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Long Time Tails in N-body Hamiltonian Systems
| Yoji Aizawa

Department of Applied Physics, Faculty of Science and Engineering,
Waseda University, 3-4-1 Ookubo, Shinjuku, Tokyo, Japan

One of the most striking phenomena in chaotic dynamics is the appearence of the long time
tails such as the 1/f fluctuations [1,2]. In the nearly integrable hamiltonian systems, the long
time tails are universally generated due to the stagnant motions near the invariant KAM tori;

H(I,0) = Hy(I) + eH,(I,0) (1)

Here the parameter ¢ stands for the perturbation to the integrable hamiltonian Hy. An im-
portant theorem (Nekhoroshev,1977) explained that the residence time T in the stagnant layer
obeys [3],

1
T~ ge:cp[s'b] , (<) (2)

where b is a positive constant determined by the unperturbed hamiltonian Hy in Eq.(1).

The significant point in Eq.(2) is that the divergence of T does not obey the inverse power
law but exhibits an essential singularity when ¢ goes to zero. In 1980’s, the origin of such
singularity was studied in terms of the scaling theory for the stagnant layers mentioned above,
where the hierarchical structure of resonant tori (islands arround island) plays an essential role
to induce the long time tails in dynamical quantities. The stagnant layer theory (Aizawa ,
1989) demonstrated that the distribution of the residence time, say P(T), obeys a universal law

2],
1

) = T[logT]¢’
where c is a positive constant larger than unity. Equation(3) has been confirmed by simulations
(Aizawa et al, 1989). The essential singularity in Eq.(2) reflects the onset of 1/T divergence in
Eq.(3). The point is that the distribution is not normalizable,i.e., a typical infinite measure.

Firstly, my lecture will be directed to the review of the stagnant layer theory and some numerical
evidence in many body systems. Secondly, the onset of a new type of long time tails will
be discussed carrying out with the clustering motions in N-body systems with short range
attractive forces, where the distribution of the trapping time T" obeys another universal law,

P(T) ~ T~# lexp|—aT 7] (4)

P(T (T>1) 3)

where « is a positive constant which depends on the size of cluster. The regularly varying part
of Eq.(4) denotes the tail with 7-?~1(T > 1) , and the parameter 3 depends on the dimension
of the cluster under consideration. The stability of the clustering motions will be explained
based on the long time tail of Eq.(4).
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Relaxation of One-DimehSional
Self-Gravitating Many-Body Systems
Toshio Tsuchiya,

Department of Astronomy, Kyoto University, Kyoto 606-8502, Japan

Abstract

The relation between relaxation, the time scale of Lyapunov instabil-
ities, and the Kolmogorov-Sinai time in a one-dimensional gravitating
sheet system is studied. Both the maximum Lyapunov exponent and the
Kolmogorov-Sinai entropy decrease as proportional to N~=1/5, The time
scales determined by these quantities evidently differ from any type of re-
laxation time found in the previous investigations. The relaxation time to
quasiequilibria (microscopic relaxation) is found to coincide with the in-
verse of the minimum positive Lyapunov exponent. The relaxation time
to the final thermal equilibrium differs to the inverse of the Lyapunov

exponents and the Kolmogorov-Sinai time.

I. INTRODUCTION

Relaxation is the most fundamental process in evolution of many-body system.
The classical statistical theory is based on ergodic property, which is considered to be
established after relaxation. However, not all systems do not show such an idealistic
relaxation. A historical example is FPU (Fermi-Pasta-Ulam) problem [1], which experi-
ences the induction phenomenon (e.g., Ref [2,3]) and does not relax to the equipartition
for very long time.

From nearly thirty years of investigation, one-dimensional self-gravitating sheet
systems (OGS) have been known by their strange behavior in evolution. Hohl [4-6]
first asserted that OGS relaxes to the thermodynamical equilibrium (the isothermal

distribution) in a time scale of about N?¢,, where N is the number of sheets, and i, is



typical time for a sheet to cross the system. Later, more precise numerical experiments
determined that the Hohl’s result was not right, and then arguments for the relaxation
time arose in 1980’s. A Belgian group [7,8] claimed the OGS relaxed in shorter than
Nt., whereas a Texas group [9,10] showed that the system showed long lived correlation
and never relaxed even after 2N?%¢.. Tsuchiya, Gouda and Konishi (1996) [11] (hereafter
TGK) suggested that this contradiction vcan be resolved in the view of two different
types of relaxations: the microscopic and the macroscopic relaxations.

At the time scale of Nt., cumulative effect of the mean field fluctuation makes the
energies of the individual particles change noticeably. Figure 1 shows the nature of the
energy fluctuation. If the evolution of the system is ergodic in the I'-space, the long

time average of the specific energy takes a unique value for all 7, i.e.

o LT
& = lim T/o &i(t)dt = g0 = 5E/3. (1)

T—o0

The degree of the deviation from the equipartition is measured by the quantity,

N
At) = J 5 L@ - <o, 2)

i=1
where £;(t) is the averaged value until ¢. If the system is ergodic and has a finite
correlation time (the relaxation time), it behaves like a random number from Markovian
process and we can estimate the temporal evolution of A(¢). In this case, a trajectory in
the I'-space visits almost every point in the ergodic region, thus the individual particle
energy relaxes to equilibrium value and A(t) decreases as t~'/2 for the time longer
than the relaxation time, according to the central limit theorem. In Fig. 1, Delta(t)

1/2 after t ~ 100. This means that the equipartition among particles is

decreases as t~
established, and the fluctuation is just like thermal noise. Thus there is a relaxation
at this time scale. This relaxation is a random walk diffusion in phase space, which is
confirmed by the power spectrum density of the energy fluctuation (Fig. 2). In shorter

time scale ( the frequency f R 1073), the spectrum has power of —2, which is typical

for random walk diffusion.
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FIG. 1. Deviation from the equipartition, A(t) = e '/{# TN [F:(t) — €0]?}, where &5(t)
is the energy of individual particle averaged over time ¢, and g is the energy of the equipar-

tition.

By this relaxation the system is led not to the thermal equilibrium but only to
a quasiequilibrium. The global shape of the one-body distribution remains different
from that of the thermal equilibrium. This relaxation appears only in the microscopic
dynamics, thus it is called the microscopic relaxation. The global shape of the one-body
distribution transforms in much longer time scale. For example, a quasiequilibrium
(the water-bag distribution, which has the longest life time) begins to transform at
4 x 10°Nt, in average. This slow relazation is confirmed also in the power spectrum
density (Fig. 2). For longer time scale (107 S f S 1072), the power of the spectrum
of the energy fluctuation is less than —2. This implies the long time corlje;la,tion and

slow diffusion in the phase space.
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FIG. 2. Power spectrum density of the energy fluctuation of the individual particles.

