NCTS Taiwan-Japan Symposium on Celestial Mechanics and N-body Dynamics NCTS, NTHU, Taiwan, 6 Dec. 2013

General Relativistic Three-body Problem Hideki Asada (Hirosaki U, Japan)

Main references on Hirosaki papers

Chiba, Imai, <u>HA</u>, Mon. Not. Roy. Astr. S, 377, 269 (2007) [ArXiv:astro-ph/0609773]

lmai, Chiba, <u>HA</u>, Phys. Rev. Lett. 98, 201102 (2007) [ArXiv:gr-qc/0702076]

Torigoe, Hattori, <u>HA</u>, Phys. Rev. Lett. 102, 251101 (2009) [ArXiv:gr-qc/0906.1448]

HA, Phys. Rev. D 80, 064021 (2009) [ArXiv:gr-qc/1010.2284]

Yamda, <u>HA</u>, Phys. Rev. D 82, 104019 (2010) [ArXiv:gr-qc/1010.2284]

Yamda, <u>HA</u>, Phys. Rev. D 83, 024040 (2011) [ArXiv:gr-qc/1011.2007]

Ichita, Yamda, <u>HA</u>, Phys. Rev. D 83, 084026 (2011) [ArXiv:gr-qc/1011.3886]

Yamda, <u>HA</u>, Phys. Rev. D 86, 124029 (2012) [Arxiv:gr-qc/1212.0754]

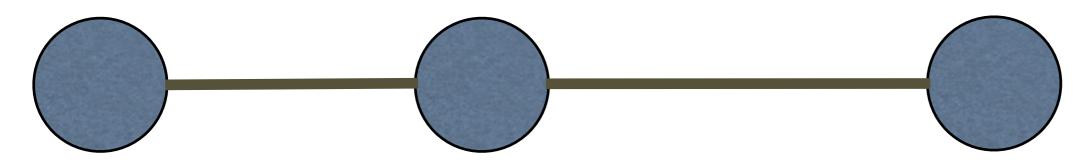
Yamda, <u>HA</u>, Mon. Not. Roy. Astr. S, 423, 3540 (2012) [Arxiv:gr-qc/1204.5298]

N-body Problem in Newton gravity

2-body problem solved by (E, L) E < 0 elliptic parabolic E = 0hyperbolic E > 0

3-body

Euler's collinear solution (1765)



Lagrange's triangle (1772)



Henri Poincare

N = 3 (or more)

impossible to describe all the solutions to the N-body problem.

of new solutions is increasing.Remarkable one was found:

Figure-eight solution!

Moore, Phys. Rev. Lett. 70, 3675 (1993)

Chenciner, Montgomery, Ann. Math. 152, 881 (2000)

Non-periodic

Periodic >

· General binary

Euler's collinear solution

• Equal mass binary in circular orbit

Choreographic

• Figure-8

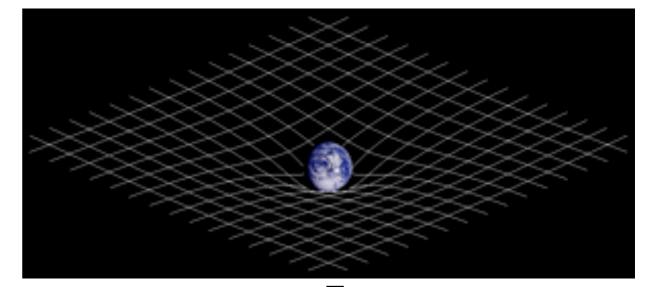
Let us re-examine 3-body problem in the framework of general relativity (Einstein gravity)

GR = General Relativity Newton

Gravity = Force

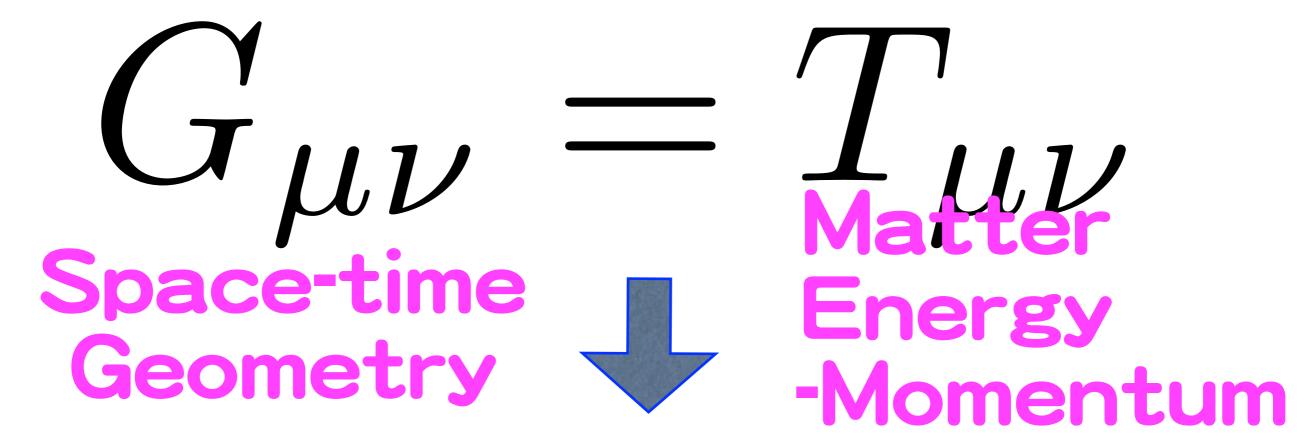
Einstein

Gravity =



Curved_Space-time

light ray bends gravitational waves



Post-Newtonian approx.

