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Abstract

Gravitational fragmentation of a dust layer is considered to be a prevailing process of planetes-
imal formation. The mass of a planetesimal formed by gravitational fragmentation has been
estimated only by the linear perturbation theory for axisymmetric mode and has not been evalu-
ated by any numerical simulations. In this study, we reproduce the gravitational fragmentation
by local N-body numerical simulations and compare the obtained mass of a fragment with the
analytic estimate. According to our results obtained until now, stable particle aggregates are
formed when Hill radius 7y, i.e., the radius of the sphere of gravitational influence of a particle,
is larger than the sum of two particle radii 2r;, especially when ru/2r, ~ 2. The mass of a
particle aggregate is found to be almost same as that of the analytic estimate. On the other
hand, when ry is smaller than 2r;, only non-axisymmetric wake-like structures appear.

1 Introduction

The solar nebula is considered to be turbulent more or less at early stages. After such turbulent
motion has decayed, dust particles settle toward the central plane of the nebula and accumulate
into a thin layer around the central plane — a dust layer (Weidenschilling 1980, Nakagawa et
al. 1981). When the density in the dust layer exceeds the Roche density, the layer becomes
gravitationally unstable to fragment into a number of planetesimals (Hayashi 1972, Goldreich
and Ward 1973). The sizes of the resulting fragments are estimated in terms of the linear
perturbation theory for axisymmetric mode (e.g., Toomre 1964) as the critical wavelength given
by

47m2GL
/\crit = K.2 1 (1)

where & is the epicyclic frequency and X is the surface density of the layer. The condition for
gravitational instability of the layer is given by Toomre’s parameter Q as

Q=

oK

3.36GX

<1, (2)



where o, is the radial velocity dispersion. If the above condition is met, the dust layer is
unstable to perturbations of wavelengths around the critical wavelength Acrit. The mass f)f a
planetesimal is estimated as 7EA2,;, by assuming that ring-shaped fragments are broken into
sub-fragments having the same size both in the azimuthal and radial directions. The mass
has not been evaluated by numerical simulations. In the present study, we reproduce the
gravitational fragmentation by local N-body numerical simulation and compare the obtained
mass of a fragment with the analytic estimate.

2 Simulation Method

We follow the motions of dust particles in a cell present in a narrow ring which is a part of the
dust layer. We then apply a local N-body method which was first applied to the study of a
dense ring system by Wisdom and Tremaine (1988) and then used by Salo (1991, 1992a, 1992b,
1995), Richardson (1993, 1994) and Daisaka and Ida (1999). In this study, we assume that all
particles have the same radius rp and mass m. We take only the mutual forces and inelastic
collisions of the particles into account, but we leave the disruption and sticking of the particles
out of consideration.

To use GRAPE-3A effectively we adopt the following ‘subregion method’ which is introduced
by Daisaka and Ida (1999). We then apply periodic shearing boundary conditions and use a
unit cell having a rectangular cross section with area Ly x Ly, (Lz and L, are a few times as
large as A.,) and extending infinitely in the z direction (in Fig.1, a cell with thick line). In
order to provide a realistic gravitational perturbation on the unit cell, it is necessary to include
contributions from the eight surrounding cells. The equations of motion used in this study (see
Eq.(4) below) are invariant under the transformation

3
(z,4,2) & (z +nLly,y — EnL;,Qt +mLy, z), 3)

where m and n are integers. The particle distribution in these cells is identical to the distribution
in the central cell at all times. Cells n = %1 slide upward and downward with the shear velocity
(3/2)Q2L,. The particle number in each cell is maintained by entrance of their corresponding
images from a surrounding cell. We divide the simulation region into nine subregions (with
broken line in Fig. 1) and assign to each subregion a virtual region (having the same size as the
original) in which the subregion is centered. The subregion and the virtual region are represented
by dark and light shaded regions respectively in Fig. 1. For particles in the subregion, we take
the gravitational forces of all particles in the virtual region into account.

In simulating such a situation described above, we erect the Hill coordinate system with
origin at a reference point moving on a circular orbit with semimajor axis ag at the Keplerian
angular velocity Qo (= (GMg/a3)*/?)(Hill 1878, Nakazawa 1988). The z axis pointing radially
outward, the y axis pointing in the direction of the orbital motion, and the z axis normal to the
equatorial plane. In this study, the equations of motion for particle ¢ are

N
.. . Gm;
& -2y = 3zi+ Y —z(z;— =),
i=Ligj 4
Y. Gm;
¥i +2Qz; = + Y 3 L (v — wi)s 4)
j=1,i#j
N
. Gm;
Zi = -Mzi+ Y iz -a),
j=1,i#j

where N is the number of particles, m; is the mass of particles j and r;; is the distance between
particle 7 and j.



. We assume t;he.lt all particles have same radius rp and mass m for simplification. The equa-
tlon.s are written in non-dimensional forms independent of mass and the heliocentric distance
ag, if we scale the time by Q5', the length by hao = ry and the mass by h3Mg:

t- = Qot,
N YY)
r = (,y, Z) = W, (5)
M = m 3
T ORMg 2
where h is the reduced Hill radius defined by
2m
h=(=—)%.
i) ®)
With the above scaling, Eq. (4) can be expressed as
N
. _ .3 1
T —2 = 3+ 5 Z Fg(mj - ),
J—lyi¢1 4
. 3 &L 1
yi+22; = +- E — (5 — %), (7
2 TR LT
i=Lli#j ¥
N -~
- .3 | P
Z; = —-Z;+ 5 Z ﬁ(zj - Zi).
j=l,i#j Y

We apply the initial conditions that the z and y coordinates of particles are chosen at random,
avoiding overlapping of particles, and uniformly distributed across the unit cell. The vertical
distribution is also taken to be uniform up to a distance of h above and below the equatorial
plane. The position of pairs of particles are chosen symmetrically so that the center of mass
will lie at the center of the unit cell. The velocities except for the shear velocity of individual
particles 3%;/2 are chosen randomly so that the initial random velocity becomes large enough
to achieve @ > 2, since Salo (1995) and Daisaka (1999) showed that @ ~ 2 in the equilibrium
state.

The calculated system is characterized by two non-dimensional parameters ; dynamical
optical depth 7 and the ratio r4/2r,. Having scaled the time by Q5! and the length by ry, if
we obtain one solution, we can use it as solutions for any arbitrary m and ao. The number of
particles whose centers lie in the unit cell is constant and is denoted by N. Thus dynamical
optical depth is given by

Nwr?
= P 8
T= L::Ly . ( )
The other parameter, the ratio ry/2ry, is
Th _ 14 1/3,_ @0 9

where Sun’s mass Mg = 2.0 x 1033g, and p is the material density of particles. According to
Ohtsuki (1993), which carried out three-body trajectory integration, the possibility of accretion
is determined by the ratio ry/2r,. Accretion is possible even inside the Roche limit. The
capture probability decreases abruptly for ry/2r, < %, where the target body protrudes out of
the Hill sphere.
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Figure 1: Schematic illustration of a simulation cell (thick lines) and its eight surrounding copies
(thin lines). Gravitational forces exerted on a given target particle (denoted by the cross) in the
subregion (light shaded) are calculated from all the other particles in the virtual region (dark
shaded).

In our simulations, we adopt a smooth inelastic hard sphere collision model that has been
commonly used in previous simulations (Wisdom and Tremaine 1988, Salo 1991, 1992a, 1992b,
1995, Richardson 1994, Daisaka and Ida 1999). A collision changes only the impact velocity in
normal direction depending on restitution coefficient €,(0 < €, < 1). The change of tangential
component is neglected, by assuming tangential restitution coefficient ¢; = 1, in order to exclude
the effects of spins of particles. Hereinbelow e denotes €, for simplicity. The relative velocity
v}; after collision is given by

vy = v - (1+ e)ulr—’, ' (10)
T,'j T‘ij
where v;; and 7;; are the relative velocity and the relative position of two colliding particles 1
and j. We treat € as a parameter.

Ideally, a collision should be detected the instant it occurs. However, such operation is

impractical, and hence a certain amount of penetration or temporary overlap is unavoidable.

When two or more particles are approaching and overlapping each other, we consider that they
collide.



3 Results

We have numerically solved N-body problem for Keplerian particles with gravity, taking into
account inelastic collisions as well as gravitational scattering between them, in order to see how
structure of the spatial distribution of the particles appears and evolves. At the initia] state
the particles were distributed uniformly in the local computation area of a square L x L and
we pursued the orbits of those particles in the area under some appropriate periodic boundary
conditions. We examined 8 cases of the total particle number 100 < N < 9248. In each case, we
made computations for several different heliocentric distances, which correspond to the cases
of the ratios ry [2rp = 0.82. 1.18, 1.60, and 2.05. In all cases we assumed that the restitution
coefficient ¢ = 0.01.

We found that in the case of ry /2r, = 0.82 (< 1) only non-axisymmetric wake-like structures
appear and, on the other hand, in the cases of ry /2r, = 1.183, 1.6, and 2.05 (> 1), ellipsoidal
aggregates are formed. Especially, in the case of TH/2r, = 2.05, quite stable aggregates are
formed, while in the cases of ry/2r, = 1.183 and 1.6, ellipsoidal aggregates are formed and
dissolved repeatedly. Further, in the case of ryg [2rp = 2.05, as illustrated in Figs.2, the number
of stable aggregates depends on the size of computation area L; in the case of LA = 1.22,
a single aggregate is formed, while in the cases of L/Aqiy = 2.44 and 4.15, two aggregates are
formed.

(a) L/ A !

(C) L/A_=4.15

b) L/ A

LY b4
v, lé

Figure 2: Examples of stable aggregates with various L/A.i¢. (a) and (b) : Example's of
aggregates at 12.03 Kepler time. (N = 800 and 3200) (c) : Aggregates after 34.18 Kepler time.
(N = 9248) The size of calculation region L of (a), (b) and (c) are 38.5ry, 77.1ry and 131.1ry,

respectively.

The properties of those aggregates are summarized in Table 1. Th(.e Q-values inside the
aggregates are apparently smaller than unity as is expected from the linear theory. As the
size of computation area becomes large, the number of particles within the aggregates N) + N»
increases but the ratio of their number to the total (N; + N2)/N decreases. The velocity
dispersion inside the aggregates is smaller than outside. The fluctuation of velocity dispersion
for the case of ry/2rp = 2.05 is smaller than that for 4 /2r, =1.6, this may be du.e to the
repeated formation and disappearance of aggregates in the case of ry/2r, =1.6 (see Fig.3 ).

Finally we compare the mass of our aggregate mcomp with the theoretical mass mpeor

o



estimated by the linear theory as

ra?\?
Miheor = WZ)\%m = (47")2 ( M. 0) Me. (11)
0]

We adopt the result of the case of ri /2rp, = 2.05 and L/Acric = 4.15, where the largest aggregates
are formed. If we put 7, = 100cm, the material density p = 2 gem™3, and the surface density
£=26.6 gcm™2, then we have the heliocentric distance ao = 0.0194 AU (2.91 x10'! cm) and
Miheor ~ 1.4 x 1010 g, while meomp =~ 1.6 x 101° g. Therefore, the agreement is quite well.
However, our results of computation seem depend on the size of computation area L; hence,
numerical computations in larger area are still necessary.

Table 1: Properties of stable aggregates in Fig.2. The subscript 1 and 2 denote the aggregate
on the left and right side, respectively. (For example, 0, denotes the z-component of velocity
dispersion inside the aggregate on the left side.) 0;—outer denotes the z-component of velocity
dispersion outside the aggregates.

L//\crit axl/THQ U'z:a/"'HQ U:c—outer/THQ Ql Q2 Ny N, LEY

N

122 4777 - 16.43 0072 - 500 — 062

244 7128  6.381 18.58 0.073 0.072 1033 652 0.526

415 5307 7730 21.65 0.076 0.071 1858 1823 0.308
20 —

[ —e— rHIZr,,:]_e
— ry/2r, = 2.05

15

a,/ryQ 10

o P SR PR NPT S N S P PN PR
0 S 10 15 20
TK

Figure 3: The evolution of velocity dispersion for ry/2r, = 1.6 and 2.05. o, denotes the velocity
dispersion of all particles in the calculation region. In both cases, L/Acri, = 2.44 and 7 = 0.1.
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Co-accretional evolution of the Earth-Moon system after the giant
impact; reduction of the angular momentum by escaping of Lunar
impact ejecta
Ryuji Morishima and Sei-ichiro Watanabe
Department of Earth and Planetary Sciences, Nagoya University

Abstract

Recently, the Moon-forming giant impact is considered to have occurred in the course of
the Earth’s accretion. In co-accretional stage after that, much of lunar impact ejecta would
be ejected to circumterrestrial orbit due to high velocity impacts of residual planetesimals.
We performed orbital calculations of the escaped particles from the satellite with various
mass ratio and semi-major axis. For the lunar sized satellite, most of the particles escape
from the Hill sphere of the planet, which take away a great quantity of the angular momen-
tum. Simulating co-accretional evolution including re-distribution of lunar impact ejecta
and tidal interaction, we estimated the angular momentum of the Earth-Moon system at
0.7 — 0.8 Earth’s mass as about 1.2 — 1.4 times larger than that of the present Earth-Moon
system. It is great advantage for making large Moon by the giant impact.

1 Introduction

BERRORKEMEIZBOTEREY 1 AORGHRERIKICEFETL20bOLS v 47 M
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2 Methods
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3 Results

SER- BB R (> 0.003) DFNTR, B & RED IV BIMIZHLEL DT 72 test
particles THEFREET (RENVUMBERPFEIIIAULLT). FRITOMICEHE., K2, Kb
DIBY)DFERIIRDFITONDEZ g otz,

RHTEBEICEL TRL AbE7: test particles DPEEDHERY R A1, BREEFET L T,
ED &SI particles DHEAFTON 20 % RTH 5B, Figure 1 1. as/rp, = 10, ms/m;, = 0.0125
(as/rp i3 BIRULEFE/RBEEL . mg/mp i3, HEEE/ZRBEERETINETNET) DFED,
HEDRRE ENENIIHE SN D VEAER R E vej/veses PHBEL THKLIODTH S, 2
DOEIE M THANEHWAT 5,

Vej 2 Use DT, particles (XD LV B 6 RO D £ TIZHLE DM EIEZIZE AL
Ko TLEIDOT, xR 2 HEEREFMUEMARZITB I &35, #RE D
EDRNE DT, @D IL)) Focusing 25 K& < BFEAD MIHERCE D@y, BERL
LWER D O particles (3, RO T LA L BEE ) COWLEMECE ., WUEF AAEMT
5o MAELELZ & % particles DELEEELFEOMBIIRE S1E . vese/vx (0 (3REBOYD T T T —
BEFRT) BIEORZSIZLDDT, vee > v DIHEIZIL. the particles DEBEADFEHZER |
EEENHE»SOBBASTTERIZE o LA - T, BlPEEN /NS L BRSNS WHRIZY
particles % BB ) OPED L PR T 2V EH O T, WHE~NOFHEMEIE RS, L,
Wit 9 5 particles DWLEIX BT RPEIZIET 2 MR TIZZE I N, £ specific FAER RIS #H 2
O specific B RDIZV o0 V2EIZ R o TWHEEZ LN A,

KIZ\ vg 2 (V2 + V)2 (= 1.45vese, Fig. 1 D/3T 21— 5 —DOFE) OFE ., HRELIVEHLS
RO W74 particles DHEFRICH T 2N EEDHFEOYEEE L Y K& (| particles (&, BJ
BEORH, BE~NOHEEET. XERYOHE. 03205, HEOMNED LRI
particles i, BEDONEEEIC S HISHEESMDSLI EICE Y| BHICREDEES O RO
LTLE ). —F. WEDHKED O RO M particles 13, HEDLDNEEFE L HE L VBN L RY
- HORY OFREFTHL A LOICREIIMP > TEHEETZ T5. £D72HIT, Fig. 112
BT vgj ~ 1.45Vescs THRENDTEFIIBMKEZ L HLEEILN 5,



Figure 1 D#ER% vy (CHAL TEAE 23T L &b/ b DA Figure 2a-c '(‘?) 5o RN
DAL BHAOFERE P, HHHBERL | a5/rpme/mp PR EVIEY BAFKELC P i
NSRBI ERGH DB, SHUE, Fig. 1 THEL LIS, as/rp,ms/mp BASWEHRIEL,
particles % HET 2 A MEW 2D ThH B, TR AKREL (= 0.0123) REOHE. *ﬁﬁ{t_@
ciecta BB L TL F v, 2415 0 specific FHI BRI H 2 D specific AEME L h bHICK
ENWI NN S, \

utmmmmmﬁﬁﬁﬁwﬁ%%ﬁﬁLfmw\Etﬁ%W&m\w&ﬁ%®ﬁﬁbﬁ@ﬁ
BEYOL S LhELE Y 2D EEFHET S, £HEET VI Haris and Kaula(1975) DE7 )V x
@ AL 7:. Morishima and Watanabe[7] DET V& F\V* 5,

FgBMtwmlwﬁﬁhmq¢amﬁ%bﬁfm\Hgﬁtmﬁﬁ%mﬁﬁﬁﬁoﬁm%mﬁ
DEENMEEE L THLEODTH D, HENIHEMEIOKD ) T, HIKDBEHRHFIC L DD
LEEDI Do TWVD, SHEOMYMEL. ZRENREHCRENEE S5 L IICHEL THL (A
EEROTIIL 46 EEMOKBEIOEEEEZRBL TV A2D), Fig. 3a DB, HIKARD
BASESE* HIROHEICHRLMT 2B S RERAREL BTHAREERL T0d, LI2HFoT
EEEIR. BRIV ENOEBTRIBEEILND, Fig. 32R2L ¢, BKEL, £05L
Mmm%mmiéﬁf\%E@&E$m¢é<ﬁ@ﬁ§®ﬁ¢ﬁké(&6:&%%#60%@
BT 2354 (Model 1) TH . HEREDHE~DH RN L 0| AEEEE Ko Model
5N HIEHEMSILALREL VWSS, AEHENRKIIKE (., HEREESRED 0.7 FD

L&, AEBHREREIRENH14ETDH %,

CHEHBHEELHIR, EAXHETER SN -KREFERT. GREHEL A:EHHEM S Fig. 3
TRLHASHOEIIES LT NERENICHEOHIRARIIE RN BLVEVR I LETH S,
Cameron and Canup(1998)[5) D&ERN—FE 2T 5 &, HEMA® 0.65Mg THMEEEN 1.1Lg
NDEXFHET., BENANDKESDHENTEL, RIERMWICAERZH/-ZFHLThE, AldE
CHRETERWIEIZRD, AP ORUH S KED ejecta D722 R4 AEHHRITFENE
IDLEMANEL L >TLE I, LA oT, ETHBRAFHOEKRBHZETITIIRARIIEK
ENBWIENTDDE, BEGBEIFEKRGHENY 2L -2 asDF =845 0h, 4%, K
MEDHEREAAEDOE TR TAILIZL), ERHEAIRI - IFOMEREREZRHT 2
EMTEBLEEZOND,

SEE

(1] Benz, W., A. G. W. Cameron, and H. J. Melosh, Icarus, 81, 113-131, 1989.

[2] Cameron, A. G. W. and W. Benz, Icarus, 92, 204-216, 1991.

[3] Ida, S., R. M. Canup, and G. R. Stewart, Nature, 389, 353-357, 1997.

[4] Cameron, A. G. W. and R. M. Canup, Lunar and Planet. Sci 29th, abstract 1062, 1998.
[5] Cameron, A. G. W. and R. M. Canup, Origin of the Earth and Moon, abstract 3, 1998.
[6] Harris, A. W. and W. M. Kaula, Icarus, 24, 516-524, 1975.

[7] Morishima, R. and S. Watanabe, in preparation.

10



Y SR ]
Model | 1 | 2 | 3 | 4 |5 | & 1.2} he ]
¢, | — |nse|re2s|rs0|L13] 20 aorer
g 0.8pF
c, 0 |0.085]|0.12(0.19]0.55]0.50 :
a, 0.8
Table 1 Ejecta®§HHici+ 324 —Y v 7]l a; 04
DT LR n:'. 0.2
0.0 Ca./rp = 10 N -
_o.2 |m/m =180~ —R 7
1.0 115 210 216
Vej/Vonc

Fig. 1 EjectadPER L AEBMBRLHHFECBHL L THOLDL LK,

Ps, Py, P ENENER~DELE, BE~OWZE, XE e VERE~DOSERE
# L. hp, he lTZTNENREITHELE L FEHT DejectaD B EHEY ) OFHAE
BRERPEL TV, AEHRIEHEEDY 77 —ABHETHEB LI N TS,

TN IR T
AN RN

1
s 10 20 5 10 20
Qe/Tp

ae/Tp as/rp
Fig. 2 Ejecta@ﬁﬁﬁ%}_’H)ﬁﬁﬁ‘5ejecta@$ﬁﬁi§§ﬁ%%fﬁig/?§g’§§tt<‘_‘ . EELE R/ RE R
O Yr LTRLEaIVE—<y 7, a,b, cidENEIP;, Pe, he BRT,

mg/mp
me/My
ot
0¢’
me/my

2.0 r T T 2.0
AN\

W 18 N\ -
@ o
g 1.8} g"';
% 1.4F g
Rﬁ \s\ To.s
®§ 1.2 M.\ “

1 1 1 )

0 0.0 . . . .
‘0.5 0.6 0.7 0.8 0.5 0.8 0.7 0.8 0.8 1.0

WERER R B

Fig.3 AOHEEL. HEKA %@%@ﬁ@ﬁﬁﬁ@ﬁ(t’&i&ﬁ@gﬁd)ﬁﬁﬁg P’Cib'f:o 60{1)7'\7*—7'
1XTable 1 D6 DITH S L. a, b#EGC—‘ﬁTfJ‘15%?’lvl’é—ﬁta)ﬁ—7735%?/1/6'6‘29)60 Fig.9am
AHiT. REOHBAREOEAMEEL TN,

11



The gas drag effect on the stability
of the protoplanet system

KAZUNORI IWASAKI

Department of Earth and Planetary Sciences, Faculty of Science
Tokyo Institute of Technology, Tokyo 152-8551, Japan
E-mail: kiwasaki@geo.titech.ac.jp

Abstract

According to the recent works on the planetary formation, at the late stage several tens of protoplanet(1x
10~"M¢) are formed in the terrestrial planet region(about 1AU) with equal separation distance about .10.
The present terrestrial planets are thought to be formed from these protoplanets through their orbftal
crossings and collisions for a long term. Chambers et al.(1996) investigated the timescale of the orbital
instability(which corresponds to orbital crossing), Tinat, of such a protoplanet system(1 x 1077 Mo, eq’.lally
spaced) in a vacuum space and found that the logarithmic of the timescale, is approximately proportional
to the initial orbital separation distance, Adin;. In this paper, we pursued numerically the orbital evolution
of five-protoplanets(1 x 10”7 Mp) system, suffering from the gas drag force of the solar nebula, in order to
investigate the influence of the gas drag force by solar nebula on the above timescale. From our results, we
found that 722, suddenly becomes large as compared with Tin,e, when the initial orbital separation, Adin,
crosses the critical value, (Adini),,;,- When we applies our results to the realistic protoplanet system,
the critical orbital separation, (Adini),,;, are estimated about 10 in this case. Thus it is difficult for the
protoplanet system to become unstable in the solar nebula.

1 INTRODUCTION

The recent works on the planetary formation show that at the final stage of the planetary accretion, several
tens of the massive protoplanets whose masses are equally about 1 x 10~7 Mg are formed through a succesive
accretion of planetsimals in the terrestrial planet region (Wetherill and Stewart 1989, Kokubo and Ida 1998).
In this stage, the massive protoplanets move along nearly coplanar and circular orbits owing to the interaction
with planetesimals (of which effect is called the dynamical friction) and/or the gas drag effect due to the
nebula gas. However, the protoplanets would interact with their neighbors through the mutual gravity and,
for a long term, they would happen to be transformed to the quitely different orbits or to collide each other.
Through this process, the present terrestrial planets would be formed on widely separated orbits as we observe.
Unfortunately, we have no precise knowledge, until now, about a long term behavior of orbits of the massive
protoplanets mentioned above. In order to understand the late stage coagulation of the planetary system

we should be able to answer clearly the following questions on the orbital stability of a system composed of
multi-protoplanets.

(1) Is the multi-protoplanet system visited by the catastrophic events such as the orbital crossings and the
mutual collisions?

(2) If so, when do the protoplanets suffer such events?

Recently, Chambers et al.(1996) studied the stability of the multi-protoplanet system, in which the proto-

plnets (1 x 10~7Mg) are equally spaced in units of the Hill radius, 7z, and their initial orbits are circular and
coplanar(e,i = 0). In the above, the Hill radius, rg, is given by

_ (al )im’ + (a'2)ini [ml + m2] ¥
Ty = ,

2 3Mg ()

where (@1);,;, (@2);,:» ™1 and my are the initial semimajor axes and the masses of the two protoplanets,
respectively. ‘They pursued numerically the orbital evolution of multi-protoplanet systems “in a vacuum space”

12



changing the initial values of the orbital separation measured in units of the Hill radius, Ad;,;. The integrations
were continued until two of them approaches within a sphere with one Hill radius (in this sphere the motion of
particle is ruled by the gravity of the protoplanet) or until the evolutionary time reaches to 1 x 107 year. They
found that the time of occurrence of the first close encounter between adjacent two protoplanets, Tinst, is given
by a function of Ad;;, i.e.,

log,o Tinst = bAGin; + ¢ (2)

where b and ¢ are numerical constants. These coefficients are almost independent of n, the number of the
protoplanets, as long as n > 5 and are given by

b=10.760 and ¢ = —0.1. (3)

In the actual system of the planetary accretion process, the protoplanets have to experience other kinds of
the energy dissipation processes besides the collisional dissipation such as the dynamical friction due to a swarm
of planetesimals and gaseous drag due to the solar nebula. Generally, any kind of the energy dissipation leads
to a decrease in the eccentricities and inclinations of the protoplanets. By the decrease in the eccentricities and
inclinations, however, the protoplanets must be prevented from the onset of the orbital instability. Namely, if
the dissipation effects are too intense, the protoplanets will not be able to collide with each other since there
hardly occur the orbital crossings and, as a result, the terrestrial which we observe now will not be formed.
Thus, it is very important to investigate the influence of the energy dissipation on the instability time of the
multi-protoplanet system.

The aim of our study is to see the influence extensively of the effect of the gas drag on the orbital instability
of the multi-protoplanet system and to obtain the onset time of the orbital instability of the system suffering
gas drag force. To achieve our purpose, we calculate numerically the orbital evolution of the protoplanet system
taking the gas drag effect of the solar nebula into consideration. Basic equations governing the orbital motions
of the protoplanets will be presented in the next section as well as the numerical procedures we use. In section 3,
we will show briefly the results of the special cases without the gaseous drag to compare with those of Chambers
et al.(1996). We place five protoplanets equally spaced in the terrestrial planets region; their masses are put to
be 1 x 107" Mg and the eccentricities and inclinations are taken to be zero initially as Chambers et al.(1996)
did.