TGK called this transformation the macroscopic relaxation, but later in Tsuchiya,
Gouda and Konishi (1998) [12], it is shown that this transformation is onset of the
itinerant stage. In this stage, the one-body distribution stays in a quasiequilibrium for
some time and then changes to other quasiequilibrium. This transformation continues
forever. This itinerancy can be seen as the several peaks in the regime (10° S ¢ S 107)
in Fig. 1. Probability density of the life time of the quasiequilibria has a power law
distribution with a long time cut-off and the longest life time is ~ 10*/Nt.. Power law
distributions are often seen in chaotic dynamics, which do not posses typical time scale.
Hence it is surmised that some chaotic dynamics is essential in the slow relaxation in
our systems.

Only by averaging over a time longer than the longest life time of the quasiequilibria,
the one-body distribution becomes that of the thermal equilibrium, which is defined as
the maximum entropy state. Yawn and Miller [13,14] also showed that the ergodicity
is established not in 10*Nt., but in several 10°/Nt,. Therefore the time ~ 106Nt is

necessary for relaxation to the thermal equilibrium, and called the thermal relazation

_5_.



time. Although there are some attempts to clarify the mechanisms of these relaxations
[11,15,16,12], the reason why the system does not relax for such a long time is still
unclear.

At the view of chaotic theory of dynamical systems, relaxation is understood as
mixing in phase space, and its time scale is given by the Kolmogorov-Sinai time (KS
time), 7xs = 1/hks, where hgs is the Kolmogorov-Sinai entropy. However, it does
not simply correspond to the relaxation of the one-body distribution function, which
is of interest in many-body systems. Recently, Dellago and Posch [17] showed that in
a hard sphere gas, the KS time equals the mixing time of neighboring orbits in the
phase space, whereas the relaxation of the one-body distribution function corresponds
to the collision time between particles. Now, it is fruitful to study relation between
relaxation and some dynamical quantities, such as the KS entropy and the Lyapunov
exponents, in the OGS. Milanovi¢ et al. [16] showed the Lyapunov spectrum and the
Kolmogorov-Sinai entropy in the OGS for 10 < N < 24. However, since it is known
that the chaotic behavior changes for N ~ 30 for the OGS [18], it is considerably
important to extend the analysis to the system larger than N ~ 30. In this paper, we
extend the number of sheets to N = 256 and follow the evolution numerically up to

T ~ 108Nt., which is long enough for the thermal relaxation [12].

II. NUMERICAL SIMULATIONS

The OGS comprises N identical plane-parallel mass sheets, each of which has uni-
form mass density and infinite in, say, the y and z direction. They move only in the
z direction under their mutual gravity. When two of the sheets intersect, they pass
through each other. The Hamiltonian of the system has the form

= EZ’U + (27Gm?) Y |z; — =), (3)

2 i<

where m, v;, and z; are the mass (surface density), velocity, and position of the ¢th
sheet, respectively. Since the gravitational field is uniform, the individual particles
moves parabolically, until they intersect with the neighbors. Thus the evolution of

the system can be followed by solving quadratic equations. This property helps us to

— 6 —



calculate long time evolution with a high accuracy. Since length and velocity (thus
also energy) can be scaled in the system, the number of the sheets N is the only free

parameter. The crossing time is defined by
te = (1/4rGM)(4E/M)Y?, (4)

where M and E is the total mass and total energy of the system. Detailed descriptions
of the evolution of the OGS can be found in our previous papers [19,11,12].

In order to investigate dynamical aspects of the system, we calculated the Lyapunov
spectrum. The basic numerical algorithm follows Shimada and Nagashima [20], and
detailed description of the procedure for the OGS can be found in ref [19,16]. We made
numerical integration for 8 < N < 128 up to 10%¢., which is enough time for the system

to relax, and up to 1.8 x 107¢. for N = 256 for reference.

III. RESULTS

1 ' * ! ! - T ! - !
32 muummmm : i ; - 2
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07 + 160 i . ................. ‘ ._
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FIG. 3. Spectrum of the positive Lyapunov exponents for various N. The index of the
Lyapunov exponents is scaled to 0 to 1.0. The vertical axis shows the Lyapunov exponents

normalized by the value of the maximum Lyapunov exponent.



Figure 3 shows the spectrum of the Lyapunov exponents, {);}, where their unit
is 1/t.. This figure is the same diagram as Fig. 6 in Milanovié¢ et al [16], but the
range of N is extended to 8 < N < 256. In the horizontal axis, ! is the index of
the Lyapunov exponents, which is labeled in the order from the maximum to the
minimum. Thus all the positive Lyapunov exponents (I < N) is scaled between 0
to 1 in the axis. The vertical axis shows the Lyapunov exponents normalized by the
maximum Lyapunov exponents, A;. Milanovié et al [16] stated that the shape of the
spectrum approximately converges for large N.A closer look, however, shows bending
of the spectrum, which is most clearly seen at (N —{)/(N — 1) ~ 0.9. This bending
seems increase with N for N > 32. A further investigation is needed to give a definite

conclusion about the convergence of the shape of the spectrum.
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FIG. 4. Dependence of the KS entropy (solid line with the symbol o), the maximum Lya-
punov exponent (long dashed curve with the symbol O), and the minimum positive Lyapunov

exponent (dashed dotted curve with the symbol A).



Figure 4 shows N-dependence of the maximum ();), the minimum positive Lya-
punov exponent (Ay-2), and the KS entropy hxs per the number of freedom. ), is
already shown in Fig.13 in Tsuchiya et al. [19], and it is proportional to N~'/% for
N > 32. Decreasing nature of the Lyapunov exponent may indicate that the OGS
approaches closer to an integrable system for larger N. It is very interesting that the
power of —1/5 is different from that observed in some other systems [22,23], which is
—1/3. In those systems the power can be explained by means of a random matrix [24]
approximation, where it is unclear in the OGS.

As expected from the spectrum the KS entropy divided by N is also proportional to
N~5_ Therefore the conjecture by Benettin et al. [21] that g increases linearly with
N is not right. It is clear that the inverses of both the maximum Lyapunov exponents
and the KS entropy do not give the time scale of any type of relaxation time.

The N-dependence of small positive Lyapunov exponents are quite different from
larger ones. In Fig.4, the minimum positive Lyapunov exponent, Ay_2, is shown by a
dashed dotted line with the symbol A. It decreases linearly for N > 32, and its time

scale 1/An_2 is about the same as the microscopic relaxation time (~ Nt,.).
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FIG. 5. Lyapunov vectors for N = 64. Filled circles indicate positions of N sheets and
the arrows give direction of the Lyapunov vector: (a) the Lyapunov vector for A;, (b) that

for Ay_s.