Dominant corrections

General relativistic effects Periastron advance

Time delay GPS, Viking, Cassini Light bending

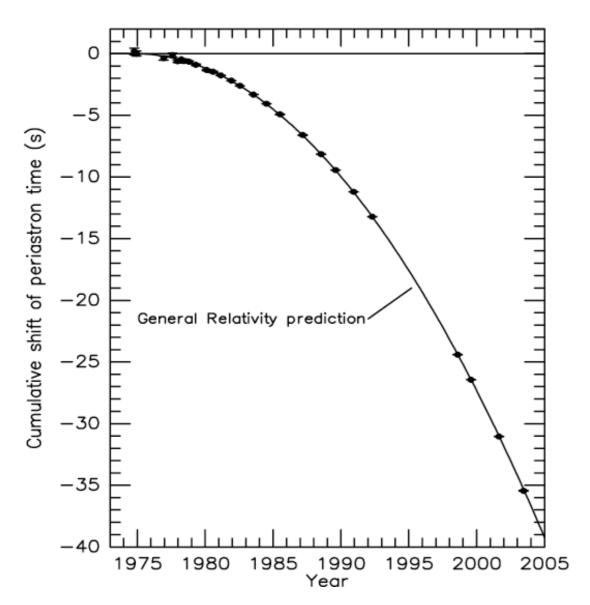
Gravitational Lens
Binary pulser
Hulse-Taylor

GW=Gravitational Waves

Tiny ripples of a curved space-time

Generated by accelerated masses

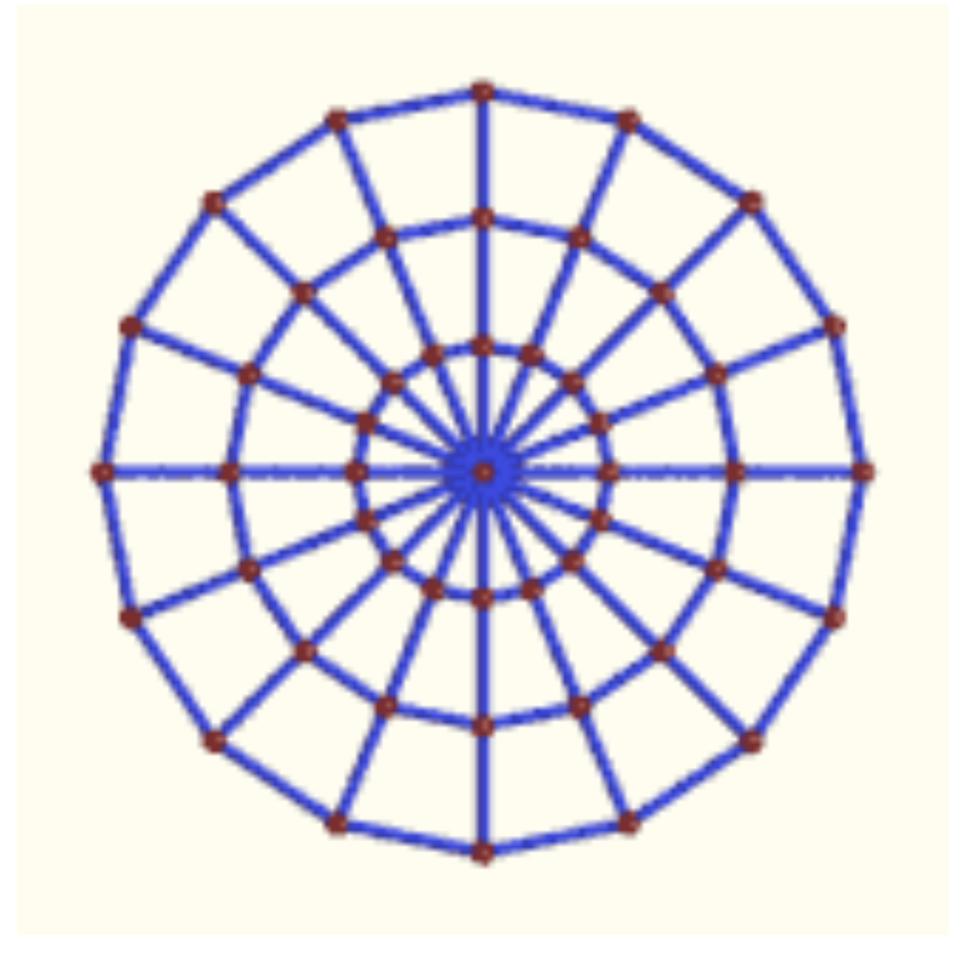
No direct detection so far



Will, LRR (06)

Figure 7: Plot of the cumulative shift of the periastron time from 1975 - 2005. The points are data, the curve is the GR prediction. The gap during the middle 1990s was caused by a closure of Arecibo for upgrading [272].

indirect evidence by Binary Pulser



http://www.aei.mpg.de/einsteinOnline/en/spotlights/gw_waves/index.html

KAGRA(Japan)

VIRGO(Italy-France)

LIGO(US)

GEO600(UK-Germany)

Part 1: Choreography

Part 2: Euler+Lagrange's solutions

In Celestial Mechanics, a solution is 'choreographic'

if

every massive particles move periodically in a single closed orbit

1) Implication of Choreography to GR 2)

Effects of
GR
to Choreography

Implication of Choreography to GR

2)
Effects of
GR
to Choreography

1)

Promising GW sources

N=1
Rapidly Rotating Star

N=2

Compact Binary System

N=3 (or more) much less attention

Because of Chaos irregular waveform

difficult to detect

Our question

Can three (or more) bodies generate period GW?

