the bound region it is possible to set lower limits on the total mass of the Galaxy.

It is worth noting that this mass determination (the enclosed mass) is basically
provided by the high-velocity objects located near the boundary line at each respective
radius (or corresponding ). For determination of the total mass, these include Leo I (for
which only radial velocity information is available), Draco, Pal 3, and four FHB stars
(shown inside the rectangular region). Table 2 summarizes the basic observational data for
these particular objects, where columns (6) and (7) list the Galactocentric distances and
heliocentric radial velocities, respectively, and the other columns are obvious. Inspection of
Figure 3 highlights the following important properties of the mass determination: (1) If the
proper motions of all objects are unavailable, then the mass estimate sensitively depends
on the presence or absence of Leo I, as has been noted in previous studies. (2) Compared
to case (1), if the available proper motions of the satellite galaxies and globular clusters
are taken into account, the constraint provided by Draco and Pal 3 is basically the same as
that provided by Leo I. This may explain the result of WE99, which showed that the mass
determination is made insensitive to Leo I if the proper motion data of satellite galaxies
and globular clusters are taken into account. However, as Figure 3 indicates, the velocity
errors for Draco and Pal 3 are quite large, so these objects place only weak constraints on
the mass estimate. (3) If we consider the proper motions of FHB stars, then the four FHB
stars having high velocities (one of which exhibits a rather small velocity error) provide
the basically the same constraint on the Galaxy’s mass as Leo I, Draco, and Pal 3. These
properties suggest that the inclusion of FHB stars with available proper motions is crucial,
and provides constraints on the mass limit of the Galaxy that depend on neither the
inclusion or absence of Leo I nor on the large velocity errors for Draco and Pal 3.

We compute the boundary line provided by Pal 3, Draco, and the four FHB stars inside
the reétangular region in Figure 3, based on a weighted least-squares fitting procedure
(weights being inversely proportional to the velocity errors). This exercise yields a = 195¥35°
kpc for Model A, and 7, = 295333 kpc for Model B. Using these values, we arrive at the

most likely lower limits to the total mass M of the Galaxy as 2.2*]% x 102\ for Model
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A and 2.27%% x 10'2M,, for Model B, respectively. Thus, the difference in the derived
mass limits is not significant, as long as the rotation curve at outer radii is approximately
constant at the adopted value of 220 km s~!. It also suggests that the flattened nature
of the Model B potential, due to the presence of the disk component, does not affect the
results significantly — the high-velocity tracers are located at large Galactocentric distances
and/or their orbits largely deviate from the disk plane.

We note that this method of mass determination, based on escape velocities, inevitably
depends on the selection of a few apparently high-velocity objects from a much larger
éample of tracers. However, we also point out that the lower mass limit obtained here is
also influenced by the inclusion of additional FHB stars with Vg ~ 500 km s7!, or the
consideration of Draco alone, which possesses the the highest Vpp relative to Vi, . An
anonymous referee echoed a concern of ours, that mass estimates obtained from tracers that
exhibit extreme properties, such as high inferred space motions, may simply be reflecting
the tail of an error distribution in the observables, e.g., the proper motions, possibly
amplified (particularly in the case of the satellite galaxies) by systematic errors in distance
estimates. Our principal goal, at present, is not to obtain the exact value of the lower mass
limit, but to highlight the significance of considering FHB stars, which set basically the
same mass limit as can be obtained from Leo I, Draco, and Pal3. The great advantage of
the FHB stars is that their number can be expanded quickly in future studies, while the
number of satellite galaxies will forever remain small.

In addition to the above experiments, we also considered a mass model that yields a
declining rotation curve at outer radii, as was proposed by Honma & Sofue (1997) from
their H I observations. We adopt Model A with e = 20 kpc, which gives rise to Vi sg = 211
km s~! at R = R;. The corresponding rotation curve, being reminiscent of the result in
Honma & Sofue (1997), is shown as the dashed line in Figure 2. Figure 4 shows the Vgr vs.
Vesc relationship that follows from adoption of this model. As is evident, the total mass
obtained from a model that leads to a declining rotation curve is quite insufficient to bind
many of our sample objects to the Galaxy.

4. MASS DETERMINATION BASED ON A BAYESIAN LIKELIHOOD
METHOD

4.1. Method

As a second method for mass estimation of the Galaxy, we examine an alternative that
takes into account all of the positional and kinematic information of the sample objects,
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in contrast to the use of the high-velocity tracers alone, as in the previous section. In this
approach, a phase-space distribution function of tracers, F, is prescribed for a specifically
chosen ¥, and the model parameters included in F' and ¢ are derived so as to reproduce
the presently observed positions and velocities of the tracers in the (statistically) most
significant manner. The optimal deduced parameters relevant to ¢ then allow us to estimate
the total mass of the Galaxy. This method was originally proposed by Little & Tremaine
(1987), and further developed by Kochanek (1996) and WE99.

Based on the results presented in the previous section, we take Model A with spherical -
symmetry as the mass distribution of the Galaxy, which is sufficient for the following
analysis. For the sake of simplicity, and also for ease of comparison with the previous
studies by Kochanek (1996) and WE99, the phase-space distribution function is taken to
have the same anisotropic form as that adopted in these studies. That is, it depends on the
binding energy per unit mass, ¢ (= ¥ — v?/2), and the angular momentum per unit mass, ,
in the following way,

F(e,l) =" f(e) , (8)
where
28312 d
&) = m2T[m — 1/2 + L[l — B] de
m Zﬂ
X / ay? d¢mps — ) (9)

where p, is the tracer density distribution, I' is the gamma function, and m is an integer
whose value is chosen such that the integral in eq. (9) converges (e.g., Dejonghe 1986;
Kochanek 1996). In the spherical model, this form of the distribution function yields equal
velocity dispersions in the orthogonal angular directions, < v >=< vi >, and a constant
anisotropy 8 = 1— < v > / < vZ > everywhere in the Galaxy. Our choice of m = 2 in
eq. (9) (to be in accord with the WE99 work) limits the allowed range for the velocity
anisotropy to —1.5 < 8 < 1 when proper motion data are considered, while the use of radial
velocities alone sets no limit for tangential anisotropy [—oo, 1].

For p,, we consider WE99’s two models: (a) Shadow tracers following the mass density
distribution obtained from Model A (eq. 4), and (b) a power-law distribution as a function
of r. The shadow-tracer model is given as

G.2

ps('l‘) [0 8 W , (10)
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where a; is the scale length. The power-law model with index v is given as

pulr) x = . (11)

rY
Here, since shadow tracers may be truncated at the distance below the scale length of the
mass distribution, the scale length of the tracers, as, is generally different from the scale

length of the Galaxy’s mass, a.

Using the 27 objects (satellite galaxies and globular clusters) at r > 20 kpc, WE99
derived a, = 100 kpc and v = 3.4 as the best fitting parameters for their spatial distribution.
We re-examine a; and < using our sample of all satellite galaxies and globular clusters.
Note that the FHB stars are excluded in this determination of a, and +, as they have not
(vet) been completely surveyed over the Galactic volume. We obtain a; = 10 kpc and
v = 3.3 as the best fitting values, based on a simple K-S test of the observed vs. predicted
distribution functions (see Figure 5). If we exclude the globular clusters at 7 < 10 kpc, for
which the spherical symmetry assumption may be questionable due to the presence of the
disk globular clusters, we obtain a; = 50 kpc and v = 3.4. Thus, a, depends sensitively
on the selected range of radius (or in other words the selection of the sample), whereas ~y
basically remains unchanged. Therefore, we focus our attention on the results using the
power-law representation for the tracer population, but the shadow-tracer population is
also examined for the purpose of comparison with WE99. To see the dependence of the
mass estimate on these parameters, we obtain estimates for two values of v (3.4 and 4.0)
and as (100 kpc and the scale length of the mass distribution, a), respectively. We note
that the FHB stars are also expected to follow a power-law form with v ~ 3.4, as inferred
from other halo field stars (e.g., Preston, Shectman, & Beers 1991; Chiba & Beers 2001).

We calculate the likelihood of a particular set of model parameters (the scale length
of the mass distribution, @, and the anisotropy parameter, 3) given the positions, r;, and
radial velocities, v,;, or space velocities, v;, using Bayes’ theorem. The probability that the
model parameters take the values a and 3, given the data (r;, v(,):) and prior information I,
is

N
P(aa :Blri, U(r)iaI) = %I‘P(G)P(ﬂ)HP(T” 'U(r)ila)ﬂ) 3 (12)
=1

where N is the normalization factor (Kochanek 1996; WE99). The probabilities P(a)
and P(f) denote the prior probability distributions in a and §, respectively. Here,
P(ri,v(r)i|a, B) corresponds to the probability of finding an object at position r; moving
with radial velocity v,; or space velocity v; for a particular set of model parameters a and
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B. The complete expressions for P(r;, v(i|a, 8) are shown in Table 1 of WE99. To calculate
this probability for the objects with full space velocities, we take into account their large
errors relative to radial velocities alone (due to the observed proper-motion errors), by
multiplying by an error convolution function of the form

P(rs;510,8) = [ [ dvadvsBr (va)Ey(06) P(ri, viohs(ves v5)la, B) (13)

where (vq,vs) are the tangential velocities along the right ascension and declination
coordinates, respectively, and E) is the Lorentzian error convolution function, defined as

1 202
\/57”71 20’% + (v — ’Uobs)2 ’

Ei(v) = (14)

where 0, is defined as 0, = 0.4770 for the calibrated error estimate, o (see WE99).

The prior probability in the velocity anisotropy, 3, is taken to be of the form
P(B) x 1/(3 — 24)", where n = 0 and 2 correspond to a uniform prior and uniform energy
prior, respectively (Kochanek 1996; WE99). Larger values of n give a larger weight towards
radial anisotropy. For the prior probability in a, P(a), we adopt 1/a and 1/a® (WE99).

Using the routine AMOEBA in Numerical Recipes (Press et al. 1992), we search for
a set of model parameters, a and §, that maximize the probability P(a, 8|ri, vy, I). The
total mass of the Galaxy, M, is then derived from the parameter a.

4.2. Results

Initially, we apply the Bayesian likelihood method, making use of only the radial
velocities of the objects, setting aside for the moment the available proper-motion
information. Specifically, we focus on the difference in the mass estimate arising from the
presence or absence of Leo I. Figure 6 shows the likelihood contours in the mass-anisotropy
(M — () plane for the case of a power-law tracer population with v = 3.4, where 3 is
limited to the range of —1.5 < # < 1. The solid and dashed lines denote the presence
and absence of Leo I, respectively. As is evident, the mass estimate sensitively depends
on whether or not Leo I is bound to the Galaxy, as has been noted in previous studies.
Inclusion of Leo I yields a likely total mass that is an order of magnitude greater than the
case without Leo I. Over the range of § we consider, the most likely value of M with Leo I
is 21.0 x 10 M, corresponding to a scale length a = 185 kpc, whereas excluding Leo I
yields M = 9.6 x 10'* M and a = 85 kpc. We note that the role of Leo I in the Galaxy’s
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mass estimate is also understandable from the escape-velocity argument - if only the sample
radial velocities are taken into account, Leo I alone determines the best-fit boundary line
Vrp = Vesc in the Vyp vs. Vi, diagram (Figure 3).

As is seen in Figure 6, the high-probability region is biased toward the line 8 = —1.5.
This bias arises from the specific form of the phase-space distribution function F(e,[) given
in equation (8), where the probability P(a, B|ri,v()i, ) is high at large F. We plot F' in
Figure 7 for a set of r and 8 (solid and dotted lines for § = —1 and 1, respectively). It
follows that F' at high ¢ is larger for smaller 5, whereas F' at low ¢ is larger for larger 3.
The range of € corresponding to these two different cases depends on 7, as can be deduced
from the comparison between panel (a) and (b) in Figure 7. Since our sample objects are
mainly distributed in the region of higher ¢ (solid histograms for the sample with radial
velocities), the probability is highest at smallest S.

Following the above experiments, we drop the lower bound of —1.5 for 3, and search
for the maximum probability at smaller 8. No maximum is found up to # = —20, although
the large discrepancy in M between the cases with and without Leo I remains. When
we confine ourselves to the sample at r > 10 kpc, there exists a maximum probability at
B = —2.75 (with Leo I), with a corresponding mass 32.0 X 10! M. For the sample at
r > 20 kpc, we obtain 11.4 x 10! My at 8 = 0.8. This clearly suggests that the best-fitting
B, obtained from the analysis when only radial velocities are considered, is rather sensitive
to the range of r for the sample selection. This in turn affects the number distribution
N(g), which is relevant to the likely range of F' (Figure 7).

With these unavoidable limitations of the present sample in mind, Table 3 summarizes
the likelihood results for the limited range of —1.5 < # < 1, obtained for power-law and
shadow tracers using a variety of different priors on a and #. The most likely value of 3 is
—1.5 for all cases, for the reason described above. We note that the current mass estimate
is rather insensitive to the § prior. As the § prior decreases, the estimated mass generally
increases, and the best-fitting # decreases, because the small S prior is biased toward more
tangentially anisotropic velocity distributions than the large B prior. However, since most
of our sample have high €, the best-fitting # remains —1.5 regardless of whether we adopt
the uniform prior or the uniform-energy prior for 5. This property makes the mass estimate
insensitive to the 3 prior.

Now we apply the Bayesian likelihood method to the subsample of objects with both
radial velocities and proper motions available, and consider the derived space motions.
In contrast to the above case, where we used radial velocities alone, we find that the
maximum probability within the range of 8 we consider is now bounded (Figure 8a).
This may be caused by the characteristic distribution of £ for the sample with full space
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motions, as shown in Figure 7 (dotted histogram). This figure shows that there exists a
larger fraction of low € stars than are found in the sample with radial velocities alone (solid
histograms), so a larger § is preferred to achieve a larger F. The mass estimate in this case
is quite insensitive to the presence or absence of Leo I. Figure 8b shows the probabilities
as a function of M, with a fixed value of § = —1.25, for the case of a power-law tracer
population with v = 3.4. Solid and dashed lines denote the probabilities with and without
Leo I, respectively. As is evident, the agreement between both probabilities is significantly
improved compared to the case of the radial velocities alone (Figure 6b). When Leo I is
included, the most likely value of the total mass M and the scale length a are 25.0 x 10! M
and 225 kpc, respectively. Excluding Leo I yields M = 18.0 x 10!' M and a = 160 kpc.
Table 4 summarizes the various results obtained when the proper motions of the objects are
considered. This Table illustrates that, for all cases, the mass of the Galaxy with Leo I is
in good agreement with that obtained without Leo I. Also, the mass estimate depends only
weakly on the index <y, unknown prior probabilities for a and 3, as well as on the range of
r for the sample selection, resulting in small changes in the mass estimates over a range of
only a few times 10" M.

To estimate the typical errors in this mass determination that are associated with
the measurement errors of the 561 tracers we have analyzed, we have conducted Monte
Carlo simulations, adopting the assumptions that typical errors in the distances and
radial velocities are 10 %, and 10 km s~!, respectively, and that the proper-motion
errors are 1 mas yr~! for globular clusters, 0.3 mas yr~! for satellite galaxies, and 5
mas yr~! for the FHB stars. We generated 561 data points (including Leo I) drawn from
Gaussian distribution functions centered on the observational data, and with dispersions
set to the above typical errors. Given a true mass M, or scale length a (where we use
M = 2.3 x 10'? M with a = 200 kpc), and prior probabilities for a and 8 (1/a? and the
uniform-energy prior, respectively), we calculate the most likely mass, M’, and compare it
with an input true mass. Figure 9 shows the distribution of the discrepancy between M’
and M, 100 x (M' — M)/M, obtained from 1000 realizations. The error distribution in the
current mass estimate has a mean value shifted downward by 20 %, and a dispersion of
half-width 20 %. These values suggest that one might adopt an estimate of the systematic
error on the order of 20 %, and a random error of +20 %. Exclusion of Leo I does not
influence the magnitude of these errors. It is worth noting that WE99 obtained roughly
~ 100 % systematic errors, and ~ 90 % random errors in their mass estimate, which was
based on about 30 data points. The significant improvement of our mass estimate is mainly
due to our consideration of a much larger data set that includes several hundred FHB stars.

As shown in Table 4, the most likely estimated total mass depends on model
assumptions at a level of a few times 10'' My. When the model is fixed, the current large
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data set allows us to limit both systematic and random errors to a level of about 20 %. If
we follow WE99’s procedure for the adoption of the most likely total mass, i.e., if we adopt
the mass estimate that provides the smallest difference between the masses obtained with
Leo I and without Leo I, we obtain 2.57%3 x 10'2 M, (Leo I included) and 1.870:% x 10'2 M,
(Leo I excluded). On the other hand, the mass estimate within the distance of the LMC
(50 kpc) is quite robust, covering the narrow range 5.4 to 5.5 x10'! M,

5. DISCUSSION AND CONCLUDING REMARKS

We have placed new limits on the mass of the Galaxy, based on a newly assembled set
of halo objects with the latest available proper-motion data, using two alternative methods
for mass determination. The first method, based on the escape velocity argument, enables
us to obtain a lower limit on the total mass of the Galaxy of 1.3 to 1.4 x10'2M. We have
shown that this mass estimate depends on neither the presence or absence of Leo I, nor
on the large velocity errors for Draco and Pal 3. The second method, based on a Bayesian
likelihood approach that reproduces all of the positions and velocities of the sample, also
provides a mass estimate that is insensitive to the presence or absence of Leo I, at least
when proper motions are taken into account. Although the best mass estimate obtained
from this second approach depends somewhat on model assumptions (prior probabilities
for @ and f and possibly the shape of F, see below), the resultant systematic change of
the total mass is confined within a few times 10! M. The most likely total mass of the
Galaxy we derive is 2.577-3 x 10'2 M. This is in good agreement with the total mass
obtained by WE99 (1.973¢ x 10'2M) and that obtained from other methods (e.g., Peebles
1995, 2 x 10'2M,,). Since the size of our tracer sample is significantly larger than used in
previous studies, both systematic and random errors are reduced to a great extent. We note
that consideration of the numerous FHB stars plays a vital role in this mass estimate, as
demonstrated in § 3.

It is also worth noting that, if we fix the mass of the Galaxy equal to our most likely
mass estimate, there is insufficient matter present to gravitationally bind the LMC, if we
adopt the recent proper-motion measurement by Anguita et al. (2000). These authors
reported rather high proper motions, (pac0s6, pts) = (+1.7 £ 0.2,+2.9 + 0.2), compared to
previous measurements, (gqcosé, us) = (+1.94 £+ 0.29, —0.14 + 0.36) (Kroupa & Bastian
1997). Thus their results need confirmation from other studies.

The current work also implies that the Galactic rotation curve at outer radii, R > Ry,
does not decline out to at least R ~ 20 kpc (as long as local disturbances to circular motions,
such as warping motions and/or non-axisymmetric motions, are ignored). As illustrated in
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Figure 2, a declining rotation curve corresponding to @ = 20 kpc and Vi sp = 211 km s7!

fails to bind many sample objects to the Galaxy. The smallest possible value for a to
bind all objects in the isothermal-like density distribution (eq. 4) is a = 195 kpc, yielding
Visr =~ 220 km s7L.

In a more general context, the detailed shape of the rotation curve at and beyond
R = R reflects the interplay between the disk and halo mass distributions, as this region
is located near the boundary of both components. Thus, determining the rotation curve
at Ry < R g 15 kpc will set useful limits on the mass distribution in the inner parts
of the Galaxy. Indeed, the Japanese project VLBI Exploration of Radio Astrometry
(VERA) will be able to determine both inner and outer rotation curves from measurement
of trigonometric parallaxes and proper motions of astronomical maser sources that are
widely distributed in the Galactic disk (Sasao 1996; Honma, Kawaguchi, & Sasao 2000).
VERA will reach unprecedented astrometric precision, ~ 10uas, and will yield precise
determinations of the Galactic constants Ry and Vi,sgr. We note that whatever results are
derived for the rotation curve, the total mass of the Galaxy ought to be larger than 102 M,
in order to bind the more distant stellar objects.

Our estimate for the mass of the Galaxy inside 50 kpc, i.e., within the distance of the
LMC, is 5.575:3 x 10! Mg (Leo I included) and 5.3}3% x 10! My (Leo I excluded). The
error estimates are calculated from the maximum and minimum values of the total mass.
Thus, about 24% of the total mass of the Galaxy resides within 7 < 50 kpc. This implies
that the possibility of brown dwarfs as the origin of the microlensing events toward the LMC
may be excluded, because it requires a much smaller mass inside 50 kpc, ~ 1.3 x 10! M
(Honma & Kan-ya 1998). Our result is also in good agreement with the recent statistics of
the microlensing events obtained from analysis of the 5.7-year baseline of photometry for
11.9 million stars in the LMC (Alcock et al. 2000), showing the absence of short-duration
lensing events by brown dwarfs. However, the most recent work has suggested that perhaps
one of the microlensing events is actually caused by a nearby low-mass star in the Galactic
disk (Alcock et al. 2001). More direct observations for identifying lensing objects are
required to settle this issue.

Once the total mass of the Galaxy is fixed, it is possible to place a useful constraint
on the mass of the Local Group. Most of the mass in the Local Group is concentrated
in M31 and the Galaxy. The total mass of M31 can be estimated from the positions and
radial velocities of its satellite galaxies, globular clusters, and planetary nebulae (Evans &
Wilkinson 2000; C6té et al. 2000; Evans et al. 2000). If we take it to be 1.2733 x 10'2M,
(Evans & Wilkinson 2000), the mass of the Local Group is ~ 3.7 x 10'2M. This is in
good agreement with the estimate by Schmoldt & Saha (1998), (4 — 8) x 10'2Mj,, based on
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modified variational principles.

To set tighter limits on the total mass of the Galaxy we require more accurate
proper-motion measurements for a greater number of objects at large Galactocentric
distances. The high-velocity FHB stars in our sample (with apparent magnitudes V < 16)
that are responsible for setting the minimum mass of the Galaxy have proper-motion errors
of ~ 5 mas yr~!, whereas Draco and Pal 3 have much larger relative errors, comparable
to their proper motions themselves (see Table 2). Indeed, both the Space Interferometry
Mission (SIM: Unwin, Boden & Shao 1997) and the Global Astrometry Interferometer for
Astrophysics (GAIA: Lindegren & Perryman 1996) will be able to provide more accurate
proper motions for such high-velocity objects, as well as for numerous other distant tracers of
the Galaxy’s mass, up to a precision of a few pas for targets with V' < 15. This corresponds
to an error of < 10 km s™! in the tangential velocity components for many distant objects,
i.e., comparable to the error of their (presently determined) radial velocities. Furthermore,
roughly half of our sample objects lack proper-motion measurements altogether. To a great
extent, the lack of proper-motion measurements (at least for southern sources) will be
removed with the completion of the recently re-started Southern Proper Motion survey of
van Altena and colleagues, as well as other efforts to substantially increase the numbers of
stars with reasonably well-measured proper motions (e.g., UCAC1: Zacharias et al. 2000;
UCAC2: Zacharias et al. 2001).

Further assembly of radial velocities for FHB stars, especially those at large r (beyond
distances where accurate ground-based proper motions can be obtained), is also of great
importance for a number of reasons. First, as Figure 3 demonstrates, large Galactocentric
regions are characterized by small escape velocities. The current sample of FHB stars
(because of their locations near the sun) explore distances where the corresponding escape
velocities are in the range of 500 < V.. < 600 km s™!. More remote FHB stars, with
distances in the range 10 < r g 50 kpc, will offer a further constraint on the total mass
of the Galaxy by covering the range 400 < V., < 500 km s~!. Secondly, the assembly
of samples of more distant FHB stars will enable exploration of the suggested change in
velocity anisotropy from the inner to the outer halo (e.g., Sommer-Larsen et al. 1997), and
better constrain its dependence on Galactocentric distance.

In exploring the Bayesian approach for mass estimates of the Galaxy, we have adopted
a specific form of the phase-space distribution function F' (eq. 8) to facilitate comparison
with previous studies. This procedure implicitly assumes that the velocity-anisotropy
parameter, (3, is constant everywhere in the Galactic volume. However, as noted by
Sommer-Larsen et al. (1997), there is an indication that the velocity anisotropy of the
halo may be mostly radial at R < 20 kpc and tangential at R > 20 kpc. If so, many of
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distant FHB stars, especially those at R > 20 kpc, play a crucial role in the determination
of the global distribution of velocity anisotropy. Searches for a more realistic form of the

phase-space distribution function, combined with a more elaborate likelihood method, are
both worthy pursuits.