In section 4, we include the effect of the gas drag, which is characterized by the dissipation time, g, of
the kinetic energy due to the gaseous drag. The instability time of the protoplanet system, T2, is defined
as the time at which two of the five-protoplanets approach within their mutual Hill radius for the first time
(this definition is the same as T;,,; in Chambers et al.(1996)). On the basis of our orbital calculations, we
find T7.,; as a function of Ad;»; and 7. We will see that, when the orbital separation is large, gravitational
interaction between the protoplanets is weak compared with the gas drag force by which the eccentricities of the
protoplanets are dumped and, as a result, the instability time, T,.;, becomes large compared with Tj,,;, which
is the instability time for the case without the gas drag effect. Furthermore, the gas density is large, as expected
readily, T2, increases because the gas drag effect suppresses strongly the increment of the eccentricities of the

inst
protoplanets. In section 5, we summarize the results obtained by our present study in short.

2 METHODS OF ORBITAL CALCULATIONS

2.1 Basic equations

Suppose that n-protoplanets are rotating around the sun under the influence of the mutual gravity. In a
coordinate system where the sun is at the origin, the equation of motion of the i-th protoplanet is given by

n n

X; X; — X5 X

x;=—’GMo"_'3— Gm,—’—%)—g (ij—Js),
| il J#i |X,; - le j lle

(4)
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where Mg and m; are the masses of the sun and the i-th protoplanet, respect?vely, x; is the position vector of
the i-th protoplanet, and G is the gravitational constant. In the above equation, we only take account of the
gravitational interactions. The protoplanets orbiting within the solar nebula suffer from a drag force due to the
nebular gas and, hence, we must include the gas drag term in Eq.(4). . .
The gas drag force per unit mass acting on a spherical body is expressed by the following form (Adachi et

al. 1976): ,

r
Ja= Cd% pu?, (5)
P

where 7, and m, are the radius and the mass of a protoplanet, respectively, and « is the relative velocity
between the protoplanet and the nebular gas. Furthermore, p is the density of the nebular gas and Cy is a
nondimensional drag coefficient. For a massive bodies (> 10'3g) with relative velocity less than the sound
velocity, Cyq is approximately given by 0.5 (Adachi et al. 1976). Thus, we put simply Cp = 0.5 from now on.
We assume that the nebular gas moves around the sun circularly with Keplerian verocity, Q. Furthermore,
we adopt the Hayashi model as a model of the gas nebula (Hayashi et al. 1985). Namely, we suppose that the
distributions of the density, p, and the temperature, T, of the solar nebula are given by

p= () ©
and
i r=z ()", o

where 7 is the radial distance from the sun and py and Tp are the density and the temperature, respectively, at
1AU.

2.2 Procedure of Integration

When we consider a gravitational system consisting of three or more celestial bodies, we cannot obtain any
analytical solution as verified by Poincaré (1892). Thus, in order to investigate the orbital evolution of the
n-protoplanet system, we are obliged to manage by the numerical manners. In the present study, we pursue the
orbits of the protoplanets with the help of the 4th-order P(EC)" Hermite scheme (Makino and Aarseth 1992,
Kokubo et al. 1998, Kokubo and Makino 1998). This scheme is very powerful for a long term integration of
planetary orbits because this integrator has no secular errors in semimajor axes, eccentricities, and inclinations
owing to the time symmetric property. Furthermore, as will be seen later, by adopting suitably a parameter o
in the difference formula (a = 7/6), we can reduce the secular error drastically in the arguments of perihelion
which determine the relative positions between the protoplanets during encounters (Kokubo and Makino 1998).
Since we consider the case where the protoplanets are almost in Keplerian motion except the period of their

conjunctions, the Hermite scheme is a suitable method for calculating a long term orbital evolution of the
n-protoplanet system.

3 THE CASE WITHOUT THE GAS DRAG EFFECT

3.1 Initial conditions

In order, partly, to check the validity of our numerical code for the long term orbital calculations and, partly, to
confirm the results obtained by Chambers et al.(1996), we first study the orbital evolution of a system composed

of five protoplanets under the gas-free condition. For the initial conditions, we adopt almost the same ones as
Chambers et al; that is,

(a) The protoplanets have the same mass, m = 1 x 10~ Mg(m being of the order of Martian mass).

(b) The orbits of the five protoplanets are circular and coplanar, i.e., the eccentricities and inclinations are
zero.
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Flgure 1: Instability time Tinst as a function of Aa;,; for the case without the gaseous drag. Ten computational runs are made

for every AG;pn;. The solid line shows the least-squares fit given by Eqgs.(10) to (12). The empirical formula found by Chambers et
al.(1996) is also shown by the dotted line.

(c) The innermost protoplanet is put at the heliocentric distance, ag, of 1AU.
(d) The semimajor axes of the five protoplanets distribute with an equal separation distance, Adn;.

(e) The argument of perihelion of each protoplanet is assigned by the random number such that the difference
between the arguments of the adjacent protoplanets is never less than 20 degree.

According to assumption (a), the Hill radius, ry, defined by Eq.(1), is given by
ry = 4.05 x 1073AU . (8)

In our present study, we have only one variable parameter, i.e., the separation distance between adjacent
protoplanets, Aa;,; (or the normalized separation distance, Ad;,;). As for Ad;,;, we choose 27 cases, i.e.,

Adin; = 3.6 —8.8 (with interval 0.2) . 9)

For each Ad;y,;, we pursue the orbital calculations for 10 cases with different configuration of the arguments of

perihelia of the five protoplanets. Chambers et al. took Aa;n; from 2.0 to 8.8 with interval 0.2 and made three
simulations for every Ad;yn;.

3.2 Time of onset of the orbital instability

We pursue numerically the orbital evolution of the five-protoplanets system changing Aa;,; as well as the
geometrical configuration of the five protoplanets, as mentioned in the previous subsection. The method of
numerical calculations is already described in subsection 2.2. Orbital calculation is stopped when the distance
between any two of the five protoplanets become less than the Hill radius or when the evolutionary time exceeds
the admissible time, 1 x 10”years, set to save the computational time. The former case is recognized as one that
there occurs the orbital instability and the evolutionary time, at which the minimum distance between any two
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protoplanets becomes first less than the Hill radius, is regarded as the instability time, Tinst (such a definition
of Tins: is quite the same as in Chambers et al. (1986)).

In Fig.1, we show the instability time, Tinse, as a function of Ad@in;. On the general trend, we ca.n. sa,).f thét
log;o Tinst is approximately proportional to A&;n; as pointed out by Chambers et al.(1996). The solid line in
Fig.1 is the least-square fit of all the points, given by

lOgm Tinst =b Aaim’ + c, (10)
where
b=10.777 £ 0.0114 (11)
and
c= —0.154 £ 0.0643 . (12)

In this figure, the empirical formula found by Chambers et al.(1996) is also shown by the dotted line. In their
formula, b and c are given, respectively, by

b= 0.765 &+ 0.030 (13)

and
c=-0.030+£0.192. (14)

The values of b and ¢ found by our present calculations are in good agreement with those of Chambers et al.
within the uncertainties. Thus, we can say that the numerical code, developed by us, can simulate precisely
a long term orbital evolution of the multi-protoplanet system and that the stability (or the instability) of the
multi-protoplanet system is really characterized by the empirical relation (10) between Tins: and Adini, first
found by Chambers et al.

4 GAS DRAG EFFECT ON THE ORBITAL STABILITY
4.1 The gas drag effect

Before we present the results of the orbital evolution of the five-protoplanets sysytem suffering from gas drag
force, we mention briefly the principal property of gas drag force. Adachi et al.(1976) investigated the gas drag
effect on the motion of a planetesimal orbiting around the sun. Acoording to them, the characteristic time for
the drag dissipation, 7p, is given by
2m,,

mCpr2pall ' (15)
where 1, and m, are the radius and the mass of a protoplanet, respectively. Furthermore, p is the gas density
of the solar nebula and . is the Keplerian angular velocity of the circular orbit with the semimajor axis, a. As
mentioned in section 2.1, we adopt the Hayashi model (Hayashi 1981) as the nebular model and the gas density,
p, is given by Eq.(6). Thus, we have for 7o numerically

1
1 m 3 a \1.75 Po -1
= 2.1 104 — P JESE . 16
0 8x10 Cp (1 X 10‘7M®) (1 AU) (1 x 10-° g/cm3> Tes (16)

where pg represents the gas density at 1AU and T} is the Keplerian period, 27/Qy. In the above, we take
3 g/cm? as the material density of a protoplanet. As will be seen later, @ and m, are fixed to be definite values
and, hence, 79 depends on only pp. Thus, we use 1y in place of py as a prameter indicating the intensity of the
gas drag force.

When the eccentricity, e is not zero, the eccentricity decrease with time owing to gas drag effect. From
the approxmate fomulae of eccentricities in Adachi et al.(1976), the characteristic time of the dumping of the
eccentricity is found to be

/(%)
dt

To =

70

= . (17)

T, ~
dump 0.77e

This is refered to in the later sections.
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4.2 Initial conditions

We inve§tiga,te the effect of the gas drag force on the orbital instability time of the protoplanet system. As in
the previous section, we consider the system composed of the five protoplanets with mass of 1 x 10~ Mg, which
revolve around the sun within the solar nebula. As for the parameter, 7o,

indicating the intensity of gas drag
force, we consider four cases where

o = 5.0, 15, 50, and 1507 . (18)

The above values of 1 correspond to the following nebular densities, po, at 1AU:
po = 87x107°% 2.9 x107% 8.7x 1077, and 2.9 x 10~7 g/cm?, (19)

where we use Cp = 0.5. Recent observations of the young stellar objects reveal that they are surrounded by
the relatively dense nebulae, of which masses are in the range from 0.001Mg to 0.2Mg. Even if we suppose
the most massive solar nebula with mass of 0.2M, nebular densities given by Eq.(19) are too large. Such a
choice of artificially small 7o (or, artificially large po) is to save the computational time of orbital calculations;
if we put 79 to be, for example, 1 x 10*T}, we have to pursue orbits for a very long period of 1 x 10° year or
more. It is practically difficult at present to calculate orbits with a sufficient accuracy for such a long period.
In applying our results to the study of the late stage planetary accretion, we will utilize the scaling law found
from our orbital calculations.

The other initial orbital conditions are almost the same as those mentioned in section 3.1 where we are
interested in the orbital evolution of the protoplanet system without gaseous drag; all protoplanets have the
null eccentricity and inclination at the initial stage. Furthermore the separation distances between adjacent
protoplanets are all the same and the semimajor axis of the innermost protoplanet is 1AU; the separation
distance, Ad;n;, is put to be

Abin;, = 3.6 — 8.6 (with interval 0.2), (20)

which is quite the same as in the gas-free case (see Eq.(9)). For every Aai,:;, we make simulations for 4 cases
with different initial configuration of the protoplanets.

We will add a comment on the admissible computational time. Let T/} be the instability time for the case
with the gaseous drag. Generally, T, is expected to become larger than, T;n,,, which is the orbital instability
time in the cases of the gas free condition, because the gas drag effect stabilize the protoplanet system through
the dumping of the eccentricities of the protoplanets. Thus we stop to calculate when the evolutionary time ¢
exceeds

Tstop = 200 x Tinst , (21)
where T;,s: is given by Eq.(10). Hereafter, T;op will be called the cut-off time of calculations.

4.3 Instability time for the case with gas

Now, we will investigate the effect of the gas drag on the orbital instability time, T7>,. From Fig.2, where

inst’
T$%% is shown as a function of Ad;n;, we first see that Ti, is nearly equal to Tins: when Adin; < 5.4. For
the ranges where Aa:»; > 5.8, there occurs no orbital instability within a period of Tyi0p. In the intermediate
region where 5.4 < Ad;n; < 5.8, we observe the orbital instability in some cases of the initial configuration but
not in other cases (note that 4 cases are calculated for every Aa;,;); even for the case where we observe the
orbital instability, the instability time, T}.},, becomes large compared with that for the gas-free case. Such a
region is bounded by the two vertical dotted-lines in Fig.2.

In an analogy of the phase transition in, for example, the ionization process, the intermediate region men-
tioned above may be called “the transition zone”. In order to describe properly the location of the transition
zone, we will introduce two kinds of the critical separation distance; (A&ini)y and (Ad;ni),. The former, (Ad;ni),
is defined as the minimum value of Aa;,;, in the case of which four computational runs include, at least, one
case without the onset of the orbital instability. The latter, (Ad;si), is defined as the minimum value of Ad;p,,

in the case of which “all of the cases” reach the cut-off time of calculations, or in other words, we observe no
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Figure 2: The instability time T2, as a function of Adin; for the case of 7o = 15T). The solid line shows Tins¢, given by
Eq.(10), and the upper dotted line denotes the cut-off time of calculation, Tytop(= 200 X Tin,e ). The region bounded by two vertical

dotted lines shows the transition zone.

orbital instability in all computational runs. For the case of 79 = 15T}, the values of (A&ini), and (Alini), are
5.4 and 5.8, respectively.

The behavior of T2, for the cases other than 79 = 15T is similar as in the case of 7p = 15T; they are shown
in Fig.3 (note that we calculated only two cases for the different initial configuration when 7y = 1507} and
Ad;n; = 7.0, because of the very long calculation time). As seen from three figures, T}, behaves quite similarly

inst
as long as we are concerned with the qualitative behaviors; The T, — Adin; diagram is commonly divided

inst
into three zone, i.e., the unstable zone where T5.., can be described approximately by that in the gas-free case,
the stable zone where we cannot observe the orbital instability, and the transition zone mentioned above. The
three zones are bounded by the two critical values of Ag;,;, introduced in the last paragraph. It is interesting
to point out that the widths of the transition zone (i.e., (A&@ini); — (A&ini),) are almost the same (=~ 0.06)
irrelevant to the adopted value of 79, although we cannot say definitely in the case of 79 = 1507} because of
the lack of the computational runs. The detailed behaviors of “the phase transition” are illustrated in Fig.4,
where we show the number, IV, of runs which reach the cut-off time of calculations, Tytop, without the onset of
the orbital instability. We can see that the number, N, of the “stable” cases, increases suddenly in the narrow
range of Adin;. The values of (A&in;), and (Ad;n;), are tabulated in Table 1. The two critical values increase
with an increase in 7o (or with a decrease in the gas drag effect). This means that, for the cases where the

gaseous drag is strong, the protoplanet system is forcedly stabilized even when the separation distance between
adjacent protoplanets, Ad;y,;, is small.

Table 1: Critical values of (A&ini)g and (A&;ni);. The value of (A;n;), is less definite for the case of 7o = 1507} because of
the lack of computational runs.

To/Tk 5.0 15 50 150
(Alni)g 4.6 5.4 6.0 6.6
(A&;m‘)l 5.2 5.8 6.6 ~ 7.0

In Figs.5 and 6, we show the typical examples of the time evolution of the eccentricities of the protoplanets
for the cases of 79 = 15T} in the unstable zone and stable zone. From these figures, we can readily reach the
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Figure 4: The number of runs, N, which reach the cut-off time of calculations, Tstop, Without the onset of the orbital instability.

Panels (a), (b), (¢), and (d) are of the cases of 7o = 5.0T}, 15T, 50T}, and 1507}, respectively.

following conjecture. In the unstable zone where Ad;n; < (Adin;)y, the orbital instability occurs before the
eccentricities of the protoplanets are dumped by the gas drag effect (see Fig.5). Hence, we should have the
relation of

nnst < Tdump ) (22)

where Tjn,: is the orbital instability time in the case without the gas and Tyum, is the characteristic dumping
time of eccentricities, defined in Eq. (17). On the other hand, in the stable zone where (A&in;); < A&ini, the
eccentricities are dumped, as an average, by the gas drag force and there occurs no orbital instability(see Fig.6);
the relation

Tdump < Tinst (23)

should be realized. In the transition zone where (Agini)y < Aini < (Adini);, the situation is complicated as
seen above. Even if we consider the cases with a fixed A&;y,;, in some cases Eq.(22) holds and in other cases
Eq.(23) holds. Inversely speaking, however, we have the relation

Tinst = Cerump . (24)

where C, is a constant whose value is about 1. Since Tyyump is a function of the eccentricity (see Eq.(17)),
we must know the typical value of the eccentricities of the protoplanets in order to write down Eq.(24) in an
explicit form. For the cases without the gas, the eccentricities of the prtotoplanets are kept to be small during
a period of the first 90 percent of the instability time, T;.s:, and increase rapidly during the rest of about 10
percent of T;,s:. Such a behavior is illustrated in Fig.7, where we show the time evolution of the root mean
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Figure 5: Time variation of the root mean square of the eccentricities of the five protoplanets for the case (70 ., Aaini)
(15T%, 4.8) (in the unstable zone). The solid line shows the case with the gas in which the orbital instability occurs at t

4.5 x 103year, whereas the dotted-line denotes the case without the gas, in which the instability occurs at ¢t ~~ 4.3 x 103year.
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Figure 6: Time variation of the root mean square of the eccentricities of the five protoplanets for the cases of Ad;n; = 6.2 (in the

stable zone). The solid line shows the case with the gas (7o = 15T%). The dotted line denotes the case without the gas condition,

in which the instability occurs at 5.4 x 104year.
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square of the eccentricities of all the five protoplanets for the case without the gas (Ad;»; = 6.6). For the cases

— — _1/2
with other Ad;,;, < e? >'"? behaves similarily as in Fig.7. We can see from this figure that log;(< e? > s
approximately proportional to the evolutionary time ¢ during the first 90 percent of T;,s: and, thus, we have

log;o< e? >% =pt+q, fort <0.9T;ns . (25)

Constants p and ¢ are obtained by the least square fit for all available data of the orbital calculations. In Fig.8,
the values of p and ¢ are shown as a function of Ag;,;. In this figure, we can readily see that the values of p
decrease as a whole as the separation distance, Ac"zim-l,' increases. This is probably because the increase of the
separation distance weakens the gravitational interaction between the -protoﬁlanets. Also, the values of ¢ vary
widely for all of Adin;. However, the tendency of decreasing as seen in the value of p is not found out in the

values of g. By the use of Eq.(25), we estimate the_tybiéé,l value of the root mean square of the eccentricities at
the onset of the orbital instability, which is given by

10g10< 8_2 >fin% = O-QPTinst + q . (26)

the values of p In Fig.9, we show < e > ;;,.1/2 as a function of A&;,;. From this figure, we find that < e > finl/z
is confined within the range between 0.001 and 0.02 for the case of Adin; = 3.8 ~ 8.6 though < e? > ;.-,.1/2

. - . — /2,
scatters widely for all of Ad;,i. For the convenience, we pressume that log; o< €2 >¢;, / is given by the mean
value:

(27)
~ =235.
From Eq.(17), the dumping time of the eccentricities is given by
Tiump = o (28)

0.77< €2 > ,,-,f”
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Therefore, substituting Eqs.(28) and (10) into Eq.(24), we find a semi-emprical expression of (A&ini).,;
((Aaim')o < (A&ini)cru < (A&ini)l) as

—1210g | —Z ) +0.44. (29)

(Aaini) —
< e? >fin

crit

In Fig.10, we show the above estimated relation (29) and the relation of (A@in;),,; and 7o obtained by our
numerical simulations where (A&;n;),,;, evaluated in our numerical simulations is precisely defined as
_ (Adini)g + (Adini)y

(A&i"i)crit - 2 ‘ (30)

In this figure, when we adopt 2.0 as the value of C,, the estimated relation (29) is in good agreement with the
relation in our numerical simulations. Actually, the value of (A&;n;),,;, in the relation (29) has an uncertainty

about +0.8 owing to scattering of < e > ;,-,,1/2 between 0.001 and 0.02. However, since this uncertainty(~ 0.8)
is small(about 10 percent) in comparison with the typical value of (A&;n;),,;, which is about 7.0, these results
are not affected seriously.

By the way, we adopt 5.0 to 150.0 as the values of 7y in our simulations because in our calculation range
(3.6 < Adin; < 7.0) for the larger values of 7 the appreciable change of the orbital instability time by the gas
drag effect can not be seen. However these values of 7 correspond to 2.9 x 10~7 to 8.7 x 1076 g/cm? of the
values of the gas nebular density at 1AU, pg, and these values of the density are very larger than the values
given by the standard gas nebular model which is about 1 x 10~° g/cm®. Thus we extrapolate the relation (29)
to 79 = 4.3 x 10* which corresponds to pp = 1.0 x 10~° g/cm®. In Fig.10, we find that the value of (Aé;n;),,;,
for the case of 7o = 4.3 x 10% are about 10. We readily understand that for the case of Ad;n; > 10 the orbital
instability never occurs under the standard gas nebular.

5 Summary and Conclusion

In the present study, of which principle aim is to investigate the gas drag effect on the orbital instability
of the protoplanet system, we have pursued numerically a long term evolution of orbits of five protoplanets
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considering the gas drag force. We have supposed that, initially, the protoplanets distribute uniformly in the
radial direction with the same mutual separation distance, Ad;n;, and their initial orbits are co-planar and
circular. In our orbital calculations, the density of the nebular gas is increased artificially by a factor of 1 x 102
to 1 x 10* compared to that of the standard nebula model (in order to save CPU time of computations).

First, we have obtained the time of onset of the orbital instability, Tin,:, under the gas free condition and
confirmed the result of Chambers et al. (1996) that T;n,, is written empirically as a simple function of the initial
separation distance, Ad;n;. Next, we have investigated the orbital instability time, T7;, of the protoplanet
system suffering the gaseous drag. Obtained results are summarized as follows.

(1) Roughly speaking, the gaseous drag suppresses, more or less, the occurrence of the orbital instability of
the protoplanet system through dumping of the eccentricities of the protoplanets.

(2) The degree of the stabilization depends on the gaseous density as well as the initial separation distance,
Abin;:

(a) For the case where Adini < (Adini),,q, then TS, is almost equal to Tin,; and the gas does not play
important role or the orbital stability of the orbital stability of the protoplanet system.

(b) for the opposite case where Adini > (Afini). .y, The is increased, at least, 200 times as long as
Tinse- In this case the protoplanet system is not visited practically (within an age of the planetary
formation) by catastrophic orbital instability.

(3) The critical separation distance, (A&in;),,,,, mentioned above, is a function of a gaseous density.

Furthermore, we have written Ad;n; ;¢ in analytical (but empirical) form as a formation of the gaseous density.
Using this expression, the critical orbital separation, (A@in;).,;., is evaluated to be about 10, when we adopt
1g/cm?® as the density of the nebula at 1AU in accordance with the standard model. Thus, for the case of
(&4);,; > 10, the orbital instability never occurs. According to Kokubo and Ida (1998), the typical orbital
separation of the formed protoplanets is about 10. So, it is difficult to judge whether such a protoplanet system
is stable or not. However, if the protoplanet system becomes unstable and the protoplanets collide each ether,
the mean orbital separation of the protoplanets increases inevitably after the collisions (say, 12 ~ 15; note that
the orbital separation of the terrestrial is 30). When the orbital separation exceeds 10, the coagulation process
of the terrestrial planets stops on the way since the orbital instability never occurs. Thus, it is natural to think
that the gas nebula are already dissipated at the final stage of the terrestrial planet formation. The cause of
decreasing the eccentricities of the terrestrial planets formed through the collisions are thought not to be the
gas drag effect of the solar nebula.
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Introduction

In past decades, Giant Impact Hypothesis’ (Hartmann and Davis 1975; Cameron and Ward 1976)
has become the most favored scenario of the origin of the Moon. It proposes that a collision between
a Mars-sized protoplanet and the early Earth ejected mantle materials into Earth’s orbit, and that
the Moon was accreted from these materials.

Several researchers simulated the evolution of a protolunar disk by direct N-body simulations (Ida,
Canup and Stewart 1997; Kokubo, Canup, and Ida 1999) Their important results are that the a single
large aggregate is formed just outside the Roche limit, and the time scale of the accretion is about a
month to a year. The result that a single moon forms comes from that accretion of disk material is
inhibited inside Roche limit by the tidal effect of the Earth. Within Roche limit, aggregates are sheared
apart constantly and spiral patterns develop. Outside Roche limit, tidal effect is not important and
aggregates can grow. Once a moonlet is formed outside Roche limit, that moonlet grows exclusively
sweeping the materials diffused out from inside Roche limit. Thus, the time scale of the moon accretion
is determined by the timescale of diffusion of protolunar disk. The result that the time scale of moon
accretion is very short comes from the very short diffusion time of the protolunar disk.

However, particle number of N body simulation is limited, and size of the particle is determined
by the particle number. If the typical particle number 10,000 is used to represent the protolunar disk
of 3 lunar mass, the size of each particles becomes the order of 100 km, while appropriate particle
size is unknown. Since collision between two particle with different semimajor axes exchange angular
momentum, the size of particles effect the evolution of the particle disk. Thus, we should know the
effect of size of particle on the diffusion process of plotolunar disk, to know the validity of the result
of N body simulation that the moon formation is very fast. We analyse the diffusion process in details
and see the effect of particle size on the diffusion. We conclude that only small effect exists on diffusion,
so that the time scale of lunar formation is about a month, with any size of constituent particles.

This result is inevitable one as long as considering pure particle disk considering only collisions and
gravitational interaction. However, such a fast evolution of protolunar disk release enormous heat,
enough to vaporize the half of the entire disk. This may undermine the assumption that the protolunar
disk can be represent by a particle disk. We should investigate the evolution of the protolunar disk
with the effect of the heat.

Basic Equation

The outward flux of material F, through radius r, is expressed as following (Lynden-Bell and Pringle
1974).
dh 0FAm 9 3d$
F'a; = —T = —E (—27!'1/27‘ W) (1)
where, Fan is a couple exerted on the stuff outside 7 by stuff inside 7, or outward angular momentum
flow though radius r, and h(r) is specific angular momentum, which is /GMgr for Keplerian disk.
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With positive 9Fam/07 at given r, the outflow of angular momentum from the cylinder of radius r
exceeds inflow to there, so that the material at radius r migrate inward losing its angular momentum.
On the contrary, the material flows outward with negative 8Fapm/8r. Thus with a peak of Fam(r),
the inner material migrate inward and outer material outward, i.e. the disk diffuses.

The angular momentum transferring can be categorized by its mechanism. Mutual gravity of
particles deals torque each other directly, and transfers angular momentum from particles to other
particles. Collisions also transfer angular momentum directly as we mentioned above. Also, random
motion of particles transfer angular momentum, since the particles with eccentricity can deposit its
angular momentum to other particles with different semimajor axis by collisions or gravitational
interaction.

Thus, Fam can be categorized for three terms.

Fpam = Fgrav + Feql + Firans (2)

This experssion is a expansion of the formulation in Wisdom and Tremaine (1988), which is considering
the angular momentum flux in particle disk without self gravity.
Gravitational angular momentum flow Fg,y is angular momentum flow by gravitational torque.