Ans.

Yes!

Chiba, Imai, HA, Mon. Not. Roy. Astr. S, 377, 269 (2007) Arxiv:astro-ph/0609773.

One example Figure-8

Assumptions

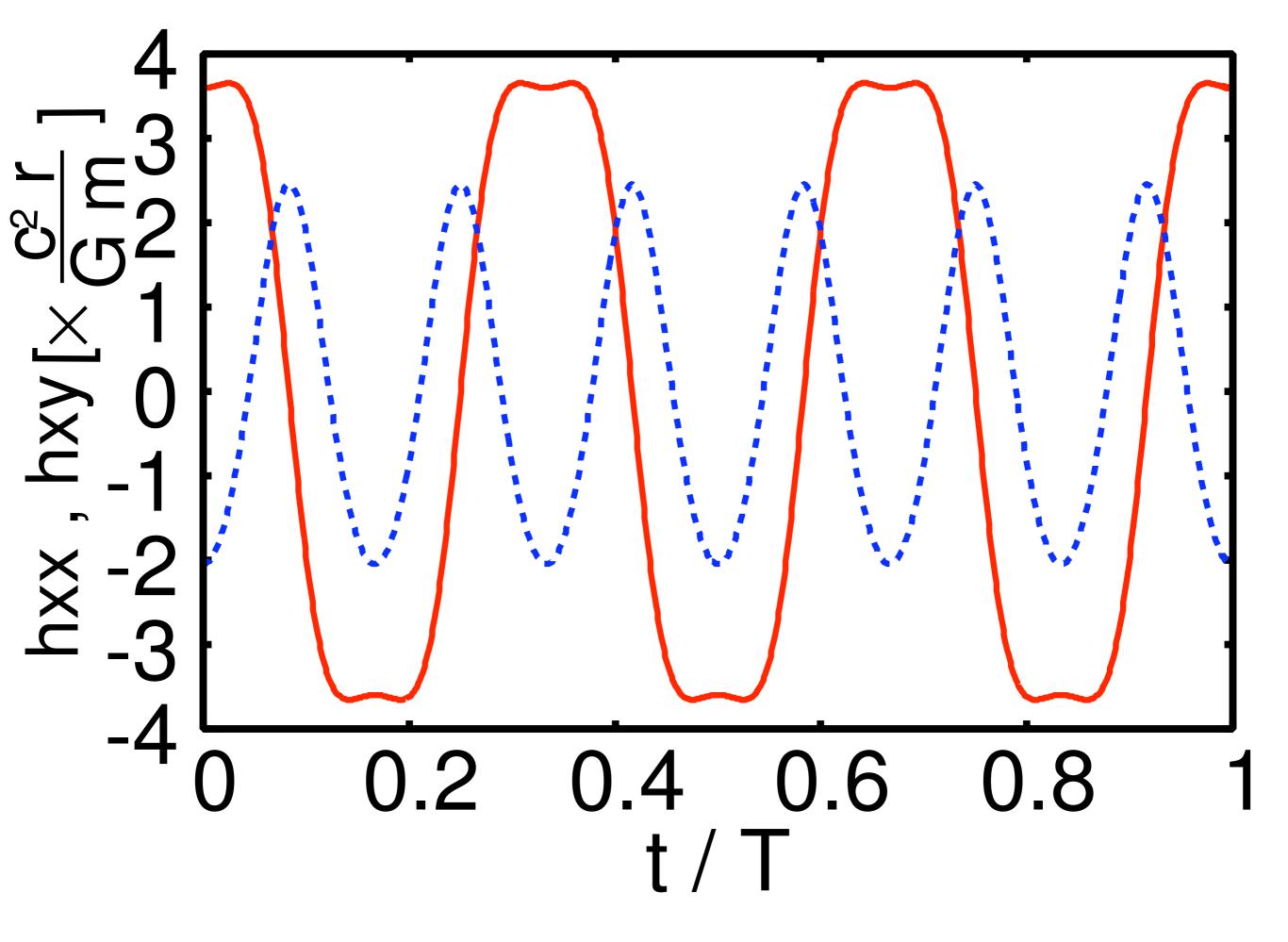
The same plane
The same mass

Computing Waveform via Quadrupole formula

$$h_{ij}^{TT} = \frac{2G\ddot{Q}_{ij}}{rc^4} + O\left(\frac{1}{r^2}\right)$$

$$Q_{ij} = I_{ij} - \delta_{ij} \frac{I_{kk}}{3}$$

$$I_{ij} = \sum_{A=1}^{N} m_A x_A^i x_A^j$$



1)

Implication of Choreography to GR

2)
Effects of
GR
to Choreography

2nd question

Newton's EOM is OK?

No!

Imai, Chiba, HA, Phys. Rev. Lett. 98, 201102 (2007) Arxiv:gr-qc/0702076.