The Lyapunov vectors also give useful information about instabilities associated
with the Lyapunov exponents. The Lyapunov vector for A; is a unit vector in the phase
space, and the instability grows with the :th fastest rate in that direction. Figure 5
shows projection of the Lyapunov vector for N = 64 on to the one-body phase space.
Filled circles indicate positions of N sheets at a moment and the arrows give the
direction of the Lyapunov vector at that time. The length of the vectors are scaled so
as to see the direction clearly. Fig 5(a) is for the maximum Lyapunov exponent };,
and Fig.5(b) is for the minimum positive one, Ax_,. The direction of the Lyapunov
vectors change in time, but the characteristics of the instabilities are the same. For A,
the instability is carried only by a few particles, which are interacting in a very small
region. The instability is thus not for global transformation. On the other hand, the
instability with Ay_, makes all particles mix in the phase space. This is the very effect
of relaxation. These features are commonly seen for different N.

The results that the coincidence of the 1/Ax_; and the microscopic relaxation time,
and the direction of the Lyapunov vector, may be suggesting that the microscopic
relaxation time is determined by the growing time of the weakest instability, which is
determined by the minimum positive Lyapunov exponent; in other words, this time is
necessary for the phase space orbit to mix in the phase space in the all directions of.
freedom. In our working model of the evolution of the OGS [11,12], the phase space
is derived by some barriers which keep the phase orbit inside for a long time. The
microscopic relaxation is considered to be a diffusion process in the barierred region
[11,15], and in the time ~ Nt,, restricted ergodicity is established within the barierred

region. This time may correspond to the diffusion time in the slowest direction.



IV. CONCLUSIONS AND DISCUSSION

In the ergodic theory, the KS time represents the time scale of “Mixing” in the phase
space. On the other hand, the relaxation of the one-body distribution is of the most
interest in systems with large degrees of freedom. We have shown that the time scale of
the relaxation of one-body distribution (both the microscopic and thermal relaxation)
is certainly different from that of the KS time, and found that the growing time of the
weakest Lyapunov instability is about the same as the microscopic relaxation time. In
addition, taking into account the direction of the eigen vector of the weakest Lyapunov
exponent, it is suggested that the microscopic relaxation is determined by the weakest
Lyapunov instability.

The KS entropy is defined as a typical time for the system to increase “information”.
This definition does not depend on the number of degrees of freedom. In higher di-
mensions, however, even very small growth of instability can increase information quite
rapidly. Therefore the KS time does not seem suitable to characterize the relaxation
of the one-body distribution function.

The relaxation of the one-body distribution function implies ergodicity. To attain
ergodicity, the phase space orbits should diffuse over all accessible phase space. For the
microscopic relaxation, even though it is not true thermal relaxation, the system shows
ergodicity which is restricted in a part of the phase space [11]. Therefore there is the
slowest diffusion in a quasiequilibrium which corresponds to the microscopic relaxation.
Since the microscopic relaxation time is universal for different quasiequilibria, a small
Lyapunov exponent almost corresponds to the microscopic relaxation time in each
restricted part of the phase space though the Lyapunov exponents are computed as
average over the thermal relaxation time, which is much longer than the itinerancy
among the quasiequilibrium. We found that not the thermal relaxation time but that
of the microscopic relaxation is about the same as the minimum positive Lyapunov
exponent. One may expect that there exists a smaller Lyapunov exponent which
corresponds to the thermal relaxation time, but actually such a smaller Lyapunov

exponent is absent,.



A remaining problem is why the KS time and any of the Lyapunov times do not
give the much long time scale of the thermal relaxation in the OGS. In our working
model, the thermal relaxation is the successive transitions of the phase space orbit
among the barierred regions, which corresponds to the quasiequilibria. Actual time
of the thermal relaxation is the maximum time of transition among quasiequilibria.
The fact that the Lyapunov exponents do not give the correct time of thermalization
indicates that the transition is due to a different mechanism from local instabilities.
There are some pieces of evidence that collective effects are responsible for keeping the
system in a quasiequilibrium [12,25]. This may suggest that we need a new dynamical
quantity which characterizes the slow diffusion.

Existing of the long-lived quasiequilibria is reported in various systems, such as
one-dimensional systems with attractive pair potential |z; — z;|*, where v is a positive
parameter [16], globally coupled spin models [26,22], and a two-dimensional system
with long-range forces [27]. Therefore the slow relaxation seems universal property in
systems with long-range forces. It is important to clarify the mechanism of the slow
relaxation to construct a new statistical mechanics of the many-body systems with

long-range forces.
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Lyapunov Spectra and Structure of Phase Space

YAMAGUCHI Y. Yoshiyuki *
The general research organization of science and engineering,
Ritsumeikan University

Abstract

To understand slow relaxation in Hamiltonian systems with many degrees of
freedom, we introduce a new class of Moderately Chaotic systems and consider
what structure of phase space is universal irrespective of details of systems by using
Lyapunov spectra and time series of orbits. Some properties of moderately chaotic
systems suggest that whiskered tori play an important role to the slow relaxation.

1 Introduction

Clusters, proteins, condensed matters, and galaxies are developing as Hamiltonian systems
with many degrees of freedom, although they have different spatial scales. Hence dynam-
ical properties of Hamiltonian systems with many degrees of freedom are an important
topic.

We have two methods to approach the dynamical properties. One is to construct phe-
nomenological model equations and to investigate properties of the model. This method
gives details of the systems, but we must consider one by one. The other method is to
research universal properties irrespective of details of systems , for instance, interactions.
We cannot know details of the systems, but we can understand them uniformly. Here-
after, we adopt the latter method, and focus on structure of phase space and dynamical
properties led from the structure.

Universal structures in Hamiltonian systems with N degrees of freedom are found
in integrable, nearly integrable and fully developed chaotic systems. The features of
structures of phase spaces are as follows.

e Integrable systems
Phase space is foliated by N-dimensional tori and separatrices.
Power spectra have some peaks.

e Nearly Integrable systems
N-dimensional tori and chaotic sea coexist,
and the former constructs self-similar hierarchical structure.
Power spectra are power types as 1/f" (0 < v < 2) [Kar83, CS84).

*e-mail: yyama@kuamp.kyoto-u.ac.jp
tPresent Institute: Graduate School of Informatics, Kyoto University



e Fully Developed chaotic systems
Only chaotic seas exist.
Power spectra are white noise or Lorentzian 1/(a + f2).