This term is given as,
Fgrav:'_ZNisrav (3)
ri<r
where summation is taken over all particles inside r, and NF™" is gravitational torque exerted on
particle ¢. Since same amount of torque is exerted on the particles outside 7 as counter part, this is

apparently angular momentum flow through radius 7.
Collisional angular momentum flow Fy is angular momentum flow by collisions. This term is

given as,
Fog=- Z Al (4)
col
where summation is taken over collisions which straddle the surface of given r over unit time, and Al
is the angular momentum that are transfered by each collision from inner particle to outer particle.
Translational angular momentum flow Firans means the angular momentum flow due to the move-
ment of particles, and given as the integration of pressure tensor.

Firans = /rd0/dz/dv(vr — u,)r(ve — ug)f, (5)

where u is average velocity and f is distribution function of mass in phase space. This term becomes
as following in particle image.

Frans = = 57 mi = w(r))rous = va(), (6)
1
where 7g is the width of averaging range, which must be taken to discuss statistically. Summation is
taken over the particles within the range [r — 70,7 + Z7o]

Inside Roche limit, spiral patterns develops and particles moves coherently as a group in a spiral
arm. To discuss the translational angular momentum flow, we separate the velocity of particle to
the bulk velocity and local velocity, adopting the concept used in Salo (1995). Bulk velocity vpuik is
average velocity of nearby particles and shows coherent motion of patterns. Local velocity iocal is
velocity relative to the bulk velocity and shows the random motion. The velocity of each particle is
expressed as ¥ = Vpylk + Vlocal- Introducing these two velocities, Firans is expressed as the sum of two

terms.
Firans = Foux + Focal, (7)
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where Fiyy is angular momentum flow due to the motion of spiral pattern, i.e. motion of I')articles as
a group, while Fiocal comes from the particles’ random motion relative to the nearby particles. Fhuik

and Fjoca are given as following.

Foux = ;1-2 4 (0ps pulk — wr (7:))7i(V8i buik — vo(Ti))s (8)
0 3

1
Focal = - D MV Jocal iV8i Jocals (9)
i

. . eils 1 1
where summations are also taken over the particles within the range [r — 70,7 + 570)-

Calculation Method

We follows the evolution of protolunar disk by N-body simulation, integrating the orbit of particle by
4th ordered predictor-corrector method. As for the effect of collision, we calculate new velocities with
normal restitution coefficient 0.1, whenever any particles overlap in any time step. We assume perfectly
smooth sphere and put tangential restitution coefficient 1, so that there is no exchange between orbital
and spin angular momentum. We follows the collisions and gravitational interaction for each step and
calculated Feop and Fypay. Also, we calculate Foyy and Focal from » and v periodically, and averaged
them over 2 Kepler time. Sampling time is about 100~ 1Tgepler Kepler time here means the Kepler
time at R = RRoche-

We simulated two sets of runs with different initial surface density. In both cases, we initially put
the particles to follow X(a) x a~2 distribution, where a is semimajor axis, between 0,4 RRoche and
1.1RRoche.- Total initial disk mass in RUN1 and RUN 2 are 3 lunar mass and 4 lunar mass. In each
case we simulated with different initial particles number N = 3000, 10000, 30000,100000, and see the
angular momentum process in each run.

As we follow dynamical evolution, we also follow the heat generation of the disk using a simple
model. For each inelastic collisions, the particles lose their kinetic energy, and that energy would
be heat energy eventually. We define the internal heat energy for each particles and summed lost
kinetic energy to them for every collisions. We neglect the cooling by radiation, since the time scale
of radiative cooling is much longer than the dynamical evolution time of the disk.

Results

Figs.1 show the snapshots of RUN1, when spiral structure develop, for two case of N=100,000 and
N=10,000. The small circles show each particle and the large circular region without particles is the
Earth. The large circles around the Earth is 7 = 0.5RRoche and 7 = RRoche- We can see clear spiral
structures develop in both case, though it becomes rather unclear if we reduce N to small as 3,000.

The surface density distribution for each run is in Fig.2, at the same time as Fig. Figs.1. We can
see that the disk diffuse faster with smaller N, i.e. larger particle size, which indicate that the effect
of particle size on diffusion time actually exist.

We show the detail of angular momentum transfer in Figs.3. We can see that in inner region
7 < 0.5, Fgray and Firans are small and F; dominate. Especially Fyray is neally 0. This comes from
the fact that in inner regeion, spiral pattern is unclear and density profile is uniform, as seen in Figs.1.
This is because that the tidal effect is stronger near the surface of the Earth,and prevent the particles
from aggregating, Since F, depend on the particle size, the diffusion is faster in smaller N case.
However, in outer region, the F; becomes less dominative, and Fgray and Firans becomes important.
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Figure 1: Snapshots of RUN1 after spiral structure develop, but lunar seed is not formed outside
Roche limit. (a) N=100,000 (¢) N=10,000
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Figure 3: (a) the three angular momentum flow Feol, Figray and Fipans as function of r, at ¢ = 67 in
the case of RUN1, N=100,000.



In outer region, we found that Firay is proportional to 23., wl{ich i:s a.na.l.ytic'a.l estima..tlon in ¥1ne:r

theory. Since Figray depend only in surface density, the diffusion in this region is rather insensitive to
e. .

pm%ﬂ(;ief(s)l:nd that the translational angular moneutm transfer Firans is the same order to Fgray in the
region where spiral structure develops. However, it tends to be smaller in the case of smaller N ) 88
seen in Fkg.3. We separate Firans to the angular momentum flow due.to the movement of the particle
as a groupe Fhuy, and the flow due to random motion of each particles Floc.a.l- We s?mw Fbul.k and
Flocal 0N varoius N in Figs.4. There is no clear dependency on N in Fyyx, while Fioca is larger in the
case of smaller N. Also we can see that Fhyy is nearly 0 at 7 < 0,5RRoche, the same tendency for
Fgrav. This indicates that the bulk motion as a group is excited by the collective gravitational e:ﬂ"ect,
and in depend on ¥ as Fyay does, while random motion is excited by collisions, so that the size of
particles is important for Fiocal-
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Figure 4: The left graph shows Fyui and right shows Fiocal, averaged from ¢ = 4T} to T' = 6Tk. Fpun
has no clear tendency on N. Fjyca is greater in the case with samller N.

Conclusion and Discussion

We found that the angular momentum transfer in the particle disk has two patterns. In the region
r < 0,5RRoche, the spiral structure does not develop since tidal effect from the Earth is strong. In
this region, angular momentum transfer is like the model without self gravity of particles, which is
studied in Goldreich and Tremain (1978) and Araki and Tremain (1986). If optical depth is greater
than 1, the collisons of particles dominates the angular momentum transfer process, and this transfer
is greater if constituent particles are larger. Thus, we can conclude that N-body simulations with
limited number is overestimationg the diffusion rate in the inner regeion near the Earth.

In outer region, where the spiral structure develop, the existence of non axisymmetric structure
becomes important, and F¢o and Firans and Figa, becomes comparable. Since gravitational torque
depends on the mass distribution only, Fgray depends on the surface density only and proportional to
¥3. Also the constant forming and shearing of arms generate the movement of particles as a group,
and the angular momenutm trnsfer due to this movement Fiu is also depend on surface density.
In N body simulation of limited number, Fi ang is also overestimated to some extent, since angular
momentum due to local random motion Fjoal has dependency on particle size.

We found that the amount of components of angular momentum transfer that depend on particle
size is just comparable to the components independant to particle size, with typical N which is in
order of 10000. This indicate that the limited numbered N body simulation is overestimating the
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diffusion rate only about two times at most, if disk mass is about [2-3] lunar mass. Since Fyp,, and
Fyy) is proportinal to £3, the ratio of components independant of particle size to the tota.lg;:lvgula,r
momentum transfer becomes smaller if we consider less massive disk. We would need much more
particles in simulating the evolution of less massive particle disk by global N body method.

Thus we conclude that the rapid lunar fomation is inevitable result from the protolunar disk with
total mass about 2-3 lunar mass, as long as dynamical evolution is concerned. However, rapid evolution
of the disk release large amount of heat (Thompson and Stevenson 1988). We show the temperature
of disk in Fig.5. This figure shows the temperature of particles if all energies released by inelastic
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Figure 5: Average temperature of particles after 16 T} as a function of r. Latent heat of fusion is
included, though vaporization is not considered. Initial temperature is set to 0 K.

collisions are used to heaten the particles. We set the particles’ temperature 0 K at ¢ = 0. After 16
Kepler time, a time by which a lunar seed of about 1/3-1/4 appears, the disk is nearly 2000-3000 K.
With these high temperature, particles must be partially vaporized, even though we set the initial
temperature 0. In such high temperature, gravitational instability may not develop (Thompson and
Stevenson 1988). And in this case, the time scale of lunar formation would be much elonged. Thus,
we shoud investigate the evolution of protolunar disk with the effect of heat in future.
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ABSTRACT

We have investigated the viscosity (angular momentum transfer rate) in op-
tically thick planetary ring such as the Saturn’s main ring by performing lo-
cal N-body simulations. In ring systems, visous steress comes from momentum
transport processes which classified into three types: movement particle itsself,
collisions due to finite size of collisions, and gravitational torque.

Local N-body simulations of Salo (1995) and Daisaka and Ida (1999) already
showed the formation of wake structure by gravitational instabilty induced by
self-gravity and collisional damping, but the viscosity in such system did not con-
sidered. Such wake formation may influence source of the viscosity. We calculated
the ring’s viscosity directly from our simulations. Our simulations show that the
viscosity becomes more than 10 times larger than previous study in which the
wake formation was not considered. In the ring where wake develops, self-gravity
plays an important roll on the determination of the viscosity.

1 INTRODUCTION

Viscosity (angular momentum transfer rate) is one of the important physical properties in disk systems, since the
evolution and the stability of the systems are governed by the property of viscosity. That is the key to explain the origin
of the ringlet structure with width 10km in the Saturn’s main ring, which was discovered by Voyager but was not yet
clearly understood. Several models were proposed for explanation of the ringlet, for example, viscous instability (Lin and
Bodneheimer, 1980; Lukkari, 1980; Ward, 1980) and moonlet hypothesis (Henon, 1981), but their availability depends
on the property of the ring’s viscosity. Nevertheless, understanding of the ring’s viscosity is still lacking.

The ring’s viscosity were studied by both theoretical and numerical approaches. In previous studies, the effect
of collisions between particles were mainly considered in momentum transport process, since Saturn’s main ring is a
highly packed particle system, in other word, spatial volume is almost occupied by ring particles. In theoretical study,
Boltzmann transport equation with suitable collision integral was used to yield an effective viscosity. (e.g., Goldreich
and Tremaine, 1978; Araki and Tremaine, 1986). In numerical study, local simulation was performed and viscosity was
calculated directly from movement and interactions of particles (Wisdom and Tremaine, 1988; Salo ,1991; Richardson,
1994). Results of both theoretical and numerical studies were consistent with each other.

In these studies, spatial uniformity was not considered. Theorical studies assumed spatial uniformity in particle
distribution and numerical simulation used small computational area. However, Salo (1995) and Daisaka and Ida (1999)
performed local N-body simulations with large number of self-gravitating, inelastic particles in large computational
area. Their simulations showed the formation of spatial inhomogeneous structure such as gravitational wake (Julian and
Toomre, 1966) and clump induced by self-gravity and collisional damping of particles. There is a possibility that such
spatial uniformity changes picture of viscosity source obtained in previous studies. Wake structure is non-axisymmetrical
one and its shape changes with time, being created and destroyed continiously on the time scale of an order of Keplerian
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lpo::;od like turbulence in fluid. Therefore, we expect that it could yield rather strong effective gravitational torque which
€ads to momentum transfer. Another effect could be expected that momentum transport similar to in turbulent occurs in
system Thus, we should consider that the wake formation may affect momentum transport, that is, viscosity mechanism.

In thls. study, we performed local N-body simulations and obtain ring’s viscosity where wake develops directly and
numericaly from our simulations.

2 NUMERICAL METHOD

We will briefly explain method of numerical simulation used in this study. The detail is described in Daisaka and Ida
(1999) and also in Daisaka et al. (2000).

In the present study, we obtain the ring’s viscosity (angular momentum transfer rate) by performing local N-body
simulations. We adopt local simulation method which was first applied for the study of a dense ring system by Wisdom
and Tremaine (1988). The “local” means that we consider a box with width L; and height L, at a semimajor axis ao
in the ring, which revolves in a circular orbit with the Kepler angular velocity Qo at the reference point ao and is small
compared to the width of the whole ring. Motion of particles is pursued only in this box with the periodic boundary
conditions taking into account shearing motion. This method would be valid because we are considering the structure
with much smaller scale than the width of the B-ring and the orbits of ring particles are nearly circular in the coplanar
plane. In the original method, self-gravitational force of particles was not included, but we take into account self-gravity
as well as direct (inelastic) collision between particles in our simulations as Salo (1992b, 1995), Richardson (1994), and
Daisaka and Ida (1999) did. We use HARP-2 in gravitational calculations.

The following is the calculation conditions: in this study, we limit simulations with identical, smooth particles. We use
constant restitution coefficient ¢ as to be 0.5. According to Salo (1995) and Daisaka and Ida (1999), large computational
area is required for wake formation. So we use computational area with width and height larger than 3\, in simulations,
where A; = 47°GE/Q? is the longest unstable wavelength against gravitational perturbation in lincar theory (Julian
and Toomre 1966).

The particle system is characterized by by two non-dimensional parameters. One is the dynamical optical depth and
is defined as

N 1rr§
T=TI.L, (1)
where Lz x Ly and N are the domain area and total number of particles in the domain, and , is particle radius. The
optical depth can be reduced to 7 ~ tx /i (e.g., Goldreich and Tremaine 1982), where tx and t. are the Keplerian time
and the mean collision time. This expression shows that the optical depth controls the strength of tidal force. In the
sitnation for large r, tidal force becomes rather weak because of shorter mean collision time.

The other parameter is the ratio rn/2rp, where rp is Hill’s radius. This parameter can be expressed as
RLIDY p 1/3, _@o
e = 082l P i, @)
where Saturn’s mass M, = 5.69 x 10%®kg is assumed and p represents material density of a ring particle. This parameter
regulates the effect of self-gravity, since 7(27,)? and 7r3 express geometrical and characteristic gravitational cross sections
for small random velocity. In large r,/2r, 2 1 case, self-gravity become rather strong. According to Salo (1995) and
Daisaka and Ida (1999), simulations with a wider range of the parameters showed that the wake could be formed more
easily in large 7 and large ry/2r, cases. Simulations with parameters for the Saturn’s B-ring (1 ~ 1,70 /27, ~ 1) also
showed the wake formation, and this leads us to expect that there exists wake structure in real ring system. So we should
consider the viscosity in particle systems where the wake develops. We performed simulations with various value of 7
and ry, /27, but we will mainly introduce the results of simulations with fixed 7 in this proceeding.

We briefly explain the calculation method of the viscosity used in our simulations. The viscosity is calculated directly
by motion and interactions such as self-gravitational interactions and direct collisions of all particles. We separate the
viscosity into three types: translational, collisional, and gravitational viscosity. The translational viscosity comes from
momentum transport due to movement of particles across a surface. In simulations, we evaluate momentum flux of
particles by time and spatial averaging. The collisional viscosity comes from collisions due to finite size of particles.
This viscosity becomes rather effective in the case where mean free path is the same as particle physical radius. In
simulations, we directly count collisions during time interval for evaluation of the collisional viscosity. The gravitational
viscosity comes from self-gravitational torque of particles and we compute torque from particle distribution obtained by

our simulations.
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Fig. 1 Viscosity as a function of rh/2rp.(a) Total viscosity for T = 0.5 (filled circle) and for T = 0.2

(filled triangle). In both cases, restitution coefficient of colliding particles is € = 0.5.

(b) Separation of the total viscosity in Fig. 1(a) into each component, translational (circle)
collisional (triangle), and gravitational (square) viscosity for T = 0.5.

3 NUMERICAL RESULTS

In almost previous studies, self-gravity was ignored in calculation of the ring’s viscosity. We first see the influence of
self-gravity force between particles on the ring’s viscosity. To do so, we performed simulations with various value of
rn/2rp for fixed T and obtained the total viscosity. Our numerical results are shown in Fig. 1.

Figure 1(a) shows the total viscosity as a function of ry/2r, for 7 = 0.2 (filled triangle) and r = 0.5 (filled circle).
Simulations for r,/2r, = 0 correspond to the non self-gravitating particle cases and our results of the simulations are
consistent with Araki and Tremaine (1986) and Wisdom and Tremaine (1988). This figure shows that for ry/2r, < 0.5,
the values of the total viscosity in both optical depth cases are similar to these in non self-gravitating cases, whereas
they are increasing with increase of ry/2rp, for the range of ry/2r, > 0.5. Such increase in the viscosity may be due to
the effect of self-gravity of particles, since increase of rn/2r, leads to the rather strong effect of self-gravity. This feature
is independent on the optical depth, but the enhance rate of the viscosity would depend on optical depth. The Saturn’s
main ring satisfies the condition of ry /27, > 0.5, so that our result indicates that the self-gravity play an important role
on the transport mechanism of angular momentum in the ring. From Fig. 1(a), we can see that the viscosity for 7 = 0.5
is enhanced by factor 10 relative to non self-gravitating case with the same optical depth, and more than factor 2 even
in relatively thin case of 7 = 0.2 at the typical B-ring’s parameter of rv/2r, (rn/2rp = 0.82). The observational value
of the optical depth in the B-ring exceeds unity (e.g, Esposito 1993), so that our result indicates that the viscosity is at
least 10 times larger than that considered before due to the effect of self-gravity.

As mentioned before, we separately calculated the translational, collisional, and gravitational viscosity. In order to
examine what component of viscosity regulate the total viscosity which shows large increase for large r, /27p in Fig. 1(a),
we next see the individual component of the viscosity. We divide the total viscosity shown in Fig. 1(a) into each component
and plot them in Fig. 1(b). Note that Fig. 2 is a expanded view of Fig. 1(a) in the region from r,/2r, = 0.5 to ry /27, = 1.0
and the case for r = 0.5 is only displayed. In this case, our simulations show the wake formation for ry/2r, > 0.7. The
value of ry/2r,, for the wake formation would depend on the optical depth r adopted in a simulation. For larger optical
depth, we can see wake formation at rather small ry, /2rp.

We can cleatly see in Fig 1(b) that for large rn/2rp, where wake develops (rn/2rp > 0.7), translational and grav-
itational viscosity become the same order, but collisional viscosity is much smaller than these two. This means that
the translational and gravitational viscosity is responsible for large increase in the total viscosity seen in Fig. 1(a).
The same features can also be obtained by simulations with different optical depth in which wake formation occurs.
The mechanism which dominates the viscosity in the ring where wake develops is quite different from that in the non
self-gravitating particle case. According to Araki and Tremaine (1986) and Wisdom and Tremaine (1988), the viscosity
in the non-gravitating particle case is determined by translational viscosity for low optical depth, whereas collisional
viscosity is dominant for large optical depth where mean tree path is comparable with or less than particle radius. Our
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result show.s that when wakes develops due to self-gravity and collisional damping strongly, the viscosity is determined
by translational and gravitational viscosity and collisional viscosity is less significance.

4 SUMMARY

In this study, we have investigated the ring’s viscosity by local N-body simulations with self-gravitating and inelastic
'particle.s. Our simulations showed that the factor which determine the ring’s viscosity is quite different from that obtained
in pervious studies. The viscosity in ring where wake develops becomes more than 10 times larger than that obtained
in previous studies without self-gravity force. Our simulations also shows that such increase in the total viscosity comes
from translational and gravitational viscosity and increase in these components is related with the wake formation. By
formation of non-axisymmetrical structure (wake), gravitational torque could be strengthened and it leads to rather larger
momentum transport by self-gravity. As a result, gravitational viscosity increases. The reason of increase in translational
viscosity is the coherent motion of particles in wakes induced by self-gravity force (Salo, 1995; Daisaka and Ida, 1999).
Coherent motion could provide momentum transport rather larger than that due to real random motion of particles
in wakes. Wake itself is induced by the effect of self-gravity and collisional damping of particles. So we can state that
self-gravity regulates the ring’s viscosity.

In this proceeding, we only introduce the results of simulations with various value of the ration r /27, but fixed optical
depth 7. As mentioned before, the system is characterized by these two parameters. We have also performed simulations
with various value of . Together with simulations with such various parameters, we can obtain the description of the
ring’s viscosity where wake develops. We already find that the translational and gravitational viscosity is given by simple
formula as

232
Viot = Vtrans + Vgrav & 10%, (3)
where Viot, Virans, and Vgray Iepresent the total, translational, and gravitational viscosity, and G, €, and L are the
gravitational constant, the angular velocity, and surface mass density. This could be obtained from easy estimation of
gravitational torque and momentum transport due to coherent motion and is the same formula with analytical expression
proposed by Cameron and Ward (1978) and Lin and Pringle (1987).
More detail results would appear in the near future in Daisaka et al. (2000).
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We have investigated the effects of a passing stellar encounter on a planetesimal disk
through orbital integrations and analytical calculations. When stars are born, they usually
belong to a cluster, which would be dissolved on timescales of 108 years. Planetary systems
around the stars in a cluster experience stellar encounters during their formation stage.
Stellar encounters may have also affected the formation of the solar system.

We modeled a planetesimal disk as non-self-gravitating test particles rotating around a
primary star and consider a single passing stellar encounter. We integrated orbits of 10000-
body test particles in the disk encountering the star with various encounter parameters.
The eccentricities ¢ and inclinations ¢ pumped-up by the stellar perturbations show similar
functional form except for some scaling factors, irrespective of different encounter parameters.
We found e « (a/q)%? and i  (a/q)%?, for small a/q (in the case of parabolic encounter,
a/q S 0.25), where a is semimajor axis of the particle and g is pericenter distance between
the primary star and the passing star, We also derived approximate analytical formulae of
the purpped-up e and ¢ in this region, which completely agree with the results of orbital
calculations. The formulae explicitly show how the pumped-up e and 7 depend on encounter
parameters. For larger a/q, resonant interactions are important and e and 7 increase more
rapidly with a. Using these results, we discuss the effects of stellar encounters on planetary
formation and diversity planetary systems.

1 Introduction

In general, stars are born as members of an open cluster. Stellar clusters would be dissolved
on timescales about 10® years (Kroupa 1995, 1998). This dissolution would be caused by
gravitational interactions between stars, so that many stars experience gravitational per-
turbations of the other stars during the dissolution. More than half of T Tauri stars have
protoplanetary disks (Beckwith and Sargent 1996), which would eventually form planetary
systems. Planetary systems would also be affected by stellar encounters during their forma-
tion stage.
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Laughlin & Adams (1998) suggested that a stellar encounter with pericenter distance
g ~ 200 AU is likely before the dissolution of a dense cluster like Orion star forming region.
Ida et. al (2000) have showed that high cccentricities e and inclinations ¢ of outer Kuiper
Belt objects may be explained by a stellar encounter with ¢ ~ 100-200 AU. Ida et. al (2000)
and Kalas et al. (2000) suggested that commonly observed features of distortion in outer
parts of dust-debris disks may be caused by stellar encounters.

Planets accrete from planetesimals that are formed in a protoplanetary disk. If stellar
encounters pump up e and ¢ highly enough that collision velocity between planetesimals
exceeds their surface escape velocity, the collision would be disruptive (e.g., Safronov 1969,
Ohtsuki 1993). Then, planctesimal accretion would be forestalled. As we will show below, e
and 7 are pumped-up only in the outer disk and the radial gradient of e and i is rather steep.
Planet formation is affected only in the outer region of the disk. Variety of stellar encounters
may cause diversity of planetary systems, in particular, in outer region of the systems.

Thus stellar encounters may have significant effects on planet formation, however, no
systematic study has been done about dynamics of stellar encounters with a planetesimal
disk. Here we investigate the effects of stellar encounters on a planetesimal disk through
orbital integrations and analytical calculations.

2 Model and Basic Equation

We model a planetesimal disk as non-self-gravitating, collisionless particles that initially have
coplanag circular orbits around a primary star. This particle disk encounters a hypothetical
passing star. The orbits of the test particles are determined by gravitational forces of the
primary and the passing stars. Equation of motion of a planetesimal in inertial frame is

d?Ry GM, G M,
= — _(Rg — Ry) - ———2 —(Ro — Ry), (1)
dt? | Ro — Ry |J( o~ Ri) | Ro — Ry 13(R" 2)

where M; and M, are masses of the primary and the passing stars, and Rg, Ry, and R are
position vectors of the planetesimal, the primary star, and the passing star in the inertial

frame, respectively. Since
d’R, GM,

2~ |R;—Rg 3

(R1 — Ra), (2)

the equation of motion of a planetesimal in the heliocentric frame (the frame with the primary

-

d2r GM1 G]Mg GM2
dr _ _ R-r1)— =R, 3
= TP T TR=rP DT IRP 3)

star at rest) is
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where r = Rg — R; and R = Ry — Ry, which are position vectors of the planetsimal and
the passing star relative to the position of the primary star. The first term in the r. h. s.
corresponds to Kepler motion around the primary star, and the second and third terms are

perturbing forces. . .
We scale length by pericenter distance ¢, mass by the primary star mass M, and time by

Qiep Where Qep is Keplerian frequency at a = g given by \/GM,/q3. Equation(3) is then

transformed into R .
ﬁ _ r M,(f-R) M.R (4)

dt”z__lf.la_lf._f,”s |R|3’
where M, = My/M,, ¥ =r/q, R = R/q, and { = Q.pt. We calculate changes in e and 1 of

the planetesimal according to Eq.(3) or Eq.(4), through orbital integrations and analytical
estimations.

3 Numerical Simulations

We integrated orbits of 10000 particles with surface number density n, a~3/2. We inte-
grate Eq.(4), using a fourth order predictor-corrector scheme. Many variations of encounter
geometry, encounter velocity, and passing star mass were examined. Since the length is
scaled by the pericenter distance of passing star g, parameters are the inclination of orbit
of the passing star relative to the initial planetesimal disk (7,), the orbital energy or orbital
cccentricity of the passing star (e,), the argument of perihelion(w,), and the scaled passing
star mass (M,). The encounter geometry is illustrated in Figure 1.

Figure 2 shows time evolution of e and 7 and corresponding face-on snapshots in the case
with e, = 1 (parabolic orbit), i, = 5 degrees, w, = 90 degrees, and M, = 1. e and ¢ of
planctesimals are most excited when the passing star is near the perihelion. For a/q < 0.25,
final pumped-up e and i (in radian) are < 0.01-0.1. In this linear region, e o (a/g)*? and
i « (a/q)*?. Change in semimajor axis Aa/a is much smaller than that in e and i. This

is because angular velocity of the planetesimals, 2, = {/GM;/a3, in this regime is much

larger than that of the passing star near perihelion, 2, ~ \/G'(Ml + M;)(1+e,)/q3. The
gravitational potential of the passing star is almost stationary for the planetesimals, which
means their orbital energy and equivalently their a do not change.