Fortunately, prospects are excellent for obtaining a rapid increase in the observational
database of FHB stars with the required data. There already exists a substantial body of
additional spectroscopy for FHB/A stars observed during the course of the HK survey of
Beers and colleagues and the Hamburg/ESO Stellar survey (Christlieb et al. 2001), many of
which also have available proper motions, or will soon, from completion of the SPM survey
and/or other ground-based efforts. However, as was noted by Wilhelm, Gray, & Beers
(1999) (foreshadowed by Norris & Hawkins 1991; Rodgers & Roberts 1993, and references
therein; Kinman, Suntzeff, & Kraft 1994; Preston, Beers, & Shectman 1994), a substantial
fraction (perhaps as high as 50%) of high-latitude A-type stars are not FHB, but rather
some (as yet undetermined) mixture of binaries and high-gravity stars (see Preston &
Sneden 2000). For some applications, such as estimates of the mass of the Galaxy that
rely on space motions of tracers (and in turn on reasonably precise distance estimates of
individual objects), confident separation of bona-fide members of the FHB population from
possible “contaminants” is crucial ! . In the past, this has required that one obtain either
Stromgren photometry and/or spectrophotometry (e.g., Kinman et al. 1994), broad-band
UBV photometry in combination with medium-resolution spectroscopy (e.g., Wilhelm et
al. 1999a), or reasonably high S/N, high-resolution spectroscopy (e.g., Preston & Sneden
2000). All such endeavors are rather time intensive. However, Christlieb et al. (2002, in
preparation) have been exploring means by which adequate separation of FHB stars from
higher-gravity A-type stars might be accomplished directly from objective-prism spectra,
such as those in the Hamburg/ESO stellar survey. Such methods, which look promising,
would be most helpful in future investigations of this sort. Wide-field stellar surveys, such
as those presently being carried out with the 6dF facility at the UK Schmidt Telescope,
are capable of providing large numbers of radial velocities for FHB/A candidates, and are
expected to contribute 5,000-10,000 suitable data over the course of the next few years.
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comparison of the Wilhelm et al. sample with the catalogs of STARNET, NPM1, and
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! For example, if 10 % of our FHB sample is contaminated by blue metal-poor stars, we obtain a
2 ~ 3 x 10! M decrease in our total mass estimate, based on Monte Carlo experiments.
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Figure 1: Spatial distributions of satellite galaxies (squares), globular clusters
(circles), and FHB stars (triangles) on the plane perpendicular to the Galactic
disk, where the X axis connects the Galactic center (X =0) and the sun
(X=8.0 kpc). The filled and open symbols denote the objects with and
without available proper motions, respectively. The plus sign in panel (b)
denotes the position of the sun, (X,Y) = (8.0,0).
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Fig. 2.— Rotation curves for Model A and Model B, parameterizations of the mass
distrubutions considered in this paper. See the text for more information on the nature
of these models.
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Figure 3: (a) The relation between escape velocities, Ve, and space veloci-
ties, Vrp, for Model A with a = 195 kpc. The symbols are the same as those
in Figure 1. The solid line denotes the boundary between the gravitationally
bound and unbound objects - those in the region below the line are bound
to the Galaxy. For the sake of clarity, velocity errors are plotted for only the
high velocity objects relevant to the mass estimate. (b) Same as panel (a)
but for Model B with 7., = 295 kpc.
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Fig. 4.— The relation between escape velocities, V.., and space velocities, Vgr, for Model
A with a =20 kpc. In this case, the rotation curve declines with increasing radii, as shown
in Figure 2 (dashed line). Note that, if this situation were to apply, many of the sample
objects would be unbound to the Galaxy.
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Fig. 5.— Cumulative number distribution, N(< ), of the distances of globular clusters
and satellite galaxies (solid histogram) in comparison with model distributions (continuous
dashed and solid lines). See the text for additional information.

160 T T T T T T T T
140

120

. —data(all globular clusters
/\1 OO . . 7
y 80 and satellite galaxies)
> — v =3.3 ~
= 60 : 10 k N
40 s =10 Xpe -

20

0O 100 200 300 400 500
r [kpc]

65



Figure 6: (a) Likelihood contours in the plane of the mass M and velocity
anisotropy 3, obtained from an analysis using only radial velocities. The
solid and dashed curves show the results including Leo I and excluding Leo
I, respectively; the cross and the asterisk show the maxima of the probabilities
for each case. Contours are plotted at heights of 0.32, 0.1, 0.045, and 0.01 of
the peak height. The spatial distribution of a tracer population is assumed
to follow a power-law form with v = 3.4. (b) Probabilities of the mass M at
B = —1.5, including Leo I (solid line) and excluding Leo I (dashed line).
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Figure 7: The distribution function, F', for # = —1 (solid lines) and =1
(dotted lines), at 7 = 10 kpc (panel a) and r = 50 kpc (panel b). Also plotted
are the number distributions N(e) of the stars when a = 200 kpc, where
dotted and solid histograms denote the sample with and without available
proper motions, respectively. The range of r for plotting N(¢) (r < 10 kpc
for panel a and 20 < r < 80 kpc for panel (b) is chosen to approximately
match that for F'.
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Figure 8: (a) Likelihood contours in the plane of the mass M and velocity
anisotropy 3, obtained from an analysis that uses both radial velocities and
proper motions. Solid and dashed curves show the results including Leo I
and excluding Leo I, respectively; the cross and the asterisk show the max-
ima of the probabilities for each case. Contours are plotted at heights of
0.32, 0.1, 0.045, and 0.01 of the peak height. The spatial distribution of a
tracer population is assumed to follow a power-law form with v = 3.4. (b)
Probabilities of the mass M at the best-fitting # of —1.25, including Leo I

(solid line) and excluding Leo I (dashed line).
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Fig. 9.— An approximate error distribution of the mass estimate caused by the typical
measurement errors of the data. The abscissa denotes the relative error in mass, 100 x
(M' — M)/M, where M’ is the mass calculated by a Monte Carlo method and M is the

input true value. See text for more details.
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TABLE 1. Distance Estimates and Proper Motions

of the FHB stars

NAME® RA DEC [Fe/H] rb Rve® Hat s v Sourced
(2000.0) (kpc) (km/s) (mas/yr) (mas/yr) (km/s)

228760029 0:01:57.6 —36:40:46 -2.8 8.8 48 —-0.8 34 —-5.6 £ 2.8 148 + 90 S
295170031 0:02:09.8 —14:08:55 -2.7 12.4 -314 5+5 —-10+ 5 394 £ 211 N
295170044 0:03:08.4 —14:24:25 —-2.6 10.4 60 -9+5 —-1+£5 477 £ 163 N
228760030 0:05:36.5 —36:41:28 0 7.9 50 20+ 24 1.7+ 21 244 + 28 A,S
295030008 0:06:02.2 —24:37:09 -2 9.3 45 1.4 + 3.4 —3.0 £ 4.9 156 + 120 S
228760034 0:06:20.7 -—-35:17:14 -1.2 8.2 —94 3.3 = 10.0 -6.4 £ 8.9 140 + 127 S
228760031  0:08:25.6 —36:09:15 -2.2 8.7 —-54 -22128 —87+ 28 193 + 62 S
228760038 0:09:44.7 —34:39:14 -1.9 8.8 —153 44 %+ 2.2 -5.4 + 2.3 177 £ 31 S
295030024 0:10:08.5 —25:33:40 -1.4 9.7 143 13.2 £ 3.6 -3.7+29 347 + 87 S
295030029 0:11:19.1 —26:26:39 -2.4 8.6 —-49 127+ 20 -16.6 £ 1.8 197 £ 44 A,S
295270016  0:27:53.9 —18:57:44 -3 9.5 —43 11£5 =35 193 + 125 N
294970009 0:29:01.7 —23:40:01 -2.1 9.3 —131 15.5 + 3.9 -2.4 £+ 5.1 308 100 S
295270022 0:32:17.1 —19:26:00 -1.9 8.2 —98 25.0 £ 2.0 -8.1 £+ 2.0 168+ 18 A, N, T
295270026 0:33:05.0 -—21:11:13 -1.8 9.4 —146 6+5 -3£5 176 + 76 N
221700002 0:34:37.9 —10:28:50 —2.5 10.0 —270 -4+ 5 —-10+5 321 £ 102 N
295270035  0:35:23.2 —21:00:47 -2.2 8.7 —-22 13.9 + 3.8 —-11.9 + 3.8 97 + 63 A, N
228820023 0:36:04.3 —30:16:11 -1.8 10.6 -132 -23%27 -9.1+ 28 291 + 83 S
295270031 0:36:39.2  —22:25:44 -2.1 9.1 -19 3.7+£22 -13.1%29 92 + 51 AN, S
2952706039  0:36:53.8 —19:56:51 -1.1 10.0 -26 2+5 2+5 268 138 N
294970031 0:38:41.9 —24:26:56 -2 9.3 —24 5.8+ 25 -20+% 25 148 + 57 S
221790011  0:39:36.1 —04:35:40 -3 9.1 -110 3.0+44 -10.0x% 44 95 + 60 A
221700009 0:40:52.9 —10:19:31 —-2.2 9.9 —-125 9+5 -8+5 105 + 92 N
294970033 0:41:08.5 —25:56:31 -1.9 9.2 73 1.6 &+ 4.0 —-9.4 % 2.7 124 + 65 S
221700013  0:41:21.1 —08:23:19 -2 9.1 -7 16.8 £ 3.3 -309+ 3.3 50 £+ 56 A, N
221700015 0:43:01.6 —08:15:10 0 9.6 —22 -11 x5 —-13+5 362 % 100 N
294970038  0:43:47.1 —26:43:50 -3 13.1 —42 00+ 438 —6.5 £ 4.1 192 % 222 S
221700024  0:43:47.3 —11:22:15 -2.2 12.0 81 2+5 -6 +5 150 + 105 N
295270061  0:43:48.6 —20:45:41 -3 9.5 —67 7.0+ 4.1 -3.9+4.1 118 + 81 AN
221830011  0:52:56.1 —02:52:42 -1.7 8.9 —126 13.9 + 2.1 -31.5 £ 2.1 187 + 25 AT
295090031  0:52:57.0 —29:54:38 -1.6 9.3 131 135+ 24 -11.0+19 219 + 44 S
295090039 0:54:41.4 —28:13:54 -1.7 9.0 54 15.8 £ 2.1 -7.4 %+ 2.2 186 + 42 S
221830014  1:00:15.3 —-02:17:29 -3 109 85 2+5 16 £5 635 % 127 N
221830028 1:02:07.6 —07:02:34 -2.2 10.1 -50 2+5 12+ 5 441 £+ 101 N
221830024 1:02:53.2 —04:44:54 —2.2 8.7 —100 11.2 £ 2.1 —15.5 + 2.1 70 & 16 AT
295140008 1:05:42.6 —23:58:40 -1.3 9.0 113 48 £ 3.0 —8.7+ 2.3 129 £ 25 AS
295140006 1:06:49.4 —25:01:48 -1 9.8 57 55+ 57 -10.2 £ 5.7 77 + 104 S
221660032 1:07:33.8 —12:11:01 —2.6 9.5 —128 15.0 £ 3.1 -73+£ 3.1 166 + 41 AN
221660034 1:08:03.3 —12:11:37 -2.2 11.2 128 4 %5 1345 590 £ 149 N
295140013  1:10:31.3  —25:40:47 -2.7 10.3 —-50 08+38 -—-129+37 226 %105 S
295180028 1:16:44.5 —31:04:58 —-2.5 11.7 14 0.5+ 25 —4.2 +£ 2.6 127 £100 S
295180035 1:16:58.2 —27:45:57 —-24 10.7 45 -34143 -9.8 £4.3 280 &+ 133 S
295140038  1:22:53.5 —26:17:35 —-1.6 9.8 54 59+ 46 —14.3 & 3.1 154 + 87 S
221740034 1:25:24.5 —09:36:19 -2.5 9.8 37 1.6 £34 -10.21+34 136 + 51 A, N, T
221740042 1:30:19.3  —09:44:57 -2.5 9.0 7 43+18 -18.6+ 1.8 109 £19 A,N, T
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TABLE 1. (continued)

NAME? RA DEC [Fe/H] rP RV© Ha* Bs v Sourced
(2000.0) (kpc) (km/s) (mas/yr) (mas/yr) (km/s)

221800003  1:30:46.2 —10:25:54 -2.7  10.6 79 9+5 11+5 442+114 N
295040004 1:31:02.1 —36:38:34 -2.3 10.1 45 8.6 & 2.4 —-5.6 + 2.6 100 + 68 S
221800002  1:31:42.6 —10:05:30 -1.1 9.3 —82 105 3+5 232460 N
221800006  1:35:19.5 —10:33:20 -22 110 47 5+5 6+5 350+ 128 N
295040028  1:36:12.2 —34:06:08 -23 100 —-56 67+38 —-84+34 120+ 32 S
221800017  1:36:49.9 —12:00:53 -15 9.6 34 11.1+3.1 -524+31 111 %50 AN
295040035  1:40:51.5 —33:25:36 -22 111 43 10.6 + 4.8 —12.0 + 4.8 310 % 156 S
295040045  1:47:30.5 —34:07:23 -2 9.8 189 9.0+38 —6.0+24 144 %49 S
221710022 2:03:11.7 -08:13:10 -2.2 9.7 -201 —-2.4+ 28 227+ 2.8 310 + 38 AN
221750001 2:13:30.0 —11:37:36 -1.4 9.7 67 5.1+29 4.2 +29 256 + 41 AN
221750003  2:15:32.1 —10:40:28 -1.8 107 16 14+£5 6+5 335491 N
221890005  2:32:29.2 —14:31:48 -16 114 -120 105 -5+5 177 + 60 N
221810032  3:01:34.1 —08:56:03 -12 115 -126 5+5 2+5 273+96 N
310640037  3:09:30.0 —67:37:08 -1.5 7.9 277 67.1 £ 2.1 —41.8+21 496 £ 22 AT
221670008  3:16:28.3 —07:06:46 0 152 14 1+5 0+5 204 + 209 N
221670017  3:18:45.7 —03:38:50 -2 112 198 140+£39 -21.0+39 322+ 74 A
221850020  3:27:47.2 —14:06:46 -1.7 9.7 24 19.7 £3.1 -228+3.1 144 £ 37 AN
310750042  3:30:46.9 —66:38:17 -2.1 8.2 145 135 + 44 1.0 + 4.4 86 + 67 A
221760020  3:45:49.2 —10:23:13 -1.5 109 -6 16+5 -14+5 181 + 81 N
221690025  4:16:05.6 —14:34:02 -16 121 10 17+5 2+5 336 +93 N
310720061  5:27:10.8 —59:05:17 -1.5 8.5 64 —-05+66 —10+66 188 57 A
310720068 5:29:20.6 —61:16:28 -24 8.2 495 418 £ 3.4 -1.8 + 34 369 + 20 AT
156210043  10:09:27.2  +24:50:05 -3 125 67 45+45 —-20+45 245+ 113 A
156210039  10:13:50.7  +25:18:24 0 103 131 -45+50 -80£50 11371 A
156210070  10:21:56.1  +27:11:19 -1.8 9.6 35 170+ 1.8 —65+18 304 + 20 AT
156210015  10:26:19.1  +23:30:36 -2.2 9.3 181 -23.7+ 14 -114+14 246 £ 17 AT
156210009 10:28:01.0 +27:32:38 —-1.4 11.0 27 -17.7£5.0 —-2.0 £ 5.0 373 £ 91 A
156210010 10:28:06.1 +426:32:51 0 10.5 46 00+72 -28.0+7.2 324+ 138 A
156250026  11:51:50.0 +26:21:56 -1.1 8.3 -3 78+16 -178+16 18910 A,N,T
160260011  12:16:50.0  +28:56:03 -1.7 9.3 19 -97+33 -85+33 70 + 58 AN
160260028  12:23:02.8 +427:27:15 -3 9.6 —-81 52+ 3.5 8.9 £ 3.5 467 £ 77 AN
160270049  13:12:26.9  +30:21:16 -1.9 8.7 57 -144+36 —103+36 143 £49 AN
228770008  13:12:49.9 —10:32:31 —2.2 7.8 90 035 -5+5 135+ 140 N
160270051  13:13:01.9  431:01:28 -2.2 118 39 —-6+5 8+5 557 211 N
228770012  13:13:32.9 —09:35:18 -2.6 74 312 4.0+ 3.7 0.6 £3.7 355+ 57 AN
228770005 13:15:28.5 —11:25:31 -3 8.4 31 2+5 1+5 308164 N
228770031 13:17:08.5 ~09:40:25 -2.7 7.6 65 —6.8+5.0 23+£50 225104 AN
228770036 13:17:39.4  —11:18:33 -2.3 7.6 202 —8.7+5.0 1.2 +50 239 +99 AN
228770038 13:18:01.9 —11:58:46 -2.2 7.2 57 -13.4+5.0 4.3+ 5.0 270 + 82 A, N
228770027 13:18:10.7 —08:51:05 -1.9 8.6 -11 -74+50 -106+50 292+ 147 AN
228770030 13:18:26.0 —09:07:12 -3 9.5 136 —-7.8+50 —-1.7+5.0 227+ 204 AN
228770020 13:18:32.8 —07:49:17 -2.2 7.5 -18 -10%+5 4+5 27799 N
228770026  13:20:55.2 —08:38:48 -2 7.3 161 -103 £3.3 -239+33 298 £ 55 A, N
228770045 13:21:35.2 -11:29:15 -2.1 7.2 42 49+50 -16.8 5.0 272+ 75 AN
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TABLE 1. (continued)

NAME® RA DEC {Fe/H] rb Rve oo " v Sourced
(2000.0) (kpc) (km/s) (mas/yr) {mas/yr) (km/s)

228770046  13:22:24.0 -—11:17:27 -2.3 7.3 60 —5.6 £ 5.0 -5.8 £ 5.0 37 + 96 A, N
228770049  13:22:52.2 —11:58:37 -2 7.2 -7 -104150 -11.4%50 146 + 78 A, N
228890013 13:36:32.1 —08:15:15 -1.9 7.1 32 -5%5 -3x5 129 £+ 90 N
228890023 13:38:14.8 -—12:09:25 -1.9 7.2 =75 -11+%5 -9+£5 256 + 126 N
228890037 13:40:14.5 —09:14:04 -2.5 7.0 174 —-6x5 -14 5 173 £ 97 N
228890040 13:42:53.8 —07:49:02 -3 8.9 —80 05 -4+£5 220 + 182 N
228890060 13:49:13.8 —10:22:21 -1.1 6.9 —107 -59+ 3.5 -6.5+ 3.5 206 + 42 A, N
228890058 13:51:13.4 —11:03:31 0 6.8 65 62+32 -243+32 351 + 46 AN
228890057 13:52:21.3 —11:07:54 —-0.6 6.7 8 -11+£5 -2+5 158 £ 101 N
156230001  14:08:30.2  +23:20:51 —-2.8 8.1 -159 11.0 £ 4.7 -12.0+£ 4.7 431 + 89 A
228830007  14:15:34.5 +10:21:43 —2.6 7.3 51 -20.5+18 -—-39.0%+1.8 304 £35 A,N,T
228830028 14:20:47.1 +409:15:11 -3 7.1 -1 -296+73 -140kx73 462+ 145 A
228740025 14:30:24.7 —24:00:11 =21 6.0 —27 —41.1 1+ 64 9.0 £ 6.4 585 + 85 A
228710008  14:32:03.4  —20:34:17 -2 5.6 83 -1+5 -84 5 147 £ 132 N
228740021  14:33:17.2  —24:32:46 -2.3 5.7 91 -13.7+£6.0 —-20.0%6.0 278 + 98 A
228710003  14:33:57.1 —21:12:58 -1.5 5.5 78 -16 £ 5 -3+5 281 113 N
228710013  14:34:14.4 —19:37:26 -3 5.8 —14 -8+5 -9+ 5 204 £ 157 N
228710005  14:34:30.7 —20:50:56 —2.2 6.1 105 —11+£5 0£5 318 £ 168 N
228740036  14:34:57.5 —24:13:04 -1.9 6.0 40 -255+£6.1 —13.0+£6.1 260 £ 79 A
228710009 14:35:30.9 —20:27:53 0 7.0 -179 -15.7 £ 2.1 7.7+ 2.1 333+£15 AN, T
228740053  14:35:374  —-26:31:15 -0.6 5.9 —-94 -25.1+5.8 0.0 £ 5.8 339 + 76 A
228710045  14:38:12.2 —21:45:48 -23 5.4 =5 —-11 5 -02+5 226+ 112 N
228710031 14:38:47.6 —18:54:01 -3 5.5 210 —12 %5 —7x5 241 + 114 N
228710034 14:39:20.1 —-19:16:13 -1.5 6.1 84 —-14£5 —-13+£5 530 £ 198 N
228710077  14:41:17.3 —18:03:25 -1.7 6.1 -10 -10+ 5 3+5 354 %148 N
228710062 14:42:05.6 —20:38:44 -2 5.5 35 -5=x5 -5+%5 35 £ 116 N
228710064  14:42:22.4 —20:31:01 -2 5.4 192 4+5 -12+£5 352% 121 N
228710052  14:42:53.2 —22:24:30 -2.3 5.5 79 -8+5 -1x5 130 + 88 N
228710063 14:43:00.6 —20:42:53 -3 5.6 159 -20 %5 -6+5 259 + 83 N
228710057 14:43:10.0 —21:11:28 -1.9 5.8 82 -16 x5 -85 124 £ 71 N
228710085 14:43:51.6 —18:43:19 -2.2 5.4 209 —-16 £ 5 -2+5 3024104 N
228710088  14:44:26.0 —19:20:25 -1.8 5.4 115 -9£5 3+5 245+ 105 N
228710087 14:45:16.9 —18:58:35 -2.4 5.4 —107 -9+5 11 +5 464 £ 103 N
228710092  14:46:08.5 —20:30:13 —24 5.3 57 -8%5 -5+%5 45 + 105 N
228710096  14:48:02.9 —21:32:53 -2 5.6 —-40 -17+£5 -13+5 208 £ 75 N
228710115  14:48:35.2 —17:37:22 —-2.7 5.5 17 0+5 615 353 + 99 N
228710109  14:48:42.3 -—18:47:59 —-2.6 5.3 —-54 05 3+£5 302£111 N
228710099  14:50:24.1 —21:43:10 -2.5 5.3 162 -3+£5 -9+5 190 £ 120 N
228710103  14:50:52.9 —20:53:17 -1.2 5.4 75 1+5 -7£5 209 &+ 156 N
228710113  14:51:26.5 —19:31:48 -2.8 5.3 97 0L5 -11 45 270 £ 135 N
228900015 15:16:10.2 +02:09:16 -3 6.5 129 -250+ 43 —40.0+ 4.3 380 £ 60 A
228900042 15:18:53.8  +00:45:52 —2.2 6.4 -78 -21.0%50 -13.0=%5.0 130 £ 55 A
228840015 15:31:46.9 —09:28:32 -2.1 5.9 223 —4.8 £ 3.3 -9.4+ 3.3 241 + 32 A, N
228840021 15:34:44.9 —08:16:39 -1.6 5.0 —59 —-13+5 6+5 358 + 92 N
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TABLE 1. (continued)

NAME® RA DEC [Fe/H] rb Rv*© Hao us v Sourced
(2000.0) (kpc) (km/s)  (mas/yr) (mas/yr) (km/s)