Some N-dimensional tori survive in nearly integrable systems, and the tori are called as
Kolmogorov-Arnold-Moser (KAM) tori. For examples, we consider the following system

1 . 1
H= §(pf+p§)+(1 —cosq1)+§q§+€(1 — c0s ¢1)¢s- (1)

This system is integrable when perturbation parameter € is zero. Poincaré sections in
the three classes are shown in Fig.1. An example of self-similar hierarchical structure in

P,
O N L

(a) Integrable systeme = 0 (b) Nearly Integrable sys- (¢) Fully Developed
tem € = 0.1 Chaotic system ¢ = 2

Figure 1: Universal structures of phase spaces in Hamiltonian systems with 2 degrees
of freedom. Figures show Poincaré sections (qi,p1). Tori are destroyed as perturbation
parameter € increases.

Hénon-Heiles system

1 1 1
H= 5(10? +p3) + 5((1? +6)+ e — gqi? (2)

is also shown in Fig.2.

The 1/f* spectra are observed in various systems [Kar83, CS84, BHSO97, Yam97],
and they are understood by using KAM tori in nearly integrable systems [Aiz84, AKH*89,
Mei86, MO86]. However, it is believed that the region of € rapidly becomes narrow where
nearly integrable systems exist as N increases, and hence the understanding is not good for
systems with many degrees of freedom. We therefore introduce a new class of moderately
chaotic systems between nearly integrable systems and fully developed chaotic systems.
The characteristic properties of this new class are N-dimensional tori are not observed
although power spectra are power types 1/f“. The existence of this class is shown in
Sec.sec:phase-transition by considering the critical point of phase transition. The purpose
of this report is to understand universal structure of phase space and dynamical properties
in moderately chaotic Hamiltonian systems with many degrees of freedom.

We use Lyapunov spectra {); }i=12,...2n [L192] as a tool of analyses. Lyapunov spectra
indicate instability of orbits, and have information of the whole dimensional phase space.
Here, Lyapunov spectra satisfy the following equation from symplectic properties:

AoN—it1 = iy (3)
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(a) The whole space (b) A Magnification of (a)

Figure 2: Poincaré sections (g, p;) in Hénon-Heiles system. E = 0.125. (a) The whole
space. (b) A magnification of (a). Some small tori exist around a big torus, and this
structure hierarchically continues.

where
A2 A2 2 M. (4)

We hence observe only the half of the spectra, {\;} (: =1,2,...,N).

This report is constructed as follows. We clarify properties of moderately chaotic
systems by showing that a system having phase transition is moderately chaotic at the
critical point in Sec.2. In Sec.3 we show that Lyapunov spectra have an universality in
moderately chaotic systems. We consider the structure of phase space which produces
the universality in Sec.4. Section 5 is devoted to summary and discussions.

2 Second Order Phase Transition and Moderate Chaos

In this section we show that a system having second order phase transition is a moderately
chaotic system at the critical point [Yam97]. The considered system is globally coupled
XY spin system:

N
12 g 1 Z
H=§j=1 PitoN o [1 — cos(gi — ;)] )

Statistical mechanics states that the critical point is E./N = 3/4. We show the following
two facts:

1. A power spectrum is one of power type

2. KAM tori are not observed
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Figure 3: An average of power spectra of momenta. N = 80, No =40, F = E..

2.1 That a power spectrum is one of power type

We observe a power spectrum S,(f) which is an average of power spectra of momenta

Sp, ()

1 &
SP(f)= Fozspj(f)a (6)

i=1

The power spectrum S, (f) is shown in Fig.3, and it is one of power type with the exponent
—-1.2.

2.2 That KAM tori are not observed

Orbits are (quasi-)periodic on KAM tori, and hence orbits around KAM tori also behave
(quasi-) periodically for a while, and they go to chaotic seas again. Values of local Lya-
punov exponent is therefore intermittently suppressed when orbits are near KAM tori
(see Fig.4(a)). Here, the definition of local Lyapunov exponent is

1 (n+1)7
M) =1 [ nat
‘:l nr (7)
M(t) = o log | X (1)),

where X (t) is a 2N-dimensional tangent vector which governed by Jacobian of linearized
equations of motion. On the other hand, in a moderately chaotic system, local Lyapunov
exponent is uniformly apart from zero, and no KAM tori are observed.

Consequently, we show that the system (5) is a moderately chaotic system at the
critical point from Secs.2.1 and 2.2.
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Figure 4: Time series of local Lyapunov exponent in nearly integrable and moderately
chaotic systems. (a) XY system with £ = 1 defined in Sec.3. Local Lyapunov exponent is
intermittently suppressed. (b) The system (5) at the critical point. Instability is uniform
and no intermittency is found.

3 Universality of Lyapunov spectra

In this section we describe universality of Lyapunov spectra, which appear in moderately
chaotic systems. We consider the following four systems to show the universality:

N
1 2
H=3 ;pj +U(q), (8)

and

Uxy = Z [1 — cos(q: — g¢5)],

<ij>
1 , 1, 1,
Upw = 3 Z((li - q;) +Z (‘5%‘ + qu) T
<t3> J
1 , 1, 1, (9)
Usw=‘2'Z((1i—<Ij) +E 26T 1% )
<ig> J
1 q?
_ PRY) B
UL0—§Z(Qz q;) +Zl+q2'
<ij> J J

Here each particle is on a lattice point of simple cubic lattice, the sign < ¢ > means to
take sum between the nearest neighbourhood, and boundary condition is periodic. We
confirmed that these systems with moderate energy are moderately chaotic systems by
the same procedure described in the previous section. Lyapunov spectra in the energy
region are shown in Fig.5. Now we focus on the forms of Lyapunov spectra, we permit to
uniformly rescale the vertical axis:

Ai = 1A, (10)
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Figure 5: Universality of Lyapunov spectra in the four systems. N = 64. The horizontal
axis is renormalized number of Lyapunov exponents ¢/N, and the vertical axis is scaled
values of Lyapunov exponents y)\;. The four spectra are well agreement in the region
0.4 <i/N < 1. It is known that Lyapunov spectra are straight in fully developed chaotic
systems by using Random Matrices (RM), and the universal spectrum is not approximated
by the straight line.

where suitable v > 0 is picked up for each spectra.
We find the following two facts from Fig.5:

e Lyapunov spectra have universal form in the region of large ¢/N (0.4 <¢/N < 1).

e The universal form is not approximated by the straight line, which is universal in
fully developed chaotic systems [LPR86, EW88].

From these facts, the obtained universal form is characteristic for moderately chaotic
systems, and we suppose that moderately chaotic systems have universal structure in
subspace of phase space which corresponds to the region of large i/N [Yam98].