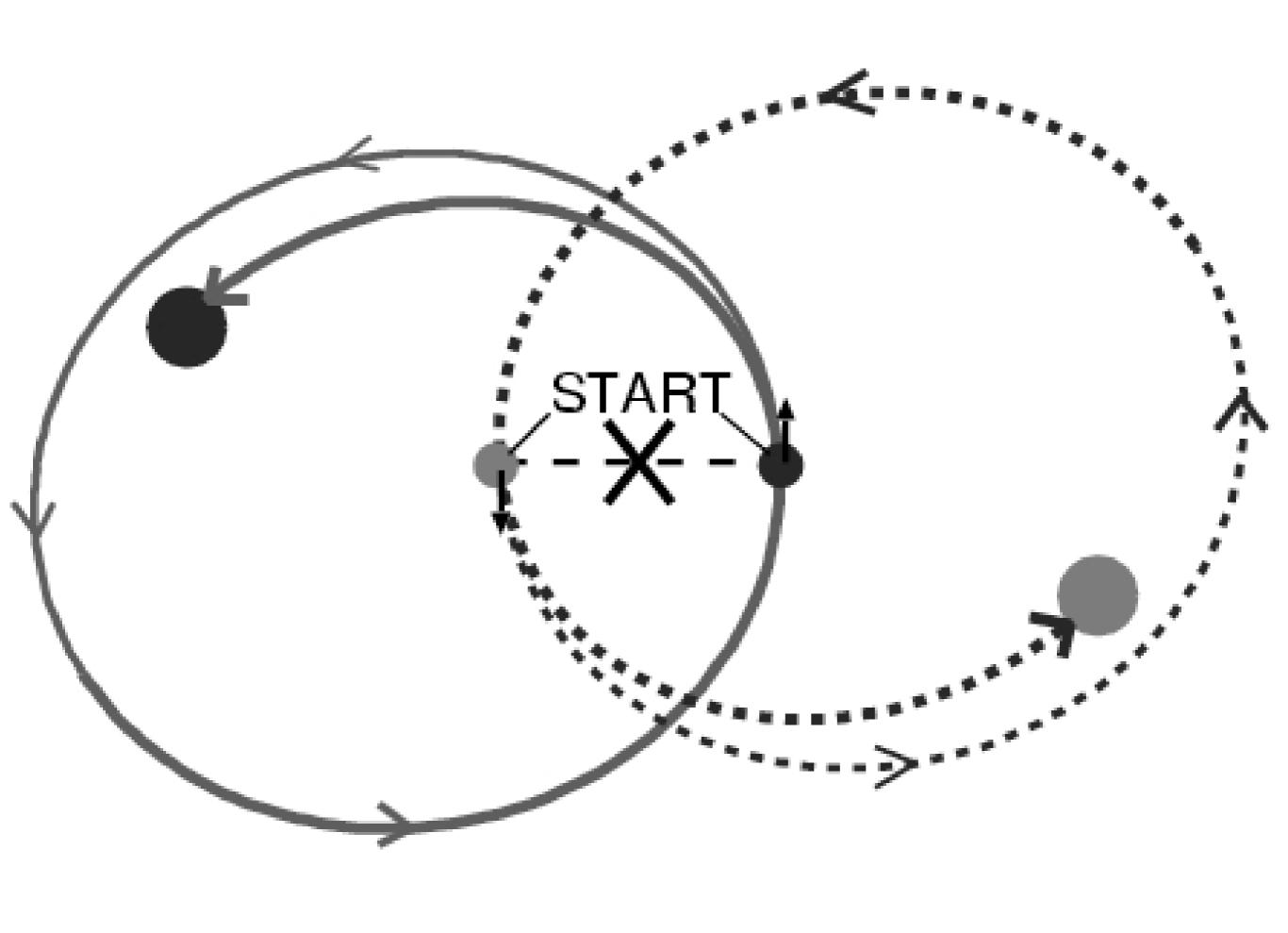
Einstein-Infeld-Hoffman Equation of motion