228840006 15:35:13.9 —11:40:54 0 4.8 34 -7T+5 -6 x5 48 + 106 N
228840036 15:37:38.5 —11:30:38 -2.2 5.6 69 -13.7+£ 3.5 -13.1 £3.5 88 + 49 AN
228840047 15:41:27.7 —11:28:06 -2.1 5.7 -90 -14.1 £+ 3.1 1.6 + 3.1 225 £ 36 AN
228720040 16:21:43.7 —03:08:00 —-1.2 5.0 -65 2+5 3+5 295 + 94 N
228720041 16:22:40.4 —03:24:38 -2 6.6 -204 —-489+£39 -31.0+3.9 317 £ 33 A
228720071 16:25:40.3 —02:57:18 -3 4.3 74 3.0 + 8.5 —-3.0t85 278 £ 214 A
228720067 16:25:51.5 —03:38:59 —-2.6 4.3 -16 1.0 + 5.8 -8.0+ 5.8 180 % 134 A
228780105 16:50:04.4 4+08:11:15 -2.3 5.7 —-179 —4.0 £ 5.2 14.0 £ 5.2 416 + 72 A
229590022 18:45:25.7 —65:57:31 -1.7 6.1 304 -22.8 +4.3 14.0 + 4.3 481 + 45 A
229590189 19:10:50.0 —66:33:16 -1.6 6.0 —129 —-0.8 £ 4.8 —9.0 £+ 4.8 248 £ 54 A
229390058 19:22:28.0 —28:09:09 -2 3.2 17 —-2.5 + 3.3 3.2+ 34 322 £ 83 S
229390167 19:28:43.8 —28:50:26 -2 5.0 -32 —2.7 £ 8.7 3.3+ 36 27T £ 71 S
228960041 19:29:22.3 —52:54:06 -3 5.2 —-122 —-0.6 £ 58 —-11.0%5.8 180 + 76 A
229390164 19:32:31.4 —28:41:21 -1.7 5.3 —-264 13.7+ 28 -13.8%+ 238 336 £ 25 A,S
228960086 19:36:45.3 —57:18:59 0 5.5 -169 -11.9+5.7 -9.0 £+ 5.7 284 + 83 A
229640125 19:57:17.9 -39:01:18 -2.1 4.2 26 1.3+ 29 39429 338 £ 72 S
229640219 20:06:29.4 —39:03:41 —-0.3 4.6 19 -56 £ 29 -1.1+ 29 230 + 61 S
229500023 20:16:20.7 —14:33:38 -1.3 7.0 —-13 193+ 20 —-144 £ 20 208 £ 12 T
229500008 20:18:25.5 —16:01:17 -1.2 6.0 —6 —-29+5.4 -30=+54 196 + 59 A
228850092 20:26:02.3 —40:44:34 —1.8 4.6 36 -1.1+23 -7.0% 23 60 + 51 S
228850125 20:26:53.6 —37:57:37 -1.1 4.8 -175 1.6 +4.1 —-8.5 £ 4.9 171 + 59 S
229550104  20:31:35.1 —25:51:22 -1.6 5.2 —122 5.0+% 2.7 —4.3+ 26 230 + 89 S
229550103  20:31:54.4 —26:06:51 -1.6 7.7 —-180 2.5+ 3.0 —-6.9+ 3.0 268 £ 139 S
229550099 20:32:47.2 -26:33:23 -1.1 6.5 -101 94+24 —-259+426 109 £+ 18 S
228850179 20:33:41.1 —38:42:26 -1.2 4.7 -28 -0.3+22 0.4 + 2.2 246 + 65 S
229550147 20:38:35.6 —25:48:06 -1.1 5.2 10 —6.8 £ 2.0 —5.8 & 2.0 188 + 38 S
228800061 20:41:28.9 —21:47:13 —-2.5 5.2 -107 -36+21 -156 =+ 2.2 300 £ 68 N, S
228790063 20:45:08.4 —41:14:00 -1.4 5.0 9 =57+ 2.2 —6.1 + 2.2 170 + 47 S
304920015 21:03:42.6 —40:23:29 -2 5.4 -39 —-58 +£4.7 -—10.0% 3.8 152 + 84 S
295010036 21:07:15.8 —36:06:45 -1.2 5.7 -151 29423 -85+ 23 151 £ 33 S
304920063 21:08:33.1 —40:47:28 -0.4 6.9 15 44 +38 -10.1+£38 326 %171 S
295010057 21:16:13.3 —35:09:10 -1.6 5.7 -98 19.1 + 2.6 -76 £ 2.6 442 + 46 S
295010102  21:25:59.7 —36:09:49 -1.6 5.8 -37 21418 —-4.5 %+ 1.8 112 + 47 S
229480002 21:33:50.1 —40:53:38 -1.9 6.2 —-56 534 25 1.7+ 2.5 336 + 81 S
294930009 21:39:43.1 -—-30:53:39 -0.9 6.4 1 —-4.5 £ 3.1 —6.4 £ 23 168 + 38 S
294930012  21:41:20.0 —29:53:38 -1.6 6.2 —-175 98+ 51 -10.8 5.8 278 +131 S
295160054 22:19:58.2 +04:52:34 -1.2 7.7 56 -—-11.3+2.2 -10.1 %22 275 + 15 AT
295160017 22:27:58.7 +4-03:59:28 -2.2 7.7 —228 -21.0+%57 -31.0x54 351 £ 62 A
295160011  22:28:36.2 +06:21:09 —2.6 7.8 -14 13.6 £ 3.4 -73+ 34 186 + 29 AT
303320115  22:34:19.2  +09:16:19 -2 8.4 -73 -8.9 £ 5.1 11.0 £ 5.1 463 + 78 A
303320025 22:46:15.8 +07:51:34 -1.5 8.0 =37 0.0 £ 5.7 -2.0 £ 5.7 194 x 49 A
303320016  22:48:46.3 +10:51:48 -2.5 8.7 -180 49+ 48 —-25.0%4.38 386 + 89 A
295130017 23:19:16.9 —37:40:48 —-1.6 7.6 94 9.0 £ 6.3 -9.2 £ 3.1 134 + 68 S
229410002 23:28:24.9 —35:56:04 -2 8.4 =77 57+ 1.9 -39+ 20 143 £ 55 S
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TABLE 1. (continued)

NAME® RA DEC [Fe/H] rb RvVe® Har s v Sourced
(2000.0) (kpc) (km/s) (mas/yr) (mas/yr) (km/s)
229410008  23:28:40.2  —33:55:22 -3 7.6 -85 -57%19 -11.7+ 1.9 208 * 26 A,S
229410016  23:31:27.3  —33:57:02 0 7.9 43 8.7+ 3.7 3.5 &£ 3.2 305 + 70 S
229410022  23:33:11.6  —35:22:03 -1.7 9.0 -25 119+ 1.8 —-25%x 25 342 + 64 S
229410028  23:35:19.6  —36:48:25 -2 8.4 -6 6.1 + 3.0 —14.3 £ 3.0 218 * 89 S
294990022  23:38:44.8  —22:31:20 —-2.2 7.8 101 112+ 14 -1612% 14 1521211 A, N,S, T
229410037  23:38:54.2 —35:16:38 -2 7.7 —69 2.9+ 26 -9.1 + 29 102 £ 35 A,S
294990019  23:39:03.0 —23:12:36 -1.6 9.4 —-69 8.1 4.5 —0.4 +44 254 % 146 S
294990001  23:39:19.5 —27:24:37 -3 9.5 209 2.0+ 25 —5.4 £ 2.5 238 + 44 S
229660029  23:41:15.9  —30:24:00 —-2.5 8.1 0 179 £ 5.9 —-5.9 1+ 4.3 291 £ 111 S
294990035  23:43:11.9 —26:38:47 —-2.5 7.9 —-203 16.3 + 2.6 —19.6 + 3.0 235 X 38 A, S
294990026  23:43:31.5 —22:57:50 -1.6 8.8 -73 10.5 £ 3.9 —-6.0 +£ 3.7 183 £ 101 S
229410054  23:44:03.2 -33:01:35 =2 9.3 —155 6.3 £ 4.1 —11.1 £ 4.5 259 %+ 134 S
229660042  23:44:29.1 —28:19:21 =21 7.9 —46 4.2 £ 3.1 -203 +£ 25 129 + 44 A, S
228940048  23:45:29.5 —01:57:27 -2 12.1 —-135 6+5 —4+5 171 £ 203 N
294990040  23:46:14.7 —25:45:07 -3 9.3 —66 2.8 + 3.5 —-8.7+ 3.5 82 + 98 S
229410050  23:46:28.1 —34:56:01 -1.8 8.4 58 6.2+ 5.5 —0.6 £ 5.5 207 + 133 S
229660061  23:46:48.6  —30:00:29 -1.8 8.4 -131 -09%x70 —-10.5 + 8.7 181 + 106 S
294990036  23:46:51.9 —26:48:08 2.7 9.7 48 11.2 £ 3.3 -9.9 + 3.3 332 %108 S
295170002  23:47:04.3 —16:41:01 -1.3 8.5 2 5%5 6+5 321 £ 95 N
294960025 23:47:06.2 —30:02:49 -3 9.5 8 -17x+74 -5.3 £ 80 171 % 264 S
294990042  23:47:34.9  —24:55:09 -1.9 8.5 —-29 7.2+ 3.6 -4.6 + 3.8 114 + 84 S
295170007  23:47:52.7 —14:47:59 —-2.4 13.3 —-309 -2+5 —-7+5 376 £ 220 N
294990037  23:49:22.6 —26:35:43 -2.8 8.2 —104 4.5 + 3.3 -7.5+ 44 104 + 47 S
294990038  23:49:40.0 —26:31:36 —-2.4 8.9 -33 13.1 £ 3.5 —-9.5 + 3.4 264 £ 95 S
229660059  23:49:59.0 —29:56:11 —-2.8 11.5 -126 0.6 & 3.2 ~5.5 £ 2.7 153 + 81 S
228760011  23:51:02.7 —34:04:00 -1.7 8.5 117 15.5 £ 4.8 -3.5 £ 4.0 343 £ 102 S
229660065 23:51:16.8 —31:30:34 -2.9 11.3 238 1.5 £ 29 —4.8 + 3.7 248 + 67 S
229660076  23:51:40.0 —29:10:16 -0.7 8.1 -32 -25%23 79+ 29 169 + 47 S
228760006  23:52:19.2 —36:03:54 =23 8.3 —28 74 £ 4.0 -0.2+42 217+ 101 S
228760010  23:53:52.2  —33:51:51 —-2.2 9.0 96 69 + 2.4 —-83 %25 144 + 54 S
229660069  23:54:58.8  —31:05:53 -1.7 8.3 -114 -89+ 3.0 —-200 1.9 399 £ 54 S
294990064  23:55:32.8  —25:32:52 -2.1 9.7 —48 7.5+ 2.2 —4.3 + 4.2 151 £ 100 S
229660071  23:55:48.3 —-30:35:43 -3 11.5 35 20+ 28 —6.7 £ 3.1 125 + 137 S
228760022  23:58:06.4 —33:45:11 -2.5 8.3 38 17.0 £ 2.7 —-6.7+ 2.6 278 £ 58 S
228760019  23:59:20.1 —33:17:04 -2.1 8.8 2 1.5+ 2.9 -12.9 + 2.9 172+ 79 S

2The names of FHB stars follow Wilhelm et al. (1999).

bheliocentric radial velocity

;Galactocentric distance

A, N, S, and T denote the STARNET catalogue, the NPM catalogue, the SPM

respectively.

catalogue and the Tycho—2 catalogue,



TABLE 2. Basic Data for Seven High Velocity Objects

Name RA (2000.0) DEC l b r RV o COS O s Type*
(kpc) (km/s)  (masfyr)  (mas/yr)
Leol 10:08:27 +12:18.5:00 226 49 250 286 s v S
Draco 17:20:19.0 +57:54.8:0.0 86 35 82.0 —293.0 0.60 £0.50 1.10+ 0.50 S
Pal 3 10:05:31.4 +-00:04:17.0 240 42 96.8 83.4 0.33 £ 023 0.3 +0.31 G
160270051 13:13:1.90 +31:01:28.0 74 84 11.8 39.0 —6+5 8+5 F
221660034 01:08:3.30 —12:11:37.0 138 -75 11.2 128 4+5 13£5 F
221830014 01:00:15.3 —02:17:29.0 128 -65 109  85.0 2+5 16 + 5 F
228740025 14:30:24.7 —24:00:11.0 330 34 6.1 -270 —-41.1+64 9.0X64 F

28, G, and F denote satellite galaxies, globular clusters and FHB stars, respectively.

75



TABLE 3. Likelihood Results for Only the Radial Velocities

as or v aprior Bprior Leol best Dbesta (kpc) best M* M(<50kpc)® M(< 100kpc)®
Power-law Tracers
vy=34 . 1/a® Energy  Yes -1 160 18.0 5.4 9.6
No -1 70 7.9 4.6 6.5
y=34 1/a Energy  Yes -1 175 20.0 5.4 9.8
No -1 75 8.5 4.7 6.8
vy=34 l/a,2 Uniform Yes -1 160 18.0 5.4 9.6
No -1 70 7.9 4.6 6.5
v=4.0 1/a? Energy  Yes -1 170 19.0 5.4 9.7
No -1 80 9.0 4.8 7.1
Shadow Tracers
a, =100 1/a? Energy  Yes -1 180 20.0 5.4 9.8
No -1 65 7.4 4.5 6.2
a;, =100 1/a Energy  Yes -1 205 23.0 5.5 10.0
No -1 70 7.9 4.6 6.5
as =100 1/a? Uniform  Yes -1 180 20.0 5.4 9.8
No -1 65 74 4.5 6.2
a5 = Qpato  1/a? Energy  Yes -1 170 19.0 5.4 9.7
No -1 70 7.9 4.6 6.5

*All masses are in units of 10'! M.
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TABLE 4. Likelihood Results for the Full Space Velocities

as or 7y aprior Bprior Leol bestS Dbesta (kpc) best M* M(<50kpc)® M(< 100kpc)?
Power-law Tracers
vy=34 1/a? Energy  Yes -1 200 23.0 5.5 10.0
No -1 150 17.0 5.3 9.4
v=34 1/a Energy  Yes -1 230 26.0 5.5 10.0
No -1 160 18.0 5.4 9.6
vy=34 1/a? Uniform  Yes -1 200 23.0 5.5 10.0
No -1 150 17.0 5.3 9.4
v=4.0 1/a® Energy  Yes -1 225 25.0 5.5 10.0
No -1 165 19.0 5.4 9.6
Shadow Tracers
a; =100 1/a? Energy  Yes -1 275 31.0 5.5 11.0
No -1 190 21.0 5.4 10.0
a; =100 1/a Energy  Yes -1 330 37.0 5.6 11.0
No -1 220 25.0 5.5 10.0
a; =100 1/a? Uniform  Yes -1 275 31.0 5.5 11.0
No -1 190 21.0 5.4 10.0
as = apato  1/a? Energy  Yes -1 275 31.0 5.5 11.0
No -1 190 21.0 5.4 10.0

2All masses are in units of 10! Mg
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Abstract

We investigate the thermodynamic properties of stellar self-gravitating system
arising from the Tsallis generalized entropy. In particular, physical interpretation
of the thermodynamic instability, as has been revealed by previous study(Taruya &
Sakagami, Physica A 307 (2002) 185), is discussed in detail based on the framework
of non-extensive thermostatistics. Examining the Clausius relation in a quasi-static
experiment, we obtain the standard result of thermodynamic relation that the physi-
cal temperature of the equilibrium non-extensive system is identified with the inverse
of the Lagrange multiplier, Tppys = 1/8. Using this relation, the specific heat of to-
tal system is computed, and confirm the common feature of self-gravitating system
that the presence of negative specific heat leads to the thermodynamic instability.
In addition to the gravothermal instability discovered previously, the specific heat
shows the curious divergent behavior at the polytrope index n > 3, suggesting an-
other type of thermodynamic instability in the case of the system surrounded by
the thermal bath. Evaluating the second variation of free energy, we check the
condition for onset of this instability and find that the zero-eigenvalue problem of
the second variation of free energy exactly recovers the marginal stability condition
indicated from the specific heat. Thus, the stellar polytropic system is consistently
characterized by the non-extensive thermostatistics as a plausible thermal equilib-
rium state. We also clarify the non-trivial scaling behavior appeared in specific heat
and address the origin of non-extensive nature in stellar polytrope.

1 Introduction

Due to its complexity and peculiarity, stellar self-gravitating system has long attracted
much attention in the subject of astronomy and astrophysics, and even statistical physics.
For an isolated stellar system, the dynamical equilibrium is rapidly attained after a few
crossing time and the thermodynamic description provides useful information in charac-
terizing the late-time behavior of this system. Even in this simplest situation, however, the
equilibrium state of self-gravitating system shows various interesting phenomena, which
may offer an opportunity to recast the framework of the thermodynamics and/or statis-
tical mechanics.

In earlier study, applying the Tsallis’ generalized entropy[l], we have investigated
the thermodynamic instability of self-gravitating systems(2]. The self-gravitating stel-
lar system confined in a spherical cavity of radius, r., exhibits an instability, so-called
gravothermal catastrophe, which has been widely accepted as a fundamental physical pro-
cess and plays an important role for the long-term evolution of globular clusters 3, 4, 5].

78



The presence of this instability has been long known since the pioneer work by Antonov[6]
and Lynden-Bell & Wood[7]. Historically, the gravitational catastrophe has been studied
on the basis of the maximum entropy principle for the phase-space distribution function,
with a particular attention to the Boltzmann-Gibbs entropy [8, 9].

In contrast to previous work, we have applied the Tsallis-type generalized entropy to
seek the equilibrium criteria for the first time. Then, the distribution function of Vlassov-
Poisson system can be reduced to a stellar polytropic system[10, 11]. Evaluating the
second variation of entropy around the equilibrium state and solving the zero-eigenvalue
problem, the criterion for the onset of gravothermal instability is obtained. The main
results of our previous analysis are summarized as follows:

(i) Local entropy extremum ceases to exist in cases with polytrope index n > 5 for
sufficiently larger radius of the wall, 7, > Ay GM?/(—E), and for highly density
contrast, p./pe > Dy, where M and E denote the total mass and energy of the
system, p. and p. mean the density at center and edge, respectively.

(ii) The critical values A, and D, depend on the polytrope index, both of which
respectively approach 0.335 and 709 in the limit of n — o0, consistent with the
well-known result adopting the Boltzmann-Gibbs entropy.

(iii) The stability/instability criterion obtained from the second variation of Tsallis en-
tropy exactly matches with the result from standard turning-point analysis.

While the successful results suggest that non-extensive generalization of thermody-
namics will offer various astrophysical applications involving long-range nature of self-
gravitating systems, there still remain some important issues concerning the physical
interpretation of thermodynamic instability.

Heuristically, the gravothermal instability is explained by the presence of negative
specific heat as follows. In a fully relaxed gravitating system with sufficiently larger radius,
negative specific heat arises at the inner part of the system and we have Cy jnner < 0,
while the specific heat at the outer part remains positive, Cy oyter > 0, since one can
safely neglect the effect of self-gravity. In this situation, if a tiny heat flow is momentarily
supplied from inner to outer part, both the inner and the outer parts get hotter after the
hydrostatic readjustment. Now imagine the case, Cy oyter > |CV inner|- The outer part has
so much thermal inertia that it cannot heat up as fast as the inner part, and thereby the
temperature difference between inner and outer parts increases. As a consequence, the
heat flow never stops, leading to a catastrophe temperature growth.

While the above thought experiment is naive in a sense that we artificially divide the
system into the inner and the outer part, the argument turns out to capture an essence of
the thermodynamic instability in cases with the Boltzmann-Gibbs entropy. Evaluating the
specific heat explicitly, Lynden-Bell and Wood[7] showed that the specific heat of the total
system should be greater than zero at the onset of instability, although the central part
of this system still has the negative specific heat. Therefore, one can naively expect that
the self-gravitating system generally exhibits the thermodynamic instability associated
with the negative specific heat and this could even hold in the system characterized by
the non-extensive entropy.

To address this issue, however, we should remember the following two remarks that
have been never clarified. First note that there exists a subtle point concerning the concept
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of temperature in the non-extensive thermodynamics. Framework of the non-extensive
formalism is formally constructed keeping the standard result of thermodynamic relations
[14, 15, 16], however, the physical temperature, Tphys, might not be simply related to the
usual one, i.e, the inverse of Lagrange multiplier, as has been criticized recently[12, 13].
This point is in particular important in evaluating the specific heat.

Second, as has been mentioned by the pioneer work of Lynden-Bell & Wood[7], self-
gravitating system shows various types of thermodynamic instability. While our early
study deals with the stellar system confined within an adiabatic wall, one may replace
the adiabatic wall with the thermally conducting wall surrounded by a heat bath. In this
situation, assuming the Boltzmann-Gibbs entropy, Lynden-Bell & Wood showed that no
equilibrium state exists for sufficiently low temperature and high-density contrast. Note
that even in this case, the presence of negative specific heat plays an essential role for the
appearance of instability.

Keeping the above remarks in mind, in this article, we focus on the thermodynamic
property of self-gravitating systems characterized by Tsallis’ generalized entropy. For
this purpose, we first investigate the thermodynamic temperature of the self-gravitating
system from the Clausius relation. To clarify the physical interpretation of thermodynamic
instability, the specific heat is computed and a role of negative specific is discussed in
detail. Then we turn to focus on the thermodynamic instability in a system surrounded
by the heat bath. The stability /instability criterion is derived from the second variation
of free energy and a geometrical construction of marginal stability condition is discussed.

This article is organized as follows. in section 2, we recast the problem that finds
the most probable state of equilibrium stellar distribution adopting the Tsallis entropy.
The main part of this article is section 3, in which the thermodynamic properties of
stellar polytrope are investigated in detail. After identification of the thermodynamic
temperature, the explicit expression for specific heat is presented and the marginally
stability condition for the thermodynamic instability is investigated in both the adiabatic
and the isothermal cases. In section 4, thermodynamic instability in a system surrounded
by a thermal bath is re-considered by means of the free energy and the marginal stability
condition is re-derived from the second variation of free energy. Furthermore, following
the preceding results, the origin of the non-extensive nature in stellar polytropic system
is discussed in section 5. Finally, section 6 is devoted to the summary and conclusion.

2 Stellar polytrope as an extremum state of Tsallis
entropy

In this section, we recast the problem finding the most probable state of equilibrium stellar
system, based on the maximum entropy principle. In our previous study, the entropy for
the phase-space distribution function has been introduced without recourse to the correct
dimensions. Although this does not alter the stability /instability criterion for the stellar
equilibrium state, for the sake of the completeness and the later analysis, we repeat the
same calculation as shown in ref.[2], taking fully account of the correct dimensions.
Suppose a system containing N particles which are confined within a hard sphere of
radius r.. For simplicity, each particle is assumed to have the same mass m, and interacts
via Newton gravity. The problem considered here is to find an equilibrium state in an
adiabatic treatment. That is, we investigate the equilibrium particle distribution in which
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the particles elastically bounce from the wall, keeping the energy E and the total mass
M (= Nm,) constant.

For present purpose, it is better to employ the mean-field treatment that the corre-
lation between particles is smeared out and the system can be fully characterized by the
one-particle distribution function, f(x,v), defined in six-dimensional phase-space (z, v)
[2, 3][6, 7, 8, 9]. Let us denote the phase-space element as h*(= [3v3) with unit length [,
and unit velocity v,. Since the distribution function f(z, v) counts the number of particles
in a unit cell of phase-space, the energy and the total mass are respectively expressed as
follows:

1 1
B o= K+U=m[ {30 38} @) . 1)
M = myN = mO/ f(z,v) d°7, (2)
with the quantity ® being the gravitational potential:
f(a',v)
@(:B) = -G my m dGTI. (3)

In the above expressions, the dimensionless integral measure d®7 is introduced:

d*x d*v
6 —
d’r = h3

Owing to the maximum entropy principle, we explore the most probable state maxi-
mizing the entropy. The entropy quoted here is a quantity defined in the phase-space and
it counts the number of possible particle state. We are specifically concerned with the
equilibrium state for the Tsallis entropy [1]:

T R L

Maximizing the entropy S, under the constraints reduces to the following mathematical
problem using Lagrange multipliers o« and 3:

) h = l() Vo. (4)

0S, —adM — B6E =0, (6)
which leads to [2, 10, 11]:
1 1/(g-1)
f(z,v) = A [@o - &(x) — -2-v2 , (M)
where the constants A and ®, are respectively given by
1/(g-1)
q—l) } 1—(¢g—1)myc
{< 7 )™’ R CE N ®)

The one-particle distribution function (7) is often called stellar polytrope, which sat-
isfies the polytropic equation of state [3][10]. The density profile p(r) and the isotropic
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pressure P(r) at the radius r = || are respectively given by

p(r) = mO/f(a:,v)%;sTv

= 4/2r B (;, qqu) ";:3’4 {®, — @(T)}l/(q-l)+3/2, (9)
and
3
P(r) = m / %v"’ f(x, ) th"
1 5\
= (q_—l + 5) p(r) {Bo — &(r)}, (10)

with B(a,b) being the f function. Thus, these two equations lead to the relation
P(r) = K, p"*/"(r), (11)

with the polytrope index given by
1 3
n = q—_l + 3 (12)
In equation (11), the dimensional constant K, is introduced:

1 3 1\ md) ™"
= ——<4V2rB | =,n— = .
K, n+1{ Vor (2,n 2) e } (13)

Note that the above quantity is equivalent to the variable (n — 3/2)T/(n + 1) defined in
ref.[2].