4 Structure of Phase Space

In the previous section universal spectrum in moderately chaotic systems is shown, and
it is supposed that the universality reflects universal structure of phase space. In this
section we therefore consider what is the universal structure by using time series of orbits
in the configuration space. Let us consider coupled standard map '

! )

P =p;— g [cos2m(zjo1 — 2;) + cos 2m(z; — @j41)] oy

where boundary condition is periodic.
We show time series of z3 and 6 in Figs. 7(a) and (b) respectively, but these time
series seem random. From interaction terms of the system (11), we guess that time series
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Figure 6: A Lyapunov spectrum in coupled standard map (11). N = 12,K = 0.3. The
form of this spectrum is the same as the universal one observed in Fig.5.

of 2; — z;41 are more important than z; itself. The time series are shown in Figs.7(c)
and (d), and they show intermittency such that z; — z;4, stays around zero for a while.
When the displacement z; — x4, is around zero, orbits stays on neighbourhoods of the
manifolds z3 — x4 = 0 or z¢ — 27 = 0. However, we must focus on the fact that z; —z4 and
&g — 7 is not always simultaneously around zero (see steps [20000, 21000]), and hence the
dimensions of manifolds around which orbits stay are less than N, while KAM tori are
N-dimension. Consequently, in moderately chaotic systems, higher dimensional manifolds
play the same role as N-dimensional KAM tori in nearly integrable systems, where self-
similar hierarchically structure constructed by KAM tori are supposed as the source of
1/f¥ spectra. The higher dimensional manifolds are expected as whiskered tori which
have hyperbolicity [YK98].

5 Summary and Discussions

In this report we introduced an important new class of moderately chaotic systems, and
we consider universal structure of phase space in the class. First, we show that the
system having second order phase transition is a moderately chaotic system at the critical
point. Second, we clarify that Lyapunov spectra have an universal form in moderately
chaotic systems in a region of large ¢/N. Finally, by observing motion in configuration
space, we suggested that whiskered tori play an important role to realize slow relaxation
of 1/f¥ spectra. This suggestion is well agreement with the universality of Lyapunov
spectra appears only in a region of large /N, since it is supposed that phase space has
similar properties as nearly integrable systems except for dimensions corresponding to the
whiskers.

One of future works is to prove the above-mentioned suggestion qualitatively and
quantitatively. Another one is to limit systems and degrees of freedom which have the
universality since we consider systems with nearest neighbour interactions only and glob-
ally coupled systems are still not investigated. Finally, we must clarify the reason why
Lyapunov spectra take the universal form. The understanding of the reason will give
details of structure of phase space.
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Figure 7: Time series in the system (6). (a) z3 (b) z¢ (¢) z3—24 (d) 26 —27. The regions of
the vertical axes are (a)(b) [0,1) and (¢)(d) [—1,1). Time series in (c)(d) intermittently
stay near the 0. Other particles show similar behaviours although we show only two
samples for z; and z; — x;41.
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Arnold Web in a Vibrationally Highly Excited Molecule
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When a molecule is put to be in a vibrationally excited state, a flow of vibrational energy is induced
within the molecule, which leads to a breakup of a chemical bond or to a structural change in the molecular
conformation. This process is called intramolecular vibrational redistribution of energy (IVR), and is one
of the fundamental processes in chemical reactions[1,2]. On the other hand, this process is considered to
be a typical example of Hamiltonian dynamics of many degrees of freedom. It is well known that generic
Hamiltonian systems of many degrees of freedom exhibit chaos. Therefore, IVR is supposed to be closely
related to chaotic motions of the molecules.

Arnold diffusion is among the characteristic effects of Hamiltonian chaos in systems of n degrees of
freedom of (n > 3)[3]. In general, it takes place along those regions where nonlinear resonances occur and
form a network called Arnold web. We think that IVR in highly excited molecules would offer an interesting
example of Arnold web. We expect that comparison between the study of Arnold web and experiments on
IVR would give dynamical understanding of how IVR proceeds.

Our example is the IVR in highly excited acetylene. Because of its relatively small size, detailed
experiments on the IVR are possible for acetylene, and a large amount of experimental results have been
already accumulated[2,4,5,6]. Therefore this is one of the best examples for examining our ideas.

In the electronic ground state, acetylene is a linear molecule. Using the harmonic approximation,
vibrational energy levels in the electronic ground state can be labeled as (vl,vg,vg,vf{,v? ) where v, is
the quantum number of the symmetric CH stretch, v the CC stretch, vz the antisymmetric CH stretch,
v4 the trans-bend with the vibrational angular momentum l4, vs the cis-bend with the vibrational angular
rﬁomentum 5, and ! = l4 + I5 is the total vibrational angular momentum. In the following, we put the total
angular momentum J = 0 for simplicity. We also assume that the vibrational modes v;(i = 1,---,5) and the
vibrational angular momenta [;(t = 4,5) can be dealt with separately.

Then, the experimental results can be fitted to construct an integrable approximate Hamiltonian of a

vibrationally excited acetylene. It is given by

Hy = Zw?vi + ngjvivj + Z YrstVrvs vy, (1)

i<j r<s<t



where i and j take the values from 1 to 5, and r, s and ¢ from 4 to 5. The values of the constants for the
linear and quadratic terms are taken from Table I of Ref.[4], and those for the third-order terms from Table
IT of Ref.[6].

The processes of IVR result from couplings among anharmonic modes of the Dunham expression. The
effects of the couplings are most significant when resonances among the modes occur. A coupling term
is a product of the annihilation and/or the creation operator of the modes v;, and is denoted as n =
(n1,n9,n3,n4,n5) where n;(i = 1,--.,5) are integers, and a positive integer means the product of the
creation operator while a negative one the annihilation operator. Then, the location where the nonlinear

resonance takes place for the coupling n is approximately given by

OH, _
n-—=L=0 (2)

where v = (vy, vg, v3, 4, U5).

The Arnold webs of all the possible resonances up to 7th order are studied for those initial states
(0,v2,0,v4,0). Here the order of a resonance is defined as ) |n;[. One of the most important outcomes of
this study is that the symmetries of the vibrational modes play a crucial role. Classically, there exists a
lot of nonlinear resonances, implying that a fast IVR would proceed. However, the selection rules resulting
from the symmetries of the modes prohibit most of these resonances. Only a small part of the nonlinear
resonances are allowed to take place. This indicates that combined effects of symmetry and resonance would
be indispensable in understanding the dynamical processes of IVR. Detailed analyses will be published

elsewhere.
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Statistical behaviour
in one-dimensional many-body system
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Abstract

We investigate stationary heat conduction in Ding-Dong model coupled
with heat reservoir. The Fourier law and Gallavotti-Cohen fluctuation theo-
rem are checked numerically.

1 Introduction

In general, many body problems in one dimension are classified into two types
of hamiltonia,n forms. (1) The first type is that all particles interact each other.

