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N-body problem	
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The motion of N particles in Rd under the effects of gravity is governed
by the differential equations

mk
d2qk

dt2
= −

∑

j ̸=k

mkmj

|qk − qj |3
(qk − qj) (qk ∈ Rd, k = 1, 2, . . . , n)

where mk > 0 is the k-th mass.
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A fundamental problem is to find periodic solutions! 



Classical solutions	
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Euler solution(1767) Lagrange solution(1772) 



Figure-eight solution	
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Chenciner and Montgomery(Ann. of Math. 2000) proved the existence 
of an eight-shaped periodic solution in the planar three-body problem 
with equal masses by using the variationa method. 
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Gerver’s super-eight orbit	
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 Just after the discovery of the figure eight orbit, Gerver numerically found 
a similar periodic orbit in the planar four-body problem with equal 
masses.  

In 2003 Kapela and Zgliczynski provided a computer-assisted proof for the 
existence. But there has been no variational proof yet.  

The goal of this talk is to provide the variational existence proof for the 
super-eight orbit. 
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Assume
d = 2, N = 4,m1 = m2 = m3 = m4 = 1.

Px: R2 → R, the projection to x-axis.
Py: R2 → R, the projection to y-axis.
Rx: R2 → R2, the reflection with respect to x-axis.
Ry: R2 → R2, the reflection with respect to y-axis.
These are represented by the matrices

Px =
(

1 0
)
, Py =

(
0 1

)
,

Rx =
(

1 0
0 −1

)
, Ry =

(
−1 0
0 1

)
.

2

Py

Px

Rx

Ry
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Consider the planar four-body problem with equal masses:

d = 2, N = 4,m1 = m2 = m3 = m4 = 1.

Main Theorem

There is a collisionless 2π-periodic solution (q1 (t) , q2 (t) , q3 (t) , q4 (t)) :
R → (R2)4 of the planar four-body problem with equal masses such
that for any t ∈ R

q1 (t) = Ryq1 (−t) = Rxq2

(π

2
− t

)
, q2 (t) = Rxq2 (−t) (1)

q1 (t) = −q3 (t) , q2 (t) = −q4 (t) (2)

and that

Pyq1 (0) > 0, Pxq2 (0) > 0, Pxq1

(π

4

)
> 0, Pyq1

(π

4

)
< 0.
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Step 1(Existence of a generalized solution)	
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Consider the subsystem whose configuration holds q1 = −q3, q2 = −q4.
The action functional for the subsystem is

J (γ) =
∫ T1

T0

1
2
(|q̇1|2 + |q̇2|2) +

1
4|q1|

+
1

4|q2|
+

1
|q1 − q2|

+
1

|q1 + q2|
dt

where γ(t) = (q1(t), q2(t)) : [T0, T1] → (R2)2.
The domain of J is Γ̂:

Γ =

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

γ(t) = (q1(t), q2(t))

∣∣∣∣∣∣∣∣∣∣∣

γ ∈ H1([0, π/4], (R2)2)

Pxq1(0) = Pyq2(0) = 0,

Pyq1(0) ≥ 0, Pxq2(0) ≥ 0,

Ryq1(π/4) = q2(π/4),

Pxq1(π/4) ≥ 0, Pyq1(π/4) ≤ 0

⎫
⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎭

Γ̂ =

{
γ(t) = (q1(t), q2(t)) ∈ Γ

∣∣∣∣∣
q1(t) ̸= 0, q2(t) ̸= 0

q1(t) ̸= q2(t), q1(t) ̸= −q2(t)

}
.
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q1

q2
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1. Consider an action functional with a strong force part:

J ε(γ) = J (γ)+ε

∫ 2π

0

1
4|q1|2

+
1

4|q2|2
+

1
|q1 − q2|2

+
1

|q1 + q2|2
dt,

where γ(t) = (q1(t), q2(t)) ∈ Γ̂.
2. There exists a collision-less minimizer γε(t) = (qε

1(t), qε
2(t)) of

J ε in Γ̂ for ε > 0.
3. Take a convergent subsequence γεn → γ0 ∈ Γ, εn → +0(n →

∞).
4. The limit γ0(t) = (q0

1(t), q0
2(t)) is a generalized solution ( which

may have some collisions).
5. γ0 is a minimizer of J in Γ.
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Existing methods for eliminating a  
collision	
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�  Global estimate: estimate the lower bound of the action functional for 
any collision path and make a test path with lower value. (ex. Chenciner-
Mongomery’s proof for figure-eight 2000, Chen’s 4-body orbit 2001) 

�  Local estimate (1):  investigate the asymptotic behavior around the 
collision time with Sundman’s estimate and modify the path around the 
collision time so that its value of the action functional becomes lower.
(Chen’s orbits with free boundary 2003, Venturelli’s proof for Schubart 
orbit 2008,  Shibayama’s proof for Schubart-like orbits 2011)   

�  Local estimate (2):compute the average of the value of the action 
functional for modified paths in all direction near the collision time and 
prove that the average  is lower the value than the original collision 
path(Marchal theorem 2002, Ferrario-Terracini theorem 2004) 

In order to eliminate the collisions for the super-eight, a new technique is 
necessary.  