Once provided the distribution function, the equilibrium configuration can be com-
pletely specified by solving the Poisson equation. Hereafter, we specifically restrict our
attention to the spherically symmetric configuration for ¢ > 1(or n > 3/2). From the
gravitational potential (3), it reads

1d (rzd_qﬂ> — 4xGp(r). (14)

r2dr dr

Combining (14) with (9), we obtain the ordinary differential equation for ®. Equivalently,
a set of equations which represent the hydrostatic equilibrium are derived using (9), (10)
and (14):

we - D i, (15)
d’zrr = dmp(r)ri (16)

The quantity m(r) denotes the mass evaluated at the radius r inside the wall. We then
introduce the dimensionless quantities:

1/2
p=slp@r, r={U2DEL )
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which yields the following ordinary differential equation:

2
6" +=60'+6"=0, (18)
€
where prime denotes the derivative with respect to £&. The quantities p. and P, in (17)
are the density and the pressure at r = 0, respectively. To obtain the physically relevant
solution of (18), we put the following boundary condition:

6(0) =1, 6(0)=0. (19)

A family of solutions satisfying (19) is referred to as the Emden solution, which is well-
known in the subject of stellar structure (e.g., see Chap.IV of ref.[17]).

Figure 1 shows the numerical solution of equation (18) for various polytrope indices,
where the density profile, p(r)/p. is plotted as a function of dimensionless radius, £.
Clearly, profiles with index n < 5 rapidly fall off and they abruptly terminate at finite
radius(left-panel), while the n > 5 cases infinitely continue to extend over the outer
radius(right-panel). As already mentioned in previous study, characteristic feature seen in
figure 1 plays an essential role for the thermodynamic instability associated with negative
specific heat.

For later analysis, it is convenient to introduce the following set of variables, referred
to as homology invariants [17, 18]:

dinm(r)  4nrip(r) = €6™

u= dinr  — m(r) R )

which reduce the degree of equation (18) from two to one. The derivative of these variables
with respect to £ becomes

du n U dv 1 v
d_§=<3_u-n+lv) e d—f_(_1+u+n+1v) 3 (22)

Equations (18) can thus be re-written with

udv  (n+1){u—-1)+v
vdu (n+1)3—u)—nv

(23)

The corresponding boundary condition to (19) becomes (u,v) = (3,0). Using these vari-
ables, the basic thermodynamic quantities such as the energy and the entropy are eval-
uated and the results are summed up in Appendix A, which are subsequently used in

section 3.
3 Thermodynamic properties of stellar polytrope

In this section, we address our main issue, i.e, the physical interpretation of gravothermal
instability in stellar polytropes, based on the framework of non-extensive thermodynam-
ics. In section 3.1, we first discuss the thermodynamic temperature of stellar polytrope
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calculating both the heat and the entropy changes in a quasi-static treatment. Then
we evaluate the specific heat in section 3.2. The connection between the absence of ex-
tremum entropy state and the presence of negative specific heat is discussed in detail.
Further, we argue that there appears another type of thermodynamic instability, which
is subsequently analyzed by means of the free energy.

3.1 Thermodynamic temperature from the Clausius relation

As has been mentioned in section 1, the concept of temperature is non-trivial in non-
extensive thermostatistics. This is because the standard framework of thermodynamics
crucially depends on the assumption of extensivity of entropy. According to the recent
claim, the definition of physical temperature T}, should be altered depending on the
choice of energy constraint and is related to the inverse of the Lagrange multiplier, 1/,
with some correction factors [12, 13]. Note, however, that this discussion heavily relies
on the extensivity of the energy as well as the thermodynamic zeroth law. In our present
case, the maximum entropy principle was applied subject to the constraints £ and M,
adopting the standard definition of mean values (see eqs.(1)(2)). As a consequence, the
resultant energy E becomes non-extensive and we cannot apply the above definition.

To address the physical temperature in the present case, we therefore consider the rela-
tion between the heat transfer and entropy change and seek the most plausible candidate
for thermodynamic temperature. That is, we analyze the variation of equilibrium config-
uration under fixing the total mass. Specifically, we deal with the quasi-static variation
along an equilibrium sequence.

Let us first write down the heat change. The thermodynamic first law states that

dQ = dE + P.dV, (24)

where the operation d’' stands for incomplete differentiation. The subscript . denotes a
quantity evaluated at the edge. In the spherically symmetric configuration, the second
term in right-hand side of (24) becomes 4772 P, dr,. As for the first term, the energy of the
stellar polytropic system within the radius r, is computed in Appendix A.1. Introducing
the dimensionless parameter A, it is expressed in terms of the homology invariants as
follows:

A = ‘éﬁf‘nis[g{l‘("“)%}*(”‘”z—:]’ (25)

where the quantity with subscript . represents the one evaluated at the boundary r = r,.
Using (25), the heat change d’'Q is rewritten as follows:

2
dQ = d(—/\ G:V[ ) + 4nr? P, dr,,
GM? Ue \ dre dX dé.
= m {()\+v—e) . - & i, E}, (26)

where the relation 4nr3 P, /(GM?) = u./v, is used in the last line (see definitions (20)(21)).
In the above expression, derivative of A with respect to & can be computed with a help
of relation (22) (see eq.(33) of ref.[2]):

_di n—2 g(u67 ve)

€, n-5 2v, ° (27)

§e
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where

9(u,v) = 4u® + 2uv — {8+3<:+;)}u-—

Next focus on the change of the entropy. From (71) in Appendix A.2, the entropy of
the extremum state is given by

Sq=(n—§)[ 1 peM” {2%2—(n+1)i+1}+N]. (29)

2 n—9 Te e Ve

v+3<:+§). (28)

n-—2

Hence, the variation of entropy dS; under fixing the total mass can be decomposed into the
variation of homology invariants (u., v.), radius r, and Lagrange multiplier # as follows:

ds, = n—3/2 fGM? [(@_ﬁ) {2%_(7;4.1)014_1}

n-— 5 re ﬂ 're
+{2ﬁ (d“e—%) —"H%}]. (30)
ve ue ve ve Ue

Among these variations, variation of homology invariants is simply rewritten with d§,,
through the relation (22). On the other hand, from the mass conservation, the variation
of Lagrange multiplier, dg3 is related to both the variations of homology invariants and dr,
as follows. Using the condition of hydrostatic equilibrium at the edge 7., one can obtain
the following relation (see derivation in Appendix A.3):

GM) (m.B)"—3/2 1/(n—-1) "
= {FEET =) = e, (31)
3N
where the constant ¢, is given by
(TL _ 1/2)71—3/2 1/(n-1)
anp = ) (32)
16v2n2 (n+ 1) B(3/2,n — 1/2)

which asymptotically approaches unity, in the limit n — +o00. Keeping the total mass M
constant, variation of (31) yields

n-3/2d8 n-3dr._ 1 du, dv, (33)
n-1 8 n—-171 n-—1\u Ve

We then rewrite it with
dg dre 1 3dr, du, dv,
ﬁ"re"n—:ﬁ/z( 2re+ue+nve)' (34)

Substituting the relation (34) into equation (30), the dependence of d3/8 can be elimi-
nated. Thus, using the relation (22), the final form of the entropy change is expressed in
terms of the variations d€, and dr.. After some manipulation, we obtain

_ PGM? [_ 3/2 (2yﬁ_n+1+l) dre n—2 1

45, Te n—>5\" v Ve r, n—052u,

) ~ n+1) 3 n+1\) d&
><{4ue+2ueve (8+3n_2>ue n_2ve+3(n_2 z | (35)
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Now, from the knowledge of the expressions A and &e(dN/dE,), one can easily show
that the above equation is just identical to

dS,,:ﬁGM? {(Hﬁ)i’"—e ¢ d) dée}‘ (36)

Te Ue 're ¢ dge 66

Therefore, comparison between (36) and (26) immediately leads to the following relation:

dS, = Bd'Q = B(dE + P.dV), (37)

which exactly coincides with the standard result of Clausius relation in a quasi-static
process.

The relation (37) strongly suggests that the thermodynamic temperature T}, is iden-
tified with the inverse of Lagrange multiplier, Tynys = 1/8. At first glance, the result seems
somewhat trivial, since one can easily expect this relation from the standard thermody-
namic relation, dS,/0F = 3, which generally holds even in the the non-extensive Tsallis
formalism [14, 15]. As advocated by many author, however, the relation 8S,/0F = 3 does
not simply imply the thermodynamic temperature Tphys = 1/8 and it might even con-
tradict with the thermodynamic temperature defined through the thermodynamic zeroth
low [13].

On the other hand, in our case of the self-gravitating system, the thermodynamic
temperature Tpnys = 1/ is mathematically verified by the integrable condition of the
thermodynamic entropy through the Clausius relation. Further, it is remarkably found
that the relation Tphys = 1/8 holds even in the absence of gravity (the limit G — 0) and
can be proven through an alternative route. In Appendix B, as a pedagogical example,
we demonstrate that the relation Tp,p,s = 1/ is indeed obtained in the classical gas model
using the Carnot cycle.

3.2 Negative specific heat and thermodynamic instability

Once obtained the thermodynamic temperature, Tpnys = 1/3, we are in a position to inves-
tigate the thermodynamic instability from the straightforward calculation of the specific
heat. Let us first discuss the qualitative behavior of the specific heat. By definition, the
specific heat at constant volume is given by
()
d¢ /,

(BB - g () g
Cv_(dTPhys)e-— ﬁ (dﬁ)e 5 (i@) .
¢/,

Recall that the dimensionless parameters A and 7 are respectively proportional to —F and
Bn=1/(=3/2) (see eqs.(25)(31)). This implies that for a system of constant mass inside a
fixed wall, the qualitative behavior of (38) can be deduced from the relation between 75
and A.

Figure 2 depicts the trajectories of the Emden solutions in the (7, A)-plane with various
polytrope indices. Each point along the trajectory represents an Emden solution for
different value of the radius r.. From the boundary condition, all the trajectories start
from (n,A) = (0, —00), corresponding to the origin ., = 0. As gradually increasing the

(38)
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radius, the trajectories first move to upper-right direction monotonically, as marked by
the arrow. At this stage, the kinematic energy dominates the potential energy and the
system lies in a kinematically thermal state (A < 0), indicating the positive specific heat.
For larger radius, while the curves with index n < 3 abruptly terminate, the trajectories
with n > 3 suddenly change their direction from upper-right to upper-left. Moreover, in
the case of n > 5, the trajectory progressively changes its direction and it finally spirals
around a fixed point.

From these observations, one can roughly infer the existence of the two types of the
thermodynamic instability as follows. At first inflection point for n > 3, the specific
heat diverges and the signature of Cy becomes indefinite. Beyond this point, the specific
heat changes from positive to negative. This means that the potential energy conversely
dominates the kinetic energy, indicating the system being gravothermal. In this case,
equilibrium state ceases to exist for a system in contact with a heat bath, but does still
exist for a system surrounded by an adiabatic wall. However, for the polytrope index
n > 5, the specific heat of the system turns to increase beyond this inflection point and
it next reaches at the point d\/dn = 0, i.e, Cy, = 0. This means that while the inner
part of the system still keeps the specific heat negative, the fraction of the outer normal
part grows up as increasing 7, and it eventually balances with inner gravothermal part.
Thus, beyond this critical point, no thermal balance is attainable and the system becomes
gravothermally unstable. This is true even in the system surrounded by an adiabatic wall.

Now, let us write down the explicit expression for the specific heat Cy. In equation
(38), the variation of § and E with &, can be respectively rewritten with

dFE GM? d)
( d€ )e - Te dfe, (39)
and a5 1 5 d
n— 7
2z} = —— 22 40
(df)e n—3/2n d& (40)
Here, the variable d)\/d€,. has been already given in (27). As for the derivative of 7 with
respect to &, we obtain
dn n—3
— = . — . 41

Then the quantity Cy becomes
(n — 3/2) (n — 2) ﬁGM2 g(um ve)
(n—1)(n —5) Te oy, (ue_ n—3)

n—1

CV=

with the function g(u.,v.) given by (28). Notice that the above expression is still re-
dundant, since there remains the explicit dependence of the variable §. Eliminating the
variable § by using the relation (31), one finally obtains

C . 2 \@RIE=3D g (u v3/2)1/(n—3/2) (42)
N o GMTe ( n — 3) e Ye )
2| Ue — ——
n—1
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where we introduced the new dimensionless constant ¢;,:

. _ (n=3/2)(n-2) o l/(=3/2) .
I = (n—1)(n-5) " ' (43)

Note that in the limit n — +00, equation (42) consistently recovers the well-known result
of isothermal sphere (e.g, eq.(39) of ref.[20]):

Cv nos-g 4u? + 2ueve — 11ue + 3

N 2(ue — 1) (44)

Comparing (42) with the isothermal limit, the resultant expression contains a residual
dimensional parameter h, as well as the quantities M and .. While the residual depen-
dence can be regarded as a natural consequence of the non-extensive generalization of the
entropy, it would be helpful to understand the origin of this scaling in more simplified
manner. This will be discussed in section 5.

Apart from the residual factor, the expression of specific heat (42) clearly reveals the
two types of thermodynamic instability seen in Figure 2. The inflection point with the
infinite specific heat, Cy — +o0o leads to the condition

n—3_
n—1

Ue — 0, (45)
which immediately yields the conclusion that this is only possible for the polytrope index
n > 3, consistent with Figure 2. On the other hand, critical point with the vanishing
specific heat, C,, = 0 corresponds to the following condition:

g(uey ve) =0. (46)

This is exactly the same condition as obtained from the second variation of entropy (see
eq.(33) or (53) in ref.[2]). According to the previous analysis, the condition (46) represents
the marginal stability at which the extremum state of the entropy .S, is neither maximum
nor minimum. This situation turns out to appear when the polytrope index n > 5.

Therefore, we reach a fully satisfactory conclusion that the thermodynamic instability
found from the second variation of entropy is intimately related to the presence of negative
specific heat and the stability/instability criterion can be exactly recovered from the
critical point of the thermal balance, Cy = 0, which is also consistent with the analysis
in the Boltzmann-Gibbs limit, n — oo [7]. The successful result can be regarded as an
outcome of the correct definition of Tyhys. As for the transition point with Cy — oo,
it clearly indicates the thermodynamic instability of a system in contact with a thermal
bath. In next section, by means of the free energy, we confirm that the condition (45)
indeed represents the marginal stability of the system surrounded by a thermal wall and
beyond this point the system will be unstable.

In Figure 3, by varying the radius r., the normalized specific heat per particle C}/N is
plotted as a function of density contrast, p./p. around the critical polytrope indices n =
3(upper-panels) and n = 5(middle-panels). Here, the normalized specific heat C;, is defined
by the specific heat Cy divided by the redundant factor (h?/GMr,)®/2/?=3/2) Obviously,
the transition point Cy — 00 appears when n > 3(crosses), while the existence of critical
point Cy = 0 is allowed for higher density contrast of n > 5 cases(arrows). The critical
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values Dy = (pe/pe)eris indicated by arrows exactly coincide with those obtained from
the previous analysis (see Table 1 of ref.[2]). Lower-panels of Figure 3 show the specific
heat with large polytrope indices n = 10 and 30, together with the Boltzmann-Gibbs limit
(n = +o00, labeled by is0). As increasing the polytrope index n, the critical /transition
points tend to shift to the lower density contrast, while the successive divergent and zero-
crossing points appear at the higher density contrast, corresponding to the behavior seen
in Figure 2.

4 Thermodynamic instability from the second varia-
tion of free energy

Previous section reveals that there exists another type of thermodynamic instability in
which the marginal stability is deduced from the condition (45). In this section, to check
the consistency of the non-extensive thermostatistics, we reconsider this issue by means

of the Helmholtz free energy:
Fy, = E — Tynys Sy (47)

Adopting the relation Tphys = 1/8, we re-derive the marginal stability condition (45) from
the second variation of Fj.

Consider a system surrounded by the thermally conducting wall in contact with a
heat bath. Usually, the stable equilibrium state should keep the free energy F; minimum.
Thus the presence of thermodynamic instability implies the absence of minimum free
energy, which can be deduced from the signature of the second variation 62F, around the
extremum state of free energy. Since the non-extensive formalism still verifies the Legendre
transform structure leading to the standard result of thermodynamic relation[14, 15], the
extremum state of the free energy exactly coincides with that of the entropy. One thus
skips to find the extremum state of F; and proceeds to evaluate the second order variation.

In contrast to the adiabatic treatment, we here deal with the density perturbation
p — p+6p, surrounded by a thermal wall. To be specific, we evaluate the second variation
under keeping the radius r., the total mass M and the temperature Tynys constant. Then
the variation of energy up to the second order leads to

SE = 5[/ {gP(x)+%p(:r)<I>(z)}d3:c],

= /{26P+%(69‘1’+P5‘I’)+%5P5‘I>}d3‘”- (48)

Similarly, using the expression (70) in Appendix A.2, the variation of Tsallis entropy

becomes
85, = & [(n—g) {N—ﬂ/ P(x)d3m}],
- (n_g) 8 / 5 P(z)d's. (49)

The above expressions include the variation of pressure d P, which can be expanded with
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a help of the polytropic equation of state (11):

1\ P 1 IN1P o,

Combining the above result with equations (48) and (49) and collecting the second order
terms only, the second variation of free energy becomes

1

1 P
§2F, = 6°F — Thnys 625, = = / { nt

7 (6p)° + 5p6<1>} &z, (51)

2

where the relation Tpnys = 1/ is used in the last line. Now, restricting our attention to
the spherical symmetric perturbation, we introduce the following perturbed quantity (see

refs. [2][8]): 1 dQ(r)

op(r) = 4rr?  dr
Then the mass conservation M = 0 implies the boundary condition Q(0) = Q(r.) = 0.
Substituting (52) into (51) and repeating the integration by part, one finally reaches the
following quadratic form:

1 Te +1 d 1 P d G
or =5 [ wan |22 e (5)a+7len @

Thus, the problem just reduces to the eigenvalue problem and the stability of the
system can be deduced from the signature of the eigenvalue. More specifically, the onset
of instability corresponds to the marginally stability condition, §2F, = 0, and it is sufficient
to analyze the zero-eigenvalue equation:

L) = [%{47r1‘2p (%) %}Jrnil%J Q) =0, (54)

with the boundary condition, Q(0) = Q(re) = 0. Equation (54) has quite similar form
to the zero-eigenvalue equation found in the adiabatic treatment (see eq.(46) of ref.[2]).
Except for the non-local term, one can utilize the previous knowledge to solve the equation
(54):

(52)

n—3 Gm(r) 5 _n—=1Gm(r)

R 3\
L (4nr p)—n_*_1 = Lm(r)_n_*_1 - (55)
These two equation leads to the ansatz of the solution:
-3
Q) =c{ amrptr) - 222 min)}. (50

Here, the variable ¢ is an arbitrary constant. The above equation (56) automatically
satisfies the boundary condition Q(0) = 0, while the remaining condition Q(r.) = 0 puts
the following constraint:

Qre) =c (471'7'3/)8— n—_EM) =c (ue—

n-—1

n—3
n—1

) M =0. (57)

Again, we arrive at the satisfactory result that the solution of zero-eigenvalue equation
exactly recovers the condition (45).
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Now, remaining task is to show that the second variation 6%F, becomes negative
beyond the transition point of Cy, — £oo. One can rewrite the expression (53) with

1 Te GQ2
2 _— - — —
5Fq_2(H 1) T dr,
with the constant H given by
n+l [ 1 (P\ [(dQ\®
n drrip ; dr ar
_ 0
H = GO : (58)
>—dr
o T

That is, the condition /7 > 1 implies stable local minimum state of free energy, while the
inequality H < 1 represents unstable local maximum state. Integrating by part, equation
(58) can be regarded as an eigenvalue equation with eigenvalue, H:

d 1 P\ dQ | _ n GQ
_dr{4m‘2p(p> dr}—Hn+l r2 (59)

Obviously, equation (56) becomes the solution of above equation with the minimum eigen-
value, Hpi, = 1, if the condition (57) is fulfilled. In this case, solution (56) can be regarded
as the ground state of the eigensystem (59), since the function (56) does not possess any
nodes between [0,7.]. Therefore, for a suitably smaller radius r, or a smaller density
contrast p./p. below the transition point, the eigenvalue H should be larger than unity.
Conversely, from continuity, the condition H < 1 must be satisfied beyond the critical
radius.

Finally, using the (u, v)-variables, the geometrical meaning of onset of thermodynamic
instability is briefly discussed in similar manner to the adiabatic case. In Figure 4, the
thick solid lines show the Emden trajectories with various polytrope indices in (u, v)-plane.
The thin-solid lines in Figure 4 represents the straight lines, v — (n — 3)/(n — 1) = 0.
Since the equilibrium state only exists along the Emden trajectory, the condition (57)
is satisfied at the intersection of these two solid lines, which is only possible for n > 3.
On the other hand, as seen in previous section, the equilibrium system surrounded by a
thermal wall is characterized by the three parameters, 7., M and S(or Tyys), through the
relation (31). In other words, the system must lie on the curve:

(n-1)/n
v= (_7}_) u~lm, (60)
Qn

with some constant value 7. We have seen in Figure 2 that the constant value 7 is bounded
from above, 77 < 7crir. Thus, the critical curve (60) with 7 = 7., must intersect with both
the Emden trajectory and the straight line v — (n — 3)/(n — 1) = 0 simultaneously. This
is clearly shown in Figure 4, where the critical curve is plotted as dashed lines. Since the
critical curves tangentially intersect with Emden solutions, it always satisfies the condition
dn/dé = 0 at the contact point, leading to the condition (45) consistently.

Table 1 summarizes the dimensionless quantities 7, and Dey = (pe/pe)eric €valuated
at the contact point. As increasing the polytrope index n, these values asymptotically
approach the well-known results of Boltzmann-Gibbs limit, e, — 2.52 and Dy — 32.1.

91



5 Origin of non-extensive nature in stellar polytrope

As has been mentioned in section 3.2, specific heat of the stellar polytropic system explic-
itly depends on the residual dimensional parameter A, in contrast to the isothermal limit
(44). In this section, to contact the physical meaning of the non-extensivity in stellar
polytrope, we discuss the origin of this residual dependence. Indeed, the appearance of
the residual factor can be recognized as the breakdown of both the intensivity of tem-
perature and the extensivity of energy and entropy as follows. From equation (18), the
asymptotic behavior of the Emden solution becomes

6~ 72070, p 7D, (g1 — 00)
so that the mass within a sphere of radius 7 is given by
M ~ prd o r{n=3/(=1) ; (61)
Then the energy of a virialized stellar system is roughly estimated as

GM?

— r(r=9)/(n=1) o pf(n=5)/(n=3)
€

E~

and the relation (31) tells

B oc 7o (=BI=1)/=3/2) o pp=1/(n=3/2)

These relations clearly show the breakdown of the intensivity of temperature and the
extensivity of energy, which lead to the scaling of the specific heat per mass:

N~ MdTyys M

Cv_1 dE BE . sa-2/n-3/(n-3/2) (62)

On the other hand, the dimensionless combination h?/(GMr,) represents the ratio of a
typical scale of the stellar system, GMr ~ (GM /r)r? ~ v?r?, to that of the reference cell,
h = vy ly. This behaves as

h? 1

2(n—-2)/(n-3)
onr, < i, M ‘ (63)

Thus, these two equations (62) and (63) lead to the scaling relation of (42):

C Rz O\ B/2/(n=3/2)
N GMr,

Notice that the Clausius relation (37) suggests that the entropy per unit mass has the
same scaling relation:

Sy BE Cv

—_— A —

M~ M~ N

Therefore, resultant dependence (64) for the stellar polytrope can be a natural outcome
of the non-extensivity of the entropy.
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In fact, framework of the thermostatistics generally requires an introduction of the
scale of the unit cell in order to count the available number of states in phase spaces.
This is even true in the case of the isothermal stellar system(n — +o00 or ¢ — 1), but, the
thermodynamic quantities show somewhat peculiar dependence of the scale h. A typical
example is the entropy:

S =L (20 +ve—2) —n ueve” 3 "
BG = e | \FHe TV T g 4 2 "\ 2xGMr, ) [’

where u, and v, are the homology invariants for the isothermal system. The above equa-
tion shows that in the Boltzmann-Gibbs limit, h-dependence of the entropy can be rec-
ognized as a matter of choice of an additive constant, so that its derivatives, e.g., specific
heat, is free from the residual dependence.