H=yN E Py +Z,¢J V(|r;—r;|). Celestial mechanics and atom-molecular dynamics
belong to this type ( )The second type is that the particles are arranged on a

lattice, H = YN | 2o s T 2i V(Iri — ria|), or that the particle are arranged on a

line with elastic constraint, H = YN, 2; + ¥ V(r;). In the latter type, several
models are known to exhibit chaotic behaviour. We mtroduce such two systems.
(a) Balls in one-dimensional gravity[l, 2, 3]: H = ©N | 2 - + TN mig; with the
constraint 0 < g < ¢ < -+ < gn. ¢ = 0is floor. The lowest particle can bounce
elastically with floor. The other particles collide with the nearest neighbour particles
elastically. For this model, some mathematicians give mathematical statements:
If my = my = --- = my, the system is completely integrable. If m; > m, >

--my(but all mass are not equal), The Lyapunov exponent is positive and the
system is hyperbolic. It is conjectured that the system is ergodic in the above
condition. (b) Dawson model[5, 6, 7, 8, 9] or Ding-Dong model[4]: One-dimensional
plasma sheet model(Dawson model) can be reduced to the system with the following
hamiltonian (Ding-Dong model).

H=32

i=0

+ - (1)

|3,
N|*°N

with the elastic constraint
g1+ 12 g (2)

g; represents the distance from the i-th lattice point. For our convenience, we set the
lattice constant to a = 1. Thus Dawson model is equivalent to Ding-Dong model.



Particles move as harmonic oscillator around lattice point, but can collide with the
nearest neighbour particles to exchange energy. Kitahara et al have investigated the
properties of one-dimensional plasma [6. 7, 8. 9]. Prosen and Robnik have investi-
gated heat conduction(Fourier law) by extensive numerical calculation[4]. Unfortu-
nately, although many numerical works have been done, there is no mathematical
investigation to this model.

Here we comment one point of numerical aspects on these models (a) and (b). Since
particles are arranged in one-dimensional line and collide each other. these models
have common numerical merit. Almost time of numerical time-evolution is spent
for the calculation of the next collision time (For the formulation of time-evolution
of Ding-Dong model, see the next section). In these case, the heap sort algorithm
accelerates numerical calculation.

In this report, we investigate non-equilibrium (stationary) states in the Ding-Dong
model coupled with heat reservoir. especially Fourier law and entropy produc-
tion, motivated by recent development by chaos theory, especially (iallavotti and
Cohen([11]. For Fermi-Pasta-Ulam problem(;3-model) which has thermostat at the
ends of a chain, the Gallavotti-Cohen fluctuation theorem was tested[10]. Further-
more, stimulating by the work by Gallavotti and (C'ohen, entropy production in
stochastically driven non-linear lattice chain was rigorously proved[12]. Our aim
in this report is to check the Gallavotti-Cohen fluctuation theorem in Ding-Dong
model which is a different model from [10].

2 Ding-Dong model

In this section, we show set-up of time-evolution of the Ding-Dong model and ex-
plain the behaviour of the system. i.e. chaoticity, roughly.

First we remark the following point. We investigate the statistical behaviour of the
Ding-Dong model. Thus we consider only two-body collisions, since three-body and
higher-body collisions have measure zero. The “collision” means two-body collision
hereafter.

The hamiltonian of Ding-Dong model is Eq.(1) with the constraint Eq.(2). We
denote { = t; the time that A-th collision occurs. and {¢;}7%_.. a set of collision
time. Further we set the inter-collision time 7y

Tk =t — g1 (3)

Now the collision is elastic. Then if i-th particle collides with (: + 1)-th particle,
after collision, their momentuim are exchanged.

pl o= pia (4)
Pi++1 = p;- (5)

Between the collision and the next collision, the system obeys the following hamil-



tonian equation of motion.

d d
EQi = Pi, d_tpt = —qi, ) (6)

The map from the collision to the next collision can be constructed as

o &™)

oscillator’ (7)

=9

collision

where x = (q1,92,"**,qN,P1,P2," "+, PN). T(x) is the time that the next collision

occurs started from the point x. 7(x) is called the ceiling function. @ jision for
the collision between i-th and ¢ + 1-th particles is given as
(af ) (10 000 00 0\[a
qF 01 000 :--00 ---0 a5
. . . . 00 . X :
ah 0 0 1 6 --- 00 --- 0 qN
pf 00 --- 10 --- 00 ---0 pr
pf |={00--001--00 -0 Pzl (8)
pt o0 ---000O0 ---01 ---0 P
PIH 00 ---000 ---110 ---0 Pitt
\Pﬁ} \00...000...00...1/\,,_—\,}
7(x)
oscillator 15 8iven as
[ @t + 7(x:)) [ mi(t (T(x:)) + qu(t:) cos(T(x;))
@(ti + 7(x:)) pz(t,)s (T( ))+qz( i) cos(7(x;))
an(ti+7(x)) | _ pi(ti)sin(r(x,)) + qu(t:) cos(7(x;)) 9)

)
pi(t; +'r(x,-);

pu(t:) cos(7(x:)) — qu () sin(7(x;))
pa(t; + 7(x:) ))

(
p2(ti) cos(7(x:)) — ga(ti) sin(7(x;

ot +7x)) |\ pw(ti) costr(x)) — aw(t) sin(r(x)) )

where the i-th collision point is x;.

With the condition that the center of mass is zero, if we carry out some canonical
transformation.

=(q,p =(Q,P), (10)

where Q = (@, - -, QN_I), = (P,,---,Pn_1), then after canonical transformation
and diagonalization, we obtain the hamiltonian finally.

1 =l

H=35 3 (NQI+mP)=E. (11

=1



The elastic constraint Eq.(2) now becomes

N-1
FNQ) = Y (Ui — Ui 1)Qi < 1, (12)

k=1
where 1 = 1,2,--+, N — 1 and U is the matrix element for diagonalizatoin. The
hamiltonian is for (N —1)-dimensional anisotropic harmonic oscillator with the hard
walls satisfying Eq.(12). Hence if the total energy is sufficiently low. the system is
integrable. Because the trajectories go around the stable equilibrium point. There
is a critical value of the total energy for chaos. But when the total energy is high
enough, the system behaves like an integrable system. In this case, the particle
moves ballistically and collide with the walls. Therefore, in the intermediate total
energy range, the system exhibits chaos. From numerical calculation. in this range,
the system seems to be non-hyperbolic. But we expect that chaotic sea dominates

the phase space in this energy range of the system.

3 Non-equilibrium stationary states, thermal con-
duction, and entropy production

In this section, we investigate the non-equilibriun stationary states of the Ding-Dong
model, especially entropy production.