For a/q 2 0.25, e and % increase more rapidly with a. Many particles are ejected for
a/q 2 0.3. Some particles are captured by the passing star. In this region, £, is of the same
order of §2,, so that resonant interactions are important. Since locations of planetesimals at
the pericenter passage of the star affect the resultant e and ¢ in this region, e and ¢ have
some range for the same a.
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.-~ ascending node

Figure 1: The encounter geometry

The condition of »n : 1 commensurability is Q,/8, = (a/q)3/2\/(1 + M,)(1+e) =1/n.
The n : 1 commensurability is located at a/q = [(1 + M.)(1 + e,)n?|"Y/3. In the present
case, the 4:1 and 3:1 are at a/q ~ 0.25 and 0.30, respectively. The locations of 4:1 and 3:1
commensurabilities correspond to the abrupt increase in e and 7 and the ejection of many
particles, respectively.

These features are almost independent of i,, w,, and M, except for the case with 7, =
where 7 is not pumped up at all. The graphs just shift upward or downward depending on
these parameters. The dependence is analytically derived in section 4.

Figure 3 shows the dependence on e, in the case with ¢, = 5 degrees, w., = 90 de-
grees, and M, = 1. As e, increases, the linear regime where ¢ oc (a/q)%? and i o
(a/q)%/? is restricted to smaller a/q, because the condition of the linear region is £2,/8, =

(a/q)3/2\/(1 + M,)(1 +e,) < 1. The 4 : 1 commensurability that may mark the boundary
between the linear and resonant regions is at a/¢ = 0.14 and 0.07 for e, = 10 and 100,

respectively.

On the other hand, for large e,, the region §./Q, > 1 is also important. Q,/, > 1
at a/q > 0.17 and 0.36 for e, = 100 and 10; respectively (for e, = 1, at a/q > 0.63).
Figures 3 suggest some power-law dependence of e and 7 on a/q in this region, although
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Figure 2: Right and left panels are evolution of orbital eccentricity e and inclination ¢ of the
particles pumped up by a passing star, as a function of semimajor axis a. Central panels arc
face-on snapshots of particles’ disk and companion.
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some divergence is caused by different locations of planetesimals at the pericenter passage of
the star. The increasc in e and ¢ with a is less steep in this region than in the resonant region.
Note that there is no commesurability of L/ = n (n > 1) while those of /R, = 1/n
(n > 1) exist, because the passing star potential has Fourier components with nQ, but not
(1/n)Q..

In summary, the features of the pumped-up e and i are divided into three regions : (1)
The region with L./, < 1, where ¢ o (a/q)%? and i o (a/q)¥?, (2) the region with
2,/ S 1, where resonant interactions are important and e and 7 rapidly increase with a,
(3) the region with Q,/€, > 1. In the next section, we derive analytical formula of ¢ and ¢
in the region (1).

4 Analytical Calculation

We derive analytical formula of pumped-up e and i in the linear region. Orbital integrations
show that in that region, e = eg(a/q)%? and i = iy(a/q)*/?, where e, and iy are constant.
The analytical formula explain these dependence on (a/q) as well as dependence of ¢y and
ig on M,, 7, and e,.

4.1 Pumped-Up Inclination

We estimate change of perpendicular velocity, Av,, of the planetesimal. The change occurs
mainly near the pericenter as the numerical simulations show. As seen in Eq.(3), near the
pericenter where | R | ~ | R —r | ~ ¢, the two perturbing forces in the r. h. d. of Eq.(3)
almost cancel and the magnitude of net perturbing force in the z-direction (F}) is

01;42 T sini,. (5)

In the lincar region, the planetesimal orbit is primarily Keplerian orbit even during an
encounter. v, oscillates on Keplerian orbit. If dv,/dt has different signs at the opposite
points of the Keplerian orbit, the amplitude of v, is secularly increased. F, changes sign
depending on whether | r — Rz |>| Ry — Ry | or not, so that dv./dt has differcnt signs at
the opposite points. Thus, Av, secularly increases during the stellar encounter.

The effective time scale of the encounter is At ~ 2¢/v, (e.g., Binney and Tremaine 1987)

where v, is passing speed near the pericenter. Since v, ~ \/G(Ml + M3)(1 +e.)/q, At ~

2 (E:Utﬂﬂq;{)ﬁm)l/z .(6)The total change of Av, is ~| F, | At. The change of inclination,
Ai, is ~ Av,[vkep where vkep is Keplerian velocity of the planetesimal, which is given by
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(c) ex=100

Figure 3: Orbital eccentricity e and inclination 7 of particles pumped-up by a passing star,
as a function of semimajor axis a. M, = 1, i, = 5 degrees, w = 90 degrees are assumed
for the passing star: (a) the case with e, = 1, (b) the case with e, = 10, (c) the case with
e, = 100.
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(GM, /a)"/2. The total change of inclination is thus

M, a\3?
Al ~ : - ini,.
VI + M) (1 +e,) (Q) i ()

4.2 Pumped-Up Eccentricity

We estimate change of velocity in the angular direction, Avy, of the planetesimal. The
magnitude of net perturbing force in the §-direction is

GM2 a
(]2 . (8)

Also in this case, Fj changes sign depending on whether | r — R, |> | Ry — R, | or not.
Furthermore, dvp/dt also has opposite signs between right and left hand sides from the line
of sight between the primary and passing stars. Hence, Avp almost cancels during Keplerian
time ({kep). Net change should be a/q times amplitude of Avy during tye,. The amplitude
is ~ Fylkep- The rotation number during At is At/tke,. Thereby, the total Avy during the
encounter is

| Fp |~

a
Avp ot ~ EFoAt. (9)
Since the change of eccentricity, Ae, is ~ Avp/vkep, the total change of eccentricity is
M. 5/2
Ae ~ (E) (10)
\f(1+M,)(l+e.) q

5 Conclusion & Discursion

We have studied the effect of a stellar encounter on a planetesimal disk through orbital
integration and analytical calculations. Through our simulation, we found that the features
of the pumped-up e and i are different in three cases. Q./Q, < 1,./9, £ 1and Q,/Q, > 1,
where €2, and (1, are the angular velocity of a passing star at perihelion and Keplerian
angular velocity of particles. In the region with ,/Q, < 1 (a/q is small), e o (a/q)%? and
i o (a/q)*%. In this region, we derided analytical formulas of e and i. They are consistent
with the orbital calculations. This analytical calculation clearly shows the dependence of
the pumped-up e and 7 on the parameters of the encounter.

In the outer disk with ./€, < 1, resonant interactions are important and e and 7 rapidly
increase with a. In the outermost region with ©,/€Q, > 1. the increase in e and ¢ with a
becomes slow again, because there is no strong resonance there.
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If e and ¢ are pumped-up so highly that the collision velocity between planetesimals
exceeds their surface escape velocity, the collisions would lead to disruption of the planetes-
imals. In this region, further planetesimal accretion would be inhibited. Since the radial
gradient of pumped-up e and ¢ is rather steep, the inhibition of planet formation would be
shapely restricted to outer region of the disk. If probability of ¢ is given, we can predict
the diversity of planetary systems caused by stellar encounters, such as truncation size of a
system and e and 7 of planets in outer region.

The disruptive collisions would produce a plenty of dusts that still have orbits of large e
and ¢, which may account for observed distorted dust-debris disks.

In the case of slow velocity encounter, such as parabolic orbit encounter, the passing star
capture the particles that originally rotate at the primary star. There may be planetesimals
of extrasolar origin.
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Long-term stability of our solar system
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This article is devoted to describe the strong stability of planetary motions in our solar
system. In many kinds of long-term numerical integrations as well as in the results of
secular perturbation theories, all the planets remain in the system stable ncar their own
initial orbits in spite of their exhibition of chaotic dynamical characters. We present one
of our trials of several long-term numerical integrations of planetary orbital motions over
O(10?)-year timespan. Time-series and time-frequency analyses of our numerical data show
that the planetary motion, at least in our simple dynamical model, may be quite stable
in this timespan. The innermost planet, Mercury, would show a symptom of some deficit
in its angular momentum (i.e. eccentricity and inclination of the planet may be somewhat
increased), the effect is not fatal on the global stability of whole planetary system due to
the small mass of Mercury. The orbital motion of Earth which can have a potentially large
effect on its surface climate system through solar insolation variations is also found to be
stable.

1. Definition of the problem: what should we seek for?

The stability of our solar system has been argued over several hundred years, since the era
of Newton. The problem has attracted many famous mathematicians over the period (Laplace,
Lagrange, Poincaré, Arnold, etc.) and has played a central role in the development of nonlinear
dynamics and chaos theory. However, we do not yet have any definite answer of the question:
whether our solar system is stable or not. This is partly due because the definition of the term
“stability” is quite vague when it is used on the problem of planetary motion in the solar system.
Actually it is pretty difficult to give a clear, rigorous, and physically meaningful definition on
the stability of our solar system. In other aspect, we can say that there are as many definitions
of stability as the number of researchers for these hundreds of years.

Among many kinds of definition of stability, here we adopt the Hill stability criteria (Gladman,
1993); strictly speaking it is not a definition of stability, but of instability. We define that
a system becomes unstable when a close encounter occurs somewhere, starting from certain
initial configuration (Chambers et al., 1996; Ito and Tanikawa, 1999). A system is defined to
experience a close encounter when two bodies approach one another within the size of the larger
Hill radius. Otherwise the system is considered to be stable. Definition of the instability here
can be replaced by occurrence of any orbital crossing between either pair of planets, since we
know by experiences that an orbital crossing soon leads to a close encounter in planetary and
protoplanetary systems (Yoshinaga et al., 1999).

Henceforward we state that our planctary system is dynamically stable if no close encounter
happens in the age of our solar system, T ~ %5 x 10° years. Actually, our solar system seems
to be far more stable than what is defined by the Hill stability criterion: not only no close
encounter happens, but also orbital motions of planets remain quasiperiodic in that timespan,
as shown in the following sections.
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2. Equations of motion and initial conditions

To investigate the stability of our solar system, it is necessary to solve the equations of motion
in the inertial space

Pz; L Gmy
=) +a; (1)
3 1)
i
where i denotes the index for each celestial body (Sun, Mercury, Venus, ..., Pluto), ; and m; is

the position and mass of the i-th particle in the inertial space respectively, G is the gravitational
constant, N is the number of particles, and a; represents any small extra acceleration arising
from sources other than Newtonian gravitational interactions between the planets and the Sun.

Equation (1) is rewritten in the relative coordinates to the Sun by using the relative position

vector to the Sun r; as

dPri _ G(Mo+mi) <~ Gm ¥ Gm;

=- ri+) ——(ri—rj)— ) —3rjta; 2

di? r} A=A (ri=rj) ,.z=:|r,-|3 rem @)
J#i i

where the first term in the right-hand side of equation (2) is the acceleration for Keplerian
motion, and the second and third terms denote perturbation to the two-body orbital motion.
Mg denotes the solar mass.

The small acceleration a; (or a;) includes for example (Tremaine, 1995): satellites, general
relativity, asteroids, the galaxy, nearby stars, passing stars, and solar mass loss. In this chapter
we neglect all the effect from a; and other dissipative forces: we consider our planetary system
as a nonlinear Hamiltonian system, dominated only by Newtonian gravitational force between
the planets and the Sun.

At present, the longest numerical integrations published in a journal is Duncan and Lissauer
(1998). Although their main target is the effect of post-main-sequence solar mass loss on the
stability of our planetary system, they performed many integrations up to 101! years of four
jovian planets’ orbital motion. The initial orbital elements of planets are the same as of our solar
gystem, but the solar mass decreases relative to those of planets in their experiments. They
found that orbit crossing times of planets, which can be a typical indicator of an instability
timescale, are quite sensitive to the degree of the sun’s mass decrease. The reduction of the
sun’s mass induces the reduction of the instability, probably increasing the mutual Hill radii
among planets. However when the sun’s mass is not so different from the present value, jovian
planets remains stable over 1010 years, or perhaps more. They also performed four similar
experiments on the orbital motion of seven planets (Venus to Neptune) which span ~ 10? years.
Their experiments on the seven planets is not yet comprehensive, but it seems that terrestrial
planets also remain stable during the period, keeping quasiperiodic oscillations similar to the
present one.

Table 1 summarizes some historical investigations of the long-term evolution of our solar
* system. Many of them follow only the outer five planets (Jupiter to Pluto) since: (1) the
masses of inner terrestrial planets are so small that the outer planets form an independent
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dynamical system; (2) the orbital periods of the outer planets are longer so it is easier to follow
the system for a given time.

A thorough understanding of the long-term evolution of planetary orbits would require in-
tegrating an ensemble of planetary systems for 5-10 Gyr. This task is still more than two or
three orders of magnitude beyond our present capability for N-body integrations (Tremaine,
1995). Nevertheless, even by shorter integrations, we can understand several principal features
of dynamical evolution of the planetary system over its lifetime as we show in the next section.

Table 1. Historical summary of major numerical integrations of solar system planetary orbital
motion. Adapted and modified from Tremaine (1995). At is stepsize of the integration and T
is the longest integration period.

Authors At (d) T (yr) planets used machine
Eckert et al. (1951) 40 3.5x102  outer 5  mainframe
Cohen & Hubbard (1965) 40 1.2x10° outer 5  mainframe
Cohen et al. (1973) 40 1.0x10°  outer 5  mainframe
Newhall et al. (1983) 0.25 4.4 x 10> whole 9 +& mainframe
Kinoshita & Nakai (1984) 40 50x 105  outer 5  mainframe
Applegate et al. (1986) 40 2.17x 105  outer 5  special-purpose

Richardson & Walker (1989) 0.5 2.0x10° whole9  mainframe
Sussman & Wisdom (1988) 32.7 8.45x108 outer 5 special-purpose
Nobili et al. (1989) 40 1.0x 108  outer 5  vector super
Quinn et al. (1991) 0.75 +30x10%5 whole9  workstation
Wisdom & Holman (1991) 1 (yr) 1.1 x 10° outer 5 workstation
Sussman & Wisdom (1992) 7.2 1.0x 10°  whole 9  special-purpose

Kinoshita & Nakai (1996) 40 +55x10° outer 5  PC (i386)
Tto et al. (1996) 400 4.3 x 1010 outer 5 workstation
Duncan & Lissauer (1998) -~ ~1x10%  jovian4  —

Duncan & Lissauer (1998) - ~1x10° 7(RtoY¥) —

3. Longer-term integrations of planetary orbits

Laskar (1994, 1996) finds in his accurate perturbation theory that large and irregular varia-
tions appear in the eccentricities and inclinations of the terrestrial planets, especially Mercury
and Mars in the timescale of several 10° years. Behavior of planetary orbits in such a long times-
pan has not been investigated by numerical integrations of equations of motion in detail so far.
We performed seven long-term numerical integrations on whole nine planetary orbits which span
several 10° years, and two integrations spanning =5 x 10! years (Table 2). Total elapsed time
for whole integrations is more than five years using several dedicated PC compatibles, SPARC,

DEC, and Hewlett-Packard workstations.
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Table 2. Description of our 9 long-term numerical integrations. Top seven target whole 9
planets (At = 8d), and bottom two are for outer 5 planets (At = 400d). Initial orbital elements
of the couples jan25 and emb-minus, and plus and plus_u03 are a little bit different. In addition,
we slightly increase Sun’s mass to make a different initial conditions in emb-plus-l integration.
In 50G+ integrations we incorporate the masses of inner four planets into Sun’s mass.

ID planets direction T (yr) notes
minus  whole9  past 4.1 x10° Earth
emb-minus whole 9  past 3.9 x 10° Earth-Moon baricenter

jan25 whole 9  past 4.1 x 10° Earth-Moon baricenter
plus whole 9  future 1.7 x 10° Earth
plus.u03  whole 9  future  1.5x 10° Earth
emb-plus whole 9  future 5.0 x 109 Earth-Moon baricenter
emb-plus-l whole 9  future 4.2 x 109 Earth-Moon baricenter, increased Sun’s mass
50G— outer 5 past 5.0 x 101 Sun incorporates inner planets’ mass
50G+ outer 5 future 5.0 x 1010 Sun incorporates inner planets’ mass

3.1 Models and methods

We solved equations of motion (1) without any forces other than the mutual classical gravita-
tion among planets, i.e. a; =0 in (1). Effect of the Moon is bunched into the mass of Earth, or
simply neglected in some experiments. Initial orbital elements are taken from the Development
Ephemeris of JPL, DE245 (cf. Standish 1990).

We utilize the second-order Wisdom-Holman symplectic map as the main integration method
(Wisdom and Holman 1991, Kinoshita et al. 1991) with a special start-up procedure to reduce
the truncation error of angle variables, “warm start” (Saha and Tremaine 1992, 1994).

Stepsize for the numerical integrations is 8 days in the case of whole nine planets, which is
about 1/11 of the shortest (Mercury’s ) orbital period. Wisdom and Holman (1991) performed
numerical integration of jovian planets plus Pluto using the mapping method with the stepsize
of 400 days, 1/10.83 of Jupiter’s orbital period. Their result seems to be accurate enough,
which partly justify our way of stepsize determination. We follow them in the case of outer five
planets, choosing 400 days of stepsize.

We adopt Gaufi’s f- and g- functions in the mapping together with the third order Halley’s
method (Danby, 1992) as a solver of Kepler equations. Number of the maximum iteration in the
Halley’s method we set is 15, but it never reached the maximum in any of our integrations. As
for the Kepler’s equation solver, a series of recent work by Fukushima (&5, 1980; Fukushima,
1996; Fukushima, 1997e; Fukushima, 1997b; Fukushima, 1997d; Fukushima, 1997a; Fukushima,
1997¢; Fukushima, 1998), which succeed to eliminate all transcendental functions in the solving
algorithm of Kepler’s equation, will be a powerful tool both in accuracy and computational
speed. We have just begun to implement one of his methods in our simulation code.

Interval of data output is 200000 days (~ 547 years) for whole 9 planets calculation, and
about 8000000 days (~ 21903 years) for outer 5 planets integration.

In some part of our integrations, mainly to check accuracy of main integrations, we also use
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the Bulirsch-Stoer extrapolation method (Gragg, 1965; Bulirsch and Stoer, 1966; Hairer et al.,
1993) which can be well parallelized ({85, 1992; Ito and Fukushima, 1997).

The integration length of +£5 x 10'° years on the outer five planets seems to have no sense
since the age of the solar system is thought to be 1 x 1010 years. Here our intention is to show
the rigorous stability of outer solar system in this timespan using a simple numerical model,
not to insist that the solar system really exists during that interval.

We are now planning to integrate more accurate equations of motion including the effect of
Moon and general relativity (cf. Quinn et al. 1991), utilizing the Picard-Chebyshev numerical
perturbation technique which can be quite suitable for vector integration (Fukushima, 1997d;
Fukushima, 1997f).

3.1.1 ZError estimation

The integration seems to be accurate enough: for example in the case of whole nine planets
integration, the averaged relative errors of total energy ({(§E/E,) ~ 10~° where 6F is the
maximum change of the total energy and Ej is its initial value) and of total angular momentum
((6A/Ag) ~ 107! where §A is the maximum change of angular momentum and Ay is its initial
value) are kept nearly constant through the whole integration. Warm start reduces the averaged
relative error of the total energy by one order of magnitude or more in this case compared with
the symplectic map without it. In the case of outer five planets case, (§E/E) ~ 10~6 and
(6A/Ag) ~ 10710, These errors are plotted in Figure 1. Different operating systems (and math
libraries) and hardwares produce different numerical errors through the way of round-off error
handling and numerical algorithm.

Since symplectic integrators preserve total energy and total angular momentum of N-body
systems inherently well, they may not be a good measure for accuracy of numerical integration.
To estimate the numerical error in orbital integrations, we compare the result of main integration
with some test integrations which is much more accurate than the main integrations. For this
purpose, a very accurate integrations which span 3 x 10° years have been done by the parallelized
Bulirsch-Stoer extrapolation method (Ito and Fukushima, 1997). Result of the time reversal
test (starting from ¢t = 0 to ¢t = 3 x 10° years, then going back to the starting point reversely,
and measure the difference between the initial values) shows that the difference in Earth’s mean
anomaly is ~ 0.0015° at ¢ = 0 point. Since the error of longitudes increases linearly with time
in the extrapolation method, we can extrapolate this value to the period of +5 x 10° years
as 0.0015 x (5 x 10%)/(3 x 10%) ~ 25°. We should consider this quite small, so we adopt this
integration by the extrapolation method as a measure of main integrations. Then we compare
this accurate measure integration with main integrations. For the period of 3 x 10° years, a
typical difference between these two integrations is Aleqrtn ~ 0.52°, which can be extrapolated
to the value ~ 8700°, about 25 rotations of Earth after 5 Gyr. Similarly, longitude error of
Pluto can be estimated as Alys, ~ 12°. This value for Pluto is much better than the result in
Kinoshita and Nakai (1996) where Alyyq, ~ 60°.

51



I

2 minus  +

x
plus =

-10.0 | ; e =

-15.0 |- -q‘-"'m__qx -
-20.0 i -

-25.0

whole 9 (dAJAO0 [*10711])

8.0 .
6.0 - emb-plus
40 : : emb-p uls-l
2.0 -
0.0 =
2.0 -
-4.0 =
-6.0
-8.0

whole 9 (dE/EO [*1019])

25 ; , ! ,

1.5 |- i ¥ 5

1.0k " . X =

outer 5 (dA/AQ [*10710])

) . N Msesewsecns st oSssa .

6.0 , ; ! .
4.0 |- : 50
2.0 [ ; :
0.0 |-

o+ +
hag
HHAEE #

R+

HH+ + 4
+

20 | + vl
4.0 + * x W

3
outer 5 (dE/EO [*10/6])

-8.0 I 1 | 1 X s 1
Time{Gyr]

Figure 1. Relative numerical error of total angular momentum 6A4/A4y and total energy §E/E
in the numerical integrations for whole nine planets (upper two panels, minus, plus, emb-plus-I,
emb-minus, emb-plus, jan25) and for outer five planets (lower two panels, 50G+, 50G-).
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Figure 2. Vertical view of the four inner planetary orbits in leading (left, ¢ ~ 0) and trailing
(right, t ~ +3 x 108 years) part of emb-plus-| series. Jacobi coordinates centered at the Sun
is used. The unit of axes are AU. The zy-plane is set to the invariant plane of solar system
angular momentum. Total 23684 points are plotted with an interval of about 2190 ycars during
the total data-length of about 5.19 x 107 years.
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Figure 3. Orbital configuration of outer five planets in leading (left, ¢ ~ 0) and trailing (right,
t ~ +5 x 10!0 years) part of 50G+ serics. Total 23810 points are plotted with an interval of
about 87611 years during the total data-length of about 2.09 x 10® years.
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3.2 General description of the stability of planetary orbits

We briefly look at the general and specific characters of the stability of planetary orbits.
In a word, orbital motion of our planetary system remains rigorously stable during the whole
integration periods, which is partly shown in three-dimensional orbit configurations such as
Figure 2.

Leading and trailing parts of eccentricities of four inner planets in minus and emb-plus-|
datasets are shown in Figure 4 (panels in top and middle steps). Variation of Mercury’s ec-
centricity seems to have changed a little bit between the leading and trailing parts in these
integrations, especially in minus dataset. But the effect would not be fatal on the global sta-
bility of the whole planetary system due to the small mass of Mercury. Inclinations of the four
planets also show similar stable behaviour. As for the extensive £5 x 10'%-year integrations on
the outer five planets, they show much more rigorous stability than the inner four (Figure 3.
Note that a rotation is applied to the coordinate system so that Pluto’s ascending node always
lies on z-axis. This transformation makes the figures easier to look at since inclination and
eccentricity of Pluto is much larger than those of other planets). Leading and trailing parts of
eccentricities of the £5 x 10!0-year integrations are shown in Figure 4 (panels in bottom step).
Oscillations of eccentricity of all five planets indicate excellent quasi-periodicity.

These results support the fact that our planetary system remains stable during its whole
age, though the motion of planets shows weak chaotic characters (cf. Milani and Nobili 1997,
Pilat-Lohinger et al. 1999, Sidlichovskyj 1999).

3.2.1 Low-pass filtering and Delauney elements

Time variation of orbital elements is in a sense buried in short periodic oscillations as we
can see in Figure 6. This means that the planetary orbital motion is nearly quasiperiodic and
dominated by the harmonic oscillation of some canonical variables (h;, k;) and (p;, ¢;) where h; =
e;sinw;, k; = e;cosw;, p; =8inl/28inY;, ¢; =sinl/2cosQy, and i = 1...9 (cf. Brouwer and
van Woerkom 1950). However, what we want to know by the long-term numerical integrations
is not the short periodic oscillation but longer-term evolution of the system. For this purpose
we should remove the short periodic oscillation by some way and extract long-periodic, or if
any, secular component buried in the raw data.

To extract the long-periodic or secular components, we applied low-pass filters on the raw
orbital elements described in Figure 6. Specifications of the low-pass filters are listed in Table
3. When we denote filter coefficients as h;(j =0, ..., M), input data z; and output data y; are
related as (=L, 1998)

M
yi=Y hiZi_j (3)
2.

where M is the degree of the filter. Filter coefficients in frequency and time domain are displayed
in Figure 5 for whole nine planet case (cut-off period is 5 x 107 years). Characteristics of the
filter in outer five planet case is the same except cut-off frequency.

An example of low-pass filtered orbital elements are depicted in Figure 7 whose raw orbital
elements and their running averages are shown in Figure 6. Note that the absolute value of the
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Table 3. Specification of low-pass filter used in this research.

whole 9 outer 5
Cut-off period (year) 5 x 107 5 x 108
Degree of filter (M) 5001 10001
Filter length (years) ~2.74 x 108 ~2.19 x 10°

Worst reduction ratio (dB)

100

25



elements are somewhat reduced because of the nature of band-pass filters. However since the
amplitude reduction is small (i.e. worst reduction ratio equals to 100 dB), we think the filtered
elements are worthy of quantitative discussion.

To look at the exchange of physical quantity such as energy or angular momentum among
planets, we calculate the Delauney elements from the low-pass filtered orbital elements. De-
launey elements are a set of canonical variables which are defined by Kepler elements as follows:

L = na? = /pa, =1,
G=LVi-e2=\/pa(l-¢€?), g=w, (4)
H=GcosI=+/pa(l—e2)cosI, h=%.

Angles I, g,h are just equivalent to mean anomaly, argument of perihelion, longitude of as-
cending node of Kepler orbital elements, respectively. Actions G and H are equivalent to
angular momentum and its vertical component per unit mass of each planet. L is related to
orbital energy E per unit mass as B = —p?/2L2.

An example of resulting Delauney action G based on the low-pass filtered orbital elements
(Figure 7) is drawn in Figure 8. Note that all the variables are multiplied by mass of the planets.

