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N-body Problem

i Newt ’
2-body problem
solved by (E, L)

elliptic E<O
parabolic E=0

hyperbolic E >0
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3-body
Euler’s collinear solution
(1765)

O—O—O

Lagrange’s triangle (1772)
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Henri Poincare

N =3 (or more)

Impossible to describe
all the solutions
to the N-body problem.
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# of new solutions
IS InCcreasing.

Remarkable one
was found:

Figure-eight solution!

Moore,
Phys. Rev. Lett. 70, 3675 (1993)

Chenciner, Montgomery.,
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on-periodic

Periodic
e General binar

e Euler’s collinear solution
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Let us re-examine
3-body problem

in the framework of

general relativity
(Einstein gravity)
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GR = General Relativity
Newton

Gravity = Force
Einstein ;

Gravity = i

Curved Space-time

light ray bends
gravitational waves
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Energy
-Momentum

Post-Newtonian approx.
Newton + 1PN + 2PN4+

/G @

Dominant corrections
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Space-time
Geometry




General relativistic effects
Periastron advance

_ Mercury
Time delay

GPS, Viking, Cassini
Light bending

Gravitational Lens
Binary pulser

Hulse-Taylor
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GW=Gravitational Waves

Tiny ripples of
a curved space-time

Generated by
accelerated masses
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No direct detection so far
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Figure 7: Plot of the cumulative shift of the periastron time from 1975 — 2005. The points are data, the
curve is the GR prediction. The gap during the middle 1990s was caused by a closure of Arecibo for
upgrading [272].

indirect evidence
y Binary Pulser
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http://www.aei.mpg.de/einsteinOnline/en/spotlights/gw_waves/index.html
http://www.aei.mpg.de/einsteinOnline/en/spotlights/gw_waves/index.html

KAGRA(Japan)

VIRGO(Italy-France) LIGO(US) GEO600(UK-Germany)
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Part 1: Choreography

Part 2: Euler+Lagrange’s
solutions
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In Celestial Mechanics,

a solution is
‘choreographic’

if
every massive particles
move periodically

In a single closed orbit
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1)

Implication of
Choreography
to GR

2)
Effects of
GR
to Choreography
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1)

Implication of
Choreography
to GR

2)
Effects of
GR
to Choreography
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Promising GW sources

N=1
Rapidly Rotating Star

N=2
Compact Binary System

13F12H7HLEH



N=3 (or more)
much less attention

Because of Chaos
irregular waveform

<~

difficult to detect
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Our question

Can three (or more) bodie
generate period GW?
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ANS.

Chiba, Imai, HA,
Mon. Not. Roy. Astr. S, 377, 269 (2007)
Arxiv:astro-ph/0609773.
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One example

Figure-8

Assumptions

The same plane
The same mass
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Computing Waveform
via Quadrupole formula

2GQ; ; 1
hij = s TO (rz)

rC

Lk
Rij = lij = 0ij—
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11 — T AL AL A
A=
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1)

Implication of
Choreography
to GR

2)
Effects of
GR
to Choreography
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2nd question

Newton’s EOM is OK?
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Imai, Chiba, HA,
Phys. Rev. Lett. 98, 201102 (2007)
Arxiv:gr-ac/0702076.
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Einstein-infeld-Hoffman
Equation of motion

G=c=1

deK mpg
= Y raxs £1-4 )
dt? r
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A specific question:

For 2 bodies,
orbits cannot be closed

because of
periastron advance.

What happens
for figure-8 ?
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100

-100

Imai, Chiba, HA (2007)
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Parametrise initial velocity
_ — TYL, — — —
1:kV+€—(')
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Remaining degrees
of freedom

‘7 — (an Vy)

are numerically
determined.

(same as Newton figure-8)
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40 GR. . ~—
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X
Imai, Chiba, HA (2007)
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ScienceNOW, 4 May 20077
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Home > News > Daily News Archive > 2007 > May > 4 May (Cho)

Trick Three-Planet Orbit Remains True

By Adrian Cho
ScienceNOW Daily News
4 May 2007

If a supreme being were so inclined, it could configure three planets so
that they would race around one another in a graceful figure-8 orbit.
At least that's what Newton's theory of gravity predicts. Now, a team of
physicists has shown that the figure-8 orbit is possible even if they use
On track. Einstein's more-accurate theory of gravity, general relativity.

A planetary figure-8 orbit is
possible, at least
temporarily, even if theorists
account for the effects of
general relativity.