It should be emphasized that the stellar equilibrium system recovers the extensivity
in the limit n — oo and it behaves as

E~M~r, Cy~M. (65)

Also, the temperature becomes intensive in this limit. Thus, we readily understand that
the scaling behavior shown in (42) or (64) has nothing to do with the long-range nature of
the gravity. Even in the free polytropic gas model in Appendix B, the residual dependence
emerges as

CV B2 (3/2)/(n—-3/2)
N~ {(P/p)v2/3} '

It follows that the explicit dependence of the specific heat on the reference cell scale h
just originates from the the non-extensive nature of Tsallis entropy.

6 Summary

In this article, thermodynamic properties of the stellar self-gravitating system arising from
Tsallis’ non-extensive entropy have been studied in detail. In particular, physical inter-
pretation of the thermodynamic instability previously found from the second variation of
entropy is discussed in detail within a framework of the non-extensive thermostatistics.
After briefly reviewing the equilibrium state of Tsallis entropy, we first address the issues
on thermodynamic temperature in the case of equilibrium stellar polytrope. Analyzing
the heat transfer and the entropy change in a quasi-static process, standard form of the
Clausius relation is derived, irrespective of the non-extensivity of entropy. According to
this result, we explicitly calculate the specific heat and confirm the presence of negative
specific heat. The onset of instability found in previous work just corresponds to the zero-
crossing point, Cy = 0, supporting the fact that the heuristic explanation of gravothermal
catastrophe holds even in the non-extensive thermostatistics.

Further, the analysis of specific heat shows divergent behavior at n > 3, suggesting
another type of thermodynamic instability, which occurs when the system is surrounded
by a thermal wall. We then turn to the stability analysis by means of the Helmholtz free
energy. Similar to the previous early work, the stability /instability criterion just reduces
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to the solution of the zero-eigenvalue problem and solving the eigenvalue equation, we
recover the marginal stability condition derived from the divergence of specific heat (45).

In addition to the thermostatistic treatment, we have also discussed the origin of non-
extensivity in stellar polytrope. The residual dependence of the reference scale h appeared
in the specific heat (42) naturally arises from the non-extensivity of the entropy and the
resultant scaling dependence can be simply deduced from the asymptotic behavior of the
Emden solutions.

The stability analysis using the free energy in section 4 is consistent with recent
claim by Chavanis [21], who has investigated the dynamical instability of polytropic gas
sphere. According to his early paper [20], the thermodynamic stability of stellar system
is intimately related to the dynamical stability of gaseous system, which has been clearly
shown in the case of the isothermal distribution. Thus, the correspondence between
Chavanis’ recent result [21] and a part of our present analysis can be regarded as a
generalization of his early work to the polytropic system. Note, however, that starting
from the Tsallis entropy, we extensively discuss the thermodynamic temperature and the
specific heat of stellar polytrope. Therefore, at least, from the thermodynamic point of
view, our present analysis provides a valuable insight to the stellar equilibrium systems.

At present, the results shown in this article seems fully consistent with the general
framework of the thermostatics. Apart from the thermodynamic instability, the stellar
polytropic system can be a plausible thermodynamic equilibrium state, as well as the
isothermal stellar distribution. In the isothermal case, existence of the thermodynamic
limit has been discussed by de Vega and Sanchez [19]:

M
A/[, V—)OO, —Vl—/3=ﬁxed,
where V ~ 73 is a volume of the system. Recalling the discussion in section 5, the above
condition merely reflects the extensivity of the isothermal system (65). Thus, similar
argument can hold for the non-extensive system. According to the scaling relation (61),
the existence of the thermodynamic limit in stellar polytrope yields the condition:

M, V = oo, —L=ﬁxed.

V (n=3)/(3n=3)

Note, however, that this discussion relies on the non-uniqueness of the Boltzmann-
Gibbs theory, which can be proven only mathematically[22]. Indeed, framework of the
thermostatistics cannot answer the question whether the stellar polytropic distribution is
really achieved as a thermodynamic equilibrium. To address this issue, we must study
the detailed process of the long-term stellar dynamical evolution. In the light of this, the
analysis using Fokker-Planck model or direct N-body simulation can provide an invaluable
insight to the non-extensive nature of stellar gravitating systems. This issue is now in
progress and will be presented elsewhere.
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Appendix A: Thermodynamic variables in a stellar
polytropic system

In this appendix, using the equilibrium state of stellar polytrope described in section 2,
we explicitly evaluate the thermodynamic variables, which have been used in section 3
and 4.

A.1 Energy

Recall that the equilibrium system confined in a spherical container satisfies the following
virial theorem (e.g, p.502 of Ref.[3]):

2K+ U = 47rr2 P,.
The energy (1) is then expressed as

E=K+U=4nr’P,— K=4nrP, - g/ e P(r)4m rdr. (66)
0

To evaluate the above integral in the spherically symmetric case, we use the following
integral formula:

MP, GM? }
+ :

R (67)

Te 1
/ P(r) 4nridr = i {87r PP, — (n+1)
0

which can be derived from the conditions of hydrostatic equilibrium, (15) and (16) (see
Appendix A of ref.[2]). Thus, the energy of extremum state becomes

1 3 [GM? MP,
In terms of the homology invariants, we obtain
1 GM? [3 1 Ue
= -<1- — —-2)—|.
E=—=— [2{ ("+1)ve}+(" 2)%] (69)

A.2 Entropy
First note the definition of Tsallis entropy (5):

3 f (n—1/2)/(n-3/2) ]
Sq=—-(n.—§) /N(ﬁ) dT*—N .

Substituting the distribution function (7) into the above equation, after some manipula-

tion, we obtain
Sq=—(n—g) {ﬁ/P(m)d%—N}. (70)
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Thus, the substitution of integral formula (67) immediately leads to

y 2
Sy = (n— §) [ 1 {87rr2Pe— (n+1)1\[Pe + GM },3+N],

2 n—>9 Pe Te
which can be expressed in terms of the homology invariants:
3 1 BGM? (_ue 1
S =[n=2 2-< — N=—+1%+N]|.
o= (-0 [ 29 ot i) m

A.3 Radius-mass-temperature relation

The mass-radius-temperature relation (31) is derived from the equilibrium stellar poly-
tropic configuration. Using (15), we first write down the condition of hydrostatic equilib-

rium at the boundary r.:
GM _ 1 (dP)

H pe \dr
The right-hand-side of this equation is rewritten with dimensionless quantities in (17):
GM
Y =Dkt (%) ()
Te Te

We wish to express the above equation only in terms of the variables at the edge. To do
this, we eliminate the residual dependences, p. and K, from (72). The definition (17)

leads to
& _ [ 4nGp 1 _ [ 4G 2 p(n=1)/(2n)
Te (n+1)P, (n+1)K, ¢ ’

which can be rewritten with

Un _ AnG 1/(n-1) é 2/(n-1)
€ (n+ 1)K, Te )

Substituting the above relation into (72), the p.-dependence is first eliminated and we
obtain 1n1)
n— n n—

Gn/( I)M _ _ {(n + ]-)Kn} §(n+1)/(n—1) 9’ (73)

(=3 (m=T) an e e
As for K,-dependence, the definition (13) together with (8) yields

B(3/2,n—1/2) M ~/" tne3/2)/n
(n+1) Ky = {4\/§7r (n—1)"32 K (mof)~=3/2/m, (74)

Hence, substituting the above expression into (73), the relation between mass M, radius
T and Lagrange multiplier # can be finally obtained. In terms of the homology invariants,
it follows that

GM(ma3)"—3/2 1/(n—-1) n—
{! e = a oy, (75)
e
where the constant «, is given by
(n— 1/2)11—3/2 1/(n-1)
"z {16\/§7r2 (n+1)"B(3/2,n — 1/2)} ’

which asymptotically approaches unity in the limit n — oo.

96



Appendix B: Thermodynamic temperature of classical
gas model from the Carnot cycle

In a standard framework of thermodynamics, the temperature is defined by means of an
efficiency of the Carnot cycle. Here we apply the standard procedure to seek the physical
temperature Ty for so-called polytropic system of which distribution function is given
by the extremization of the Tsallis entropy (see eqs.(5)(6)). For simplicity, we discuss a
case of the free classical gas without gravity, which corresponds to the G — 0 limit of the
stellar polytropic system.

From the G — 0 limit of the formula (68), free polytropic system of the volume V
with homogeneous pressure P and density p has an (internal) energy:

3 3MP
F=K=—-PV==-—.
5 25 (76)
Here we drop the subscript . for the pressure and density, since both are constant within
the system in absence of gravity. And equation of state (11) becomes

M 1+1/n
— 1+l/n _ el
P=K,p K (V) . (77)
From equations (8) and (13), the constant K, is related to the Lagrange multiplier 8 as
K, oc g==32/n, (78)

so that this constant can be used as a parameter which characterizes the temperature of
the system. However, it is not sure whether K, itself has a role of the physical tempera-
ture, which should be determined through the efficiency of the Carnot cycle.

The internal energy (76) and the equation of state (77) give the thermodynamic first
law:

dQ = dE+ PdV

3 dK n—3/2 dv
— 141/ = n -
= M { 2 vim ( n )K" V1+1/"} ’ 79)
from which adiabatic changes d'Q = 0 is expressed as
K, V31" = constant, P V®3 = constant’. (80)

Note that adiabatic lines in a P-V plane become steeper than isothermal ones when
n>3/2.

Now, let us consider the Carnot cycle shown in Figure 5. As usual, quasi-static changes
B — C and D — A are adiabatic. As for the process A — B, the system is in a thermal
contact with a heat bath which has a higher temperature K. Similarly, during the
change C — D, the system lies in a thermal equilibrium with another heat bath that
has a lower temperature K~. The system absorbs amount of heat Q¥ from the higher
temperature bath and disposes Q* to the lower one during the isothermal processes A—
B and C— D, respectively. They are easily evaluated from (79):

QH — (n _ %) Mi+l/n I{,fl (VA—I/n _ VB_l/n)’

81
QL — (n _ %) A/[l+1/n K,{‘ (VD—l/n _ V()_l/n)~ ( )
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On the other hand, a relation between the parameters of the cycle can be obtained from
the equation of state (77) and the adiabatic changes (80): ’

KHEN\T 'V \% 3
E)=f=2y y=s T (82)
KL) =V~ Vi 5 n—3/2

Thus, equations (81) and (82) lead to the following efficiency of the Carnot cycle:

QL K,f’ n/(n—3/2) ﬂH
(@) &)

where we used the relation (78) in the last line. This clearly shows that the inverse of the
Lagrange multiplier 8 has a role of the physical temperature.

n=1
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Table 1: Critical values of the radius-mass-temperature relation, 7 and the density
contrast between center and edge, Dcriv = (pc/Pe)crit in the case of a system in contact
with a heat bath for given polytrope index n or q.

n q Terit Dcrit
3 2 — —
4 I 0.9421 153.5
5 § 1.193 88.15
6 1.22 1.379 68.38
7 118 1.520 58.86
8 1.15 1.631 53.28
9 1.13 1.720 49.62
10 1.12 1.793 47.04
30 1.04 2.263 35.89
50 1.02 2.363 34.28
100 1.01 2.440 33.17
00 1 2.518 32.13
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Figure 1: Density profiles of stellar polytrope for n < 5 (left) and n > 5(right).
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Figure 2: Trajectory of Emden solutions in (7, A)-plane.
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Stationary state in N-body System with power law interaction

Osamu Iguchi*
Department of Physics, Ochanomizu University, 2-1-1 Ohtuka, Bunkyo, Tokyo,112-8610 Japan

Observations and simulations show many scaling properties in self-gravitating system. In order
to study the origin of these scaling properties, we consider the stationary state in N-body system
with inverse power law interaction. As a simple case, we consider the self-similar stationary solution
in the collisionless Boltzmann equation with power law potential and investigate its stability in the
term of a linear symplectic perturbation. The stable scaling solution obtained are expressed by the
power of the potential and the virial ratio of the initial state. The nonextensive system has many
various stable scaling solution compared with the extensive one.

I. INTRODUCTION

There are many self-gravitating system which are char-
acterized by some scaling properties. For example, the
inter stellar medium show that it’s velocity dispersion
o has scaling relation with the system size L or mass
M[1] (o ~ L%%8 ~ MO2) and isothermal contour are
characterized by the fractal dimension D ~ 1.36[2]. The
observations by the Hubble Space Telescope show ellipti-
cal galaxies has a power law density distribution p ~ »~"
(At outer region, n ~ 4 and at inner region, n ~ 0.5—-1.0
for the bright elliptical galaxies and n ~ 2 for the faint
ones[3].). The distribution of the galaxies and the cluster
of galaxies can be characterized by the fractal dimension
D ~ 2[4]. In cosmological simulation based on the stan-
dard cold dark matter scenario, the density profile is a
power law distribution (At outer region, n ~ 3 and at
inner region, n ~ 1.0 — 1.5[5, 6].).

Recently, in order to study the statistical properties of
self-gravitating system, we proposed self-gravitating ring
model[7], where each particles are moving, on a circular
ring fixed in three-dimensional space, with mutual inter-
action of gravity in three-dimensional space. The numer-
ical simulation shows that the system at the intermediate
energy scale, where the specific heat becomes negative,
has some peculiar properties such as non-Gaussian and
power law velocity distribution(f(v) ~ v~2), the scaling
mass distribution, and the self-similar recurrent motion.
In this model, the halo particles which belong to the in-
termediate energy scale, play an important role in such
specific characters.

We are interested in the origin of these scaling prop-
erties. In order to study the statistical properties of
long range interaction such as gravity, Ising model, and
spin glass, the model with power law potential has been
used and revealed anomalous properties[8—10]. For ex-
ample, a gravitational-like phase transition[8], reduction
of mixing[9], and long relaxation[10] are observed. Using
a model with an attractive 1/r* potential in general D-
dimensional space, we can control the extensivity of the
system and the sign of the specific heat by the spatial

*Electronic address: osam@phys.ocha.ac. jp
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dimension D and the exponent of inverse power of the
potential a.

In this paper, we study the quasi-equilibrium state of
N-body system with a power law potential. As first step,
we consider the collisionless Boltzmann equation (CBE)
in replace of N-body system and derive the self-similar
stationary solution of CBE which has a scaling property
appeared in the quasi-equilibrium state and discuss the
linear stability by use of energy functional analysis[11-
13].

In section II, we show some property in N-body sys-
tem with power law potential. In section III, we de-
rive the self-similar stationary solution of CBE with an
attractive 1/+® potential assuming spherical symmetry
and isotropic orbit case in D-dimensional space. The sta-
bility for the linear perturbation around the self-similar
stationary solution is investigated in section IV. The dis-
cussion is devoted to section V.

II. N-BODY SYSTEM WITH POWER LAW

POTENTIAL

In this section, we show some character in N-body sys-
tem with power law potential.

We consider the Hamiltonian in N-body system with
power law potential can be written in the form.

N N
P‘,Z Gm?
H—Z2m-2 e’ 1
i=1 i<j Y
where 7;; := |r; — ;| and « is a parameta characterized

potential energy.
In this system, the virial condition is

2<K>+4a< ®>=0, (2)
where < K > is a time averaged kinetic energy and
< @ > is a time averaged potential energy. From the
equation H = K + ®, we have

2 -« 2-«a

H=- <K >= <®>.

3)

From Eq.(3), the sign of the specific heat is determined
by the sign of the term —(2 — a)/a.



TABLE I: In the system with an attractive 1/r® potential in
D-dimensional space, the property of the specific heat and
the extensivity are shown.

0<a<2 a>2
specific heat negative  positive
a<D a>D

extensivity nonextensive extensive

In order to show the extensivity of the system, we use
the N dependence of the potential energy & under the
fixing the number density N/L? which can be calculated
as follows[15].

d

N~ /
If the N dependence of the potential energy per one parti-
cle disappears when N goes to infinity, we call the system
is extensive. Otherwise, we call the system is nonexten-
sive. In the case of the gravity in D-dimensional space,
since a = D — 2, the system is always nonextensive. We

summarize the sign of the specific heat of the system and
the extensivity in Table.I.

N(/D)
drrP-1p=a ~ N1-a/D, (4)

III. SELF-SIMILAR STATIONARY SOLUTION
IN COLLISIONLESS BOLTZMANN EQUATION
(CBE)

In this section, we derive a self-similar stationary so-
lution in collisionless Boltzmann equation (CBE);

daf _ of _
% = 5 THHEI=0 ()

where f = f(«,v,t) is a mass distribution function and
[A, B] denotes a Poisson bracket.
The stationary solution fy satisfies following equation.

2D :
_ ow' dfo _
[f°’H]“,=1 % (6)

where w* = {e, v}.

For the coupled CBE and Poisson equation, R.N. Hen-
riksen and L.M. Widrow[16] studied the self-similar sta-
tionary solution in CBE with spherical symmetry case in
three-dimensional space by the systematic method which
is based on the work of B. Carter and R.N. Henriksen[17].

Following R.N. Henriksen and L.M. Widrow([16], we
study self-similar stationary solution for spherical sym-
metry and isotropic orbit case in D-dimensional space.
The case that D = 3 and a = 1 corresponds to the
work by R.N. Henriksen and L.M. Widrow[16]. By the
extension of the spatial dimension D and the exponent
of power of potential a, it is possible to investigate the

relation between the extensivity of the system and the
self-similarity.
From Eq.(6), mass distribution function f(r,v) obeys

v0, f — 8,80, f = 0, ™

where v := ,/v? + v} +v} and & is a potential. The

potential & satisfies a following equation,

TDI_la, (rot'0,®) = S3G / vP-1fdy, (8)

where Sp := 2xP/2/T(D/2). In the case of a = D — 2,
the above equation corresponds to Poisson equation.

A self-similar stationary solution satisfies the following
equation.

Luf=0, (9)
where
Ly := k'0; = 673, + vvd, + pmd,, (10)

is a Lie derivative with respect to the vector k in phase
space, and 4, v, and p are arbitrary constants.

In a dimensional space of length, velocity, and mass,
we introduce these vector a = (4,v, 1) and d;. The vec-
tor @ = (4,v,p) describes changes in the logarithms of
dimensional quantities. Each dimensional quantity f in
the problem has its dimension represented by the vector
d;. Using these vector a and dy, the action of k reads

Luf = (ds - a)f. (11)

The dimensional gquantities in current problem f, ®,
and G have the following dimensional covectors,

d; = (-D,-D,1),
dsz (0,2,0), (12)
dg = (o,2,-1).

The requirement of the invariance of G under rescaling
group (10) implies dg - a@ = 0,

p=ad+2v. (13)

The dimensional space is reduced to the subspace of
(length, velocity), wherein the rescaling group element
a = (4,v) and

df = (a—-D,2—-D),
ds = (0)2)' (14)

Here we define the new coordinate R(r) and X in re-
place of the original coordinate r and v such that

LyR=1, (15)
LyX =0. (16)
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From Eqs.(15) and (16), we choose

r|6] = P
v = X&'’

(17)
(18)

Under the new coordinate, these physical quantities f
and ® can be written in the form.

F(X,R) = F(X)e UP-2Wr@=2IR, 0 (19)
&(X,R) = ¥(X)e™E. (20)
Substituting Egs.(19) and (20) into Egs.(7) and (8),

these equations for a bounded solution yield
[D-2+(D-a)f] X2
X?+2%

dinf _
dlnX ~

(21)

)

V-2
2,%|§|P =2 [2 +—|®= SDG/ XP-1fdx. (22)
Without loss of generality, we can set v = 1.

Solving Egs.(21) and (22), we have a following solution,

f = C|x? + 23|~ [(P-a)i+(D-2))/2, (23)
where
|2 + ad||6|P—-=-2T(D/2)I'(2 + (« — D)§/2)
27D G| — 28|(@-D)é/21([4 — D + (a — D) — D}/2)’

The 8§, where the virial condition satisfies is

2(2a — D)

D) (32)

d =

If (D — a)(é — 48.) < 0, the potential energy is dominant
compared with the virial state.

The relation between pressure P and mass density p
can be written in the form.

P ~ ptt =BT, (33)
The above equation of state corresponds to one of Poly-
tropes gas when Polytropes index n equals 1+(a—D)d /2.
Note that for a = D, there is no self-similar stationary
solution that corresponds to an isothermal state.

As for gravity case (a = D—2), the above solution (24)
and (27) in D = 3 corresponds to the solution derived by
R.N. Henriksen and L.M. Widrow([16]. For D = 1 and
D = 2 where a = D — 2 < 0, we show the self-similar
stationary solution in Appendix.A.

IV. LINEAR PERTURBATION ANALYSIS

In this section, we investigate the stability of the self-
similar stationary solution derived in previous section for

(24) a symplectic linear perturbation by the energy functional

if the following condition satisfies

(D—a)i<4-D. (25)
Since ® < 0, from Eq.(22) we obtain the additional con-
dition,

ad < —2. (26)

If these condition Eqs.(25) and (26) satisfy, we have the
bounded self-similar stationary solution (23) and (24).
The mass distribution function f, the mass density p,
and the velocity distribution f(v) become respectively

f(r,v) = CRE[(P-2)i+(D-2))/2 (27)
p = SD/dva_lf(r,v)~.,.¢—D+2/5, (28)
f(v) = SD/der_lf(r,v)~va6+2—D’ (29)

where E denotes the mean field energy;

1
E:= §v2 + &. (30)
Since the solution (27) we obtained is a bounded solu-
tion, the specific heat of the self-similar stationary solu-
tion is always negative. The ratio of the average of the
kinetic energy to the potential energy is as follows.

(D—a)i—4
=

<% > _
<K>

(31)
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analysis[11~14].

As for the linear stability of the stationary solution in
CBE of the gravity in three-dimensional space, there are
many works [11-14, 18-24]. For the stationary state, as-
suming spherical symmetry, characterized by the mass
distribution function fo specified as a function of the
mean field energy E and the squared angular momentum
J2,if 8fy/OE < 0 and 0fp/8J2 < 0, then the system is
stable to the linear perturbation.

Following the work by J. Perez and J.J. Aly[13] where
the stability of stationary solution in the coupled CBE
and Poisson equation with a spherical symmetry in three-
dimensional space is studied, we study stability of solu-
tion obtained in previous section.

At first, we explain a symplectic linear perturbation
by the energy functional analysis[11-14]. In term of the
mass distribution function f(=,v,t), Hamiltonian H is
written as follows,

H= /dr%zf(m,'v,t)
+§ / dP/ dr'G (|2 — ') f(=, v, t) f(=', v',2),(34)

where dI" := dP 2dP v is a 2D-dimensional phase volume
element and the kernel G satisfies

3(z) = G / dr'g(|z — ') f(=', o', 8).  (35)



We consider the small perturbation around some sta-
tionary solution fy. The distribution function and Hamil-
tonian can be expanded around the stationary solution
as follows.

f(@,v,t) = fo+dMf+8Pf 4. (36)
H = Hy+dWH+6PH +....  (37)

Here we consider any symplectic perturbation, which
can be generated from the stationary solution fy by use
of a canonical transformation. By using some generating
function K, any symplectic deformation can be expressed
in the form

f=efp (38)

From the above definition (38), f can be also expressed
as follows.

F= fo+ K fol + K, [K, fol)
P D+ (39)

In the term of the parameta ¢ which represents the
amplitude of the perturbation, the generating function
K is expanded in the form

K=eK® 4+ 2K® 4+ SKG®) ... (40)

and identifying g = e"K (™), the perturbed quantities
in the Eq.(36) are written as follows.

50f = o, fol, (41)
§0f = g, ]+ 2160, 60, Rl 42)

The first order term in Eq.(37) yields

s0H = [ arelg®, £, (43)
where E is the energy of a particle,
»2
E = —2- + &g, (44)

where ® is the potential energy generated by fo. Since
E and f; are conserved quantities, §(VH = 0.
The next order term in Eq.(37) yields

s = [ arsl®, i) + 5 [ 4, 6, 5l
+3 [ar [arg(e - = s, ™' 5. (45

The first term in Eq.(45) also vanishes and by an inte-
gration by parts, Eq.(45) is rewritten in the form.