Exclusion of a total collision(Global estimate)	
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Lemma 1. If γ ∈ Γ has a total collision, J (γ) > 9

Proof. The minimizer on {γ ∈ H1([0, π/4], (R2)2) | γ(t) = 0 for some t ∈
[0, π/4]} is the square collision-ejection orbit. From Gordon [1], the value of

the action functional is 2−4/3 · 3(1+2
√

2)2/3π = 9.15330757956509 · · · .

Lemma 2. infγ∈Γ J (γ) < 5

Proof. We take a test path γtest = (t, π
4 − 2t, π

2 − t, t).

From an easy computation,

J (γtest) ≤
7π
8

+

√
5

4
+

√
2

8
+

√
13
4

+
1
2

= 4.88607508042865 · · ·

Therefore infγ∈Γ J (γ) ≤ J (γtest) < 5.

Therefore γ0 must not have a total collision since it is a minimizer.

［1］ W. B. Gordon, A Minimizing Property of Keplerian Orbits, American Jour-

nal of Mathematics 99, 961–971 (1977)
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The case of q0
1(0) = 0.

We use Tanaka’s scaling technique [2].
Define a scale transformation xn of qεn

1 by

xn(s) = δ−1
n qεn

1 (δ3/2
n s) δn = |qεn

1 (0)|.

By taking a subsequence of n if necessary, we can assume
εn

δn
→ d ∈ [0,∞].

We consider the case of d < ∞. Fix any l > 0. xn converges uniformly
on [0, l] to the solution yd(s) of

d2y

ds2
+

y

4|y|3 + d
y

|y|4 = 0, y(0) = (0, 1), ẏ(0) =

(
±

√
1
2

+ 2d, 0

)
.

［2］ K. Tanaka, Noncollision solutions for a second order singular Hamiltonian

system with weak force. Ann. Inst. H. Poincaré Anal. Non Linéaire 10,

215–238 (1993)
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Exclusion of a binary collision	
 
In order to eliminate binary collisions, we use Tanaka’s scaling technique: 
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2π
√

1 + d

We can modify qεn to make a curve rn so that the value of the action
functional is smaller:

J εn(rn) − Aεn(qεn) = ε1/2
n C1 + ε3/2

n C2

The constant C1 is negative and crucially related to the modification.

We can eliminate the other cases of a binary collision similarly.

9 2π
√

1 + d

We can understand the behavior of yd(s) well.

9

2π
√

1 + d

We can understand the behavior of yd(s) well.

In the case of d = ∞, we use another scaling coordinates.

9

d<∞ d=∞ 
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q1

q2

q*1

q*2

In the case of d = 0, Tanaka [3] showed

lim
t→+0

q1(t)
|q1(t)|

= (0,−1).

If q̇2(0) = 0, the total collision occurs at t = π/4.

If Py q̇2(0) < 0, q1(t) and q2(t) moves into forth quadrant for small
t > 0.
If Py q̇2(0) > 0, q1(t) and q4(t) moves into third quadrant for small
t > 0.
We can reflect the curve such that each particle moves in the separate
quadrants. The value of action functional is lower.

［3］ K. Tanaka, A note on generalized solutions of singular Hamiltonian sys-

tems. Proc. Amer. Math. Soc. 122, 275–284 (1994)
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Consider the case of d > 0.
The action functional can be represented by

J εn(γn) = δ1/2
n Iεn/δn

l (xn) + O(δ3/2
n εn) +

∫ π/4

δ3/2
n l

Lε(γ̇n, γn)dt

where

Ia
l (x) =

∫ l

0

1
2
|ẋ(s)|2 +

1
4|x(s)| +

a

|x(s)|2 ds.

yd(s) = limn→∞ xn(s)(s ∈ [0, l]) is a minimizer of Id
l . But the min-

imizer can not have self-intersection(whose proof is similar to Coti-
Zerati’s idea [4]). This is a contradiction.
The case of d = ∞ can be eliminated similarly since the path must
have self-intersection.
［4］ V. Coti Zelati, Periodic solutions for a class of planar, singular dynamical

systems, J. Math. Pures Appl. 68 (1989), 109–119.
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• The binary collision q2(0) = 0 can be eliminated similarly.

• The binary collision at t ∈ (0, π/4) can be eliminated by applying

Ferrario-Terracini’s theorem[5].

• The binary collision at t = π/4 can be reduced to the case of t = 0,
since the situation is essentially same. In fact, the action functional
can be written by

J (γ) =
Z π/4

0

1

2
(|Q̇1|2 + |Q̇2|2) +

1
√

2|Q1|
+

1
√

2|Q2|
+

1
√

2|Q1 − Q2|
+

1
√

2|Q1 + Q2|
dt

where

Q1 =
q1 + q2√

2
, Q2 =

q1 − q2√
2

.

The boundary condition at t = π/4 is

PxQ1(π/4) = PyQ2(π/4) = 0, PyQ1(π/4) > 0, PxQ2(π/4) < 0.

［5］ D. L. Ferrario & S. Terracini, On the existence of collisionless equivariant

minimizers for the classical n-body problem, Invent. Math. 155, 305–362

(2004)
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Symmetry	
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q1

q2

Rxq1Ryq1

Rx

The minimizer can be smoothly connected with the reflected paths smoothly. 

This completed the proof ! 



Summary	
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�  We prove the existence of the super-eight by using variational 
method. 

�  The most difficult part is to eliminate the possibility of 
collisions. 

�  In order to solve the difficulty, we apply Tanaka’s technique. 
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Thank you for your attention! 