3.1 Phenomenology and thermodynamics

We know the following two important facts from thermodynamics. The system
which is coupled to the heat reservoir at the boundary obeys the Fourier law.

j=KVT, (13)

where j is heat current vector and « is the heat conductivity. From the thermody-
namics, the entropy production o(x) is defined as

a(x):j-V(-lf). (14)

Thus the total entropy production ¥ of the domain with linear temperature gradient
for one-dimensional system is

R d 1 1 I
V e .".— = y — e e— o ’
B/ (IIJ(I.I' (T(.r)) J (TR TL) (15)

where T, and Tg are the temperature of left and right heat reservoir. respectively.

3.2 Gallavotti-Cohen fluctuation theorem

We here briefly summarize the Gallavotti-Cohen fluctuation theorem[11]. Original
derivation is for two-dimensional shearing flow with thermostat.

dq;

L= pfmt iy (16)
dp; . -
% = F; - NY;py, — CP,- (17)



7 =1,---,N. «a controls the property of thermostat. The entropy production is
defined as the contraction rate of the phase space volume. Dynamical character-
ization of entropy production starts from the idea of Sinai-Ruelle-Bowen, i.e., the
construction of SRB measure 7.
-1
_ , ;A (%5)G(x%;) R
[ Pt = Dilar)05) 19
¢ z:j Au.r(xj)
where A is defined from the Jacobian of time evolution operator and G(x) is an
observable. Here consider the finite time average of the entropy production at x.

1 T/2—-1 )
> a(8§x) = (o) a-(x), (19)

i=—1/2

or(x) =

where S is the Poincaré map. Fluctuation of the entropy production from the
mean value is characterized by the a,(x). Consider the probability measure of a,.
We denote 7,(p)dp = P(a, € (p,p+ dp)) that. The Gallavotti-Cohen fluctuation
theorem is the following relation.

m+(p) — Tl (20)
T(—p)
Using the construction of SRB measure, this relation can be rewritten in terms of
dynamical quantities (i.e., Jacobian)[11]. For the detailed derivation, see [11].

For non-linear lattice system with thermostat, we define the following mean heat
current[10]. 1.

_ l t+7 , ’ 9
(== [ aha. (21)
We define the distribution of P,(z) of the following quantity =.

(/)

z= . (22)
(J)sc
In this case, the Gallavotti-Cohen fluctuation theorem becomes
P.(z) ! 1
In ——=7z¥ =7z (———) 23
Pr(—2) AU (23)

In the next subsection, we consider the system does not possess thermostat, but has
stochastic heat reservoir. Thus this relation Eq.(23) is not so trivial for our system.
the numerical test of Eq.(23).

3.3 Numerical result

Let us define heat reservoir. We set the walls at the ends of the system. The other
side of the wall is heat reservoir. The momentum of particles in heat reservoir is
distributed due to distribution

"2
P(pdp = P exp (—i—T-) dp. (24)

'In the first stage of this investigation(Jan.1999), I did not know this work. I thank K.Saito for
informing me this work.
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Figure 1: Temperature distribution : N = 500,T;, = 2.0,Tp = 1.5. The plot is
obtained starting some initial condition. and after 5 x 10® collisions.

For the left(right) reservoir. we take plus(minus) sign of momentum. This setting of
heat reservoir is very important[13]. We set temperature of the heat reservoir at the
ends Ty (left) and Tg(right), respectively. When the particle at the ends (i = 1, N)
collides with the wall, the particle instantaneously collides with the particle inside
the heat reservoir. In other words. the particle( = I, V) and particle inside the
heat reservoir exchanges the momentum. Local temperature T}, is defined as

Ti = (p}). (25)

(- -) means the time average or phase space average. For numerical calculation, we
used the time average.

First we check Fourier law. Fig.l is temperature profile(N = 500.7;, = 2.0,Tg =
1.5). There is an edge eflect. The temperature of the end in the left and right is not
Ty, or Tr, respectively. Relaxation to the non-equilibrium stationary state is very
slow. The temperature profile is still zig-zag shape, not smooth, but we can see the
linear dependence of the Fourier law.

In Fig.2, the distribution of inter-collision time is depicted(N = 250,71, = 2.0,Tg =
1.5). After 10° collisions and 3 x 10° collisions, 10° collisions are sampled. The
mean inter-collision time is order of 1072 for this case. The obtained distribution
is well-fitted to exponential distribution. This manifests that the collisions occur
randomly.

In Fig.3, the velocity distribution is shown. As expected, the distribution is well-
fitted to the Gaussian distribution (Maxwell distribution). But tending to the sta-
tionary state, gradually the tail of distribution becomes asymmetric. This asymme-
try suggests the energy transfer.
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Figure 2: Inter-collision time distribution : N = 250,T; = 2.0,Tp = 1.5. (a)The
plot is obtained after 10° collisions and 3 x 108 collisions. (b)log scale of (a).

Time variation of heat current distribution is depicted in Fig.4. Remark that the
distribution is not Gaussian. After long run, the tail of the distribution becomes
asymmetric, which seems to be an evidence of stationary energy transfer.

In Fig.5(a), spatial distribution of time-averaged heat current 7, = 1/¢ f3 ji(t')dt’
is depicted which was obtained after 3 x 10° collisions starting from some initial
condition. Although there is still fluctuation, the heat current is almost constant
over all sites. In Fig.5(b) the relaxation of the mean heat current J = 1/N Y0, Jx
is depicted corresponding to (a). The relaxation is very slow.

The entropy production can be checked by using Eq.(23). In Fig.6. we show the
result(N = 100,T;, = 2.0,Tg = 1.5). In Fig.6(a), the time evolution of the mean
heat current distribution is depicted. Fig.6(a) is obtained from time-evolution of
50000 initial configurations. It seems that the distribution tends to the limiting form
obeying the central limit theorem. In Fig.6(b), we check the Gallavotti-Cohen fluc-
tuation theorem. We can see the linearity clearly which suggests that the Gallavotti-
Cohen fluctuation theorem holds and the entropy production is non-zero. Fig.6 is
the same form as the result of [10] for FPU (-chain with thermostat.