When two planets cling to each other through gravity, one will orbit the
other by tracing an ellipse over and over. But throw together three or
more orbs, and their interactions become so complex that chaos
reigns. (Our solar system remains orderly because the sun is so heavy
that each planet follows its lead and more or less ignores the other
Credit: Adapted from planets.) Ho_wev_er, in 1993 phy5|§|st Crlstopher_Moore of t_he Unlve_:r5|ty

: of New Mexico in Albuquerque discovered that if he set things up just
Michael Nauenberg / UC . . .

right, then according to Newton's theory, three equal-mass planets

t
>anta Cruz could chase each other endlessly in a figure 8.
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It wasn't clear that Einstein's theory would allow the figure 8, however.
General relativity says that gravity is actually the warping of space and time themselves, and it makes
small but profound changes to the predictions of Newton's theory. For example, general relativity
predicts that when one planet orbits another body, its orbit will slowly turn, like the hour hand on a
clock, producing a complicated flowerlike pattern that doesn't repeat. In fact, once Einstein had
completed the theory, he immediately showed that it could account for the theretofore unexplained
turning of the orbit of Mercury. The figure-8 orbit ought to suffer from similar distortions.

But Tatsunori Imai, Takamasa Chiba, and Hideki Asada at Hirosaki University in Japan have found that
they can fiddle with the precise starting positions and velocities to compensate for the distortions and
keep the planets on the figure-8 orbit, at least in the short term. Using a computer to simulate the
exact orbit, they find that the planets stay on track for at least 10 cycles, as they report in an
upcoming issue of Physical Review Letters. The analysis is the first to show that such an oddball orbit
is possible in Einstein's universe.

"This is indeed an interesting and amazing result,” says Luc Blanchet, a theoretical physicist at the
Institute of Astrophysics in Paris. He notes, however, that in its full glory, Einstein's theory says the
circulating planets should also produce ripples in space and time that will gradually carry away the
planets' energy. That will eventually spoil the repeating orbit, Blanchet predicts: "l don't expect the
figure 8 to remain [indefinitely]."

Trick Three-Planet Orbit Remains True

By Adrian Cho
ScienceNOW Daily News
4 May 2007
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An extension to 2PN (g>4
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FIG. 9: Comparison of figure-eight motions for A = 1. The
solid, dotted and dashed lines show the 2PN, 1PN and New-

tonian results, respectively.
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Choreography or Not

Periastron
Shift
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Fujiwara, Fukuda, Ozaki (2003)

Coplanar 3-body Problem

If total P =0 (COM flxed)
total =0 ) (

Tangentﬁnes
from 3 bodies
always meet at a point
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GR figure-8 satisfies
3-tangent line theorem

Because...

In , 0 and v are not

always parallel

In o and v
are parallel
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Part 1: Choreography

Part 2: Euler+Lagrange’s
solutions
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GR collinear solution

Euler

Three masses
always line up
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Nonlinear gravity

d2’l°K GmA i GmB Gmc TAK "TCA
atz > rar g |14 2 2 =0
A+K FAK i B C"TBK C#AC rcA Toa
2_
VA2 VA VK 3 (UTA)'TAK
() - a(2) () -3 (L)
Correction 24y ()] Gmarax - [3(22) — 4 (2)]
" - ) 3
by velocity "¢ ¢ ik
7 Gme Gmagy
+—= r

Triple coupling
M1 x M2 x M3

not exist in Newton




Assume

line up
circular motion

Is EIH-EOM satisfied?
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FE=24=0 =2sh order

A7 = — [—4 — 2(vy — 4v3) + 2(VF + 2015 — 203) — 2 v3(vy + v3)

M

a

M
Ag=1—v3+ — =13 — (10v; — 17v3) + 2(2v3 + Svyvz — v3)
a

+ 2V} — 2vivs — 3vvs — vs)

Y

M
As =2+ v —2u3 + — | =15 — (18v1 — 5ug) + 4(5vyvg + 4v3)
a

+ 607 — vavs — 1)

’

M
A4:1—|—2I/1—V3—|——
a

+2(3v3 + vivg — 2u 03 — 31/§)] :

M
5 A3:—(1—V1—|—2V3)—|—;

M
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M
A1:—<1—V1>+_

a
—6 — 2(5v1 + 2u3) — 4(2V12 — V1V3 — 4V§)