§OH = -% / dr(g™, follg™), E]

+§ / dr f dr'g(lz — 2’ g™, follg™’, f5]. (46)

Hereafter we consider the case that the stationary so-
lution fj is a function of only the energy E. In this case,
we obtain

Fglg™, B), (47)
/de(?,,(FE’vg(l)), (48)

[9(1)9 fO]
[ ol 1
where FE = aEfo.

Integrating by parts and using Eqs.(47) and (48), we
have

§IH =
3 [ arEis®, B + 3 [ aro.(~Favgt)
< f dT" 80 (= Fho'g™)g(J= - =']). (49)

The linear perturbation g(!) has two kind of gauge
mode. One is the case that g(!) = g(1)(E). In this case,
the linear perturbation of the mass distribution 6(}) f is
trivially zero. The other is the case that g(!) = av where
a is a constant. This perturbation means the translation
of the center of mass. In order to consider the physi-
cal perturbation, we investigate the linear perturbation

except the above gauge mode.
The stability for the linear perturbation[24, 25] reads
that

If §)H > 0, then the system is stable. (50)

A. spherical mode

Since the first order perturbed potential §(1)®(r) sat-
isfies

s (+410,608(r)) = $pG / Po'[g"', f;]

— 1 D-1 D e ()
= SDG;ma, (’I‘ /d v’Fk‘v g( ) , (51)
the spatial derivative of §(!)&(r) becomes

9,8V (r) = ,fiﬁz / o' Fpo" g™ (52)

From Eqs.(49) and (52), we have
26 H
= [ar-Fo)ls®, )
- / 4T, (— Fgv" g0)sMa(r)

D
= / dr(-Fg)lle, E]|* - Sp@G / ,.;L-D%

></dbv(-—FEvg(l))/.de'(—F_é,v’lg(l)'). (53)
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Introducing new variables,
g =m0 p(r, v, ), (54)

and using Schwartz’s inequality, we have

" : 5 dPe
25 = fdr(—FE)l[mv B =8y | —oes
X /dpv{—FET(U")Zu]./-dDU'[—F}Ig"'(”'r)zﬂ-rl
; 4 dP =
> [ar(-Fo)llurs’, B - GSb [ s

x [ @ ol-For(v i) [ o= Fyr(a™))
[ ax-s) {urer, 21 -

T.ar—D+2

(55)

where pp is non-perturbed mass density:

po = dii’fo Z/dD”(HFE)(”?)z-

Using the property of the Poisson bracket, and the fact
that the integral of Poisson bracket over the phase space
vanishes, the equation (55) can be rewritten in the form.

GSp(rv")*p?po
Ta—D+2

(56)

2O > [ an(-r) {mm', B -

[ ar(=Ee) (s B + o, B
Gsatrv i)

+rv" [u?, E][rv", E] — —aD12

= [ dr(=Fe) {2 1w EIP + i, B
+[plrv" (v, B, B] — |p|*rv" [[rv7, E), E]

GSp(rv")?p?
2 2 D K Po
=B B

- fﬂlf‘(ﬁFa){(?"v')zlbuai"?]l2

GSp(rv™ ) u?py

—|p|trv"[[rv", E], E] - )

} (57)
Using the following relation,

d*®
- (T

.+ ( GSppo
U\ 7=-D¥2

[[Tv’,E],E] = 3d(§0)

"
2 -« d@g
+ 22200 o

we obtain the final expression in the form.

§OH >
%/‘dr(uFE)(rv')z (|[p, E||* + Iulzz_Ta%) :
(59)
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FIG. 1: One-dimensional case (D = 1). The dark region
corresponds to the stable region (62) in the parameta space
(8, @). The property of the specific heat and the extensivity
also are shown.

From Eq.(59), if §®)H = 0 when Fg < 0 and a < 2,
5 f = 0. Since such a perturbation is a gauge mode,
we conclude that
If Fg < 0 and a < 2, then 6 H > 0. (60)
From the self-similar stationary solution Eq.(23), we
have

Fi = sgn(B)[(a — D)5 +2 — D)CI2B[(=P¥=PI/2 (61)

As an explicit example, we consider D = 1 case. From
Eqgs.(25), (26), and (60), if the following condition satis-
fies, the self-similar stationary solution Eq.(27) is stable.

(1< ar< 2)

(0<a<1) (62)
In Fig.1, the region of existence of the stable self-similar
stationary solution in the parameta space (a, ¢) is shown.

Note that in the above calculation, we use the inte-
gration by parts and neglect the surface term. Since the
self-similar stationary solution obtained in this paper is
singular at the boundary, the surface term can not be ne-
glected in general. However we hope that the self-similar
stationary solution can be connected with some regular
solution near the boundary and the boundary term can
be neglected.

B. aspherical mode

Next, we consider an aspherical mode. Since it is diffi-
cult to analyze a general case, we study the gravity case
in D-dimensional space (a = D — 2).



By the integral of Poisson equation over the configu-
ration space and integration by parts, we have

—édezWJ(UQP:/dl‘é(l)fa'(l)@, (63)
where

50 ::/deGJ(l)f. (64)
From Bgs.(46, (58), and (61, ws have

1 W52 @6
(2) = = L Sl

/d”zwé(l)@;?. (65)

Here we introduce §(1) f as follows.
SV f =: FpsMa + s, (66)

Substituting Eq.(66) into Eq.(65), we get

s H
(1) f\2
= lfdr (5" + Fg(6Mae)? — 260 5V e
2 —Fg

"~ 2Sp

. (61 f)? 1 D (1) 2
_Efdr_—F;+Efd z{|w 3|

—Sp Ud%(—FE)M(%P] }

Moreover, using the new variable w which is defined
by

- dez|VJ“)<I>|"',
(67)

e =: w(e,t)d, @, (68)

we can rewrite the equation (67) in the form.

§NH
1

== [dr
2 f

+§%/dﬂz{(a,@0)2 [|Vw|=2 i div(HFE)|w|2]

(#M5)?

g

—|w|za,<§gvﬂa,<§o}. (69)
By the straightforward calculation, we obtain
2 D 61"1’0
V9,8, =Sp | d"vFgd, &g+ (D —1) = (70)

By using the Wirtinger’s inequality (see Appendiz B),

we have
f [|v,m|2 oy = ljwﬁ] dQ >0,
T

(71)
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FIG. 2: Gravity case (¢ = D — 2). The dark region corre-
sponds to the stable region (74) in the parameta space (4, D).
The property of the specific heat and the extensivity also are
shown.

where V, :=V — ﬁTZ%‘
From Egs.(69), (70), and (71), we get the final expres-
sion in the form.

s H

1
1

1 D 2 2 2 B2~ 2
tag [ 400,30 |00l +19,uf - 232 o

(EW)?
—Fg

1 (WhH? 1 D 204 (2
& §fdP—Tﬁ"E'~+Zg;/d :B(a,-‘i’o) |8, w|*. (72)

From Eq.(72), if 8)H = 0 when Fg < 0, §()f =0 or
g1} = av. Since such a perturbation is a gauge mode,
we conclude that

If Fg < 0, then 63 H > 0. (73)

This condition is weaker than the condition (60). In the
gravity case (a = D—2), from Eqgs.(25), (26), and (60), if
the following condition satisfies, the self-similar station-
ary solution Eq.(27) is stable.

(2<D<4)

B (74)

D -2
In Fig.2, the region of existence of the stable self-similar
stationary solution in the parameta space (D, §) is shown.
This stability condition (60) is consistent with the work
by J. Perez and J.J. Aly[13](a = 1, D = 3).

V. DISCUSSION

We study the self-similar stationary solution in the col-
lisionless Boltzmann equation with an attractive 1/r®
potential assuming the spherical symmetric and isotropic
orbit case in D-dimensional space and investigate the lin-
ear stability of its solution. In the above model, we can



control the extensivity of the system and the sign of the
specific heat by the spatial dimension D and the expo-
nent of inverse power of the potential a.

The self-similar stationary solution can be expressed in
the form of the power law of the energy. The exponent of
the power is determined by the power of the potential a,
spatial dimension D, and the scaling parameta §. Here
we interpret § as a parameta which denotes a virial ratio
of the initial state.

By use of the energy functional approach, we investi-
gate the stability of the self-similar stationary solution
in the term of a symplectic linear perturbation. As for
the spherical symmetric and isotropic orbit case of the
gravity in D-dimensional space (a = D — 2), if the mass
distribution function decrease monotonically and the spa-
tial dimension is less than 4, then the system is stable.
As for the power-law potential case in one-dimensional
space (D = 1), if the mass distribution function decrease
monotonically and the inverse power of the potential is
less than 2, then the system is stable. The self-gravitating
ring model[7] is similar to the case of @ = 1 in one-
dimensional space. From the form of the velocity distri-
bution obtained by a numerical simulation, § ~ —3. This
case belongs to the stable self-similar stationary solution.

The stable self-similar stationary solution we obtained
is a state where the potential energy is dominate com-
pared with the virial equilibrium state. As for the exten-
sivity of the system, the nonextensive system has many
various stable scaling solution compared with the exten-
sive one in the parameta space (4, a, D).

In the time evolution of the collisionless system as-
suming the spherical symmetry and isothermal case,
Larson-Penston solution which shows self-similar collapse
is attractor[26]. By such a self-similar time evolution of
system, we hope that the class of the stable self-similar
stationary solution obtained in this paper plays an im-
portant role as a quasi-equilibrium state of system with
along range interaction such as gravity. In a realistic sit-
uation, since the anisotropic velocity space is important,
we will extend this analysis to the anisotropic case in the
future work.

APPENDIX A: STABILITY CONDITION FOR
GRAVITY CASEIN D=1AND 2 (a =D -2)

For the case that the potential & is positive, Eq.(22)
is modified as follows.

20 [2 +(D - 2)%] % = S3G /;D-l}'dx. (A1)
0

1. D=1 case

Since the potential & is positive, from Eq.(A1),

b < 2 (A2)
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By integrating Eq.(A1), we have self-similar solution
(23) and

2= 4|T(8 — 1/2)[28)°

= A3
¢ JRGT(-1) (A3)

if the following condition satisfies
éd > 1 (A4)

From Egs. (A2), (A4), (60) and (73), the stability
condition for linear perturbation yields

l<éd<2 (A5)

The ratio of the average of the kinetic energy to the
potential energy is same as Eq.(31) in D = 1. However if
8 < 2, the integral of the kinetic energy over the velocity
space diverges. By this reason, there dose not exist the
stable self-similar stationary solution in D = 1.

2. D =2 case

If the potential @ is negative, the condition that the
bounded self-similar solution exists is the same one (25)
and (26). Since this case does not satisfies the condition
(26), the only case that @ > 0 is possible.

In this case, from Eq.(Al), the condition that a
bounded self-similar solution exists yields

1

é > 5, (Aﬁ)
and the integral constant of (23) is
Il
C= 2I(0)[29| (A7)

= WRGL( - 1/2)

From Eqs. (60), (73), and (A6), the stability condition
for linear perturbation yields

i > (A8)

The ratio of the average of the kinetic energy to the
potential energy is same as Eq.(31) in D = 2. However,
same as D = 1 case, if § < 2, the integral of the kinetic
energy over the velocity space diverges. Finally, if § > 2,
the self-similar stationary solution in D = 2 is stable. In
this case, the specific heat is always positive.

APPENDIX B: WIRTINGER’S INEQUALITY

Following J.J.Aly and J.P’erez[27], we show simple
proof of Wirtinger’s inequality (71). Let us consider a
function f(r,a‘), where a’ denote an angular coordinate
in (D-1)-sphere and ¢ = 1,2,---, D — 1, with zero av-
erage value over the (D-1)-sphere S,. Using spherical



harmonics Q'Im‘ in SP-1, the function f can be written

as follows.

f(r,a z l:_[ Z L‘;(T)Qin.'(a‘),

=1 i=1 ms

(B1)

where m* denotes the proper mode corresponds to each
angular coordinate. From the completeness of the spher-
ical harmonics and the following relation

vigh, = -0y (2)
where V, := V — (Z) 8,, we have
fs v.Q :V,Q" .dQp_y
= I_(_l_-l;_DZ,—_Z)/‘ Qi@ id0p_,
’(_’ﬂ_%,, ™ (B3)

‘I‘

where dQ2p_; denotes a volume element in (D-1)-sphere.

From Egs.(B1) and (B3), we obtain

/ V. flPd0Qp_1 = ). Id, I”w
Se I>l,m‘
> ! .|2
1>1;msé
dQp_1, (B4)

with equality satisfying if f = fo(r) (£) @ for some con-
stant vector a.
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Abstract

Compact star clusters in the star burst galaxies sink toward the galactic center through
dynamical friction. If they survive well against the mass loss by the stellar evolution and
the tidal stripping from the parent galaxy, then they convey intermediate mass black holes
(~ 1000M¢ ), produced in the cluster through runaway mergings of the massive stars, into the
galactic center to form a supermassive black hole (Ebisuzaki et al. 20012. In the present paper,
we investigated the condition for surviving of the cluster by means of numerical simulations
which include stellar evolution and tidal stripping. As stars evolve, they eject their mass ,
which is lost away from the cluster. Furthermore, the tidal force of the parent galaxy stripped
the stars in the outside of the cluster. Through these processes, both the number of the members
and the gravitational binding energy of the cluster become smaller as they sink. Finally they
totally disrupted, when their identity are lost. We performed a series of the gravitational N-body
simulations for the star clusters of the star burst galaxy, M82.

We found that a cluster with an initial cluster mass of M, > 3 x 106 M and the lower limit
mass of IMF Mp,in < 0.5Mg. the surviving condition of the cluster well survive until it sinks
down to the center of the parent galaxy. We also found that the results depend strongly on
the total mass of cluster and initial mass function, IMF. These results support the formation

scenario of supermassive black hole described above.
We adopted Hernquist spherical galaxy model for M82 Galaxy, which is truncated at galactic

radius 7, = 0.5kpc and whose mass is M, = 2.08 x 10° M. and King model for the compact star
cluster, whose central potential is Wy = 5.0 and core radius is g ~ 1pc. We used special-purpose
computer, MDGRAPE-2.

1 Introduction

1.1 SMBHs in Galaxies

There is rapidly growing evidence for supermassive black hole (SMBHs) in the centers of many
galaxies (Kormendy & Richstone 1995).

Many authors have pointed out that the mass of the central BH, mpy, correlates with the
mass of the bulge, M. The ratio of mpy to M, is almost constant at 0.002 (Kormendy & Richstone
1995), 0.006 (Magorrian et al. 1998) as figure 1. This suggests that the formation of the central
BH is somehow related to that of the bulge.

The formation mechanism of SMBHs is not well understood. In the famous diagram by
Rees (1978, 1984), there were basically two paths from gas clouds to SMBHs. The first is direct
monolithic collapse; the second is via the formation of a star cluster, with subsequent runaway
collisions leading to BH formation. Previous numerical studies, however, have demonstrated that
neither path is likely. In the first, a massive gas cloud is much more likely to fragment into many
small clumps in which stars then form, so direct formation of a massive BH from a gas cloud seems
impossible. In the second, stellar dynamics in star clusters does not easily lead to the formation
of SMBHs. A number of low-mass BHs (masses around 10Mg) are formed via the evolution of
massive stars, and these BHs do indeed sink to the center of the cluster through dynamical friction
and form binaries by three-body encounters. Taniguchi et al. (2000) argued that intermediate-mass
BH (IMBHs) could be formed through successive merging of compact objects. However, recent
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Figure 1: Mpy and Mpyge produced by Magorrian et al. (1998) models. Thee filled and open
circles plot power-law and core galaxies, respectively. The solid line plot Mpy it as described
Mgy /M, = 0.006.

N-body simulations (Portegies Zwart & McMillian 2000) have demonstrated that practically all
of these BH binaries are ejected from the cluster by recoil of interactions with other BHs (or BH
binaries) before they merge through gravitational radiation.

1.2 Discovery of IMBH in M82 and New formation scenario for SMBHSs

Matsumoto et al. (2001) have identified nine bright compact X-ray source in the central region
of M82 using recent Chandra data. The brightest source, which exist some 200pc away from
dynamical center of M82, (number 7 in their Table 1) had a luminosity of 9 x 10%%rgs~! in
2000 January, corresponding to a BH with a minimum mass of 700Mg. Assuming the Eddington
luminosity, the relation Mgy and the luminosity of the brightest source is given as

L
MBH > 770M® (W) (1)

It probably consists of a single compact object, as its X-ray flux shows rapid time variation (Mat-
sumoto et al. 2001). This is first detection of a BH candidate with a mass much greater than

100Mg but much less than 106M. Among the eight other sources, at least three (5, 8, and 9)
have Eddington masses greater than 30M.

Matsushita et al. (2000) observed the same region with the Nobeyama Millimeter Array and
found a huge expanding shell of the molecular gas. They estimated the age and kinetic energy of
the shell to be around 1 Myr and 10%°ergs~!, suggesting that a strong star-burst took place a few
milliyears ago. We show more details about the cluster in §2.3

We now have two important observational results. The first is that a BH with intermediate
mass (770 < Mpu /Mg < 108) may have been found. The second is that it coincides with a young
compact star cluster. ‘

Based on these findings, Ebisuzaki et al.(2001) suggest a new formation scenario for SNBHs.
In this scenario, IMBHs first form in young compact star clusters through runaway merging of
massive stars. While these IMBHs are forming, the host star clusters sink toward the galactic
nucleus through dynamical friction and upon evaporation deposit their IMBHs near the galactic
cengel\r/I.BThe IMBHs then form binaries and eventually merge via gravitational radiation, forming
an H.

In the following, we discuss how IMBHs can be formed in young compact star clusters in
§1.3, then IMBHs might grow into SMBHs in §1.4.
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1.3 IMBH formation through runaway growth

Ebisuzaki et al. (2001) proposed that IMBHs form and grow through successive mergings of
massive star (and IMBHs) in dense star clusters (Fig.1.4).

A gas cloud fragments to form many less massive clouds as it cools by radiation. Many stars
are formed through this fragmentation, and a star cluster comes into being. There are two possible
evolutionary paths for this cluster depending on its stellar density.

If the cluster is not dense enough for mass segregation to occur in 10 Myr, massive stars
evolve into compact stellar remnants such as neutron stars and stellar mass BHs (10M). Those
stellar remnants slowly sink to the cluster center since they are heavier than other stars in the
system and eventually form binaries. Successive three-body interactions make these binaries more
tightly bound, and eventually they are ejected from the cluster by the slingshot mechanism.

If the star cluster is so dense that stellar mass segregation is faster than stellar evolution
for the most massive stars (time-scale 108yr), those stars sink to the cluster core by dynamical
friction and form a dense inner core of massive stars at the cluster center. In this inner core,
the massive stars undergo a runaway stellar merging and a very massive star forms, with mass
exceeding 100M. This very massive star eventually collapses into a BH, which continues to grow
by swallowing nearby massive stars. More massive stars in star clusters have higher merging rates
than less massive cluster members (or field stars) because of their larger geometrical cross sections,
a stronger gravitational focusing and concentration to the central region by mass segregation in
the cluster. In fact, Portegies Zwart et al. (1999) demonstrate N-body simulations that runaway
merging can take place in systems containing ~ 12, 000 stars before stellar evolution eliminates the
most massive stars.

Portegies Zwart et al. (1999) found that in one case, the most massive star experienced more
than 10 collisions and reached a mass of around 200, before evolving into a supernova. There is
considerable uncertainty as to how much mass would remain as a star approached within its tidal
radius, leading to a relatively large merger cross section.

In order for runaway merging to occur, the dynamical friction time-scale for the most massive
stars must be short enough that they can sink to the center during their lifetimes of several
milliyears. The dynamical friction time-scale can be expressed as follows (§A.3):

0.519 r2v,
bric = WA Gm

2 10,
> 10 () (i) < (55°)
7x10 x(lpc X 10km]s x{ =y (2)

where InA is the Coulomb logarithm, G is the gravitational constant, v, is the circular velocity,
which value is same order with random velocity, r is the distance from the center of the cluster,
and m is the mass of the star. Here it is assumed that the background stellar distribution is that
of the singular isothermal sphere. Eqation(2) is a useful approximation at r ~ rg(rg is the core
radius =~ Ipc for compact star cluster).

In the following, we consider how dynamical friction works in the cluster found in M82. If
the total mass of the cluster has 3 x 106 M, about 50% of the total mass is included within a
radius of r = 1pc ~ 7,. Then, the dynamical friction time-scale of stars about 25% of the total
mass, is about 10 Myr. Marchant & Shapiro (1980) performed Monte Carlo simulations of this
stage for a simplified cluster containing 3 x 10% M, stars and one 50M¢, seed BH. They found that
the BH mass jumped to over 103 My (0.3% of the cluster mass) almost immediately after they put
the BH into the system. Their result should be regarded as a lower limit on the BH growth rate
since realistic effects, in particular the presence of a mass spectrum, would greatly enhance the
accretion rate. Taking these effects into account, that it seems safe (even conservative) to suppose
that 0.1% of the total cluster mass accretes to form a ~ 1000M central BH in a 10 Myr.

Presently there are more than 100 star clusters discovered in M82 galaxy, some of them
apparently hosting small BHs. Their age is around 10 Myr (T. Harashima et al. 2001, in prepara-
tion). Also the starburst in M82 is a long-duration event, having started at least 200 Myr ago. A
close encounter with a large galaxy, M81, in the last 100 million years is thought to be the cause
of the starburst activity (see §2.2). As stated above, we conclude that around 100 clusters similar
to our host cluster have formed in total and that a considerable fraction of them host IMBHs.
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1.4 Building up the central SMBH

We now describe how IMBHs formed in star clusters combine to form a central SMBH (Fig.1.4).

The growth rate of the IMBH in a star cluster slows down once all the massive stars are
swallowed (after ~ 100 Myr). Subsequently, the cluster is subject to two evolutionary processes:
evaporation through two-body relaxation and orbital decay (sinking) via dynamical friction. Evap-
oration is driven partly by thermal relaxation and partly by stellar mass loss. Portegies Zwart et
al. (2001) estimated that the evaporation time-scale for a tidally limited compact star cluster is
around 2~3 half-mass relaxation times, which is of the order of a few gigayears for our star clusters.
Rewriting equation (1) using appropriate scaling for this case r 3> ro ( §A.3 ), we find that the
time-scale on which the cluster sinks to the galactic center via dynamical friction is

2 6
3 x 106 M,
tee =~ 1.0 x 10° (L) (_3_) 3x10°Mo )
frie 0x X lkpe X 100km/s X m r (3)

8lusters initially within 1 kpc of the galactic center can therefore reach the center within a few
yr.

According to my estimate in §1.3, around 100 compact clusters have formed close to the
center of M82 in the last 200 Myr. If we assume that half of these clusters contain 1000M IMBHs
and that these IMBHs actually merge, then the total BH mass at the center of the galaxy will be
at least 1.0 x 105 M. Successive mergings of IMBHs form an SMBH with a mass of 106 Mg

We have demonstrated that 1000My IMBHs can form and reach the galactic center in a
reasonable time-scale. We now turn to the question of whether the multiple IMBHs at the center
can merge. Begelman, Blandford, & Rees (1980) discussed the evolution of an SMBH binary at
the center of a galaxy, taking dynamical friction from field stars and energy loss via gravitational
radiation into account. They found that the merging time-scale depends strongly on mass, and
for a very massive BH with a mass of 108 M, in which they were interested, merging took much
longer than a Hubble time.

For the IMBHs, however, the time-scale for merging through gravitational radiation is many
orders of magnitude shorter than that for the SMBHs Recent extensive numerical simulations
(Makino et al. 1993; Makino 1997 ) have shown that the hardening of the BH binary through
dynamical friction is in fact several orders of magnitude faster than the prediction from loss cone
arguments. Although the number of particles employed (up to 256,000) was not large enough to
model SMBH binaries, it was certainly large enough to model evolution of IMBH binaries.

Once one BH has become more massive than typical infalling BHs, it becomes extremely
unlikely that it will be ejected since the recoil velocity from three-body interactions is inversely
proportional to the mass (because of momentum conservation). Thus, even though some of the
infalling BHs might be ejected by the slingshot mechanism, the central BH will continue to grow.

Since we now have the first candidate for IMBHs, it seems natural to expect that SMBHs
might be formed from them. Thus, IMBHs are created and transported to the center of the galaxy,
where they eventually merge to form SMBHs.