4 Summary

We have investigated non-equilibrium properties of the Ding-Dong model coupled
with heat reservoir motivated by recent work of [11] and [10]. We have checked the
Fourier law and entropy production in this model. Numerical calculation has shown
that the Gallavotti-Cohen fluctuation theorem holds and the entropy production
is surely non-zero. It can be stressed that original Gallavotti-Cohen theorem for
thermostated dynamical systems extends to systems coupled with heat reservoir. In
this sense, the Gallavotti-Cohen theorem is quite general. A stochastic extension of
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Figure 3: Velocity distribution . N = 250,T, = 2.0,Tg = 1.5. The plot is obtained
starting from some initial condition, up to 10° collisions and 3 x 10° collisions. (a)
initial(10% collisions) and final distribution(3 x 10° collisions). (b) log scale. The
distribution tends to the Gaussian distribution. But the tail of the distribution is
asymmetric.
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Figure 4: Heat current distribution : N = 250. T, = 2.0.Tg = 1.5, Starting some
initial condition, 10° collisions and 3 x 10¢ collisions After sufficient time-evolution.
the tail of the distribution becomes asymmetric.
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Figure 5: Spatial distribution of heat current and relaxation of mean heat current :
N =250,T;, = 2.0,Tg = 1.5, (a) Spatial distribution of heat current which occurred
up to 3 x 108 times collision starting some initial configuration. (b) Relaxation of
mean heat current.
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Figure 6: Check of the Gallavotti-Cohen fluctuation theorem: (a) heat current
distribution P.(J), 7 = 30,60,90. (b) Jvs.In(P,(J)/P,(=J)), 7 = 30.60,90. N =
100, Ty, = 2.0,Tr = 1.5. The number of initial conditions is 50000.



the Gallavotti-Cohen theorem can be expected.
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An Example of Nonlinear Phenomena in High
Energy Accelerators
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abstract

The modern high energy accelerators are introduced which show many nonlinear mul-
tiparticle phenomena. One example, the beam-beam interaction, is discussed more in
detail. A simple model is presented for a so-called strong-strong scheme. The model
reproduces a genuine nonlinear and coherent phenomenon for the accelerator beams.

1 Introduction

Here is a typical layout of high energy accelerators. In a ring, many (typically 10'!)
electrons form a cluster (called bunch) and running in the same direction. They meet
a positron bunch at a point (Interaction Point, IP) producing high energy collisions. A
detector sitting at the IP observes the products of the collision.

The most important parameters are 1) the collision energy and 2) the luminosity. The
collision energy is
Ecq = E+ +E_,

the sum of the energies of two colliding particles in the rest frame of their center of gravity.
The luminosity L is the measure of the efficiency of the accelerator to produce high energy
events, defined by

event rate = o X L.

Here o is a cross section of the event. When two colliding beams are very short and are
Gaussian in transverse distribution, L is given by

NN
"~ dmogoy,’

L

Here, f:is the collision frequency, N is the number of particles in e* bunches, 0., is the
transverse rms beam size of the bunches.

Lhirata@soken.ac.jp
http://www-acc-theory.kek.jp/members/HIRATA. .html



When two bunches collide, only a few particles make the real collision and most of
the particles pass through the opposite bunch. These particles feel a macroscopic electro-
magnetic field produced by the opposite bunch. Thus, each particle in both bunches feel
a nonlinear force. This is the beam-beam interaction and is one of the most important
effects which limit the luminosity.

2 Beam Dynamics in Accelerators

Let us simplify the whole dynamics to the 1D problem. Between the collision at the IP to
the next collision after one turn, an electron (positron) obeys the following mapping][1].

(3)=a( o, e (F)evimw (1), )
P —sinp cosp P o

Here, X and P are canonical variables for the transverse coordinate at the IP. They are
properly normalized. 7’s are the standard Gaussian random variables and A is a constant
slightly smaller than unity. They represent the effects of the synchrotron radiation[3].
(The case A = 1 corresponds to proton and hadron mchines where the synchrotron radi-
ation can be ignored).

If the beam-beam interaction is absent at the IP, each particle repeats Eq.(1) many
times. Eventually , they will be distributed in the Gaussian form.

X2 p?
’!/)(X,P)=%GXP—[7+7]‘ (2)

3 Beam-Beam Interaction

With the beam-beam interaction, each particle feels the macroscopic electromagnetic
field produced by the opposite bunch. Here, we will use a model consistent with the 1D
approximation. If the space is 1D, the elctric or magnetic force field produced by an
electron sitting at X = X is represented by

F(X) = constant X H(X — Xp), (3)
where H is the step function

1 ifX>0
H(X)‘{ ~1 i X<0

There are two approaches to the beam-beam interaction:

e The weak-strong approach: it is an approximation that one of the beam consists
only of a single electron and the positron bunch is not affected by the beam-beam
force. This approximation is quite unnatural but because of its simplicity it is used
frequently.

e the strong-strong approach: it is more realistic but is difficult to traet even numer-
ically.



3.1 Weak-Strong Approach

Let us assume that N, > 1 and N_ = 1. The e* beam is in the Gaussian distribution,
Eq. (2). Then the force (kick) felt by an e~ particle is given by

F(X) = const. x [ dX.pu(X)H(X = X.) = =21 exf [(X = X.)/(V20.)]

where p is the 1D Gaussian distribution and 7 is a constant, called the beam-beam
parameter, depending on N, beam energy etc. An e~ feels a kick as

P—P+FX), X—X (4)

at the IP. Thus, an e~ follows the maps Eq.(1) and Eq.(4) alternatively. After numbers
of turns, depending on A, the e~ particles fall into an equilibrium distribution. In Fig.1,
the left figures are the Poincaré surface plots in (X, P) space when A = 1; the right ones
are the equilibrium distribution with A<1.

It can be seen that the particles are distributed equally to the resonances. How the
particles are distributed between all different types of resonances is one of the interesting
topics now under investigation.

3.2 Strong-Strong Approach
From Eq.(3), the macroscopic kick felt by each particle at the IP is

AP = —C /_ : dX, p(X) Hy(X - X). (5)

Here, p, is the distribution function of the opposite bunch. Equation (5) can be rewritten
as

P — P —2r%*n(NZ = N})/(N? + Ny),
where N° and N? is the number of particles in the opposite bunch above and below the
particle, respectively.

Starting from various configurations, we observe the steady states. See Fig.2. Contrary
to the weak-strong cases, there are states where all the particles in a bunch get together
forming a cluster. That is, somehow, particles prefer to behave together, instead of being
distributed into different resonances. Also, the symmetry between two beams is broken
spontaneously. Further, the steady state is not unique for a given parameter set. All these
are the coherent phenomena and can not be imagined from the weak-strong approach.

When we change the parameters continuously and slowly, the state changes from one
to another at certain point. Here, we can observe the hysteresis. In Fig.3, the phase space
distribution are shown for the case with u = 27 x 0.48. When 74 > n_, the e~ bunch is
split into two clusters as shown in the weak-strong case. If, for example, we decrease 7.
on the line 7, + 7. =const., the e~ particles suddenly start to form a cluster at certain
point, entering into the strong-strong regime. If we go down further, eventually the et
particles start splitting into two clusters also suddenly at certain point. The points for
these sudden changes are different if we go up on <ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>