M
Ag = — [4 —2(4vy — v3) +2(20F — 2113 — v3) 4 2v113(vy + 13)

Yamada, HA (2010)

6 4 2(2vy + bv3) — 4(4vi 4 vivg — 203)

+ 2305 + 2vivs — s — 3V§’)] :

15 — (51/1 — 18V3) — 4(4V% + 5U1V3)

+mﬁ+ﬁm@+

13 — (17vy — 10v3) + 2(vi — 8vyv3 — 213)

4+ 2(v} + 3vivs + 2v108 — ug’)] :

a

5th order in Newton Gravity
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Yamada, HA (2011)

Descartes rule of signs
and

Slow Motion (PN)

‘ 3-2=1

Uniqueness
(z = positive)
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For the same mass
and full length,
one can show

W < WN

GR angular velocity is
always smaller
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Assume --
equilateral triangle

Mo

circular motion
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Equilateral triangular sol.

IS possible
In Newton gravity

for three general masses
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) Ichi‘Ea, Yamada, HA (2011)
Equilateral triangular sol.

Is possible at 1PN in GR

If and only if either
1) Equal finite masses

® massratio 1 :1:1

2) One finite,
two test masses

® mass ratio 0 : 0 : 1
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A little more...
EOM of M1 becomes

—WIr = — &1+ gpniTy
a 'o" .\" \‘
\/§Mn + Mo MMy — My)
16a3 ' M2 =" MyN5 F M2
i ] i
a
X 110 4 A2 ( — 4M1 -+ 5M2 -+ 5M3)w2

M2=M3,

unless test mass
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For the same mass
and side length,
one can show

W < WN

GR angular velocity is
always smaller

11111111111



For the arbitrary mass ratio,
a triangular equilibrium solution exist

or not?

cf. [Krefetz, Astron. J. 72, 471 (1967)]
for the restricted 3-body problem,
that has been used by [Seto & Muto, PRD 81, 103004 (2010)]
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Corrections of distance

We can ignore the 1PN correction to the center of mass
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Triangular solution at

the 1PN

EOM for m1 becomes

—W T1 = — CUJQV’Pl

3
-+ V9 —3 —+ V1iUV9 —+ Vols —+ Vsl — §V3[5 — 3(1/1 —+ 1/2)]

3
+v3| =3 +vive + vovs + V3 — §V2[5 —3(ws +v1)] | Ara

— 3(v9€12T91 + V3€31731)
D -
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As a result,

€12 — —

€23 = —

€31 — —

_ ! 1
1 — §(V1V2 + Vo3 + V3V1) + §V3[5 — 3(V1 T V2)]

1

I 1
1 — —(VlVQ -+ VolVs —+ V3V1) -+ — U1 [5 — 3(V2 + VS)]

3 8

1

- 1
1 — §(V1V2 + vovg + v3v1) + §V2[5 —3(v1 +v3))

Triangular solution for the arbitrary mass ratio

13F12H7HLEH

at 1PN

[Yamada & E

A, (2012)]



Solar system

Corrections for I.4 (1.5) of Solar system [m]

Planet Sun-Planet | Sun-1.4 (1.5) |Planet-1.4 (I.5)
Farth -1477 -1477 -1477 -923
Jupiter -1477 -1477 -1477 -922

The sign -

13F12H7HLEH

- corresponds to the increase of distance




§3 Summary
1. Choreography in GR

2. GR extension
of Euler + Lagrange

There remain a lot of
Interesting things to do!
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Thank you!

asada@phys.hirosaki-u.ac.jp
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GWs Torigoe et al. PRL (2009)
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TcrigoeMe

t al. PRL (2009)

: : 0.2 0.4 0.6 0.8 1
t/ T t/ T

Obs. z-direction
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orbital shrinking rate
da 64 mtt{zl’ p( )2/3} —22.p%4Vp q( )2/3(%)2/3@“2(9 —0,)

t 5 a* _ y (_)2/ 3

PP

" fGW — mtot/ﬂ-

same as binary !
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Frequency == W

Flow chart | |
Amplltude ratio = i
+
Is ij source Freq. sweep =2 Mchirp
a binary? -
1-"'1 +UE+F3 — 1
Amp (h)
Paramater Amp (hoct+clw)
determinations of Amp (hoct+c|3w)
particular 3-body Ate Atsw

Mot V ,FE-JFE ’ I

+
Source test

HA(2009) o =
¢ &--»

or others
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