0.003 v v —

0.002

Ampiitude ratio flog{outputiinput))

; . A 0.001 , A R A
0 20-08 40-08 60-08 8008 16-07 0 1000 2000 3000 4000 5000
Froquency [1/years] i

Figure 5. Frequency domain (left) and time domain (right) characteristics of low-pass filter
adopted for whole 9 planets integrations (cut-off period ~ 107 years). Filter length is 5001 x dt
where dt is the step-interval of original data (d¢ = 2 x 108 days in these cases).

3.2.2 Long-term exchange of energy and angular momentum and stability

We obtain very low-frequency oscillation of planetary orbital motion by the low-pass filtering
method. Using these filtered elements, we can calculate the variation of total energy and total
angular momentum of the planetary system in very low-frequency domain.

If the system is completely linear, energy and angular momentum in each frequency-bin
must be constant. Nonlinearity in the planetary system can cause the exchange of energy
and angular momentum in frequency domain. In addition, amplitude of the lowest frequency
oscillation should become larger if the system would be unstable and break down gradually.
Such a symptom of instability was not found in our integrations, even in 5 x 10° timespan
for outer five planets. It means that the present planetary system is rigorously stable, at least
10%-year timescale.
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In Figures 9 through 16 we show several panels for each time-series data which indicate the
long-range variation of total energy and angular momentum. Upper three (or six) panels for
each time-series show the long-periodic variation of total energy (noted as E-E0), total angular
momentum (G-G0), and its vertical component (H-HO) calculated from the low-pass filtered
orbital elements described in the previous section. EQ, GO, HO denotes the initial values of each
quantity, and absolute difference from the initial values are plotted in the panels. For whole
nine planets integrations (minus, plus, emb-minus, emb-plus, emb-plus-1, jan25), we add three
more panels for each quantity (E-E0, G-GO, H-HO) of inner four terrestrial planets noted as
inner 4. Unit of energy used here is 10712M, - AU? - day~2, and that of angular momentum is
10~12Mg - AU? - day L.

As you can recognize from perturbation theories, the amplitude of long-periodic oscillation is
much smaller than that of short-periodic one. So we have to be careful enough whether or not
the apparent long-range variation of total energy and total angular momentum is a product of
numerical error. To check it, we add two more panels (lower two ones) which indicate numerical
errors of total energy En-En0 and total angular momentum An-An0, including all the frequency-
bin. In the case of whole nine planets integration, amplitude of the long-range variation of total
energy and angular momentum is significantly larger than that for the numerical error (e.g.
Figure 9). In the case of outer five planet integration, amplitude of the angular momentum
variation is large enough, but amplitude of the energy variation E-EQ seems to be somewhat
smaller than the numerical error, En-En0 (e.g. Figure 16). The relatively large amplitude of
numerical error perhaps results from the short-periodic terms of the error Hamiltonian of the
symplectic map. Variation amplitude of time-averaged error Hamiltonian may be much smaller
than what is shown as En-En0 in Figure 16, so the long-range energy variation shown in the
figures is expected not to be unrealistic.

Comparing the variations of energy and angular momentum of inner 4 planets and total 9
planets, it is apparent that the amplitude of those of inner 4 planets are much smaller than
those of total 9 planets; the amplitudes of outer 5 planets are much larger than those of inner
4 planets. This does not mean that the inner terrestrial planetary subsystem is more stable
than the outer one: simply due to the smallness of four terrestrial planets’ masses than masses
of outer jovian planets, or to the negligibility of the gravitational effect of terrestrial planets
on the stability of outer jovian planets. Rather, inner planetary subsystem can be unstable
more rapidly than the outer one because of its shorter orbital timescales. This may be seen
in the panels noted inner 4 in which the longer-periodic oscillations are more irregular than in
the panels noted total 9, i.e. those of outer five planets. It may be a symptom that the inner
terrestrial planetary subsystem is diffusing chaotically in the timespan of this 10° to 1010 years.

3.3 Specific description of the stability of planetary orbits

Besides the global stability of planetary motion described above, there are several specific
points which we should notice in the integration results.
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Figure 15. Same as Figure 9 for 50G+ series.
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3.3.1 Coupling of some neighboring planet pairs

We can see from the low-pass filtered orbital elements that some planets are coupled in
terms of energy and angular momentum exchange. Venus and Earth make an apparent strong
couple (Figures 17 to 20). They show negative correlation in exchange of energy and positive
correlation in exchange of angular momentum. The negative correlation in exchange of energy
means that the two planets compose a closed dynamical system in terms of orbital energy.
Positive correlation in exchange of angular momentum (and also eccentricity) between any two
planets means that orbits of the two planets are aligned, shepherded by outside disturber. A
candidate of the perturber for the Venus-Earth system is Mercury and possibly Mars. Mercury
and Mars show a weak negative correlation in exchange of angular momentum.

In the outer jovian planetary subsystem, Jupiter-Saturn and Uranus-Neptune can be consid-
ered to make couples with each other (Figures 21 and 22). They show negative correlation in
exchange of both energy and angular momentum. But strength of the coupling is not so strong
in this case, compared with Venus-Earth pair. This is partly because of the exchange of energy
and momentum between low and high frequency domain is larger than the exchange in each
planetary pair.

Absolute amplitudes of the orbital energy exchange are very small as perturbation theories
expect, but it surely exists in our results. The sign of correlations in exchange of total en-
ergy is generally negative, which implies that the long-term energy exchange is limited only to
neighboring pairs of planets, unlike the angular momentum exchange between the Venus-Earth
system and other planet such as Mercury or Mars.

For comparison with the long-term exchange of such physical quantities, we consider shorter
timescale cases. In shorter timescale, the Jupiter-Saturn and Venus-Earth pair show negative
correlations in exchange of angular momentum. This is natural since these neighboring planets
have masses of the same order, and must intcract each other. This situation is seen in the result
of a traditional secular perturbation theory as Figures 23 and 24.

In traditional secular perturbation theories, eccentricity, longitude of perihelion, orbital incli-
nation, and longitude of ascending node of planetary orbits can be expressed by the following
trigonometric series to the first order in masses and second order in eccentricity and inclination
(Brouwer and van Woerkom, 1950; Brouwer and Clemence, 1961):

n n
eisinw; = »_ M;jsingjt+f;, eicosw; =y M;;cosgjt+p;, (5)
n n
e;sinI;sinQ); = z L;;jsin fjt+ 65, eisinlicos(); = Z L; j cos fit + §;, (6)

where we denote the number of planets by n. Characteristic frequencies (called “basic planetary
frequencies”) (gi, fi) are functions of masses and semimajor axes of planets, and are obtained
by solving an eigenvalue problem of n x n matrix derived from the equations of motion. Cor-
responding eigenvectors (M, ;, L; ;) and initial phases (8;,6;) are determined from the initial
values of orbital elements. Values of M;;, Lij, g;, fj, Bj, and §; used in Brouwer and van
Woerkom (1950)’s theory are listed in Tables 4 and 5.
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Table 4. Planetary basic frequencies g;, f;j, periods (PJ‘f’ = 2m/g; and ij = 2m/f;), initial
phases §; and §; in (5) and (6) by Brouwer and van Woerkom (1950). Terms j =9 and j =10
are derived from the 5:2 mean motion commensurability between Jupiter and Saturn (“the great

inequality”): go = 2g5 — g6, 99 = 296 — 95, B9 = 285 — B6, P10 = 205 — Be. One of the f; should

be zero because of the preservation law of total angular momentum (f5 = 0 here).

. 9i Pf Bi fi P] 2
J | (arcsec/y) (year) (degree) | (arcsec/y) (year) (degree)
1 5.463255  237221.22  92.18164 | -—5.201537 249157.12 190.43255
2 7.344791  176451.58 196.88119 | —6.570802  197236.20 318.05685
3 17.328377 74790.62 335.22366 | —18.743586 69143.65 255.03057
4 18.002327 71990.69 317.94813 | —17.633305 73497.28 296.54103
5 4.128084  313947.10  31.17370 0 — —
6 23.085793 56138.42 131.68619 | —25.733549 50362.27 127.36669
7 2.718661  476705.26 131.94363 | —2.902663  446486.55 315.06348
8 0.633254 2046572.15 69.43109 | -0.677522 1912853.01 202.29272
9 | —14.829625 87392.63 —69.33879 - — —
10 42.043502 30825.22  232.19868 — — —
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Table 5. Amplitude M;; and L; ; in integer format in (5) and (6) by Brouwer and van Woerkom
(1950). Unit is 10~ "radian. Number of planets () are Mercury = &, Venus = 9, Earth = o,
Mars = &, Jupiter = %, Saturn = b, Uranus = '/, Neptune = ¥ from the left side.

. M; ;

J 3 Q ® & 9 b i Y

1 1745400 60961 39162 6382 —88 —81 35 1
2 -254981 209439 163395 28984 -128  —136 33 1
3 15369 —125520 104345 297221 ~10 ~70 4 0
4 16918 148334 —148347 723712 -7 77 4 0
9 357144 190892 183400 186080 448188 329124 —318825 6345
6 9596 582 28264 150176 —153546 486278 —24759 —1131
7 4270 4184 4427 5860 14701 14794 304341 —32297
8 65 99 115 183 531 642 14312 93764
9  —2089 —1088  —1218  —1992  —1591 —4896 1966 -29
10 1033 369 1471 6391  —5380 20200  —1575 ~34
: L,

J 3 Q @ & 9 b i W

1 1244934 117814 84889 18011 —207  —264 221 6
2 —354475 100420 80958 18012 ~130  —184 —95 5
3 40948 —267985 244823 —358910 ) —48 4 0
4 11625 —68514 45254 502516 -18  -183 17 2
6 2781 1212 28112 96481 —63064 157245  —6946  —771
7 —33230 -—10160 —17308 —12561  —9571 —7803 175988 —20737
8 —14452 —13231 12969 —12286 —11689 —11267 10958 117522
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3.3.2 Resonances in Neptune-Pluto system

Kinoshita and Nakai (1995, 1996) integrated orbits of outer five planets over £5.5 x 10° years.
They found that several resonances between Neptune and Pluto can be maintained during the
whole integration period, and that the resonances may be one of the main causes of the stable
existence of Pluto. Major four resonances found in previous researches are as follows:

1. Mean motion resonance between Neptune and Pluto (2:3). The critical argument 6, =
3\p — 2\y — wp librates around 180° with the amplitude about 80°, and the libration

period is about 2 x 10* years.

2. Pluto’s argument of perihelion wp = 62 = wp — Qp librates around 90° with the period
of about 3.8 x 10% years. The dominant periodic variations of Pluto’s eccentricity and
inclination are synchronized with the libration of its argument of perihelion. The fact is
expected from the secular perturbation theory constructed by Kozai (1962).

3. The longitude of Pluto’s node referred to the longitude of Neptune’s node, 63 = Qp —Qu,
circulates and the period of this circulation is equal to the period of §2 libration. When
03 becomes zero, i.e. longitudes of ascending nodes of Neptune and Pluto overlap, Pluto’s
inclination becomes maximum, eccentricity becomes minimum, and argument of perihelion
becomes 90°. When 63 becomes 180°, Pluto’s inclination becomes minimum, eccentricity
becomes maximum, and argument of perihelion becomes 90° again. Williams and Benson
(1971) expected the existence of this type of resonance, which was confirmed afterwards
by Milani et al. (1989).

4. An argument 64 = wp — wy + 3(2p — Q) librates around 180° with very long period,
about 5.7 x 108 years.

In our numerical integrations, the resonances 1, 2 and 3 are well maintained, and variation of
the critical arguments 61, 62, 03 remain similar during the whole integration period (Figures 25,
26, 27). However the fourth resonance shows an interesting behavior: the critical argument 6,
alternates libration and circulation in O(10'%)-year timescale (Figure 28). This is an interesting
fact that Kinoshita and Nakai (1995, 1996)’s short integrations could not find.

In spite that the fourth resonance may not be maintained in this long timespan, Neptune-
Pluto system remains completely stable. Thus it seems that the fourth resonance may have
little effect on the stability of Neptune-Pluto system.
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Figure 25. Critical argument 6; for 50G- (left) and 50G+ (right) series.
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Figure 26. Critical argument @2 for 50G- (left) and 50G+ (right) series.
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Figure 27. Critical argument 3 for trailing parts of 50G- (left) and 50G+ (right) series.
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3.3.3 Time-frequency analysis

The orbital motion of planets shows global stability as we see in the previous sections: no
orbital crossings nor close encounters between any pair of planet. However, chaotic nature
of planetary dynamics can change the oscillatory period and amplitude slightly in such long
timespans. Especially, variations of eccentricity and inclination of Earth have large effect on
its surface climate system through solar insolation variation (Milankovitch, 1941; Berger, 1988;
IMapa¢$ and Byamauxora, 1969a; Mapad and Bymmuxosa, 1969b).

We performed a simple time-frequency analysis using FFT (Fast Fourier Transformation).
Some of the resulting periodgrams (such as Figure 29) indicate that the periodicity of eccentricity
and inclination changes only slightly during the whole integration period. The rigorous stability
of outer five planets is again prominently seen here (Figure 30).

For comparison, we show the FFT results by an accurate perturbation theory by Laskar
(1988). Since the numerical models used here and there are different (Laskar’s model is more
accurate, including the effect of the general relativity), direct comparison of these two results
has little meaning. However we can see that both results (Figure 29 and 31, or Figure 30 and
32) agree rather well. Only the difference in the periodicity of Mercury’s eccentricity (Figure 29)
is somewhat large. This is perhaps because of the effect of general relativity which we neglect
in our calculation. The effect of general relativity acts most heavily on the nearest planet to
Sun, i.e. Mercury.

Since the orbital elements calculated in Laskar (1988) uses the epoch of J2000.0 ecliptic, we
recalculated orbital elements (e, ) on that epoch and draw FFT diagrams. Note that there is
no result for Pluto in Figure 32 because Laskar’s theory does not include the planet.

Moreover to see the change of periodicity in planetary orbital motion in more detail, we
perform many FFTs along the time axis, and superpose the results to make two-dimensional
time-frequency maps. Figures 33, 34, 35, 36, 37, and 38 are typical examples of such analyses
which indicate time-frequency maps of each planet from Mercury to Neptune.
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Figure 32. FFT periodgram of e (left) and I (right) from Laskar (1988) perturbation theory
(outer four planets).
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Figure 33. An example of time-frequency map for Mercury’s e and I in emb-minus series.
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Figure 34. An example of time-frequency map for Venus’s e and I in emb-plus-| series.
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Figure 35. An example of time-frequency map for Earth’s e and I in minus series.
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Eccentricity of Mars (/wa52c/tito/fft.emb—plus/e4.fft.emb—£;|us)
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Figure 36. An example of time-frequency map for Mars’s e and I in em b-plus series.
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Figure 37. An example of time-frequency map for Saturn’s e and [ in 50G- series.
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Eccentricity of Neptune (/wa52¢/tito/fft.50G+/e4.fft.50G+)
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Figure 38. An example of time-frequency map for Neptune’s e and I in 50G+ series.
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ABSTRACT

From the analysis of VLBI observational data compiled by USNO from 1979 to 1999, we showed
that a strong peak around —400 sidereal days in the spectrum of their difference from the
IERS96 nutation theory could be explained by adding a model Free Core Nutation (FCN) term
of the form of a single damping oscillation. Then we developed a new analytical series of the
non-rigid Earth nutation including thus chosen FCN model. We adopted RDAN98 (Roosbeek
and Dehant 1998) as the rigid Earth nutation theory. Then it was convoluted with a transfer
function by the numerical convolution in time domain (Shirai and Fukushima 2000). The form
of the transfer function was the same as that of Herring (1995), however, its free parameters
such as the complex amplitude and frequency of FCN were readjusted by fitting to the above
VLBI data. Even after truncating the forced nutation series so as to contain only 180 terms,
the weighted root mean square (WRMS) of the residuals in complex for the new nutation
series is 0.312 mas, which is significantly smaller than 0.325 mas, that of the IERS96 nutation
theory. As for the FCN term, we estimated its oscillatory period as —430.8 + 0.6 sidereal days
and @-value as 16200 + 1600. Also we estimated the correction to the precession constants

as —0.042458 £+ 0.000033 ” in longitude and —0.005186 + 0.000013 ” in obliquity to offsets
and —0.29297 & 0.00047 ”/cy in longitude and —0.02430 £ 0.00019 “/cy in obliquity to rates,
respectively.

Subject headings: Astrometry and Celestial Mechanics — nutation, precession, free core
nutation, reference system

1. Imtroduction

The nutation has two modes, the forced and the free modes. The forced nutation is due to the luni-solar
and planetary tidal forces. The free mode appears because the Earth has a rotating and elliptical fluid core.
Thus this mode was named as the free core nutation (FCN) by Toomre (1974). However the current IAU
nutation theory, which is called as the IAU1980 nutation theory (Seidelmann 1982), does not include the
FCN term. This is because, at the time of its creation, the FCN had not yet been observed directly and
indisputably by the optical observation and the excitation mechanism was not clear (Sasao and Wahr 1981).
The IERS96 nutation theory, which is in the best agreement with the VLBI observation, also does not
contain the FCN term (McCarthy 1996). See Figure 1 for the diflerence between the VLBI data compiled by
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Fig. 1.— Residuals of IERS96 Nutation Theories with and without FCN Model and of New Series. Shown
are differences from between the VLBI data compiled by USNO.

USNO (U.S. Naval Observatory) and IERS96 nutation theory for the period MID 44089.994 to 51618.250.
However, there remains a strong peak around —400 sidereal days period in its spectrum, Figure 2. Charlot
et al. (1995) and Souchay et al. (1995) estimated the prograde and retrograde components with the given
frequency of the FCN at some epochs. Charlot et al. adopted the FCN term as a sine wave with period
—429.8 sidereal days. Then they estimated the amplitudes of prograde and retrograde components on 3 to 5
year intervals from the combined data of VLBI and LLR for the period 1978-1994. They suggested that the
FCN has not varied significantly since 1988. Souchay et al. (1995) did in almost the same way but based on
VLBI data only. They adopted the FCN term as a sine wave with period 433 sidereal days and estimated
the amplitudes of prograde and retrograde components on two-year intervals for the period 1984-1993.
They concluded that (1) the amplitudes are subject to significant changes, (2) but all of them correspond to
a retrograde motion, as expected for the FCN, and (3) the retrograde component seems to be constant after
1988 at the value 0.164+0.03 mas. We remark that the FCN has the retrograde component only because the
period of the FCN is not 4431 sidereal days, but —431 sidereal days. Herring (1995) also estimated the
amplitude and frequency of the FCN using the VLBI data for 1979 to 1994 when he developed the IERS96
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Fig. 2.— Frequency Spectra of Complex Residuals of IERS96 Nutation Theory with and without FCN
Models. There is the strong peak around —400 sidereal days in the spectrum of the 1I5RS96 nutation theory.

nutation theory. He first estimated the complex frequency of the FCN, next did its amplitude discretely,
namely in every two years intervals. This method was the same with Souchay et al (1995). He concluded
that the amplitude of the FCN showed a steady decrease during the period. Anyway he did not introduce
any model of the FCN to the IERS96 nutation theory. This is probably because the strong peak in the
spectrum of the residuals were believed to be explained by considering external excitations which vary with
the periods close to that of the FCN. As shown by Gegout et al. (1998), the atmosphere is a good candidate
for such exciting force, which means that the amplitude of such peaks cannot be predicted. Therefore the
FFCN has been considered not to be predicted but to be observed as the Chandler wobble is done. However,
the strong peak may be explained appropriately by adding a model FCN term. In this paper, we will fry to
improve the analytical theory of the non-rigid Earth nutation by adding a simple model term of the FCN.

2. Models of FCN

Let us examine the existence of FCN by using the VLBI data. To do so, we first fixed the forced nutation
theory as the TERS96 nutation theory. Next, we assumed that the period of FCN is constant (Roosbeck
et al. 1999). Then we set the frequency of FCN as that of Herring (1995). As for the model of FCN, we
considered the following two; (A) no excitation during the observation, and (B) frequent excitations during
the observation. At first, we consider the model A. The energy of FCN is considered to dissipate due to
the viscosity of the outer fluid core and the magnetic coupling of the mantle-core boundary. Then, it is
reasonable that the FCN is of the form of a damping oscillation. If the FCN has no excitation during the
observation, then it must be a single damping oscillation. In order to treat the energy dissipation of the
FCN properly, we dealt the amplitude Cpen and the frequency wpen of the FCN as complex values:

, o s i _ o .
Cpen = Cpon + iCkeN,  WFON = wpen + wpeN (1)
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In other words, the FCN in longitude Ayrcn and in obliquity Aepcn in the model A are expressed
compactly in a complex notation as

ZFA‘CN = A‘l/)écp{ sin € + iAC?CN = CFCNCinCNt (2)
where ¢ is the obliquity of ecliptic at J2000.0. The above expressions are rewritten in real forms as
Afonsine = e‘“l';CN'(Cg‘CN coswhont — Chon sin wient), 3)

Aefon = e™“Fent(Choy coswhont + Chonsinwhont)- (4)

Next we consider the model B. If the FCN is excited frequently during the observation, it is regarded as a
simple harmonic oscillation without damping whose (real) frequency w is close to the real part of the FCN
frequency as

ZEon = AyBonsineg + iAeBoy = Crone™!. (5)

Strictly speaking, this is not a free oscillation but a forced oscillation with the frequency which is so close
to the resonant frequency that its amplitude is greatly magnified. The above expression is rewritten in real
forms as

ApEonsin g = Chon coswt — Choy sinwt, (6)

Aefon = Chon coswt + Chon sinwt. (7

Of course, there is a possibility that the excited oscillation contains multiple frequencies. However, as will
be shown later, the analysis of residuals strongly suggests the singleness of excited frequency (if existing).
Thus we will regard it as of a single frequency. This approach was different from those taken by Charlot
et al. (1995) and Souchay et al. (1995). The main differences are (1) they estimated both the prograde
and retrograde components while the model B estimated only the retrograde one, (2) they estimated the
amplitudes at several epochs while the model B did only one, and (3) they fixed the frequency while model
B searched the best frequency by fitting to VLBI data.

In both models, we estimated the complex amplitude Cpcn by the least square fitting to the residuals.
In the model B, we did also the real frequency w by fitting. So the number of parameters of the model B
is greater by one than that of the model A. See Figure 3 for the frequency dependence of WRMS of the
model B. These figures are regarded as an upside-down periodgram in the sense the smaller the WRMS is
the larger the corresponding spectrum power is. In the left figure, we added the arrows indicating the FCN
periods estimated by the IERS 96 nutation theory. As is shown clearly, the WRMS has 3 local minimum,
—481.0 sidereal days, —428.0 sidereal days, and —363.5 sidereal days. However the variation of the WRMS
is unimodal and very smooth around — 431.2 sidereal days, the period of the FCN estimated by the IERS96
nutation theory. In the right figure, we added the arrows indicating the FCN periods estimated by the
IERS96 nutation theory and by the new nutation theory, whose detail will be described in the next section.
This indicates that, if the strong peak shown in the residual spectrum is caused by external excitations,
the excitation frequency is single. We also calculated the magnification factor by the resonance. The value
of the peak —431.2 sidereal days is about 40. That of —428.0 sidereal days which we adopted as the best
excitation period is about 30. Also we estimated the absolute amplitude of FCN of the model B as 0.11
mas. Therefore the original of the external excitation, if this interpretation is correct, must be so small as
of about 3.7 gas when the Earth is rigid. Now we compare these two models, A and B. Table 1 shows that
the WRMS decreases significantly by adding a model FCN term anyway. Figure 4 has shown the spcectra of
the residuals for the IERS96 nutation theory itself and its combinations with two models. The strong peak
in the spectrum around —400 sidereal days is clearly removed by adding a model FCN term. This is also

100



Frequency Dependence of WRMS Frequency Dependence of WRMS (Close-Up)

0.325 . 0.309 .
Mode! B Mode! B
032 : 0308 FCN(IERSS6)
481 3635 0.307
Best Model B
g 0315 g 0308
0305 431
031 312 280
0304
0305
Model A 0.303 _ModelA |
03 . . . i S S S S —
550  -500 -450 400 350  -300 434 432 430 -428 426 -424 -422 -420
Sidereal Day Sidereal Day

Fig. 3.— Frequency Dependence of WRMS of FCN Models. The left figure can be regarded as a periodgram
in the sense the smaller the WRMS is the larger the corresponding spectrum power is. Arrows show the
frequencies of possible local minima, —481 sidereal days and —363.5 sidereal days. The right figure is its
close-up around —431.2 sidereal days estimated by IERS96 nutation theory.

Table 1: Cdmparison of Nutation Series in WRMS

IERS96 NEW
w/o FCN + Model A~ + Model B Full  Short
Complex 0.3250 0.3030 0.30561 0.3075 0.312
Apsin g 0.227 0.212 0.213 0.221 0.224
Ac 0.229 0.213 0.215 0.211 0.214

Note: The unit is mas. The column complex means WRMS of Aysineg + iAe. The model A adopted the
FCN as a single damping oscillation and the model B did as a simple harmonic oscillation. WRMS of the
model A is smaller than that of new series since the annual prograde nutation was adjusted.

seen from Figure 1 showing the post-fit residuals for the IERS96 nutation theory + model A. Apparently
the model A is better than the model B in spite of the fact that its number of the adjusted parameters is
less by one than that of the model B. Unfortunately the difference between these two models is of the order
of the observational precision. Thus, if the period and/or precision of the observation will increase, it will
be clear which model is really the better. Since the model A is of the form of a single damping oscillation,
the past amplitude of FCN must have been much larger than the present one. However, the amplitude
of FCN was at most about 0.1” a century ago. Until the rise of the VLBI technique, the precision of the
optical observation had not been sufficiently accurate. Then it is no wonder that the FCN had not been
noticed. Therefore the model A is consistent with the past observation. In conclusion, we adopt the model
A to improve the nutation theory in this paper.

101



IERS9S {ERS96 + Model A IERS96 + Model B

0.12 0.12 v v 0.12
01 01 Q.4
0.08 0.08 008
3 8

8 oo 2 0 8 o0
0.04 0.04 0.04
0.02 0.02 0.02

0 - L - 0 - - 0 . A .

400 -200 0 200 400 400 200 0 200 400 -400 -200 0 200 400

Sideroal Day Sidereal Day Sidereal Day

Fig. 4.— Frequency Spectra of Complex Residuals of IERS96 Nutation Theory with and without FCN
Models. The strong peak in the spectrum of the IERS96 nutation theory around —400 sidereal days is
clearly removed by adding a model FCN term.