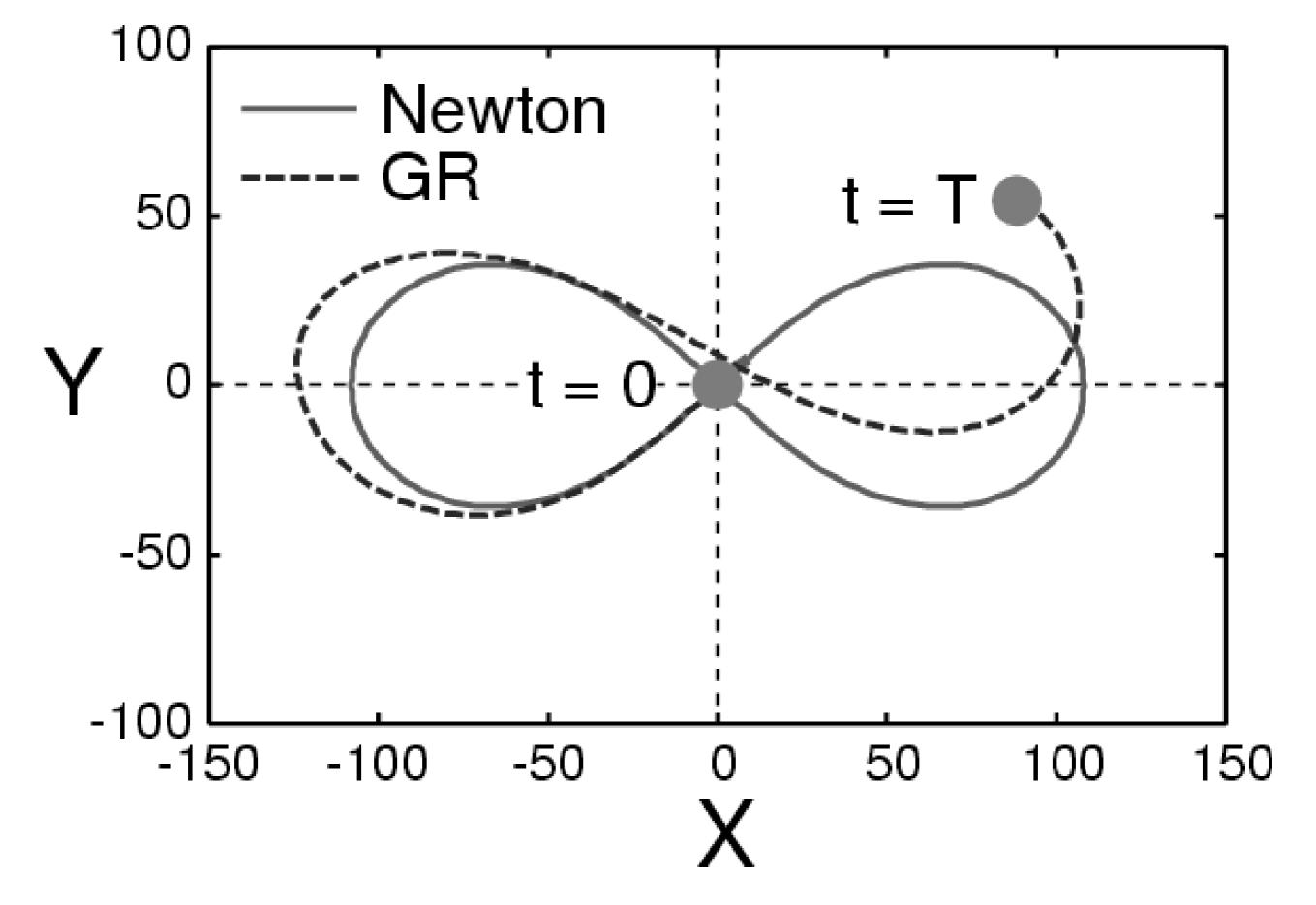
$$\frac{d^{2}x_{K}}{dt^{2}} = \sum_{A \neq K} r_{AK} \frac{m_{A}}{r_{AK}^{3}} \left[1 - 4 \sum_{B \neq K} \frac{m_{B}}{r_{BK}} - \sum_{C \neq A} \frac{m_{C}}{r_{CA}} \left(1 - \frac{r_{AK} \cdot r_{CA}}{2r_{CA}^{2}} \right) + v_{K}^{2} + 2v_{A}^{2} - 4v_{A} \cdot v_{K} - \frac{3}{2} \left(\frac{v_{A} \cdot r_{AK}}{r_{AK}} \right)^{2} \right] - \sum_{A \neq K} (v_{A} - v_{K}) \frac{m_{A}r_{AK} \cdot (3v_{A} - 4v_{K})}{r_{AK}^{3}} + \frac{7}{2} \sum_{A \neq K} \sum_{C \neq A} r_{CA} \frac{m_{A}m_{C}}{r_{AK}r_{CA}^{3}} + \frac{7}{2} \sum_{A \neq K} \sum_{C \neq A} r_{CA} \frac{m_{A}m_{C}}{r_{AK}r_{CA}^{3}}$$

A specific question:

For 2 bodies, orbits cannot be closed because of periastron advance.

What happens for figure-8?





lmai, Chiba, HA (2007)

Parametrise initial velocity

$$\vec{v}_1 = k\vec{V} + \xi \frac{m}{\ell^3} (\vec{V} \cdot \vec{\ell}) \vec{\ell}$$

$$\vec{v}_2 = k\vec{V} + \xi \frac{m}{\ell^3} (\vec{V} \cdot \vec{\ell}) \vec{\ell}$$