Ebisuzaki et al.(2001) propose that IMBHs are formed in the cores of young compact star
clusters through mergings of massive stars and BHs formed from them. These compact young
clusters sink to the galactic center by dynamical friction. The cluster is dissolved through Stellar
mass loss, the tidal striping of the parent galaxies, and the thermal relaxation of stars.

First, Fukushige and Heggie (1995) investigated the effect of the Stellar evolution and galactic
tide of globular clusters. Their study included the following realistic effects: the spectrum of stellar
masses; mass loss arising from stellar evolution; and a tidal cut-off to model the eftect of the galactic
tidal field. They performed an extensive survey of models that differ with regard to the initial mass
function, the central potential of the cluster, and the distance from the galactic center. For example,
they obtained the result that the cluster having sufficiently deep central potential survived during
over 2 x 10%r. They chose the dimensionless central potential of King’s model, Wy = 5.0 for the
cluster model. They adopt the parent galaxy model in which the cluster is assumed to move in a
spherically symmetric galactic potential, taken to be that of a distant point mass. In the region of
galactic center, the life time of cluster may be shorter than 2 x 10%r .

Second, Binney and Tremain(1987) discussed that the evaporation time-scale for the local

globular cluster is #;5e ~ 100 X t,¢105, Where treiqz ~ 101%yr for the typical globular cluster, and
tiise for the globular cluster ~ 1012yr. However, a globular cluster move under the influence of the
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mean potential generated by all the other particles. In the core of a globular cluster, therfore, life
time may be shorter than 10%r, and play a key lole.

We estimated that the time-scale of Stellar evolution, dissolving by tidal force from the parent
galaxy, and evapolation is 106 ~ 10%r. In this paper, We had taking into account these effect
except an evapolation effect, becouse the evapolation time-scale is longer than other two effects,
Stellar evolution and galactic tidal force. We performed these effects by the simulations using

N-body integrator assumed in the region of a galactic center.
The organization of the paper is as follows: The numerical method and more detail the initial

condition for my simulations is discussed in §2. In §3 the results are presented. Finally, §4 notes
conclusions.

IStar Clusters with IMBHsI

Gas Cloud

s *,,,. . S$inking by
t“*’“’&"d“m" dynamical friction
srar formation
* Stars
IStar C.'!.u:-xt:er:lm,tdem,e IMBHSY
g ¢ Multiple IMBH System
anse
mass segregation l n the Galactic Center
Dense Core of Neutron Stars v
Massive Stars and Stellar Mass Three Body interaction tidal stripping
R136 cluster Black Holes and disruption
in IMC Globular
Ciusters

runaway stellar coalescence
ejection by Slingshot Compact IMBH Binaries

>100 Solar Mass

Stars
Young Clusters in M§2 mergings by
and ULCXS gravitational wave radiation
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Y 4
Intermediate Mass [supermassive Black Hole| [Bulge|
Black Hole (IMBH)
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Figure 2: Schematic diagram of the formation
process of an IMBH.* Figure 3: Schematic diagram of the formation of

SMBHs from star clusters containing IMBHs.*

*:Ebisuzaki et al. (2001)

2 Numerical methods and Initial conditions

The N-body integration algorithm, used in this paper, is described in §2.1. In §2.3.1, we described
how the evolution of stars is calculated; the tidal boundary of cluster is described in §2.3.3.
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2.1 The N-body integrator

The N-body portion of the simulation is carrried out using the tree code (Barnes & Hut 1986).
The Burns-Hut tree code is widely used algorithm that reduces the cost of the force caluculation.
In this tree code, forces on a particle from distant particles are replaced by multipole expansions of
groups of particles. More distant particles are organized into larger groups, so that the truncation
error of the expansion is similar everywhere. A hierarchical tree structure is used to form groups
efficiently. The calculation cost is reduced from O(N?) to O(N log N).

Even with this tree code, the cost of the force calculation is still high, and it dominates the
total calculation cost. In order to accelerate the tree code further, we can use GRAPE(GRavity
PipE; Sugimoto et al.1990, Makino and Taji 1998). GRAPE is special-purpose hard ware for the
calculation of the gravitational force between particles. In this paper, we performed all simulations
with MDGRAPE-2(Narumi et al. 1999, Susukita et al. 2002). For the implementation of the tree
code on GRAPE, see Makino 1991.

We chose the system of units in which the total mass of each galaxy, the typical velosity
dispertion, and gravitational constant are both 1 and in which the initial maximum radius of
galaxy is 1/2. In §7?,we described detail. We integrated this system up to T.ng = 30.0 with
constant time-step. In models with N = 114000, the time-step, At, was 1/4000 = 0.00025, and
120000 steps took for about 5 days. while for point mass cluster model N = 104000 the time-step,
At, was 1/200 = 0.005, and 6000 steps took for a few hour. We took same value for softning
parameter with the value of At, becouse of velocity dispartion o = 1.0.

2.2 M82 Galaxy component

The distance from our Galaxy to M82 is assumed to be 3.25Mpc. The rotation curve of small-mass
starburst galaxy M82 has a steep nuclear rise, peaking at 500pc radius, which then declines in a
Keplerian fashion. This rotation curve mimics that for a central bulge of spiral galaxies with a
high concentration of stellar mass. The declining rotation indicates that its extended disk mass is
missing.
Sofue (1998) propose that M82 is a surviving central bulge of a much larger disk galaxy,
whose outer disk was truncated during a close encounter with M81. Through the close encounter
with M81, when M82 penetrated the disk of M81, the outer disk of M82 was tidally truncated,
but the bulge and nuclear disk have survived the tidal disruption. The truncated disk may have
become the HI envelope and tails in M81-M82 system. The central gas disk of M82 was dense
enough. This close encounter has caused the high-density molecular disk in M82, and starburst.

2.2.1 Rotation curve and mass distribution

Figure 4: Rotation curve of M82. Full line shows observation of HII line by Sofue (1998). Dot point
shows observation of CO and Na line Gotz et al(1990). Dashed and dotted line shows Hernquist
model, using our simulations

In figure 4, we compare the rotation curve of Sofue(1998), Gotz et al(1990), and the simula-
tions model. We used Hernquist model for Galaxy model in all of the simulations, which models
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detail is discussed in below section §2.2.2. . .
Gotz et al.(1990) propose a total dynamical mass model within the starburst region (radius=

15" ~ 230pc) is close to 6 x 108 M. They propose mass profile giving Ms00pc) = 2-08 x 10°Mg.

2.2.2 Galaxy model (Hernquist model)
We adopted galaxy model are spheroid Herunquist model(Herunquist 1993) proposed for spherical
galaxies and bulges. The bulge density profile is

M, Th (4)

Po(r) = Er_r(r +13)3’

where 7} is scale length for bulge, M, is defined as the mass within a infinite radius, M, =
My () - The cumulative mass profile and potential corresponding to py(-) can be written

_r __GM
(r+13)2’ M) T T F Ty

Myy = My (5)

2.2.3 Effect of dynamical friction

We checked the effect of dynamical friction by means of test calculations with different particle
number, N. Figure 5 shows the evolution of distance from the center of galaxy for several different
particle numbers. The calculations were performed with N = 10400, 20800, 52000, and 104000
(We defined as 10K, 20K, 50K, and 100K below) for all cases for (Mygiazy, Meiuster) = (2.08 x
10° M, 2.0 x 105M¢, or 3.0 x 105Mg).

As shown in Figure 5, the clusters with smallest particle number (N < 20K) are substantially
affected by underestimate of the influence of dynamical friction. The results with large particle
number (N > 50K) differ little from each other. Therefore, we adopted 100K for the number of
particle simulations.

1(10°7y)

Figure 5: Dependence of the evolution on Figure 6: Relation between r and tsyi. =
the number of particles IV used in the sim- 7/ in the case of 100K. The both dashed
ulation. The coordinate is the periodic av- line gives the theoriticl line as equation (7)
erage of an orbital radius. cased InA ~ 10 and InA ~ 3.

Second, we estimated the effect of dynamical friction between theoretical curve and simulation
result. Dynamical friction formula definition as bellow( equation(17) ),

T M, 2.34 V02

Lirie =+ = = - y
frie =% F dmIn A G2M,p(r)

(6)
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where, M, is mass of the cluster, o is velocity dispertion. Using equation (6), and eliminating from
the relation, o = v,/ V2, we have

2.34 1 v} 05841 M,,( r )5/2

pric 8rlnA G*M, p(r) A M, \ lkpc

Unfortunately, equation(7) has the unfixed value due to 1/1n A. Theoretically, this value is
In A ~ 10 at a typical for spheroid galaxy. However, numerical integration couldn’t realize the real
galaxy, because the number of stars in a typical galaxy is over 10'°. Therefore, we should modeling
a galaxy using softening parameter ¢ as a galactic dynamics studies. Consequently, In(bnaz /bmin)
is used for InA in a numerical simulation, where by, is the largest impact parameter, bpes =~
the system size, byin is the right-angle impact parameter, by, = €. In our simulations, therefore,
InA ~ 3 is good estimates.

(7)

2.3 Cluster component

Matsushita et al.(2000) observed that the luminosity of the2.2um secondary peak is equivalent to

~ 1500 M2 supergiants. From their observations, using an extended IMF of dN o« M ~23dM with
lower and upper mass limits of 1 and 30, respectively, and assuming that there are 1500 stars whose

masses are 25 ~ 30Mg, the total mass formed would be about 2 x 105 M, and with lower mass
limits se of 0.5, 3 x 106 M, respectively. The stars of > 30M would have already exploded in this
cluster. These massive stras lifetimes of less than 2 x 10%yr; see Tablel. We adopted mainly their
estimates for the total mass of the compact cluster model, 2 x 105Mg to 3 x 106 M.

2.3.1 Stellar evolution

We modeled effects of stellar evolution by changing the mass of each star. At the last stage of stellar
evolution, stars lose a significant fraction of their mass in stellar wind and supernova explosions.
The potential well of a cluster typically 10kms™! is not deep enough to retain the gas ejects from
stars mass, since the escape velocity is only a few times 10km s~!. At birth, a neutron star or
black hole recieves a high velocity kick in a random direction. This distribution is flat at velocities
below 250km s~!. We assume, therefore that lost mass disappears abruptly from the cluster. We
give the mass, m(t), of each particle at each time step;

t) = - (tseq—t) . A (8)
m( ) - mrm + [m"" - mrm] At . t < tseq < t + t
Mrm tlseq <t

where m;y; is the initial mass, m,, is the mass of any remnant after mass loss, and ts¢q is
the main-sequence time scale (Table 1). We obtain values between the points listed in Table 1 by
linear interpolation. The remnant mass, m,,, is summarized in Table 2. These tables are due to
Iben & Renzini (1983) from which these tables have been copied.

We assume that a star with a mass larger than 40Mg leaves a black hole after ejecting its
envelope during the main-sequence and Wolf-Rayet phase. The mass of the black hole is assumed
as 0.35m;,; — 12M (Table 2). Stars with masses between 8 M and 40M(, are assumed to become
neutron stars, through the Type II supernova explosion. Stars with masses between 4.7Mg and
8 M, are assumed to become no remnant, through the Type we supernova explosion. The mass of
the white dwarf is taken to be equal to the core mass of its progenitor at the tip of the asymptotic
giant branch. Stars with masses less than 4.7M are assumed to become white dwarfs. Iben and
Renzini 1983 give the final white dwarf mass 0.537~9982 4 0.1597035 x (m/Mg — 1.0), and we
take the mass-loss rate given by n = % for all models. This formula is accurate for initial masses

m > 0.8Mp.

2.3.2 King model

We used king’s model (King 1966) to generate the initial conditons for globular cluster. Thus the
distribution function, g(g), is a lowered Maxwellian, given by

9(5) = K [exp(—(E - Er))], (9)
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Initial Mass m Main Sequence Time

logio[m /M) logio[tse/yr]
-0.08 10.18
-0.01 9.93
0.07 9.63 Initial Mass Remnant Mass Comments
0.16 9.23 (Mp) (Mg)
0.27 89 <47 058+ 0.22 X (mim — 1) White dwarf
0.40 8.50
0.54 8-11 [4.7, 8.0] O NO remnant
0.72 7.68 [8.0,40.0] 1.4 Neutron star
0.91 7.33 [40.0 ~] 0.35m;p; —~ 12 Black hole
1.11 7.02
1.33 6.76 Table 2: Mass evolution®*
1.55 6.57
1.79 6.50

Table 1: Stelalr evolution time*

*:Iben&Renzini(1983)

for E < By = ¢,), where E = v? /2+¢(r,), K is constant, and r is the (tidal) radius of the edge of
the cluster. (We used ¢ for the Newtonian potential to distinguish it from the the softened potential
®..) The King model is determined by the dimensionless center potential, Wy = B[d(r,) — #(0)]-
For this paper we performed a survey of models defined by combinations of the value of the
dimensionless central potential of the King model, Wy = 5.

2.3.3 Tidal boundary

During the course of a simulation stars escape from the cluster. The precise dynamical definition of
escape is not easy if there is a tidal field, and there we adopt a simple geometric definition: escape
are defined to be those stars beyond thetidal radius. All stars within the tidal radius are taken to
be members, eveb though the tidal field is not spherically symmetric. More precisely, we use the
distance between the center of the cluster (defined below equation (11) ) and the Lagragian point
in the direction of the galactic center as the tidal radius. If, as before, the galaxy is represented
by a point mass, it follows that the the tidal radius is given by

1/3
M,
Tt = (-ﬁ) Rg, (10)

approximately, where M, is the mass of the cluster, Ry is the distance to the galaxy, My(r,) is

the mass of the galaxy within R,. If we asuumed a sphericaly galactic potential, taken to be that
of a distant point mass Myp,). gIndeed galactic potential is not possible to be point mass model,

but the force which a cluster R, away from the center of the Galaxy receives can be onsidered as
received from a point mass Myg ). Here, M, is taken to be the total mass of the 'members’, and

since this depends on r; itself, some iteration is usually required. We define the (mass-weighted)
center of the cluster by

_ N mary (11)

rc'——
Yym’

where 7; and m; is the distance to the galaxy and the mass of ith particle which fulfills the conditions
of (r¢ > |rc —rj]), N is the total particle number of cluster.
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3 Results

We present the results of our simulations, in which we performed a survey of models differing in the
slope, @, of the initial power-law mass function(IMF), and in the dimenssionless central potential
of King’s model, W,.

All clusters sank in the center of the Galaxy in the simulation of Point mass. In the point
mass model simulations, all clusters sank toward galactic center.

Case Stellar evolution Tidal
Point mass X X
Point mass O X
N particles X @)

Table 3: Stellar evolution and Tidal force

model | Mpyin Maz total mass o
A 1My 100M, 2.0x10°Mg, —2.5
B 1My  30Mp 20x108Mg -2.5
C 1My, 30Mg 20x10°Mgy -3.0
D |[05My 30Mg 3.0x106My -25

Table 4: Cluster model

Figure 3 shows the evolution of the total mass of the cluster for each model. Detail discussion
for Stellar evolution is in §2.3.1. A massive star is shorter life time and larger difference mass before
and after supernova than that of light star component. Therefore, Stellar evolution strongly depend
on the slope of IMF, a.

As can be seen from figure 8, the star cluster of model-A, model-B and model-C ( M,
= 2 x 105M;) broke, the star cluster of model-D ( M., = 3 x 108 M) did not broke. Compared
with model-A, model-B, model-C and model-D, we can see that the effect of Stellar mass loss in
model-D is little from the other. The total remnant mass in teh case of model-D is about twice
larger than another model, and about 75% of initial mass of it self. Therefore, we could understand
that the minimum mass of IMF is very important.

The life time of the cluster is listed in table.5 for each cluster model. The second column
means the life time of the cluster defined as the time while the total mass of cluster was left over
1%, and model D was survived. In the third column, the distance from galactic center at the
cluster collapse time (life time), and model-D perfectly sank.

model | life time Nearest distance [kpc]
A 1.59 x 10°yr 0.144
B 1.71 x 108yr 0.102
C 1.94 x 108yr 0.054
D —survive— 0.005

Table 5: Simulation results. Every case takes into accounted the both effects Stellar evolution and
tidal force from galaxy.
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4 Conclusion and Discussion

We investigated the surviving condition of clusters by means of gravitational N-body simulations
which include stellar evolution and tidal stripping. We put a cluster initially at a distance of 200pc
from the center of the parent galaxy. We adopted Henquits spherical galaxy model of the truncated
galactic radius r, = 0.5kpc, and galactic mass M, = 2.08 x 10°Mg. We found that the surviving
condition strongly depends on the total mass, M, of the cluster and initial mass function (IMF).
IMF is characterized by three parameters; those are the slope index, a, the upper limit mass, M2,
and lower limit mass M,,;,. We found one cluster with M, = 3 x 106 Mg and M,;;, = 0.5Mg falls
into galactic center for 1.5 x 108yr, while the other clusters with Mc < 2 x 108 M, are collapsed
before they reach the galactic center. Since the recent observation suggests the compact cluster in
M82 galaxy has M, > 3 x 105Mg (§2.3, it will well survive untill it sink toward galactic center
wilEhin 1).5 x 108yr. This supports the formation scenario for SMBHs proposed by Ebisuzaki et
al.(2001).

It is well known that there is a linear correlation between the mass, Mgy of central black
hole and those of the bulge. The ration between then is about 0.006 (§1.1). This correlation is
well explained if the stars, which are born in the clusters but stripped in the precess of the sinking
of the cluster, forms the bulge of the galaxies. For example, a thousand of cluster with a mass of
~ 3 x 10® and an IMBH (1000 solar mass) can evolve into a system consist of one bulge with a
mass of 3 x 10° solar mass and a central black hole with a mass of 10% solar mass. We will study
this connection between the bulge and the central black hole further and report in near future.

I am grateful to many other people who have supported my work: Junichiro Makino and
Toshiyuki Fukushige at University of Tokyo, who gave me invaluable advice on the initial condition
and the simulation method. Makoto Ideta at Kyoto University, who has instructed me the way to
generate initial condition of the simulation.

A Appendix

A.1 Relaxation time

From Binney and Tremaine(1987), individual stellar encounters will perturb a star from the course
it would take if the other matter of the system were perfectly smoothly distributed only over of
order 0.1N/In N crossing times. The relaxation time defined as

0.1N
trelaz = mtcross- (12)

Consequently, even if N is as small as 50, each stars is deflected from its mean trajectory
only after several crossing times, and it is possible to obtain some understanding of the dynamics
of even small system by investigating the orbits of the stars in a suitable mean potential.

In a globular cluster, on the other hand, N ~ 10° and the crossing time tcross ~ 10%yr, so
that stellar encounters may be important over the cluster lifetime of 10%r. Indeed, in the core of
a globular cluster, where t05; is very short and N = 10%, encounters play a key role. But in the
case of a cluster of galaxies, or of a globular cluster, as in the case of a galaxy, the fundamental
dynamics is that of a collision system in which the constituent particles (galaxies or stars) move
under the influence of the mean potential generated by all the other particles.

A.2 Evaporation time

From time to time an encounter gives enough energy to a star that it can escape from the system.
Thus there is a slow but irreversible leakage of stars from system, and in a sense the only permanent
equilibrium state of a stellar system cinsist of two stars in a Kepler orbit, with all the other having
escaped to infinity. The timescale over which the stars "evaporate” in this way can be directly
related to the relaxation timescale by the following simple argument. The escape speed v, at x is

given by v2 = —2¥(y). The mean-square escape speed in a system whose density is P(x) is therefore

_ Jppyvid®x _zfp(x)‘l’(x)d3x _ 4w

= Tomdx - M M (13)

<vi>

124



where M and W are the total mass and potential energy of the system. According to the virial
theorem, —W = 2K, where K = ;M < v? > is the total kinetic energy. Here < v2 >=4 < v? > .

Thus the root mean square (rms) escape speed is just twice the rms speed. The frac-
tion of particles in a Mawellian distribution that have speeds exceeding twice the rms speed is
7 = 7.38 x 10~? (Binney and Tremain(1987)). We can crudely represent the evaporation pro-
cess as simply removing a fraction v of the stars every relaxation time. Thus the rate of loss is
dN/dt = —yN/t,e1ae = —N/teyap, Where the evapolation time, the characteristic time in which
the system’s stars evapolate, is teyap = 136%,¢10;- Thus we expect that evapolation sets an upper

limit to the lifetime of any bound stellar system of about 102¢,¢jaz.

A.3 Dynamical friction

Decay of globular cluster orbits
As a globular cluster orbits through a galaxy, it is subject to dynamical friction. This drag
causes the cluster to lose energy and spiral in toward the galaxy center. We now estimate the time
tfric(ri) required for a cluster that is initially on a circular orbit of radius r; to reach the center.
The flatness of many observed rotation curves suggests that we approximate the density
interior to 7;(r; > 7o : coreradius) with the density distribution,

2

v
() = T (14)

of the singular isothermal sphere with circular speed v, and velocity dispertion o = v./v/2. Binney
and Tremaine (1987) gives the friction force on a cluster of mass M moving at speed v, at radius
T as

GM?

o (15)

F=-04281nA

where A = bz V},2 /G(M + m), where b, is the largest impact parameter that need the system
size, Vp is field stars relative velocity that need the velocity dispersion.
The force eq(15) is tangential and thus causes the cluster to lose angular momentum per unit

mass L at a rate

dL Fr GM
— = — ~ —0.428——InA. 16
a M T (16)
Since the cluster continues to orbit at speed v as it spirals to the center, its angular mo-
mentum per unit mass at radius r is at all times L = rv.. Substituting the time derivative of this

expression into eq(16), we obtain

'rd—r = —0.428 M

. 1
- A (17)

Solving this differential equation subject to the initial condition r(g) = r;, we find that the
cluster reaches the center after a time

tprin = ﬂr?vc
fric. = 1nAGm
2 6
= 15x10 (lkpc) (IOOkm/s)( m yr. (18)

In reality, some mass will be stripped from the cluster by the galaxy’s tidal field. However,
for most globular cluster (r; > 1kpc) this process will not greatly lengthen ¢7.;.
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ABSTRACT

The effect of dynamical friction on time evolution of lopsided disks is examined by
using a linear perturbation theory. The friction is caused by the gravitational interaction
of a rotating lopsided pattern with a density wake induced in halos. The density wake
is determined by solving the linearized collisionless Boltzmann and Poisson equations
by means of the Fourier-Laplace transform. Then, it is found that dynamical friction
always damps a lopsided pattern in our halo model. In addition, the damping time is
much shorter than a Hubble time, typically 1 Gyr, unless the pattern speed is quite
slow. Considering such a short damping time scale and the observed large fraction of
lopsided disks in spirals, say ~ 30 per cent, it will be unlikely that all of the lopsided
disks are recently excited. Thus, it is suggested that most of the observed lopsided disks
are very slowly rotating pattern. Significance of weakly damped modes that have a slow
pattern speed is discussed.

Subject headings: celestial mechanics, stellar dynamics — galaxies: halos — galaxies:
kinematics and dynamics — galaxies: structure — method: analytical

1. INTRODUCTION

It has long been known that some spiral galaxies have a large-scale lopsided structure (e.g.
M101, Arp 1966). Although such a structure is often found at the wavelength of 21 cm (Baldwin,
Lynden-Bell, & Sancisi 1980), it is also observed at optical and near-infrared wavelengths (Rix &
Zaritsky 1995). Thus, some galactic disks will have a lopsided mass distribution. Moreover, the
frequency of lopsided disks in spiral galaxies reaches to half of the H 1 disks (Richter & Sancisi
1994; Haynes et al. 1998) and one third of the stellar disks (Zaritsky & Rix 1997; Rudnick & Rix
1998; Kornreich, Haynes, & Lovelace 1998). This large fraction of lopsided disks indicates that the
lopsidedness would be a repeatedly excited structure or a long-sustained one.

Although the fraction of lopsided disks is large, their origin is not understood well. Theo-
retically, there may exist a stationary lopsided disk that is responding to the asymmetry of the
surrounding dark matter halo potential (Jog 1997, 1999; see also Syer & Tremaine 1996). In addi-
tion, Levine & Sparke (1998) considered off-center disks embedded in a flat-cored halo and found
that lopsided disks would be maintained for a long time when the disk is orbiting in a retrograde
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manner around the halo center. These findings suggest the longevity of lopsided disks. However,
in these theoretical studies, the halo is treated as a static potential, and so, the effect of dynamical
friction on lopsided disks is not taken into account. Hence, it is necessary to investigate the effect
of dynamical friction on dynamical evolution of a lopsided pattern.