3. Method

In order to explain the VLBI data better, we developed a new nutation series by incorporating a model
FCN term discussed in the previous section. Usually the theory of the forced nutation is obtained as a
combination of the rigid Earth nutation theory and the transfer function of the non-rigid Earth. As the
former, we adopted the RDAN98 (Roosbeek and Dehant 1998) whose truncation level is 0.1 pas. The
nutation series RDAN98 includes not only the luni-solar effects but the planetary effects. Next we removed
very long periodic terms from RDAN98, namely the terms with the period longer than 150 years. As the
transfer function, we selected the same functional form as that of Herring (1995);

) . R R
9(&) = R+ Ro + ——— 4 —X 8)
W — WFPCN W - wcw

where g(w) is the ratio of the nutation amplitude of the non-rigid Earth, & is the frequency normalized by
the mean angular velocity of the Earth rotation Qg as

R W
WFCN = giN (9

where
Qo = 7.292115 x 10~ °rads™! (10)

and CW stands for the Chandler Wobble. Here we ignored the contribution of the inner solid core of the
Earth whose effects to the nutation are very small. We convoluted the transfer function with the nutation
theory of the rigid Earth by the numerical convolution in the time domain, which is much more precise
than the current analytical method of convolution in the frequency domain (Shirai and Fukushima 2000).
The convoluted values were stored at equal time intervals, namely every 1.5 hours. We used the VLBI
data compiled by USNO for the period MJD 44089.994 to 51618.250. Since the VLBI data are scattered
almost randomly. We interpolated the convoluted values by 4-points Lagrange’s interpolation to obtain the
values at data points. We confirmed that the interpolation errors are sufficiently small as of the order of 1
nano arcsecond. Next we removed the geodesic nutation discussed by FFukushima (1991) from the VLBI
data because the geodesic nutation should not be influenced by the transfer function. The parameters
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Fig. 5.— Frequency Spectrum of Complex Residuals of New Series. Same as Figure 2 but for the new
nutation series. The period of the peak in the prograde band is that of the annual and that in the retrograde
one is about —400 sidereal days.

R, R', RpcN, Rew, wren, and wow depend on the geophysical model. Following Herring, we first estimated
the parameters R, R', Rrcn, and &pcen from the VLBI data. When we additionally included Rcw and &cw
to the parameters to be fitted, the resulting estimates became far from the geophysically predicted values.
This is because the separation among the parameters was degraded due to strong correlations among them.
Thus we fixed Rcw and wew as their values geophysically estimated same with Herring (1995). On the
other hand, we included to the parameters to be fitted the correction to the IAU1976 precession formula
(Lieske et al. 1977), namely the offsets and rates of nutation. As we mentioned in the previous section, we
adopted the model A to incorporate the FCN. Then we also included Crcy to the parameters to be fitted.
In summary, we simultaneously estimated 7 complex parameters comprised of (1) 4 complex parameters
characterizing the transfer function, R, R, Rrcn, and wren, (2) 2 complex ones corresponding to the offsets
and rates of nutations in longitude and in obliquity, and (3) the complex amplitude of the FCN, Crcn. The
estimation was done by the weighted non-linear least square method. This approach is almost the same as
that created the IERS96 nutation theory. The main differences are (1) the FCN term which we included
while Herring did not, (2} the additional annual prograde term which Herring estimated while we did not,
and (3) the period of VLBI data.

4. Result
4.1. Residual

See Table 1 again. The WRMS of the residuals for the new theory is 0.3075 mas, which is about 6% smaller
than 0.312 mas that of the IERS96 nutation theory. Figure 1 has already shown the residuals for the new
theory. Figure 5 does the periodgram of the new nutation theory for the prograde and the retrograde bands.
There appears a strong peak in the prograde band which was not seen in the spectrum of the IERS96
nutation theory. The frequency of the peak is +365 sidereal days and therefore is quite close to the annual
oscillation. Herring suggested that this eminent prograde nearly-annual nutation was influenced by the S|
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Table 2: Estimated Parameters of Nutation

Unit New IERS96 Wahr MBHS DD
R 1.049018 + 0.000011  1.04901828112  1.0496591879  1.05017  1.050419
R 0.00156 + 0.000011  0.00150732471 e e ce
R —0.2570 + 0.0007 —0.25517427386 —0.282203701 —0.28510 —0.279056
R —0.0406 £ 0.0007 —0.03965769073 - ce- e
Rion 10~ —1.1499 + 0.0002 —1.1489752 —1.091387  —1.1021 —-1.19
Ricon 10-¢ —2.17 4+ 0.02 —2.1430 e e e
Phon 103 —2.3206 = 0.0025 —2.31888314 -2.1714  -2.1816 —2.3157
hon 10-3 3.06 +0.25 2.920327 oo e cos
Ppcn  sidereal day —430.8 + 0.6 —431.2 —460.5 —457.1 —431.8
CFhenN pas —-78+3
Cten pas —06%3

Note: MBHS and DD stand for Mathews et al. (1991) and Dehant & Defraigne (1997), respectively.

atmospheric tide. This is the reason why Herring estimated the amplitude of the annual prograde nutation
together with other parameters. However, if the S; atmospheric tide influences the component the annual
prograde nutation, it must also do the annual retrograde component. See the report of the IAU/IUGG
Working Group on Nutation (Dehant et al. 1999). Unfortunately Figure 5 shows that there is no annual
peak in the retrograde band. Thus the origin of the annual prograde oscillation seen in the residuals is
unknown. Therefore we dare not to add this unknown term to the new theory in order only to decrease
the post-fit WRMS. On the other hand there is a peak of the period of around —400 sidereal days in the
retrograde band. This peak represents the remaining after our FCN term was removed. This means that
the FCN could be a combination of the models A and B. We will reserve this issue for future researches.

4.2. Parameters of Nutation Theory

The best-fit parameters of the new theory were listed in Table 2 together with those of the other theories.
As for the IERS96 nutation theory, we quoted only the values from the report of the IAU/IUGG Working
Group on Nutation (Dehant et al. 1999). We estimated the parameters as if they are the complex values.
The uncertainties we obtained indicate that all the imaginary parts are significant except Choy. We
estimated the oscillatory period of the FCN as —430.8 & 0.6 sidereal days. This is about 6.5 % smaller than
the geophysically estimated value —460.5 sidereal days by Wahr (1981), —457.1 sidereal days by Mathews
et al. (1991), and in good agreement with that by Dehant and Defraigne (1997). The @Q-value of the FCN
was estimated as 16200 = 1600.

4.3. Correction to Precession Formula

The best-fit. corrections to the precession formula are estimated as

Ayp \ _ [ Ao Ay,
(A(p )—( Aeg )+( Acqy )P

(11)
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Table 3: Corrections to Precession Constants

Method & Reference Ay ("/ey) Aey ("[ey)
Value a Value a

A% Fanselow ¢f al. (1984) —0.38 0.09

\Y Herring el al. (1986) —0.239 0.013

\% Sovers (1990) —0.196 0.013

\ Zhu ¢t al. (1990) —0.376 0.047 +0.017 0.017

S Andrei & Elsmore (1991) +0.01 0.15

\' Herring et al. (1991) —0.32 0.10 —0.040 0.050

L+V  Williams et al. (1991) —0.27 0.04

\% McCarthy & Luzum (1991) —0.274 0.021 —0.005 0.007

P Miyamoto & Soma (1993) —-0.27 0.03

A% Walter & Ma (1994) —0.359 0.114

T Williams (1994) ~0.2368 —0.0244

L+V  Charlot et al. (1995) -0.300 0.020 —0.020 0.008

\% Herring (1995) —-0.298 0.010 —0.024 0.005

A% Souchay et al. (1995) —0.321 0.003 —0.026 0.001

\% Walter & Sovers (1996) —0.31 0.01

o Vondrak (1999) —0.1543  0.0043 —0.0131 0.0018

L Chapront et al. (1999) —0.3437  0.0040

P Vityazev (2000) —0.28 0.08

0] Vondrak and Ron (2000) —0.216 0.005 —-0.0093 0.001 8

\Y Petrov (2000) —0.295 0.002 —0.027 0.009

\Y Vondrak & Ron (2000) —0.2990  0.0013  —0.02203 0.00067

\Y Mathews ef al. (2000) —0.30010 0.060075 —0.02471

\Y Shirai & Fukushima (2000) —0.29297 0.00047 —0.02430 0.00019

Note: Shown are the estimations of the corrections to be added to the precession constants, or the linear
rates precisely speaking, given in the IAU 1976 precession formula (Lieske et al. 1977). The symbols of the
methods are; V for the VLBI data, S for the short baseline radio interferometry, L for the LLR data, P
for the proper motion data of M- and K-type giants, T for the theoretical consideration, O for the optical
observation of latitude variations.

and
A = —07.042458 + 0.000033, Aey = —07.005186 4 0.000013 (12)

Ay = —07.29297 £+ 0.00047, Ae; = —0".02430 £+ 0.00019 (13)

where T is the time measured in Julian centuries since J2000.0. We listed our estimated values to precession
constants in Table 3 together with the other estimations. Figure 6 compares the values graphically. And
we also listed our estimated values to offsets of celestial ephemeris pole in Table 4 together with the other
estimations. The uncertainty of new estimates is the smallest of them. This is because separation of fitted
parameters is good. All these values were estimated from the analysis of VLBI data except for (1) Andrei
and Elsmore (1991) who obtained the corrections from the analysis of short baseline interferometry, (2)
Williams et al. (1991) and Charlot et al. (1995) who based on the combined analysis of VLBI and L.LLR
data, (3) Miyamoto & Soma (1993) and Vityazev (2000) who estimated from the analysis of proper motion
of K-M giants , (4) Williams (1994) who predicted these values theoretically, (5) Chapront et al.(1999) who
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Fig. 6.— Estimated Corrections to Precession in Longitude and Obliquity. We listed the names of authors,
the year of publishment, and the method based on. Numerical values are listed in Table 3.

estimated from analysis of LLR data, and (6) Vondrak (1999) and Vondrak & Ron (2000) who estimated
by using the optical data for the period 1899.7-1992.0. The new estimated correction in obliquity is in good
agreement with that of Williams. However this is not the case in longitude.

4.4. Expression of New theory

Finally we present the new theory explicitly. The theory consists of 4 parts:
AYNEw = AYp + AYr + AYron + AYg  Aengw = Aep + Acr + Aepen (14)

where the suffices P denotes the correction of the precession formula, F does the forced nutation series,
FCN does the FCN term, and G does the geodesic nutation. The first part includes two terms, the offsets
and the rates.

Ayp \ _ [ Ao Ay
(o )=(S)+(a0)r as)
and
Ay = —07.042458 Aeg = —0”.005186 (16)
Ay = —07.29297 Ae; = —07.02430 (17)

where T is the time measured in Julian centuries since J2000.0. Tables 5 and 6 show the main terms of
luni-solar and planetary contributions of the second part, the forced nutation, respectively.

180
Ayyp = Z [(Ac,k + A::’A,T) cosl + (A p + A;,kt)sill (Ik] (18)
k=1
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Table 4: Offsets of Celestial Ephemeris Pole at J2000.0

Method & Reference Aty singg (mas) Agp (mas)
Value a Value o

V  Herring (1995) -17.3 0.2 -5.1 0.2

L  Chapront et al. (1999) -18.3 04 —-5.6 0.2

O Vondrak & Ron (2000) -12.3 0.7 -9.2 0.6

V  Vondrak & Ron (2000) -17.10 0.06 —4.95 0.05

V  Mathews et al. (2000) -16.18 -4.53

V  Shirai & Fukushima (2000) -16.889 0.013 —5.186 0.013

Table'7: Polynomial developments in T of argument (Simon el al.)
Constant T T? T3 T4
¢ 134°.96340251 1717915923”.2178  317.8792  07.051635 —07.00024470
¢ 357°.52910918  129596581”.0481  —0”.5532 0”7.000136 —0”.00001149
F 93°.27209062 1739527262”.8478 —127.7512 —07.001037 0”.00000417
D 297°.85019547 1602961601”.2090 —6”.3706 07.006539 —07.00003169
Q  125°.04455501 —6962890”.5431 7.4722  0”.007702 —07.000059
Ve 181°.97980085  210664136”.4335 e e e
M, 355°.43299958 68905077”.4940
Ju  34°.35151874 10925660”.3780
S.  50°.07744430 4399609” .8557

180

Aep =Y [(Bey + B.xT)cosOx + (Bsx + By pt)siny] . (19)
k=1
Here the argument 6 is expressed as a linear form of basic angles as
B =) njxb? (20)
i

where the basic angles are .
{69} = {£,¢,F,D,Q,Ve,Ma,Ju,Sa, Me}. (21)

whose polynomial developments in T given by Simon el al. (1994) are quoted in Table 7. The third part,
the FCN term, is expressed as

Avrensin g = e~ “FonT (=78 cos whenT + 0.6 sinwhenT) (22)
Aepen = e~ “FenT (0.6 coswhonT — 78sinwpenT) (23)
where the unit is pas for the amplitude and
when = 711 rad/ey wheny = 1.10x 10% 7 /cy. (24)
The last part, the geodesic nutation, is expressed (Fukushima 1991) as

Ayg = —153.1sin ¢’ — 1.9sin 2¢ (25)
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Fig. 7.— Number-of-Terms Dependence of WRMS and Nutation Amplitude. Clearly the WRMS does not
decrease significantly after around 100 terms. On the other hand, the amplitude decrease linearly.

where the unit is pas for the amplitude.

The original RDAN98 contains 1501 terms. After the convolution by the transfer function, we sorted
the series in the order of amplitude and kept only top 180 terms. This is because the WRMS for the
abridged series, 0.3120 mas, was only 1.5 % lager than 0.3075 that of the full theory. See Figure 7 for
the number-of-terms dependence of WRMS. The WRMS does not significantly decrease after the number
of terms exceeds 180. On the other hand, Figure 7 shows the number-of-terms dependence of nutation
amplitude of the new theory, which decreases linearly in the logscale. Thus, we conclude the truncated
series shown in Tables 5 and 6 are precise enough for the practical purpose.

5. Conclusion

From the analysis of the VLBI data compiled by USNO for the period 1979 to 1999, we showed that a
strong peak around —400 sidereal days in the spectrum of their residuals after the IERS96 nutation theory
was subtracted could be explained by adding a predicted FCN term. We considered three models on the
treatment of the FCN; (1) no FCN contribution, (2) the FCN with no excitation during the observation, and
(3) the FCN excited frequently during the observation. The functional form of the FCN is a single damping
oscillation in the second case and a simple harmonic oscillation in the last case. From the comparison .of
WRMS and spectra of the residuals obtained for these models, we adopted the second as the best model.
Then we developed a new analytical theory of the non-rigid Earth nutation including thus determined
FCN term. We adopted RDAN98 (Roosbeek and Dehant 1998) as the rigid Earth nutation theory. Then
it was convoluted with a transfer function by the numerical convolution in the time domain (Shirai and
Fukushima 2000). The form of the transfer function was the same as that of Herring (1995), however its
free parameters were adjusted by fitting to the above VLBI data. Even after truncating the forced nutation
series so short as to contain only 180 terms, the WRMS of the residuals for the new nutation series is
sufficient small as 0.3120 mas. This significantly smaller than 0.3250 mas, that of the IERS96 nutation
theory. As for the FCN term, we estimated its oscillatory period as —430.8 = 0.6 sidereal days and @-value
as 16200 & 1600. Also we estimated the correction to the precession constants as —0.042458 4= 0.000033 * in
longitude and —0.005186 & 0.000013 ” in obliquity to offsets and —0.29297 = 0.00047 " /cy in longitude and
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—0.02430 £ 0.00019 ” /cy in obliquity to rates, respectively. The {77 program to compute the new series is
available from the author 'I'S.
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Table5. Forced nutaion series for luni-solar part

PERIOD ARGUMENT LONGITUDE OBLIQUITY
(days) ¢ ¢ F D Q Ac A, AL A B. B, B. B,
679838 0 0 0 0 -1 36753 17206295.2 2.9 17409.5 9205361.1 -1534.8 8857 -0.4
18262 0 0 2 -2 2 -1457.3 -1317108.7 1.2  -156.8  573058.8  -483.9 -305.0 -0.2
1366 0 0 2 0 2 2886  -227664.1 02  -235 978432 1454  -488 -0.1
339919 0 0 0 0 -2  -665 -207450.0 0.0  -21.4  -89754.2 268 469 0.0
36526 0 1 0 O 0 9235  147610.1 -22  -355.0 74102  -324.1 -182 08
127 0 1 2 -2 2 563  -516858 0.2 1226 224408  -18.7 -67.6 0.0
2755 1 0 0 O 0  -99.9 71111.3 0.0 7.0 -684.6 40.1 00 0.0
1363 0 0 2 0 1 38.1 -38740.3 0.1 -36.2  20070.0 34.8 16 00
913 1 0 2 0 2 82.1 -301283 0.0 3.1 12893.9 377 62 0.0
36523 0 -1 2 -2 2 5.8 21581.8 0.1 503 -9592.8 13.0 302 -0.1
17784 0 0 2 -2 1 18.7 128221 0.0 13.3 -6899.0 41 06 00
2709 -1 0 2 0 2 1.8 12350.2 0.0 1.3 -5332.2 0.6 27 0.0
3181 -1 0 0 2 0  -194 15698.1 0.0 1.6 -125.4 9.0 00 00
2767 1 0 0 0 1 3.0 6313.6 0.0 62  -3323.2 -1 03 00
2744 1 0 0 0 -1  -20.1 5796.1 0.0 6.1 3142.0 7.9 03 0.0
95 -1 0 2 2 2 15.1 -5961.2 0.0 -0.6 2552.6 70 -12 00
912 1 0 2 0 1 12.8 -5159.4 0.0 -4.6 2634.3 8.3 02 00
130548 -2 0 2 0 1 1.4 4592.5 0.0 4.5 -2424.4 13 -04 0.0
477 0 0 0 2 0 -6l 6335.5 0.0 0.7 -123.5 3.3 00 0.0
70 0 0 2 2 2 15.5 -3851.3 0.0 -0.4 1642.5 69  -08 0.0
20589 2 0 0 -2 0 -2.4 47712 0.0 0.5 47.9 2.7 00 00
686 2 0 2 0 2 13.1 -3099.5 0.0 0.3 1321.3 58 06 0.0
2394 1 0 2 -2 2 -0.1 2860.2 0.0 0.3 -1234.1 -0.4 06 00
2698 -1 0 2 0 1 1.0 2045.2 0.0 2.0 -1076.4 -0.4 00 0.0
1378 2 0 0 0 0 -8.0 2922.4 0.0 0.3 -61.6 1.5 00 0.0
1361 0 0 2 0 0 7.2 2587.7 0.0 0.2 -55.4 1.3 0.0 00
3800 0 1 0 0 1 8.7 -1407.8 0.0 3.7 856.9 46 <21 0.0
3196 -1 0 0 2 1 1.1 15174 0.0 1.5 -800.7 -0.1 0.0 0.0
9131 0 2 2 -2 2 -1.6 -1579.6 0.0 7.7 685.1 05  -38 00
17331 0 0 2 -2 0 1.1 21784 0.0 -0.2 -16.9 1.3 00 00
3166 -1 0 0 2 -l -4.2 1286.7 0.0 1.3 695.6 1.6 00 00
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Table § —Continued

PERIOD ARGUMENT LONGITUDE OBLIQUITY
32 346.64 0 1 0 0 -1 65 1267.1 0.0 -4.0 6422 -2.7 -1.6 0.0
33 18263 0 2 0 0 O 09 16692 0.0 -83 13.3 1.0 -01 00
34 954 -1 0 2 2 1 23 -10200 0.0 -09 5219 1.5 00 0.0
35 5.64 1 0 2 2 2 4.2 -767.0 00 0.0 3258 1.9 -01 0.0
36 13.17 0 1 2 0 2 -1.1 756.5 00 -1.7 -325.1 0.5 09 0.0
37 1095.18 -2 0 2 0 O -1.2 -1097.3 00 -0.5 10.1 03 00 0.0
38 709 0 0 2 2 1 2.5 -663.0 00 -0.6 334.5 L5 00 00
39 1419 0 -1 2 0 2 0.8 -714.1 0.0 1.6 307.1 04 -09 00
40 1480 0 0 0 2 1 0.5 -6299 0.0 -0.6 327.1 0.5 00 0.0
41 2386 1 0 2 -2 1 0.2 5804 00 06 -3046 -02 0.0 0.0
42 19984 2 0 0 -2 -1 -1.4 5772 0.0 05 304.0 0.5 00 0.0
43 1281 2 0 2 -2 2 -0.9 6444 00 00 -2768 -05 01 0.0
44 68 2 0 2 0 1 2.1 -534.0 0.0 -0.5 268.9 1.2 00 0.0
45 1473 0 0 0 2 -1 -2.3 4932 00 0.5 2718 1.0 00 00
46 34660 0 -1 2 -2 1 0.0 -4773 0.0 -24 2715 -04 -0.8 0.0
47 348 -1 -1 0 2 0 -0.8 735.0 0.0 -1.7 -5.2 04 00 0.0
48 21232 2 0 0 -2 1 0.6 406.2 00 04 -220.5 01 00 00
49 9.61 1 o0 2 0 -2.6 656.8 0.0 0.0 -20.2 03 00 00
50 11961 O 1 2 -2 1 0.5 3580 00 20 -191.0 0.1 05 0.0
51 2980 1 -1 0 0 O -0.6 4725 00 -1.1 -4.1 03 00 0.0
52 161575 -2 0 2 0 2 -0.1 -3060.5 0.0 0.0 1306 -0.1 0.0 0.0
53 1539 0 -1 0 2 0 -1.1 435.1 0.0 -1.0 3.0 03 00 00
54 549 3 0 2 0 2 1.7 -289.5 0.0 0.0 1229 0.7 00 0.0
55 2953 0 0 0 1 O 0.6 -4226 0.0 0.0 37 -02 00 00
56 937 1 -1 2 0 2 0.8 -2876 00 0.6 123.1 03 -03 00
57 411,78 1 o 0o -1 0 -371 -3944 00 0.0 -53.5 147 00 0.0
58 981 -1 -1 2 2 2 0.7 -281.8 00 0.6 1207 03 -03 0.0
59 268 -1 0 2 0 O 0.6 -405.6 00 0.0 40 -02 00 00
60 137 2 0 0 0 -1 -1.1 2289 00 0.2 126.5 05 00 00
61 724 0 -1 2 2 2 1.0 -264.3 00 05 1128 05 -03 00
62 8.91 1 1 2 0 2 -0.7 2479 00 -05 -1061 -03 03 0.0
63 1381 2 0 0 O 1 -0.2 2180 00 02 -1129 -02 0.0 0.0
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Table § —Continued

PERIOD ARGUMENT LONGITUDE OBLIQUITY
64 25.62 1 1 0o 0 0 05 -339.0 00 08 3.6 -0.2 00 0.0
65 32.61 1 0o -2 2 -1 -0.6 1987 00 02 1073 02 00 00
66 9.11 1 0o 2 0 o0 -14 3340 00 00 -11.0 0.1 0.0 0.0
67 3232.86 -1 1 0 1 0 0.1 3340 00 0.0 -0.9 00 00 0.0
68 27.78 1 0 0 0 2 00 -198.1 00 0.0 85.4 0.0 0.0 0.0
69 323150 -1 0 1 0 1 -106.6 00 00 0.0 0.0 -888 00 0.0
70 934 0 0 2 1 2 -0.4 1658 00 00 -71.0 0.2 00 0.0
71 6164.10 -1 1 0 1 1 0.0 1348 00 00 -703 0.0 00 00
72 580 -1 0 2 4 2 08 -1516 00 0.0 64.5 03 00 0.0
73 678632 0 -2 2 -2 1 00 -129.7 00 0.0 69.8 00 00 0.0
74 5.64 1 0o 2 2 1 0.7 -1328 00 -0.1 66.1 04 00 0.0
75 27.33 1 0o 0 o0 -2 04 -1406 00 0.0 -61.0 02 00 0.0
76 1463 -2 0 2 2 2 -0.1 1384 00 0.0 -59.5 0.1 0.0 0.0
77 22.47 1 1 2 -2 2 0.0 1290 00 -03 -55.6 00 02 0.0
78 73 -2 0 2 4 2 05 -121.2 00 0.0 51.7 02 00 0.0
79 9.06 -1 0 4 0 2 -0.3 1145 00 00 -49.0 -0.1 00 0.0
80 1279 2 0 2 -2 1 -0.1 101.9 00 0.0 -52.7 -0.1 0.0 0.
81 388.27 1 0 0 -1 -1 -3.5 -102.0 0.0 00 -49.6 1.4 00 0.0
82 468 2 0 2 2 2 08 -1094 00 00 46.3 0.3 0.0 0.0
83 9.63 1 0 o0 2 1 0.2 -97.0 0.0 0.0 49.6 0.1 00 0.0
84 918 3 0 o0 0 O -0.6 1573 00 0.0 -5.1 0.1 0.0 0.
85 16900 0 0 2 -2 -1 0.2 -83.3 00 00 -44.0 -0.1 0.0 0.0
86 87 3 0 2 -2 2 -0.3 93.3 00 00 -399 0.1 0.0 0.0
87 1266 0 0 4 -2 2 -0.1 921 00 0.0 -395 -0.1 0.0 0.0
88 1008 -1 0 0 4 0 -0.5 1336 00 0.0 -3.9 0.1 00 0.0
89 1314 0 1 2 0 1 -0.1 815 00 00 -421 0.1 0.0 0.0
90 18766 0 o0 2 -2 3 0.0 1239 00 00 -17.2 0.1 00 00
91 1591 -2 0 0 4 0O -0.3 1281 0.0 0.0 -2.3 0.1 00 0.0
92 3503 -1 -1 0 2 1 0.1 741 00 -03 -39.2 0.0 00 00
93 94323 -2 0 2 0 -1 -0.2 -703 00 00 -384 0.1 00 0.0
94 1358 0 o0 2 0 -1 -0.3 666 00 0.0 36.8 0.1 0.0 0.0
95 1416 0 -1 2 0 1 0.1 -66.7 0.0 0.0 34.6 0.1 00 00
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Table §—Continued