$$\vec{v}_3 = \vec{V}$$

$$k = -\frac{1}{2} + \alpha |\vec{V}|^2 + \beta \frac{m}{\ell}$$

$$\vec{P}_{tot} = \vec{L}_{tot} =$$

$$\alpha = -\frac{3}{16}$$

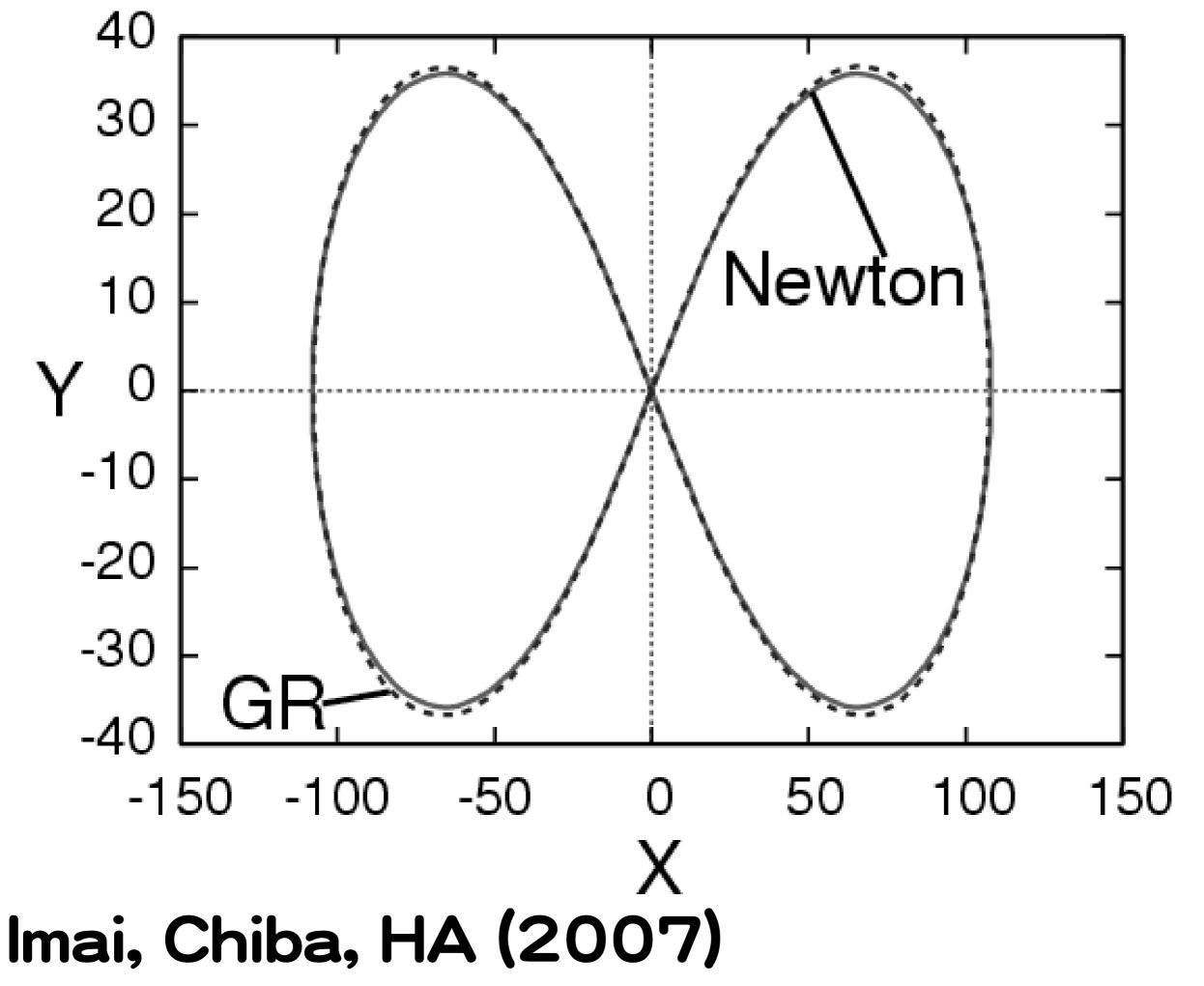
$$\beta = \xi = \frac{1}{2}$$

Remaining degrees of freedom

$$\vec{V} = (V_x, V_y)$$

are numerically determined.

(same as Newton figure-8)



13年12月7日土曜日

ScienceNOW, 4 May 2007

Magazine

News

Signaling

Careers

Multimedia

Collections

All Free Articles

Top 10 Last Month

*Science*Shots

Daily News Archive

About ScienceNOW

<u>Home</u> > <u>News</u> > <u>Daily News Archive</u> > <u>2007</u> > <u>May</u> > 4 May (Cho)

On track.

A planetary figure-8 orbit is possible, at least temporarily, even if theorists account for the effects of general relativity.

Credit: Adapted from Michael Nauenberg / UC Santa Cruz

Trick Three-Planet Orbit Remains True

By Adrian Cho ScienceNOW Daily News 4 May 2007

If a supreme being were so inclined, it could configure three planets so that they would race around one another in a graceful figure-8 orbit. At least that's what Newton's theory of gravity predicts. Now, a team of physicists has shown that the figure-8 orbit is possible even if they use Einstein's more-accurate theory of gravity, general relativity.

When two planets cling to each other through gravity, one will orbit the other by tracing an ellipse over and over. But throw together three or more orbs, and their interactions become so complex that chaos reigns. (Our solar system remains orderly because the sun is so heavy that each planet follows its lead and more or less ignores the other planets.) However, in 1993 physicist Cristopher Moore of the University of New Mexico in Albuquerque discovered that if he set things up just right, then according to Newton's theory, three equal-mass planets could chase each other endlessly in a figure 8.

It wasn't clear that Einstein's theory would allow the figure 8, however. General relativity says that gravity is actually the warping of space and time themselves, and it makes small but profound changes to the predictions of Newton's theory. For example, general relativity predicts that when one planet orbits another body, its orbit will slowly turn, like the hour hand on a clock, producing a complicated flowerlike pattern that doesn't repeat. In fact, once Einstein had completed the theory, he immediately showed that it could account for the theretofore unexplained turning of the orbit of Mercury. The figure-8 orbit ought to suffer from similar distortions.

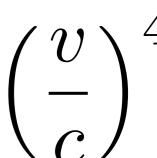
But <u>Tatsunori Imai</u>, <u>Takamasa Chiba</u>, and <u>Hideki Asada at Hirosaki University</u> in Japan have found that they can fiddle with the precise starting positions and velocities to compensate for the distortions and keep the planets on the figure-8 orbit, at least in the short term. Using a computer to simulate the exact orbit, they find that the planets stay on track for at least 10 cycles, as they report in an upcoming issue of *Physical Review Letters*. The analysis is the first to show that such an oddball orbit is possible in Einstein's universe.