One direct way to handle dynamical friction is the Chandrasekhar dynamical friction formula
(Chandrasekhar 1943). However, the formula is restricted to a point mass embedded in a uniform,
infinite, and non-self-gravitating background, and thus, it cannot be applied to lopsided disks
embedded in spherical halos. Another approach to take into account dynamical friction is an
N-body simulation. As an example, a numerical simulation made by Walker, Mihos, & Hernquist
(1996) demonstrates that the lopsided structure caused by a minor merger would last for up to 1 Gyr
(see also Zaritsky & Rix 1997). However, significant disk thickening, which may affect the evolution
of lopsided disks, is also reported in their simulation. Moreover, N-body simulations with an
insufficient number of particles have the problem of discreteness noise. In fact, to achieve a sufficient
signal-to-noise ratio, the simulations with a huge number of particles N 2 10”7 would be required
(Weinberg 1998a). However, it is hard to simulate a galaxy with such a huge number of particles.
Then, an alternative way that is completely free from discreteness noise is to solve the linearized
collisionless Boltzmann and Poisson equations by means of the Fourier-Laplace transform, which is
known as the matrix method. The matrix method was first applied to problems in stellar dynamics
by Kalnajs (1977) to find the unstable modes of galactic disks. Subsequently, this method was
employed by, for example, Palmer & Papaloizou (1987) in the study of the radial orbit instability and
was adopted by Weinberg (1989) to study the satellite decay in a spherical halo. A similar approach
was used to estimate the bar deceleration rate (Weinberg 1985) and the damping/excitation time
scale of galactic warps (Nelson & Tremaine 1995) due to dynamical friction with surrounding dark
matter halos.

In this paper, a lopsided pattern rotating in spherical dark matter halos is considered. To ex-
amine the lifetime of such a pattern, the effect of dynamical friction on lopsided disks is investigated
by using the matrix method. Then, it is found that a lopsided pattern induces a significant density
wake in halos. This density wake interacts with the original lopsided pattern through dynamical
friction, and then, the friction damps a lopsided pattern within a time scale shorter than a Hubble
time unless the rotational period of the pattern is very slow.

This paper is organized as follows. In §2, the method to solve the collisionless Boltzmann
and Poisson equations is described. Numerical models and assumptions are also given. Results
are shown in §3. In §4, some implications of the results and possible effects of the assumptions on
lopsided disks are discussed, and the results are summarized.
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2. NUMERICAL METHOD AND MODELS

In this paper, dynamical friction is treated as a drag force due to the gravitational interaction
of a lopsided disk with a density wake induced in a primary system. Such a density wake is
determined by solving the collisionless Boltzmann and Poisson equations by means of the matrix
method, which was developed by Kalnajs (1977) (see also Weinberg 1989). To solve these equations,
two assumptions are made. First, the amplitude of a lopsided pattern is sufficiently small to adopt
a linear perturbation theory. Then, the collisionless Boltzmann equation is linearized. Second,
an unperturbed potential is spherical in shape. Such an assumption is employed because in any
spherical potential there exist three independent isolated integrals, so that the orbits are analytically
solvable. On the other hand, a perturbed potential need not be spherical in shape. Possible effects
of these assumptions on the estimate of dynamical friction are discussed in §4.

2.1. Matrix Method

In this section, the method to calculate the density wake induced by a perturbed density is
mentioned. The method used in this paper is the same as that in Weinberg (1989), who described
the method in detail. Then, details should be refereed to Weinberg (1989), although the principal
formulae are summarized in Appendix A.

The density wake in a primary system will be determined by coupled-solutions of the linearized
collisionless Boltzmann and Poisson equations,

Ofy , 9f0H _ 0fo0H) _ 0
ot  ow oI oI ow ’

V2®, = 4nGpy, (2)

where the subscript 0 denotes the equilibrium quantities of the collisionless Boltzmann equation
and the subscript 1 denotes the first order perturbation of a six-dimensional distribution function f,
a Hamiltonian H, a potential @, and a density p. The collisionless Boltzmann equation is described
by action-angle variables, (I, w).

Let ®1* be the response potential to an external potential ®$**. Then, the perturbed potential
@, will be written as the sum of ®$* and ®!*. Similarly, the perturbed density will be expressed
as p1 = p§ + pi*. Here, the response density pi*® to an external density p$* is related to the
perturbed distribution function, pi* = [d3vf;. Thus, the linearized Boltzmann-Poisson equation
is an integrodifferential equation. Such an equation would be simplified by means of the Fourier-
Laplace transform. Then, in the frequency-domain, the linearized Boltzmann-Poisson equation
becomes a simple algebraic equation for a particular harmonic (I, m), or the matrix equation,

im

AT (W) =D R (). B™ (), 3)
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where the dispersion matrix D™ is
D™ =TI -R™, (4)

Here, Z is a unit matrix with the same rank as R'™, the response matrix R'™ describes the
information on a primary system, A™ and B'™ are the expansion coefficients of response and
external potentials in biorthonormal basis sets, respectively (Clutton-Brock 1972; Hernquist &
Ostriker 1992), and the tilde denotes the Laplace transform in the time variable.

To find the time dependence of expansion coefficients, the inverse Laplace transform for equa-
tion (3) is required. In this paper, to avoid the transient wave that originates from an initial
condition, the time asymptotic approximation (t¢ — co) is adopted. Then, in the time-domain, the
matrix equation is

A" (t) = DV (mf,) - R (mQy) - B™ (8), (5)

where 1, is the pattern speed of a lopsided pattern. Here, there may exist weakly damped modes
(see Weinberg 1994) that satisfy the relation

=im

A™ (wag) = RI™ (wa) - A™ (wa), (6)

or the dispersion relation
detD'™ (wq) = 0, (7

where wq is the complex frequency of each weakly damped mode. When weakly damped modes
should be included, e.g., the damping time of the mode, S(wd)_l, is longer than a Hubble time,
one must use equation (A21) instead of equation (5).

Once the expansion coefficients of the response density A'™ are calculated via the matrix
equation for each harmonic (!, m), the response density and potential, which are both real functions,
can be found straightforwardly,

PEED = 3 3 [Ar AR )Y 0.6) + AT O OV 08)], O
n,lm

B (r,t) = 5 3 [N OUR () Yim 0,6) + A Ol (Y 6,9)] . (@)
nlm

Here, the asterisk denotes a complex conjugate and Yin, (6, ¢) are the spherical harmonics. u!(r)
and d'™(r) are potential and density basis functions, respectively, which are normalized by

06 / drr?ul™ (r) diT (1) = pmr. (10)

Then, the gravitational torque felt by a lopsided pattern, 7,, can be written

T, = /ds'rpl < (r, t) [ %] = —SWGZ Z m$ [Alm )- B (t)] (11)

¢ =1 m=1
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where & denotes the imaginary part.

Here, it will be useful to consider the non-self-gravity case, which corresponds to ®; = pext
and p; = p$t, for examining a general property of dynamical friction. Then, the gravitational
torque can be written by a further simple formula, or the Lynden-Bell & Kalnajs (1972) formula

=—87rGZZ m [3(R™) - B™] - B™. (12)

=1 m=1

Hence, it is not necessary to know the real part of a response matrix R'™ for calculating the
gravitational torque due to dynamical friction in this case. Furthermore, when fo depends only on
the energy E, using the explicit formula for a response matrix (eq. [A19]), the gravitational torque
can be rewritten

3274m?Q, [ [ dEdJJ dfo
ZZ 20 +1 //QI(EJ B ¥i: (7/2,0)f

=1 m=1
X8 (me - l]_Ql - IQQQ) s (13)

2

ZBlmwlln (E, J)

llam

n

where § denotes the Dirac delta function, both Iy and I are integers, and () is an angular
frequency of the angle variable w)(;). Here, w; and wy are the conjugate variables with respect
to the radial action I, and angular momentum J, respectively. The potential transform W,l,‘;,‘n i

defined by equation (A8). Meantime, in most galactic models whose distribution function depends
only on the energy, the relation dfy/dE < 0 is satisfied for any energy FE; the halos with such a
distribution function are sometimes called IDDF (isotropic decreasing distribution function) halos
(e.g., Goodman 1988). Then, as seen from equation (13), in IDDF halos, the gravitational torque
is negative (positive) when a lopsided pattern is orbiting in a prograde (retrograde) manner. In
addition, the above equation contains the Dirac delta function. Thus, the gravitational torque is

caused by the resonance stars that satisfy the resonance condition
llﬂl + 15y = me. (14)

In the epicyclic approximation, 2; and 29 are equal to the epicyclic frequency « and the orbital
frequency §2, respectively.

2.2. Model Description

Here, halo and disk models are described. In this paper, it is assumed that an unperturbed
potential is spherical in shape and that the orbits of halo particles are not affected by the existence
of flat disks. In addition, galactic disks are assumed to be stable against m = 1 distortions. This
means that the amplification of lopsided perturbation due to the interaction with disk stars is
ignored. Lopsided instabilities are discussed in §4.
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First, the halo model is an isotropic King model. The explicit formula of a six-dimensional
distribution function is

P1 £/a?
——|€ -1 E>0;
fo(&) =< 2v2r3/203 ( ) - (15)
0 £<O0.
Here, £ = —F + Ey. Parameters Ey, p;, and o are chosen such that a normalized central potential

Wy = 3.0, a total mass M = 6.0 x 101! M, and a tidal radius R; = 200 kpc. These choices of
parameters are appropriate for the Milky Way (e.g., Kochanek 1996) by combining with a standard
exponential disk. This halo model is the same model as used in Weinberg (1998b) and Vesperini
& Weinberg (2000).

& o5Ff ]

< [ 1
0.0¢ . .

0 5 10 15

R
Fig. 1.— Amplitude of the m = 1 component of disks as a function of radius for d = 10.0.

Second, the disk model is a lopsided exponential disk model. Since the lopsided pattern is
assumed to be sufficiently small as compared with the background density, the model disk could
be written

z:d (R) ¢a t) = 20 (R) + zl (R, ¢’ t) (16)
= ];/I—; exp (—R) [1 + A1 (R) cos (¢ — Qpt)], (17)

where My is the disk mass, A) (R) is the amplitude of the m = 1 Fourier component of disks at a
particular radius R, and 2, is a pattern speed of lopsided disks. Clearly, the surface density of a
lopsided pattern ¥, is

M,
Sy (R, ¢,t) = Ef’ exp (—R)A; (R) cos (¢ — Qpt). (18)
In this paper, the functional form of A; that determines the shape of the lopsidedness is chosen to

express the lopsidedness induced by a fly-by encounter (Vesperini & Weinberg 2000), which yields

Rd

AR =

(19)

139



where d is the parameter that determines the amplitude. Here, the m = 1 Fourier amplitude A; (R)
is shown in Figure 1. Then, A; (R) reaches to the maximum value d/10.0 at R = 5. Thus, for
d = 2.0, the maximum amplitude is 0.2. This value is related to the observational fact that about
one third of field spirals have a lopsided mass distribution with the m = 1 Fourier amplitude larger
than 0.2 at 1.5 to 2.5 disk scale lengths (Rix & Zaritsky 1995; Zaritsky & Rix 1997; Rudnick & Rix
1998).

Fig. 2.— Surface density profiles of the lopsided exponential disk model. The solid contours show
a lopsided model with d = 2.0 in which the maximum density occurs at (0,0), while the dashed
contours represent the corresponding on-center model as a marked reference to a lopsided structure.
The contour levels are 1.0,1/2, ...,1/128 of the maximum density.

Finally, the external density p$** (r,t) is set to be
P (r,t) =21 (R, 0,t)6 (2). (20)
The surface density profiles of £q and ¥; are represented in Figures 2 and 3, respectively.

When each annulus with a radius R is displaced at AR(R) from the disk center in the z-
direction, the surface density profile can be written

Sa(R¢) = To(R)+ ZCAR(R) (21)
= So(R)+ ‘%AR(R) cos (¢ — Qt). (22)

As found from equations (17) and (22), A; (R) is also considered the displacement of an annulus
with the radius R. Therefore, the angular momentum associated with a lopsided motion, L , ext,
can be written

o0
Lo = /0 dR2wRT0 (R) Ar (R)* 2, (23)
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Fig. 3.— Surface density contours of the lopsided pattern on the disk plane. The solid (dashed)
contours show overdensity (underdensity). The contour levels are +1.0,+1/2,...,+1/128 of the
maximum density, which occurs at (0.933, 0).

2.3. Numerical Procedure

Units are chosen such that the disk mass My = 1 and the exponential scale length Rq = 1.
The gravitational constant is set to be 1.35 so that the circular velocity at the solar radius, i.e.,
8.5 kpc, is equal to 220 km s~!. If these units are scaled to physical values appropriate for the
Milky Way, i.e., Rq = 3.5 kpc and My = 6.0 x 10'% M, unit time and velocity are 1.09 x 107 yr
and 321 km s~!, respectively.

A biorthogonal basis set to expand the density-potential pair is numerically obtained by solving
the Sturm-Liouville problem according to the method described in Weinberg (1999). The angle
variables, wj and wo, and the potential transforms, Wll[‘;n, are calculated on a 1000 x 100 grid in
E and k = J/Jmax (E) by using the Romberg method with the error tolerance parameter being
10~%. Here, the summations over ! and [, in calculating the response matrix (see eq. [A19]) must
be truncated at ! = lyax and |l3| = !1 max, respectively. These truncation parameters are chosen
such that {max = 5 and l; max = 10. The expansions of the potential and density in radial basis
functions are also truncated at ny,x = 30. With varying parameters, these choices of truncations

seem to have an accuracy of 1 per cent for calculating the gravitational torque.

Since the numerical techniques used here are rather complex, it is useful to run a test calculation
for checking the validity of our numerical implementation. Here, the test introduced by Weinberg
(1989) is done. This test is to calculate the response density and potential when the constant
force field that rotates at a constant rate {2, is imposed to halos as a perturbation. Since the
perturbation is a constant force field, no torque acts on the perturbation, and the response of
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halos is a barycentric shift against the perturbation (see Weinberg 1989, for a detail). Then, the
calculated response potential agrees with a predicted potential to an accuracy of 1 per cent at
the range of the pattern speed (2, = [0.003 : 0.1] for the calculated range Q, = [0.001 : 0.1}.
For €2, = 0.002, the difference between calculated and predicted values is about 4 per cent, for
2, = 0.001, the difference reaches to 15 per cent.

3. RESULTS

Using the unperturbed model fy (E) and perturbed model p$** (7, t) described in the previous
section, the gravitational torque can be calculated by equation (11). Here, since the external density
pS*t is proportional to Mgd, its expansion coefficients B'™ (t) depend also on Mgd. In addition,
the response matrix R"™ contains no information on the strength of the perturbation. Hence, the
gravitational torque 7, is dependent on Mgdz.

To quantify the effect of dynamical friction on lopsided disks, it is useful to define the rate of
angular momentum change, L
. (24)

z Tz

where L, is the angular momentum associated with the lopsided motion, which can be written
Lz = Lz,ext, + Lz,r&s (25)

Here, L. cx¢ is defined by equation (23) and L, res is defined in the same manner as L, ext,

o0
L;res = / dranr?pg (r) Ar (r)? Qp, (26)
0

where pg is the unperturbed halo density and Ar is the displacement of a shell with the radius R
from the halo center. Clearly, both L, ex; and L, es depend on d2, and then, the rate of angular
momentum change T is independent of the amplitude d. This is an expected result since the
calculations are linear.

If T is positive (negative), it will be natural to guess that dynamical friction damps (excites)
the lopsided pattern. Here, in IDDF halos and without the self-gravity of a wake, 7, is negative
(positive) when 0, is positive (negative) as seen in §2.1. This is found to be valid even if the
self-gravity is included. Then, T is always positive, and so dynamical friction always damps the
lopsided pattern in our halo models. In addition, since 7, and L, are both odd functions of the
pattern speed, the damping rate is an even function T(Q,) = T(-), which is expected by the
symmetry of the unperturbed system.

In Figure 4, the rate of angular momentum change T is shown in the unit of Gyr as a function
of the pattern speed €),. The units are scaled to the values suitable for the Milky Way. The solid
line shows the friction due to the self-gravitating response and the dashed line shows the friction
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Fig. 4.— Damping time defined by the rate of angular momentum change as a function of the
pattern speed for a self-gravitating response (solid line) and non-self-gravitating response (dashed
line). The units are scaled to the values suitable for the Milky way. The arrow at the left side
shows the real part of the frequency of weakly damped modes.

due to the non-self-gravitating response for a reference. Clearly, there exists a large difference
between the self-gravitating and non-self-gravitating responses. In addition, to see the corotation
radius corresponding to each pattern speed, orbital frequencies at a particular radius R are shown
in Table 1. As seen in Figure 4, the damping time T reaches to the minimum value ~ 1.0 Gyr
at Qp ~ 0.03. Moreover, the damping rate is shorter than a Hubble time ~ 10 Gyr when the
corotation radius is smaller than the truncation radius, R; = 56 (see Table 1).

4. DISCUSSION AND CONCLUSIONS

In this paper, lopsided perturbation to stable galactic disks is considered. To estimate the
lifetime of the lopsided perturbation, the effect of dynamical friction on lopsided disks is examined.
Then, it is found that dynamical friction always damps the lopsided perturbation. The damping
time scale of lopsided disks is obtained as a function of the pattern speed. Figure 4 shows the
damping time for the self-gravitating and non-self-gravitating cases. Then, the difference between
self-gravitating and non-self-gravitating responses is found to be quite large, especially for the slow
pattern speed. This could be understood as follows. When the pattern speed of the lopsidedness
becomes slower, since the amplitude of the lopsidedness is constant, the barycentric shift of halos
becomes larger. In addition, the non-self-gravitating response does not contain the proper informa-
tion for the barycentric shift, and so, the difference between self-gravitating and non-self-gravitating
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Table 1: Orbital frequencies at a particular radius.

Radius Freq.
50  7.30 x 1072
10.0 5.84x 1072
150 4.47x 1072
200 3.44x 1072
250 2.69x 102
30.0 2.14x107°2
350 1.72x 1072
400 1.44x1072
450 1.22x1072
50.0 1.04x 1072
56.0 8.78 x 1073

responses will become large with decreasing the pattern speed. Furthermore, Figure 4 clearly shows
that the damping time is shorter than a Hubble time unless the rotational period of lopsided disks
is quite long.

Here, let us consider the case that the pattern speed is so fast that the coration radius is within
a few optical radius, i.e., , { 0.04. Then, the damping time scale is typically ~ 1 Gyr. Since the
fraction of the lopsidedness in spirals reaches to about 30 per cent, an excitation should occur per
~ 3 Gyr. One possible recurrent excitation mechanism is a gravitational interaction between host
and satellite galaxies. However, since such interaction can easily thicken galactic disks (e.g., see
T6th & Ostriker 1992; Walker et al. 1996), it will be unlikely that most of lopsided disks are excited
repeatedly or recently. Even though some of the lopsidedness may be recently excited (Rudnick,
Rix, & Kennicutt 2000), it is suggested that most of lopsided disks will be slowly rotating pattern.
Unfortunately, the pattern speed of lopsided disks remains unknown observationally. Then, some
implications of the results to theoretical models are discussed here.

First, Baldwin et al. (1980) proposed the scenario that a lopsided disk is the pattern that
consists of elongated orbits, which is a similar idea to the Lindblad’s idea (1963, references therein)
of kinematic spiral arms. Then, such a pattern rotates at an angular frequency (2 — «)(r). Here, 2
and « are the orbital and epicyclic frequencies, respectively. Since the relation (r) < x(r) < 29Q(r)
is satisfied, the pattern rotates in a retrograde manner. In the King model used here, the pattern
speed (2 — k)(r) is almost comparable with the orbital frequency —§(r). If 7 is set to be an optical
radius Ropy = 3Rg, the pattern speed is about —0.08. Therefore, such a pattern may damp owing
to dynamical friction within a Hubble time.

Second, during a fly-by encounter, a lopsided pattern that rotates at an angular frequency
Viel/ Rp would be induced. Here, R, is the pericentric radius and Vi is the velocity of a perturber
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relative to the primary system at R,. The relative velocity will be comparable to the rotational
velocity, ~ 200 km s™!, and hence, the pattern speed would be close to the orbital frequency at
Rp. To induce significant lopsidedness, a small R, is favorable. Then, the rotational speed of the
significant lopsided pattern would be large. Hence, such a pattern may also damp.

On the other hand, Vesperini & Weinberg (2000) found that weakly damped modes were
induced by interactions and that they would play an important role in the lopsidedness. To see the
effect of such damped modes, the frequencies of such modes are calculated according to equation (7).
Here, the numerical procedure is in the same manner as Weinberg (1994). Then, weakly damped
modes with complex frequencies wy = (5.0 x 1074, —1.7 x 107%) are found only for (I,m) =
(1,%1). This value is consistent with the result of Weinberg (1994) within the error. Here, since
1 + 1Q; reaches to the minimum value 5.0 x 1073 for (I3, 12) = (1, —1) (see equation [14]), there
would exist no resonance star with such slowly rotating weakly damped modes. Then, the possibility
of S(wa) = 0 cannot be excluded. In addition, the weakly damped mode is found to have a very
slow pattern speed, which is indicated by an arrow in Figure 4. Then, such modes could survive
for a long time against the friction. Furthermore, the excitation of such weakly damped modes
can be calculated by using equation (A21). Then, it is found that the perturbation used here can
excite strong modes and that the peak density of such modes is one order of magnitude larger than
that of the self-gravitating response. This is consistent with the finding of Vesperini & Weinberg
(2000). In addition, such modes can be also easily excited by the fly-by encounters (Murali 1999;
Vesperini & Weinberg 2000). Thus, the weakly damped modes would play an important role in
the lopsidedness, as suggested in Vesperini & Weinberg (2000). However, as mentioned in the end
of §2.3, in the slow pattern speed region, the linear perturbation techniques would cause a large
error. This is due to the large barycentric shift to very slowly rotating perturbation, and so, the
density response may be too large to use the linear perturbation theory. Thus, to confirm the
significance of weakly damped modes, it might be required to include the non-linear effects, e.g.,
by using N-body simulations with a huge number of particles.

To examine whether such weakly damped modes in reality play a role in lopsided disks, it
is useful to observe the pattern speed of the lopsidedness directly, e.g., by using the Tremaine-
Weinberg method (Tremaine & Weinberg 1984a; see also Sambhus & Sridhar 2000). In the Milky
Way, the next generation astrometric satellites such as SIM and GAIA will help us to measure the
dynamics of the lopsidedness directly. In addition, since our results suggest that the lopsidedness
will be slowly rotating pattern, and so, they will be long-sustained structure, a large survey of the
lopsidedness in the sample of isolated galaxies, which have not any companion galaxies that could
cause the significant lopsidedness, would also show the large fraction of the lopsidedness in such
sample galaxies.

In this paper, the shape of lopsided disks, A1 (R), is chosen to be Rd/ (25 + R?). However,
since each element of the response matrix, il';‘l,, is already obtained, dynamical friction acting on
another type of lopsided pattern can be readily calculated. Then, the dependence of the functional
form of A; on the estimate of dynamical friction is found to be weak. This is because the change
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of the functional form of A; does not change significantly the shape of £; or p$**, because the term
of exp(—R) is dominant in ;.

Before closing this section, possible effects of the assumptions made in this paper on the
estimate of dynamical friction are discussed.

First, the effect of flat disks on the orbits of halo stars is ignored in this work. Taking into
account the existence of flat-disks, the halo density near disks would increase owing to the additional
flat-disk potential as mentioned in Nelson & Tremaine (1995). For the fast rotating lopsided disks,
since the friction will be caused by the halo stars with high orbital frequencies, the damping time
scale may be shorten by adding the effect of flat disks. However, for the slowly rotating lopsided
disks, the friction will be caused mainly by the stars with low orbital frequencies, since such stars
will not be significantly affected by including flat disks, the friction would not change significantly.
As a result, the conclusion, the damping time scale is short unless the pattern speed is slow, may
be strengthened.

Second, galactic disks are assumed to be stable against lopsided (m = 1) perturbation. When
galactic disks are unstable to lopsided distortions, the amplification of lopsided modes due to the
interaction with disk stars will be important. T