PERIOD ARGUMENT LONGITUDE OBLIQUITY

96 40923 0 1 0 o0 2 -07 69.3 00 -03 -327 03 0.0
97 2542 0 0 2 -1 2 00 -704 00 00 304 00 00
98 131.67 2 1 0 -2 0 -01 1015 0.0 0.0 04 01 00
99 479 o0 0 2 4 2 05 -691 00 00 293 02 00
100 3467 -1 -1 0 2 -1 -0.2 585 00 02 316 01 00
101 29.26 -1 1 0 2 0 01 -949 00 0.2 08 -0.1 0.0
102 29.93 1 -1 0 0 1 00 529 00 -0.2 -279 0.0 0.0
103 32079 0 -1 2 -2 0 01 8.7 0.0 -0.2 29 00 00
104 3982 0 1 o0 o0 -2 -01 -592 0.0 02 -253 01 00
105 573 1 -1 2 2 2 03 -588 00 01 25.0 01 0.0
106 9.60 1 o o0 2 -1 -03 49.0 00 00 275 01 0.0
107 9.31 1 1 2 2 2 -01 569 00 -0.1 -244 -0.1 0.0
108 549 3 0 2 0 1 03 -502 00 00 249 01 0.0
109 696 0 1 2 2 2 -02 534 00 -01 -228 -0.1 0.0
110 2377 1 0 2 -2 0 01 -765 0.0 0.0 09 00 00
111 3874 -1 0 -2 4 -1 -01 453 00 00 244 01 00
112 98 -1 -1 2 2 1 01 -468 00 00 239 01 0.0
113 723 o0 -1 2 2 1 02 -46 00 00 225 01 00
114 699 2 -1 2 0 2 02 -487 00 00 208 01 0.0
115 1483 0o o0 0 2 2 01 -468 00 00 201 00 0.0
116 25.22 -1 t1 2 0 2 00 464 00 -01 -200 00 0.0
117 9.35 1 -1 2 0 1 01 -420 00 00 215 01 00
118 1419 0 1 0 2 0 02 -673 00 0.1 14 00 00
119 11754 o0 1 2 -2 0 00 -658 00 02  -02 00 00
120 7305 0 3 2 -2 2 00 -439 00 03 190 00 -0.1
121 2966 0 0 0 1 1 00 -389 00 00 205 00 0.0
122 953 -1 0 2 2 0 -02 63.9 00 0.0 -20 00 0.0
123 673 2 1 2 0 2 -02 412 0.0 00 -176 -0.1 0.0
124 25.72 1 1 0 0 1 00 -361 00 02 190 00 00
125 713 2 o0 o0 2 0 -03 585 00 0.0 -25 00 00
126 890 1 1 2 0 1 -01 3.1 00 00 -184 -0.1 00
127 321 -1 0o o0 2 2 00 -397 00 00 171 00 00
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Table 5 —Continued

PERIOD ARGUMENT LONGITUDE OBLIQUITY
128 32.76 1 0 -2 2 0 0.1 -57.7 0.0 0.0 0.4 0.0 0.0 00
129 1535 0 -1 0 2 -1 -0.1 334 00 0.0 18.4 0.1 0.0 00
130 6159.14 -1 0 1 0 2 364 00 00 00 0.0 174 0.0 0.0
131 2732 0 1 0 1 0 -0.1 55.7 0.0 -0.1 -0.6 00 00 00
132 32.45 1 0o -2 2 -2 0.1 -354 00 00 -154 0.0 00 0.0
133 2940 0 0 O 1 -1 01 -31.0 00 0.0 -16.8 0.0 00 0.0
134 29.67 1 -1 0 0 -1 -0.1 301 0.0 0. 16.3 0.0 00 0.0
135 738 0 0 0 4 O 02 492 00 0.0 -2.0 0.0 0.0 0.0
136 6.98 1 0 2 1 2 -0.1 336 00 00 -143 -0.1 00 00
137 9.87 1 -1 0 2 0 -0.2 491 00 0.0 -1.5 00 00 00
138 13.22 1 0 2 -1 2 0.1 -335 00 0.0 14.4 00 00 0.0
139 31,52 -1 o 0 2 -2 0.1 -31.0 00 00 -134 0.0 00 0.0
140 933 0 0 2 1 1 -0.1 280 00 00 -14.3 0.0 00 0.0
141 26.77 -1 0 2 0 -1 0.1 -252 00 00 -13.7 0.0 00 0.0
142 580 -1 0 2 4 1 0.1 -262 00 00 13.1 0.1 0.0 00
143 708 0 0 2 2 0 -0.2 415 00 0.0 -1.8 0.0 00 0.0
144 22.40 1 1 2 -2 1 00 245 00 0.1 -128 0.0 00 0.0
145 2732 0 0 1 0 1 -16.2 00 00 00 00 -144 00 00
146 313.04 -1 0o 2 -1 1 00 -223 00 0.0 12.4 0.0 00 00
147 1460 -2 0 2 2 1 00 231 00 0.0 -12.0 0.0 0.0 00
148 1432 2 -1 0 0 o0 -0.1 375 00 0.0 -0.8 00 00 00
149 458 4 0 2 0 2 02 -257 00 0.0 10.9 0.1 0.0 00
150 12.38 2 1 2 -2 2 00 252 00 00 -108 0.0 00 00
151 9.11 0 1 2 1 2 0.1 -245 00 0.0 10.5 0.0 00 0.0

Note. — Unit is micro-arcsecond for amplitude
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Table 6. Foreced nutation series for planetary part

PERIOD ARGUMENT LONGITUDE OBLIQUITY
No (days) ¢ ¢ F D Q Ve My Jy S Ac As Al Al B. B, B! B
1 295456 0 0 &5 -5 5 -3 0 0 0 40 1788 -11.8 03 -87.7 44 -04 -63
2 216629 0 0 0 o0 O 0 0 2 0 398 -107.3 -56 -1.0 463 224 05 -24
3 39887 0 0 1 -1 1 0 0 -1 0 9.6 164.2 41 0.1 15.7 -33 01 04
4 58396 o0 0 -1 1 -1 1 0 0 0 -4.7 -135.3 -34  -01 5.2 58 02 -0.1
5 3803670 0 0 -1 1 0 0 2 0 0 505 75.0 14 -1.2 -301 269 07 00
6 12527 0 O 3 -3 3 0 0o -1 0 -1.1 -53.5 1.3 00 23.2 -05 00 0.6
7 496416 0 0 -8 8 -7 5 0 0 0 -45.0 -2.4 -04 6.6 1.0 232 34 00
8 5767.54 0 0 -1 1 -1 0 2 0 0 -11.5 -61.0 -09 04 -12.2 -43 00 0.0
9 29198 0 0 -2 2 -2 2 0 0 0 44 -68.4 -34 00 -2.1 -3.7 -02 0.1
10 72780 0 0 -6 6 -6 4 0 0 0 7.7 -47.1 -4.7 -1.0 -18.6 -38 -04 18
11 18258 0 0 -2 2 -2 0 8 -3 0 -429 -12.6 1.2 4.2 55 -187 -18 -05
12 18266 0 0 6 -6 6 0 -8 3 0 -428 12.7 -1.2 -4.2 -55 -187 18 -05
13 48759 0 0 4 -4 4 -2 0 0 0 -7.6 -44.1 21 -0.5 184 -36 03 09
14 145561 0 O -3 3 -3 2 0 0 0 -64.1 1.7 02 4.5 -0.6 1.3 00 00
15 685009 0 O 4 -4 3 0 -8 3 0 364 -10.4 1.0 35 -56 -195 19 0.0
16 674746 0 0 -4 4 -5 0 8 -3 0 356 10.2 1.0 -35 55 -19.1 -19 0.0
17 1123 0 0 0 o0 O 2 0 0 0 -1.7 39.5 20 00 -173 -08 00 09
18 41676 0 0 -4 4 -4 3 0 0 0 514 -8.0 -08 -5.0 -3.1 -85 -08 03
19 433505 0 1 -1 1 -1 0 0 1 0 0.0 52.3 1.2 0.0 -0.1 00 00 00
20 433259 0 0 O o0 O 0 0 1 0 -429 -17.8 04 0.0 -5.4 78 -03 0.0
21 139.12 0 0 1 -1 1 1 0 0 0 2.6 343 0.8 0.0 -14.8 14 00 03
22 38994 0 0 2 -2 2 0 -2 0 0 -0.7 -48.6 24 -0.1 -3.8 04 00 -02
23 286806 o0 -1 -7 7 -7 5 0 0 0 -4.9 30.5 3.7 07 126 32 05 -1.5
24 635765 -2 0 2 0 2 0 0 -2 0 0.0 -43.6 21 0.0 0.1 0.0 00 00
25 1359140 -2 0 2 0 1 0 o -3 0 0.0 -25.4 1.2 00 -13.6 24 -01 00
26 19943 0 0 2 -2 2 0 0 -2 0 2.0 40.9 -20 0.0 0.9 1.2 00 0.0
27 3368 0 0 1 -1 1 0 0 1 0 -2.1 26.1 06 00 -119 0.5 00 03
28 637961 0 0 0 0 O 0 0 0 2 226 -3.2 -0.5 -0.5 04 120 03 -0.2
29 1075920 © 0 O O O 0 0 0 1 -7.6 24.9 -04 -0.2 8.3 6.1 -01 01
Note. — The unit for the period is day and amplitude is microarcsecond.
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Abstract

We have constructed an analytical model for the motion of the second Neptunian
satellite Nereid in the frame work of the circular non-planar restricted three body prob-
lem using Lie transforms approach. The main perturbing forces due to the solar effects
are only taken into account. The disturbing function is developed in powers of the ratio
of the semimajor axes of the satellite and the Sun and put in a closed form with respect
to the eccentricity. In a separate paper (Saad and Kinoshita 1999) we introduced the
solution of the planar motion of Nereid. In this paper we present a complete theory
which includes the short, intermediate and long periodic perturbations. The osculating
orbital elements which describe the orbital motion of Nereid are evaluated analytically
and got ephemerides of Nereid. The comparison with the numerical integration of
the equations of motion gives an accuracy on the level of 0.3 km in the semi-major
axis, 3 X 10~7 in the eccentricity and 10~° degree in the angular variables over several
hundred years. The results of the present theory satisfy the required accuracy for the
observations.

Keywords: Celestial mechanics, satellite theory, osculating elements, ephemerides, Nereid

1 Introduction

By virtue of Voyager 2 encounter, Neptune’s known satellite system consisted of one large
retrograde highly inclined satellite, Triton, a smaller satellite, Nereid, in a prograde highly
eccentric orbit, and six newly discovered satellites in the vicinity of their mother planet
Neptune. Triton was discovered by Lassel in 1846, Nereid was discovered by Kuiper in 1949,
while the other 6 satellites were discovered in 1989 during the Voyager 2 encounter with the
Neptunian system (Stone and Miner 1989). Its highly elliptical orbit and faintness make the
motion prediction of Nereid inaccurate by the usage of the classical models. Many authors
have dealt with the orbital determinations of Nereid (Rose 1974; Mignard 1975, 1981; Veillet
1982, 1988; Oberti 1990; Jacobson 1990, 1991; Segerman and Richardson 1997). Rose fit van
Biesbroeck’s (1951, 1957) observations, while Veillet used the theory of Mignard (1975, 1981)
which is based on Von Zeipel’s method. Jacobson fit the numerically integrated Neptunian
satellite orbits (Nereid and Triton) to Earth-based astrometric observations and Voyager
spacecraft observations. The second order analytic theory by Oberti gives discripacies about
a hundred of kilometers, while in the theory of Segerman and Richardson the disturbing
function is expanded in eccentricity. However, most of the analytical theories which are
expanded in eccentricity or/and inclination not very accurate for the case of highly eccentric
orbits. That is because of the slow convergence of the power series of the disturbing function.
In this paper we construct a third order analytical theory on the motion of Nercid which
is chiefly perturbed by the Sun. The theory is based on Lie transforms approach advanced
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by Hori(1966). The small parameter is the ratio of the mean motion of the Sun and Nereid
~ 6 x 1072, The disturbing function is developed in this small parameter and put in a closed
form with respect to eccentricity. The ephemerides evaluated by the analytic expressions of
the present theory are compared with those computed by the numerical integrations of the
equations of motion. The accuracy and the amplitudes of the osculating orbital elements of
Nereid are shown by tables and figures in the last Section of this paper. In the following
section we give the Hamiltonian equation of the nonplanar case. Sections 3 and 4 are devoted
for the short-period, long-period and secular perturbations respectively. In Section 5 we give
the osculating orbital elements. Then the discussion and conclusion.

2 Hamiltonian of the motion

The Hamiltonian equation of the nonplanar case is given by

F = 2;2+VG+F2, (1)
where r
F= L”Fl vG, (2)
P =Fy + Fzz + Fa, (3)
Fy = v?a® (%)2 {(—% + = 02) +1 (1 + 6)% cos(2f + 2y2)} \

w

Fy = v¥a? (a) {g(l - 02) [cos(2f + 2g) + cos(2g — 2y2)]}, (4)

Fo3 = 1v2a? (Z)z { 136(1 —0)2 cos(2f + 49 — 2y2)}

v is the mean motion of the Sun, § = cos 1, y, = g + h — k and k defines the longitude of the
Sun. The normalization of F; with respect to the mean anomaly of Nereid results in

7

Fos = Fos + Fags + Fas, (5)

where

Py = v {(14 36) (= + 30°) + X1+ 0P cos(2an)

Fyyy = v¥a? {i—z—e (1 — 6?%) cos(2g) + §(1 + -2-62)(1 — 6%) cos(2g — 2y2)}, (6)

8
15
Fas = v2a® {32 (1 — 0)? cos(4g — 2y2)}.

Then, the periodic part F3, provides
Fy, = Fopp + Fogp + Faap, (7)

where

Fagp = 1v2a® {Agy + Baa c0s(2y3) + Cazsin(2y2) } (8)

Fas, = v2a® { Bay cos(2y;) + Cazsin(2y2)} -

The high eccentric orbit of Nereid precludes replacing functions of the true anomaly by
expansions involving the mean anomaly. So, it is convenient to take the eccentric anomaly of

Fanp = 12a® {Ag1 + Bay cos(2ys) + Car sin(2y2) }, }
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Nereid u as independent variable (Mignard 1975, Oberti 1990). In this regard, the expressions
“of A;; and B;; above yield

| 3 A
(=120 A
All (1 ] + ] 9
By = —(140)’B,
116

Cy = (1 +0)*C,
An = 1(1 — 0?) { Bcos(2g) + C'sin(2g)},
By = (1 — 0%)Acos(29),
Coy = 81(1 — 0*)Asin(2g),
{B cos(4g) + C'sin(4g)},

Bys = —(1-6)?
Cys = ( — 0)* {Bsin(4g) — C cos(4g)},

]16

where A, B and C are given by

A= —c?—2ecosu+ie cos(2u),
B = —3¢? — 6ecosu + (3 — 2e?) cos(2u), (10)
C = n(6esinu — 3sin(2u).

Notice that, all the analytical expressions in this case are put in a way such that anyone can
easily get their correspondents in the planar case (Saad & Kinoshita 1999).

3 Short periodic perturbations
Elimination of the short periodic terms will be satisfied by finding a canonical transformation
(L,G,H;l,g,h,Ag) — (L*,G", H*; ", ", h", Ap) , (11)
where, Ay = k defines the longitude of the Sun. In order that:
F(L,G,H;l,g,h, ) g) — F*(L*,G",H*; —,¢",h", X g), (12)
and the determining function S only includes the new variables L*,G*, H*; I*, g*, h*, Ag. Afl-

ter eliminating the short-periodic terms, the orbital eclements a*, e*, n* and * are copmuted
from

. L*Z - G* . ”‘2 . G*
a = ll, 1—(11*) n —F,n =I= (13)
In this Section for simplicity, the superscript * will be omitted from the orbital elements.
Following the algorithm concerned the short-period terms, the new Hamiltonian and deter-

mining functions deliver
2
Ok —_ lt ‘*
I'U —m,]l —I/(1, (14)
P4F ¥4

: 3. 1 3 15 . .
no= w2a? { (l + ;(:"’) (_§ + §02) + l—écz(] - OZ)C()S(Q{/)

<
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+ g (1 + §e2) (1 — 0%) cos(2k — 2h)

2
15
+ — 33° ¢*(1 4 0)% cos(2k — 2g — 2h)
ll"
+ — 32 (] — 0) cos(2k + 2g — 2/).)} )

(15)

S1 = 0 since the determining function has the identical transformation, consequently the

Hamiltonian F§ = 0. The determining function S, is given by
Sz = Sn1 + Sz2 + S,

where .

1v%a? .
Sy = —=— {A(]) Bgl cos(2y2) + C'g) sm(2y2)},

~

1 v a
Sgg = {A(l) + ng) cos(2y;) + C’22 sm(2y2)},

1
= _1/_(_1_ {323 cos(2yz) + C’ s1n(2y2)}

the symbols above Agj) , B(l) and Czj) have the expressions

(16)

(17)

(18)

for j = 1,2,3, and A3 = 0. Here, we put dl = (1 — ecosu)du and consider the average

relations
(cosu) = —le
. B 2 ’
(cos ju) =0,

(sin ju) =0,
for 7 > 2. Thus, we obtain

5y = LU {-le(—z +e?)(1 + 6)? sin(2k — 29 — 2k — 3u)
4 n 32
_ %(2 + €%)(1 + 6)? sin(2k — 29 — 2h — 2u)
_ ;_;e(_z +€2)(1 + 0)?sin(2k — 2 — 2h — u)
+ e(=8 +36)(~1 + 36 sin(u)
21 + 30 sin(2u) + 5-e%(1 — 30%) sin(3u)
+ ;i e(—2+ cz)(l + 0)?sin(2k — 29 — 2h + u)
+ ;2(2 + e®)(1 + 0)%sin(2k — 29 — 2h + 2u)
+ e(=2 4 €)(1 + 0)2 sin(2k — 29 — 2h + 3u)

32
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S =

+ 7 <J 2(1 4 0)*sin(2k — 29 — 2h)

+ l—c(l + 0)%sin(2k — 29 — 2h — 3u)

16
_ 13 (1 + e2)(1 + 0)? sin(2k — 29 — 2h — 2u)
n %6(1 + 0)? sin(2k — 29 — 2h — u)

N %6(1 +0)% sin(2k — 2 — 2h + u)

_ 136(1 + €?)(1 + 0)*sin(2k — 2g — 2h + 2u)
+ 11_66(1 + 0)? sin(2k — 29 — 2h + 3u))}

1% (1 . 1 4
v in(2g — 3u) — —€3(—1 + 02
i {16( 2 + e*)(—1 + 6%) sin(2g — 3u) 166( + 6%)

* sin(2k — 2h — 3u) + i(2 + €*)(~1 + 6%)sin(2g — 2u)

+ 196 2(—=1 4 6%)sin(2k — 2h — 2u) + %e(—2 + €?)(—1 + 6%)

* sin(2¢g — u) + 13—66(—8 + 3€®)(=1 + 6%) sin(2k — 2h — u)

- i—z-e(—Z + €2 (=1 + 6%)sin(2g + u) — lie( 8 + 3e2)(—1 + 6%)
* sin(2k — 2h + u) — -13—6(2 + €?)(—1 + 6?) sin(2¢ + 2u)

- %cﬂ( 1 4+ 0%)sin(2k — 2h + 2u) — %e(—2 +e?)(—1+ 6?)

* sin(2g + 3u) + 116 3(—=1 + 6?)sin(2k — 2k + 3u)

+n(§ez( 2+ ¢)(— l+02)sm(2g)+%e(—1+02)sin(2g—3u)

(1 + €2)(—1 + 6%) sin(2g — 2u) + 185 (=1 + 6%)sin(2g — u)
5

— 00| o

+ —e(=1+ 6*)sin(2g + u) — §(1 + €?)(=1 4+ 6%)sin(2g + 2u)

u—lm|

+ ge(—l + 6%)sin(2g + 3u))} )

finally S,3 is given by

523

= 1”2(‘2{ - (=24 ) (=14 0)*sin(2k + 29 — 2k — 3
T4 on 32° ¢ sin(2k + 29 — 2h — 3u)
3
- 3—9(2 + e®)(=1 4+ 0)*sin(2k + 29 — 2h — 2u)
15 ;
- —oe( 2+ €*)(=1+ 0)*sin(2k + 2g — 2h — u)
+ %f’(_z + ) (=14 0)?sin(2k + 29 — 2h + u)
3 .
+ 3—2(2 + %) (=14 0)*sin(2k + 29 — 2h + 2u)
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1
+ —e(—2 4 e*)(=1 4 0)*sin(2k + 29 — 2h + 3u)

32
+n (—%2(—1 +0)?sin(2k + 29 — 2h)

_ 116 (=1 + 0)2sin(2k + 2¢ — 2k — 3u)

+ 136(1 + e?) (=1 + 0)sin(2k + 29 — 2k — 2u)
_ 12 (=1 + 0)? sin(2k + 29 — 2h — )

- —e(—l + 0)*sin(2k + 29 — 2h + u)

3
+ 16(1+e )(=1 4+ 0)*sin(2k + 29 — 2h + 2u)

— 116 (—1 + 0)%sin(2k + 2g — 2h + 3u))} (22)

We intended removing any secular terms from the determining function by applying the
mathematical operations
A(l) A(l) (A(1)>
Bl = ) — (sl (23)
C(l) C(l) <C(1))
for  =1,2,3.
Substituting from equations (20), (21) and (22) in equation (16) we get the analytical

expression of the determining function S,. Here, Agj , B(l) and Cg) are free from any angular
variables, however they are factorized by (1 02) sin? 7. The small parameter in this theory
is roughly of the order of 1073, this means that if the inclination of Nereid is ~ 10°, then
sin?s ~ y/e. Now we are going to the derivation of the fourth order Hamiltonian Fj. It can
be given by the simple expression

Fi = Fj, + Fy + g, (24)
where )
Fy=3 ({F2lpaS2l}s + {Fa1py S22}, + {F2lp)S23}s)a
Fy, = = ({Faap, S}, + {Fazgy S22}, + {Fazp, S23},), (25)
Fg= 3 ({F23p7521}s + {Fa3p, Sa2}, + {F23p,523}3)7

the subscripts s and p define the secular and periodic parts respectively, F,;, and S,; for
J = 1,2,3 are given by equations (8) and (17). Proceeding various mathematical derivations,
the Poisson bracket {Fj,, S2} can be reduced to the form

i’ 7’ o N
{Fan 2} = o5 {(w + L ) 1D,(26) + 1D, P
2
_ (77> + %Pe) Dy + L(26Dg — D, Pg)
— L(PuDy—PrDu)}, (26)

where

D =D, +D;+ Dy, (27)
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Dy = Ay + 133y cos(2y2) + Coy sin(2y2),
Dy = Ay + By cos(2y2) + Cog sin(2y2), (28)
D3 = Bys cos(2ya) + Cossin(2y,),
E=6E+E+ 8, (29)
& = —Bg) sin(2yz) + Clg}) cos(2yz),
& = —BY) sin(2y2) + C5) cos(2yn), (30)
£ = — B sin(2y,) + CY) cos(2y.),
similarly, P can be defined by the following form
P =P+ P+ Ps, (31)

where
Py = A + BY) cos(2y2) + ci) sin(2y2),
P2 = AY) + B cos(2ya) + CF) sin(2y2), (32)
Ps = Bg) cos(2y2) + C’g) sin(2yz).
Since D and P are functions of the eccentric anomaly u, then their partial derivatives D,
and P, with respect to ¢ deliver

AD,P) _ (AD,P)) , AD.P) o
de Oe Ou Oe’

Taking the secular part of the Poisson bracket {F,, S»}, the analytical form of F} arises

Iy = Fi, + I, (34)

4pr

(33)

where

* via? 1 2 4 2 2 4
R {m (=8 (47 + 28207 + 630%) — 63¢* (239 + 1706 + 1430")

1 7262 (377 + 19002 + 20904)) + 1017 (3e2 (—1 + 02) (—6 (83 + 19502)
1845

+ ¢ (131 +5550%))) cos(2g) + zoozet (—1 + 02)2003(4g)} : (35)

and the periodic part has the form

4,2

« _ Va 3 2 4 N? L
F;, = 7{—m<56—16726 +1001e*) (=1 + 0%) cos(4k — 4h)

615 « 15 ,
3192° (1 +0) cos(4k —4g — 4h) + 5018° (—78+37e )(—1 +9)

3 . . 15 2 2 3
« (1+0)" cos(1h — 2 — 4h) + o e (~78+37¢%) (—1+ 0)° (1 +0)

(4 + 615 4, 4. L 3 2
* cos(4k + 29 — 4h) + 5193¢ (—1+40)" cos(4k + 49 — 4h) + 09 (—J +0 )

+ (216 + 5607 — 152¢2 (13 + 1102) + 7¢* (199 + 1436%) ) cos(2k — 24)

615 '
2048 l
* (=222 + 3900 — 3900% + ¢* (79 — 1850 + 18507) ) cos(2k — 29 — 2h)

+

15

(=14 0) (1 + 0) cos(2k — 4g — 2h) — %ez (14 0)°
>

32 (=1 +0)* (=6 (37 + 650 + 650%) + ¢* (79 + 1850 + 18502))

512
G5

«
2018

% cos(2k + 29 — 2h) — 12 4 (Z1 4 ) cos(2k + 4g — z/,,)} , (36)
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where ¢ = @w — Q. By the virtue of the powerful Mathematica software, we could evaluate
and simplify the analytic formulae of both the Hamiltonian and the determining function of
the present theory although their derivations were laborious. We give S3 as follows

Ss = S31 + S32 + Ssa, (37)
where s 2 .
1v°a
Sa1 = 1z Mo
1 2
Say = Z%Mz, ( (38)
1 z/%a2
Saz = Zn—zMa,
M, = —232(,1) sin(2y,) + 2C 1) cos(2y2),
M, = —2B{ sm(2y2)+20§2 cos(2ys), (39)
Mz = —2B£3) sin(2y;) + 2C% cos( Y2),
and
— B(l)
23 2 / (40)

c = / og’dz

for y = 1,2,3. For the purpose of removmg any secular term from the determining function,
we subtracted the averages from the original expressions as follows

B(z) B(2) (B(Z)) (41)
0(2) 0(2) (Cg)>
Then, the final form of S3 is represented by its three parts S3;, S3; and 533
1v2a? 9 0 .
S3 = 27(1 +9) {——e (—22 + 9¢®) sin(2k — 2g — 2h) + — 128 e?(—2+ ¢€?)
% sin(2k — 2g — 2h — 4u) + %6(10 + €?) sin(2k — 2g — 2h — 3u)
3
+ 31—2(—6 — 19¢€® + 8¢*) sin(2k — 29 — 2k — 2u) — :—356(—22 + 9¢?)
3

sin(2k — 29 — 2h — u) — ﬁe(—22 + 9¢?) sin(2k — 2¢ — 2k + u)

i(—6 — 19¢? + 8¢*) sin(2k — 2g — 2h + 2u)

1

— i . — 2q — 2h ——e2(—2 + e
+ 966(10+e )sin(2k — 29 — 2h + 3u) + 1286 (-2 +¢€?)

1
* sin(2k — 2g — 2h + 4u) + 9 ("@62 sin(2k — 2g — 2k — 4u)
1

+ ie(5 + 3¢?) sin(2k — 29 — 2h — 3u) — —(3 + 11€?)