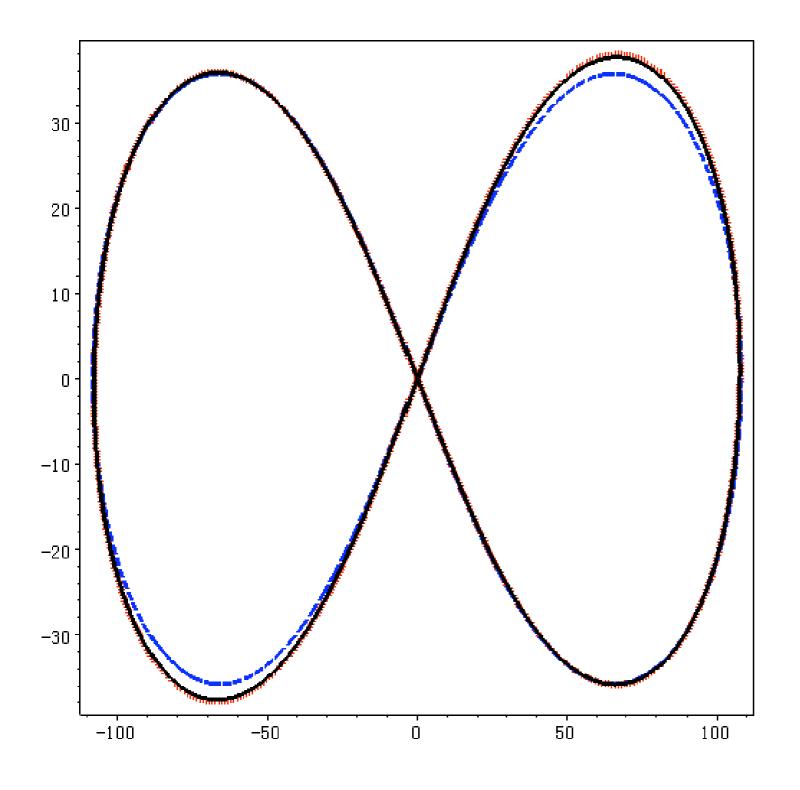
"This is indeed an interesting and amazing result," says Luc Blanchet, a theoretical physicist at the Institute of Astrophysics in Paris. He notes, however, that in its full glory, Einstein's theory says the circulating planets should also produce ripples in space and time that will gradually carry away the planets' energy. That will eventually spoil the repeating orbit, Blanchet predicts: "I don't expect the figure 8 to remain [indefinitely]."

Trick Three-Planet Orbit Remains True

By Adrian Cho ScienceNOW Daily News 4 May 2007

An extension to 2PN





Lousto, Nakano, Class. Q. Grav. 25, 195019 (2008)

FIG. 9: Comparison of figure-eight motions for $\lambda = 1$. The solid, dotted and dashed lines show the 2PN, 1PN and Newtonian results, respectively.

Choreography or Not

Orbit	Newton	Einstein
		Periastron Shift

Fujiwara, Fukuda, Ozaki (2003)

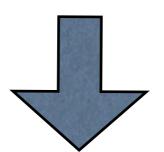
-0.5

1.5

0.5

Coplanar 3-body Problem If total P = 0 (COM fixed)

total L = 0



Tangent lines from 3 bodies

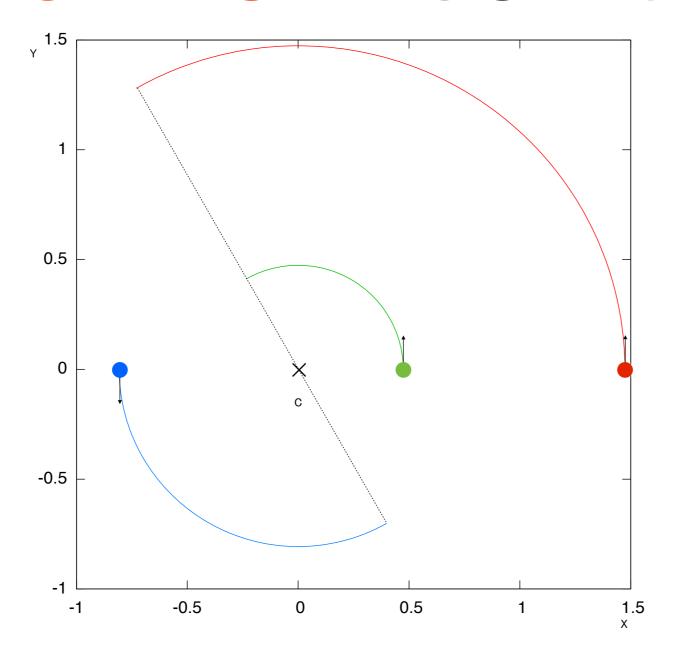
GR figure-8 satisfies 3-tangent line theorem Because...