48 16
* sin(2k — 29 — 2h — 2u) — ]—36-6(—11 + 4€*) sin(2k — 29 — 2h — u)

1

+ %e(—ll + 4€®)sin(2k — 29 — 2h + ) + E(3 + 11¢?)
* sin(2k — 2g — 2h + 2u) — %C(5 + 3¢?) sin(2k — 2¢g — 2h + 3u)
+ 61—462 sin(2k — 29 — 2h + 411))} , (42)
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Sz = l”3“2( 1+02{3 2216 + 3¢2) sin(2k — 2h) + ~¢" sin(2k — 2/
S = 1 ) 6 (—16 4 3e“)sin(2k — 2h) + e sin(2k — 2h — 4u)
11
- Ee‘q sin(2k — 2h — 3u) — %02(—21 + 4c?) sin(2k — 2h — 2u)
3 2y . 3
+ Ee(—lﬁ + 3¢?) sin(2k — 2h — u) + 71—6(:(—16 + 3€?) sin(2k — 2k + u)
1 . 11
- —1E62(—21 + 4€?) sin(2k — 2h + 2u) — Z§c3 sin(2k — 2h + 3u)
1
+ —etsin(2k — 20+ 4u)} , (43)
and Sj3 is given by
113a® 3 1
Ss3 = = -1 02{——2—2 ?)sin(2k — %) + —e?(=2 4 ¢?
33 e (-1406) 326( 2+ 9¢”)sin(2k + 2¢ 2/1)+1286( 2+4¢€%)
: 1 .
* sin(2k + 29 — 2h — 4u) + %6(10 + €*)sin(2k + 2g — 2h — 3u)
1 3
+ ﬁ(—6 — 19¢* + 8e*) sin(2k + 29 — 2h — 2u) — -ﬁe(—22 + 9¢?)

3

sin(2k + 2g — 2h — u) — ﬁe(—22 + 9¢?) sin(2k + 29 — 2h + u)
+ 31—2(—6 — 19¢* + 8¢*) sin(2k + 2¢g — 2k + 2u)

1 1

—e(l 2\ . 9 — 9} - n2 2
+ 966( 0 + €°) sin(2k + 29 — 2h + 3u) + T78¢ (—24¢€%)
* sin(2k + 29 — 2h + 4u) + 7 (—ée2 sin(2k + 2¢g — 2h — 4u)
+ -—1—6(5 + 3e?) sin(2k 4+ 2¢ — 2h — 3u) — i(3 +11¢%)

48 16

3

* sin(2k + 29 — 2h — 2u) + _166(_11 + 4¢?)sin(2k — 2g — 2h — u)

— -3—e(—11 + 4€*) sin(2k + 29 — 2h + u) — 11—6(3 +11¢e?)

16
1
* sin(2k + 2¢g — 2h + 2u) + EG(S + 3¢?)sin(2k 4 2g — 2h + 3u)
1
- aez sin(2k + 29 — 2h + 4u))} , (44)

where u = k — w.

4 Long periodic perturbations

In this Section, we remove the long (intermediate) periodic terms which are related to the
motion of the Sun. This will be achieved by building the canonical transformation

(L%, Gr Y 1 g7 b7, ) — (L7, G 5 1%, 7 B, X), (45)
In order that:
r~ (L*’ G"a [—I*a l*’ ,(/*, h*’ /\(?)) — I (IJ**v C"**v 11**3 —?.(/**a s _) » (46)

and the determining function S only includes the new variables L**, G [ P g™, b, A
The new Hamiltonian /™* will be also free [rom h, since the disturbing potential becomes
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axidl symmetlic After eliminating the long (intermediate) terms, the orbital elements «**,
e, n** and 9** are copmuted from

L**2 Gi** 2 2 C**
a** = e =1/1—- ( ) ) = L= (47)
12

’ L** [**3 N L** *

In this section right now, the superscript ** will be omitted from the orbital elements.
We follow the algorithm concerned the long-period terms to get the new Hamiltonian and
determining functions as follows

4 /'L *kK
F _2L2’F =G, (48)

Fy* = v?%a? {(l+ge>+(—+ 02)+-1—6 (1 —02)cos(2g)}, (49)

S; = va® { 136 (1 + =e ) (1 — 6%)sin(2k — 2h) + E62(1 + 0)?

5
* sin(2k — 29 — 2h) + (154 (1 - 0)2 sin(2k + 2¢g — 2h)} (50)

1/3612

*k 7 i 2 2
Fr =2 {1280(2 267 4 ¢*(33 + 176%)) +

132620(1 - 6% cos(2g)} , (51)

via? 9

s*:—{
2 "\ 128

+ %e 2(1 + 0)*(—2 + 30) sin(2k — 2g — 2h)
45
+ 5ese (1 — 0)*(2 + 30) sin(2k + 29 — 2h.)} , (52)

(=24 17¢%)6(1 — 6%)sin(2k — 2h)

via® (1
F** = —_— - _ _ 2 4 2 . . )
! n? {8192(8( 67 — 726" + 96 )+ 144€%(329 + 2530 + 3446")
— 9¢*(2527 + 27946 + 54076")) +

315
8192

2 2/ 2
2048 e2(—1 + 6%)(—12(68 + 3456°)

+ €*(307 + 40350%)) cos(2g) et(—1 4 0%)? cos(4g)} (53)

while $3 has the analytical expression

i 69 3,

123
;= S{re o (-4 g *) sin(ak - 4h
2 (—1+ 0% 1024+46 8193°¢ sin(4k — 4h)

1905
e*(1 + 0)*sin(4k — 49 — 4h)

16384
3 315 645
—-14+6)(1+96 ( e? — 4) i ¢ —2¢g —4h
+(-1+6)(1 +96)° 024 ~ 2096 sin(4k — 2¢g — 4h)

315 , 645

-1+ 0)1 03(—
+ (=1 + 01+ 07\ —7551¢" ~ 7096
1905

A A Al A _ 2
T6384° (14 0)"sin(4k + 4g — 4h) + (=1 + 67)
(171 39 02 3

e > sin(4k + 2¢g — 4h)

¢?(215 + 9046%) +

256 256 256

A1 2
(1355 + 81310 ))
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795

* sin(2k — 2h) + =14 0)(1 4 0)?sin(2k — 49 — 2h) + (1 + 0)*

4096
* (5%62(79 — 1750 4+ 3100%) — T0%4 ¢'(563 — 13150 + 21250’))

% s5in(2k — 29 — 2h) + (=1 + 0)? (%e’l(m + 1750 + 3106%)

- oo e!(563 + 13150 + 212502)) sin(2k + 2g — 2h)

+ 47(?;6(34(—1 +0)3(1 + 0) sin(2k + 49 — 2h)} : (54)

Notice that all the above analytical expressions satisfy d’Alembert characteristics. This may
prove the validity of these expressions from the analytical point of view. Up to this stage,
the Hamiltonian system is still include the long terms g. Omitting these terms can be done
by two ways, the first one (which is analogue to the previous procedures) is to build a new
canonical transformation

(L**, G**, H**; l**,g**, II.**, /\@) —_— (L***, G***, f]***;l***,g***’ h***, /\@) (55)
in order that:
F*t (L**,G*, H**; __,gt*, -, _) N Ft** (L**t, G**t’ H***; - =, _) (56)

and the final results give the mean elements. The second way is to use the Jacobian elliptic
functions (Kinoshita and Nakai 1991, 1999) in solving the Hamiltonian equations system
L** t dl** aF**
= const., — = ———
) d a wox !
dG** _ al;‘** Jg** _ %F**
dt ~— 8¢~ dt oG’
I{** t dh*x« 81?**
= const., =—
dt oH**’
and the final results are also mean elements. In this theory we adopt the latter’s method to
remove g from the new Hamiltonian system.

(57)

5 The osculating orbital elements

In the previous sections we discussed the analytical expressions of the short-period, long-
period and the secular perturbations. This Section is devoted for evaluating the osculating
orbital elements of the nonplanar problem. In order that we consider for simplicity (and
saving the area of this paper), the partial derivatives of S; (5 = 2,3) with respect to L/,
G', H', U, ¢, b’ are given by P; (i = 1,2,...,12) and the derivatives of S} ({ = 1,2,3) with
respect to L, G", H", ¢”, h" stand for K, (s = 1,2,...,15). In what follows, we implement the
above analytical expressions for digital computations by constructing the following algorithm
described by its purpose, input and its computational sequence:

5.1 Computational algorithm

o Purpose: To compute the osculating orbital elements «, ¢, I, w, 2, { of Nereid for the
nonplanar case. Nereid is inclined to the orbital plane of Neptune and perturbed by
the solar effects.
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o Inpul: the initial values g, €, I, Qf, Iy, lo, Lena, and tol (specified tolerance).

e Units measurement: Masses are given in solar unit, distances are in AU, time in days
while the angles are given in radians.

o Computational Sequence:

(1) Compute the mean elements e”, I”, w", ", ", by solving the equations system (57).
(2) Compute the long (intermediate)-periodic variations from the following sequence
(a) As for the eccentricity:

¢1=—8n2’C4E(§16, )
760, n 80 0% 2% 5%
= L ! _ 1 “lg 271
s = (( 0G  ena? Oe ) K g ng) + (3H Ks Oh IC;;),
q)4=¢2+%_626,
Bs = ———kya,
/06, 1 o0 99 99, 00 b (58)
— _ N, - 221 Sl 1k
s = 0G  ena? Oe s dg ke |+ OH k1o Oh ks)
_ 8(1)2 n 8(1)2 3 3(I>2 8@2 8@2
o =\\3G " maae )5 ) t\aEke TR k)
_ 0@3 n 6‘1’3 3<I>3 3(1)3 8<I>3
¥ ={\36 "o 9 ) R Vil el |
O+ O
By = b et Doy
€long = € + b1€' + b2€' + b3¢’, )

(b) Inclination: in this case we use the notation I = arccos (H/G) as follows
(b1) to get the angular momentum G’ make the following changes in item (a)

q)l = K:‘h
(1)2 = ’Cg, (59)
5 = K4,
then apply all the steps in (a) to get
long = G” + 51Gl + 62G, + 630I (60)

b2) to get the angular momentum H’ make the following changes in item (a
g g

q)l = }CS,
®, = Kyo, (61)
5 = K5,
then apply all the steps in (a) to get
Hi,,=H"+68H +6H +6H'. (62)

(b3) then we can get [j,,, using the definition

]I,rmq = arccos (Hfon_)/GlanJ) (()3)
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(¢) for the argument of pericenter ', in the above equations put

(I)l = _’C2a
¢, = K,
(I)f) = _]Cl‘21

then apply all the steps mentioned in eccentricity case to get

’ 1 q ! ! !
w,ong =w'+61w +52w +63w.

(d) for the longitude of ascending node ', change

(1)1 - '_ICSa
(1)2 = _,CS)
®5 = —Ky3,

then apply all the steps mentioned in item (a) to get

long = "+ 6,V 4+ 6,00 + 650

(e) in case of the mean anomaly !’ put

(I)l = _’Clv
(I)‘Z = _’Cﬁa
¢5 = _,Clla

then apply all the steps mentioned in the case (a) to get:

l/

long

= l” + 6] l, + 52” + 631'.

(3) Compute the short-periodic variations as follows

Call Kepler
(a) semi-major axis:

2
b= =P,
na
baa = —Py,
na
bagh, = 03a + 63(1’

(b) eccentricity:

2710 2
ena enda
6Csho = 626 + 630,

(c) Inclination: in this case we use also the notation I = arccos (H/G)
(c1) to get the angular momentum

62(1' = 7:’5,
(()3(" = 7‘-’lla
6(1',;/,(, = 62(1’ + 63(1'
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(c2) to get the angular momentum H

621'1 = P(;,
63]{ = ’Plg, (73)
§Hypo = 6, H + 65 H

(d) Argument of pericenter:

620) = —Pz,
63(4) = —Pg, (74)
&")sho = byw + 63“-’

(e) Longitude of ascending node:

62{2 = _7)37
639 == —7)9, (75)
693;10 = 629 + 539

(f) in case of the mean anomaly

621 = —Pl,
531 = —P7, (76)
6lsho = 621 + 631

(4) Compute the osculating orbital elements from the equations

Aosc = ag + 6asho, W
€osc = e;ang + 6631107

Gose = ;ong + 6Gshos

I{osc = Hllong + 6Hshoa

Iosc = arccos (Hosc/Gosc) P
Wose = wzlong -+ 6wshov

Qosc = ;ong + 6Qshoa

losc = lllon_q + 5lsho- J

(5) The algorithm is completed up to the third order.

—~—

(77)

6 Discussion and conclusion

We have offered a complete theory on the motion of Nereid which includes the short, in-
termediate and long periodic perturbations. The osculating orbital elements which describe
the orbital motion of Nereid are evaluated analytically and got ephemerides of Nereid. The
comparison with the numerical integration of the equations of motion gives an accuracy on
the level of 0.3 km in the semi-major axis, 3 x 1077 in the eccentricity and 10~ degree in
the angular variables over several hundred years. Figures 1 and 2 show the behaviour of
the osculating elements of Nereid over 5 and 300 years respectively. The direct difference
between the analytical and numerical results for short period interval is given by figure 3,
while figure 4 exhibits the residuals in the elements using least square fitting. The check
of the reliability and accuracy of the theory for a relatively long interval is given in figures
5 and 6. I'igure 7 represents the accuracy in the elements after making corrections in the
mean motions of {, ¢ and h. These corrections are coming from the linear part of figure 5.
Finally, the residuals in the osculating elements are adjusted and exhibited in figure 8.
Tables 1 and II show the amplitudes and the accuracy in the osculating orbital elements for
both short and long periodic perturbations respectively. The results of the present theory
salisly the required accuracy for the observations.
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Figure Captions

Fig. 1. The osculating orbital elements of Nereid for the nonplanar case over 5 years:
(1) semi-major axis,
(2) eccentricity,
(3) argument of pericenter,
(4) inclination,
(5) longitude of ascending node,
(6) periodic part of the mean anomaly.
Fig. 2. The osculating orbital elements of Nereid for the nonplanar case over 300 years:
(1) semi-major axis,
(2) eccentricity,
(3) periodic part of the argument of pericenter,
(4) inclination,
(5) periodic part of the longitude of ascending node,
(6) periodic part of the mean anomaly.
Fig. 3. Diflerence between analytical and numerical results of the orbital elements of Nereid
during 5 years:
(1) semi-major axis (in km),
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(2) eccentricity (in radians),

(3) argument of pericenter (in degree),

(4) inclination (in degree),

(5) longitude of ascending node (in degree),

(6) the mean anomaly (in degree).
Fig. 4. Residuals in the orbital elements of Nereid during 5 years by using least-square
fitting :

(1) semi-major axis (in km),

(2) eccentricity (in radians),

(3) argument of pericenter (in degree),

(4) inclination (in degree),

(5) longitude of ascending node (in degree),

(6) the mean anomaly (in degree).
Fig. 5. Difference between analytical and numerical results of the orbital elements of Nereid
over 300 years:

(1) semi-major axis (in km),

(2) eccentricity (in radians),

(3) argument of pericenter (in degree),

(4) inclination (in degree),

(5) longitude of ascending node (in degree),

(6) the mean anomaly (in degree).
Fig. 6. Residuals in the orbital elements of Nereid over 300 years by using least-square
fitting :

(1) semi-major axis (in km),

(2) eccentricity (in radians),

(3) argument of pericenter (in degree),

(4) inclination (in degree),

(5) longitude of ascending node (in degree),

(6) the mean anomaly (in degree).
Fig. 7. Difference between analytical and numerical results of the orbital elements of Nereid
over 300 years after making corrections in the mean motions of £, ¢ and h:

(1) semi-major axis (in km),

(2) eccentricity (in radians),

(3) argument of pericenter (in degree),

(4) inclination (in degree),

(5) longitude of ascending node (in degree),

(6) the mean anomaly (in degree).
Fig. 8. Residuals in the osculating orbital elements of Nereid over 300 years by using
least-square fitting, and after making corrections in the mean motions of £, ¢ and h:

(1) semi-major axis (in km),

(2) eccentricity (in radians),

(3) argument of pericenter (in degree),

(4) inclination (in degree),

(5) longitude of ascending node (in degree),

(6) the mean anomaly (in degree).
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Tables and Figures

TABLE I
Amplitudes of the osculating elements

Elements Short-period Long-period
semi-major axis 747.989 1196.78
eccentricity 0.0004 0.0115

arg. of pericenter 0.006 0.7
inclination 0.0025 0.16

long. of asc. node 0.01 0.17

mean anomaly 0.0325 2.0

TABLE II
Accuracy of the osculating elements

Elements Short-period Long-period
semi-major axis 0.3 0.3
eccentricity 3x10°8 1x10~7

arg. of pericenter 3x107 7x107*
inclination 1.5x107¢ 1x10~4
long. of asc. node 3x10~¢ Tx1074
mean anomaly 2.5x107° 6x1075
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where the semi-major axis is given in km, eccentricity in radian, and the argument of peri-
center, longitude of ascending node and the mean anomaly are given in degree.
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Orbital Evolution of Kuiper Belt Objects Caused by the Sweeping Resonances

Makiko NAGASAWA’, Shigeru IDA
Department of Earth and Planetary Sciences,
Tokyo Institute of Technology, Meguro-ku, Tokyo 152-8851
E-mail: nagasawa@geo.titech.ac.jp

Sweeping secular resonances due to a depletion of a solar nebula in the outer Kuiper belt was studied. We analytically
estimated the regions where the secular resonances sweep, and the increments of eccentricities and inclinations of Kuiper belt
objects (KBOs). We found that the inclinations of the KBOs are largely excited by the sweeping secular resonances, if the
residual nebula is uniformly depleted in a timescale of the order of 107 years with present planetary system. We also studied
the effects of planets on the secular resonances changing planetary semi-major axis. In the case that Neptune had smaller
semi-major axis (~-7AU), the required time scale of nebula depletion to obtain e~0.1 is 10° years. Since the required nebula
depletion timescale of 10° years seems longer than that inferred from observations of T Tauri stars (10°~107 years), it is
favorable that the present planetary system is completed before the starting of the nebula depletion.

1. Introduction

As observational instruments develop, a lot of
small bodies have been recently detected one after
another in the Kuiper Belt region. At present, more
than 150 objects were identified in this region. The
distribution of KBOs is roughly separated into two
regions (Fig.1). They are inner belt region and
outer (classical) belt region. In the inner belt, both
the eccentricities and the inclinations are largely
excited (Fig.1 & Fig.2). Figure 1 and Fig. 2 show
the distributions of eccentricities and inclination s
of KBOs, respectively [1]. Root mean squares of
the eccentricities and inclinations are about 0.2 and
0.23, respectively. Almost all bodies in this region
are in mean motion resonances with Neptune. On
the other hand, the eccentricities of the KBOs in
the outer belt are substantially smaller than 0.2,
and the root mean squares is only about 0.1. The
inclinations of the KBOs in the outer belt are
nearly equal to those of the inner belt. These large
values are not explained by present planetary
perturbations alone. As for the inner belt, the
mechanism of sweeping 3:2 mean-motion
resonance caused by Neptunian migration
Malhotra [2] nicely explained the observed
eccentricity. Although many studies were done to
explain the origin of these large values of outer
belt (e.g., sweeping of the 2:1 mean motion
resonance [3], hypothetical stellar encounters [4],
and Earth-sized hypothetical planetesimals, which
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Fig.1. The distribution of eccentricities versus

semi-major axes of the present Kuiper belt objects
[1]. Above the dotted line, the KBOs orbits cross
Neptunian orbit. The eccentricities in the outer belt
are about 0.2, and the root mean squares is only
about 0.1.

scattered by Neptune [5]), the origin of the large
inclination is not well known yet,

In this paper we investigate the effects of the
sweeping secular resonances caused by the
depletion of the primitive solar nebula. The
importance of the sweeping secular resonances for
the terrestrial planets and asteroids is shown by [6],
[7), [8), [9] and [10]. With this excitation



mechanism, we will show that the eccentricities
and inclinations of KBOs are excited to the
observational during
depletion.

level the solar nebula

2. The sweeping secular resonances

Secular resonances occur when the rotation
speed of the longitude of the perihelion or that of
the ascending node of an object coincides with one
of the ecigenfrequencies of the planetary
precessions. Coincidence of the longitude of the
perihelion causes the excitation of the eccentricity,
and that of ascending node causes the excitation of
the inclination. With Sun and four Jovian planets
in the present solar system configuration, seven
secular resonances exist beyond the location of
Neptune. Four resonances, which excite the
eccentricity, take place at 31.7, 34.3, 35.0, and
4].0AU from the Sun. The resonances, which
excite the inclination, exist at 31.6, 34.8 and
40.6AU. However, the nebula potential would
significantly alter these locations of the secular
resonances. As the nebula is depleted, the secular
resonances move from the initial locations to the
present locations. When the secular resonance
passes through, the eccentricities and inclinations
of the field bodies are excited.

3. Models and calculation methods

The region where the secular resonance
sweeps depends strongly on the mass distribution
of the proto-planetary system. The considering
system consists of the Sun, four Jovian planets, a
massless particle, and the nebula. The first model
assumes present-day masses and orbits of Jupiter,
Saturn, Uranus, and Neptune. The semi-major axes
are 5.20, 9.55, 19.2, and 30.1AU, respectively. The
eccentricities are 0.0482, 0.0539, 0.0513, and
0.00496. The inclinations are 0.0228, 0.0434,
0.0135, and 0.0309 in radian.

According to Malhotra [2], we consider the
effects of gradual expansion of separations
between the planetary orbits. In this case, the semi-
major axes of four Jovian planets are 5.4, 8.7, 16.3,
and 23.2 AU. For planetary masses, the present
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Fig.2. The distribution of inclinations versus semi-
major axes of the KBOs. The inclinations of the
KBOs are about 0.2. Inclinations are given in radian.

values are taken. After the nebula depletion, we
calculated orbital evolution of KBOs by changing
the semi-major axis of Neptune to see how the
orbits of KBOs change by the sweeping of the
mean-motion resonances.

The structure of the primitive solar nebula and
the mechanisms of its depletion are not obvious in
the outer region of the solar system. For the
'starting' nebula model, the minimum mass solar
nebula [11] extending to 150AU was basically
employed. We assume the nebula orbits cylindrical
symmetrically around the Sun and is also
symmetrical with respect to the ecliptic plane. We
also assume the nebula is depleted exponentially
with time and uniformly as follows:

p(roz,t) = p(r,z,0)exp(=t/7), (1)

where 7 is a nebula depletion timescale (a constant
parameter) and p is the nebula density.

We used perturbation theory
determine the location of the secular resonances.

secular to
The disturbing functions are obtained using the
expanding three-dimensional nebula potential. We
calculated the rotation speed of the longitude of the
perihelion or that of the ascending node of KBOs
and eigenfrequencies of the planetary precessions
at every stage of the nebula depletion. We



determined the location of the secular resonances
and estimated their strength.

4. Results
4.1 Location of secular resonances and excitation
magnitudes of eccentricities and inclinations

We found that the inclination of KBOs is

excited to the observational level by the sweeping
secular resonances.
Figure 3 shows the locations of the

eccentricity’s secular resonances as a function of
the degree of nebula depletion u= p (t)/ p (0). The

vs, Ve v and vy secular resonances sweep
the Kuiper Belt region. The eccentricity's
resonances sweep the Kuiper Belt from outside to
inside and nearly settled to the present locations
when the nebula density decreases to 1/100 of the
initial value. Figure 4 shows the location of the
inclination’s secular resonances as a function of the
degree of nebula depletion. The v 5, v 6, v |7 and
1 3 secular resonances sweep the Kuiper Belt
from inside to outside. The w 5 starts to pass the
KBOs region when the nebula density decreases to

1/200 of the initial density and reaches at infinity

across the KBOs region when the nebula density

becomes 1/2000 of the initial density. The v

resonance is the most important for the inclination
excitation near the 3:2 resonance (~39.5AU), while
the v s resonance is the most important in the
classical belt (>42AU). The » ,; resonance is
closely related Jovian motion. Jupiter is essentially
responsible for excitation of inclination in the
classical belt.

In Fig.5 and Fig. 6, the excited magnitude of
eccentricity and inclination are plotted. The solid,
dotted and dashed lines show the case of 7 =107,
10°, and 10° years, respectively. The excitation in
eccentricity and inclination are obtained as a
summation of excitations caused by sweeping of
individual resonances. Circles show observed
values. These lines correspond to the maximum
excitation and KBOs distribute under these lines.

For the excitation of the eccentricity and the
inclination to the observed level, the required
timescales of the nebula depletion become
approximately the same. These timescales are
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about 107 years.

4.2 The nebula depletion followed by Neptunian
migration

Although the observed KBOs are concentrated
in the location of the 3:2 mean motion resonance,
our mechanism of the sweeping secular resonance
can not explain this feature. If the location of the



0.5 Y T
I observation

0.3

Ae

1=1x10

~-.
Y

O

s

55

AT

45 50
semi-major axis (AU)

60

Fig.5. The estimated excitations in eccentricity in
the present-day model. Solid, dotted and dashed
lines show the cases that depletion time scale is10’
10¢ and 10° years, respectively.

3:2 resonance migrates by planetary migration
(Malhotra [3]) after the nebula depletion, the
KBOs in inner belt are captured into the 3:2
resonance. Figure 7 and Fig.8 shows the results of
orbital integration. We estimated the excitation of
eccentricities and inclinations after the nebula
depletion by putting the semi-major axes of four
Jovian planets to be 5.4, 8.7, 16.3, and 23.2 AU.
We take 7 =10 years, here. Using these excitation
magnitudes, we calculate orbits of massless
particles by changing the semi-major axis of
Neptune. We integrate orbits for 107 years after
the nebula depletion. In Fig.7 and Fig. 8, the
particles in stable orbits are shown open symbols
and particles in unstable orbits are shown cross
symbols. We can see that the trapping mechanism
is effective even if the inclinations of particles are
high. However, if the secular resonance sweeping
precedes the mean motion resonance sweeping, the
long depletion timescale (~10® years) are required
to explain present e andi. We also find that many
particles are trapped into the 2:1 mean motion
resonance. The long depletion timescale and
concentration of particles in the 2:1 resonance are
not favorable. Hence, the planetary migration
would precede the secular resonance sweeping.
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Fig.7. The eccentricity's distribution of massless
particles after the nebula depletion followed by the
planetary migration. Filled circles show the particles
in stable orbit (around mean-motion resonances or
ones pericentric distances q is smaller than 35AU).
Crosses show the particles in unstable orbits.
Dashed line show the q=30AU. Over this line, the
orbits of particles cross Neptunian orbit.



5. Summaries and Discussions

We have investigated orbital excitations of
KBOs caused by the sweeping secular resonances
during the primitive solar nebula depletion.

We found that the sweeping of secular
resonances well explain the trend of the large
inclinations correspond with the eccentricities in
the outer belt (Fig. 5 and Fig. 6). The inclination of
the bodies in the outer belt is excited to the
observational level if the nebula density uniformly
decreases from 1/200 to 1/2000 of the initial
nebula in a timescale of 107 years. For the
excitation of inclinations, Jovian perturbations and
nebula potential are the most important. On the
other hand, the excitation of eccentricity depends
on Neptune. This means that, even if Uranus and
Neptune has not been completed before the starting
of the nebula depletion, the inclination of KBOs
are easily excited by the Jovian sweeping secular
resonance. Previous mechanisms, which have been
proposed to explain eccentricities and inclinations
of the KBOs in the outer belt (the sweeping of 2:1
mean-motion resonance [4], hypothetical stellar
encounter [5<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>