In GR, p and v are not always parallel
In GR figure-8, p and v are parallel

Part 1: Choreography

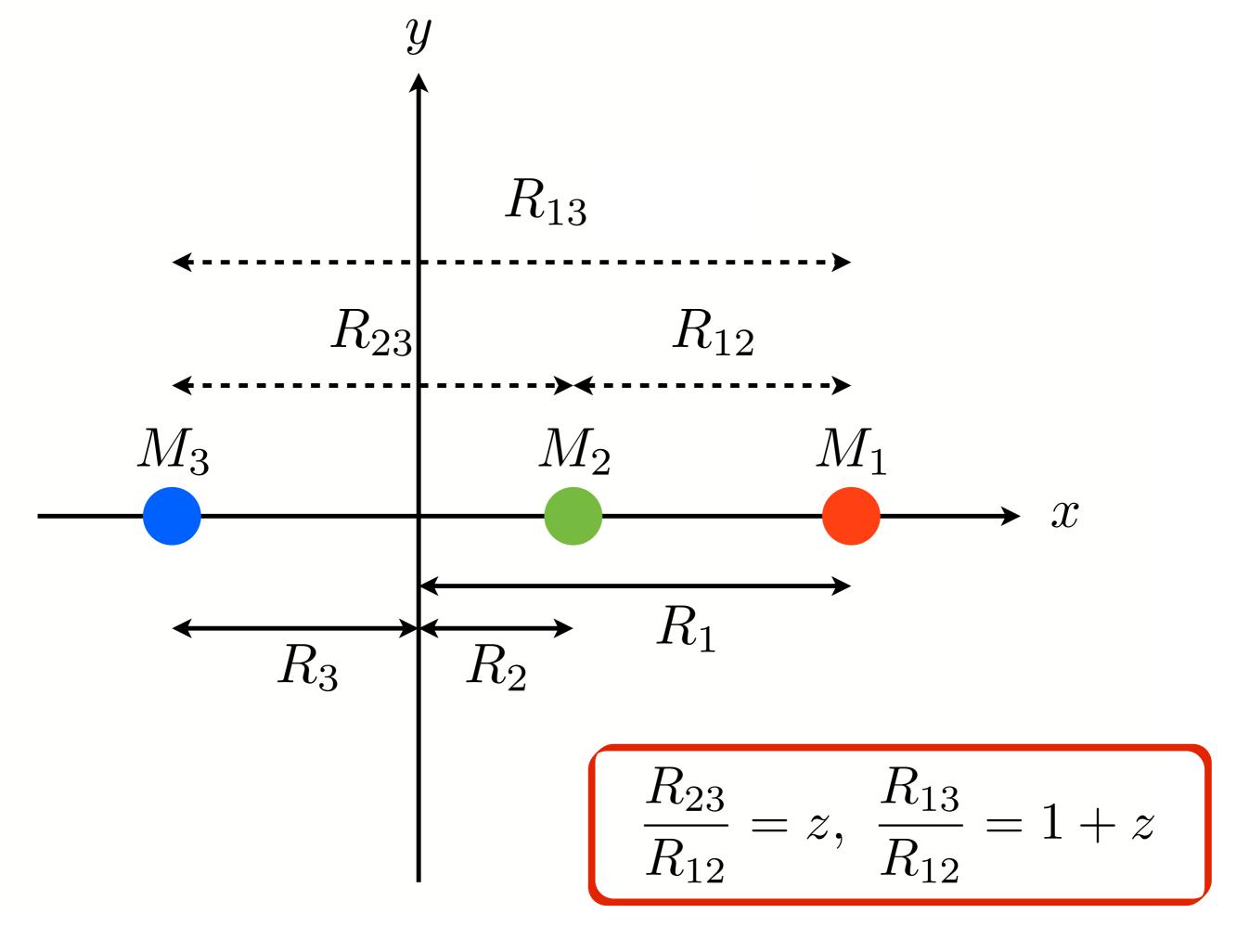
Part 2: Euler+Lagrange's solutions

GR collinear solution



Euler

Three masses always line up



Nonlinear gravity

$$\frac{d^{2} \boldsymbol{r}_{K}}{dt^{2}} = \sum_{A \neq K} \boldsymbol{r}_{AK} \frac{Gm_{A}}{r_{AK}^{3}} \left[1 - 4 \sum_{B \neq K} \frac{Gm_{B}}{c^{2} r_{BK}} - \sum_{C \neq A} \frac{Gm_{C}}{c^{2} r_{CA}} \left(1 - \frac{\boldsymbol{r}_{AK} \cdot \boldsymbol{r}_{CA}}{2r_{CA}^{2}} \right) \right]$$

$$+ \left(\left(\frac{\boldsymbol{v}_K}{c} \right)^2 \right) + 2 \left(\frac{\boldsymbol{v}_A}{c} \right)^2 - 4 \left(\frac{\boldsymbol{v}_A}{c} \right) \cdot \left(\frac{\boldsymbol{v}_K}{c} \right) - \frac{3}{2} \left(\frac{\left(\frac{\boldsymbol{v}_A}{c} \right) \cdot \boldsymbol{r}_{AK}}{r_{AK}} \right)^2 \right]$$

$$\frac{\text{Correction}}{\text{by velocity}} - \sum_{A \neq K} \left[\left(\frac{\boldsymbol{v}_A}{c} \right) - \left(\frac{\boldsymbol{v}_K}{c} \right) \right] \frac{Gm_A \boldsymbol{r}_{AK} \cdot \left[3 \left(\frac{\boldsymbol{v}_A}{c} \right) - 4 \left(\frac{\boldsymbol{v}_K}{c} \right) \right]}{r_{AK}^3}$$

$$+\frac{7}{2}\sum_{A\neq K}\sum_{C\neq A}\boldsymbol{r}_{CA}\frac{Gm_C}{r_{CA}^3}\frac{Gm_A}{c^2r_{AK}}$$

Triple coupling

 $M1 \times M2 \times M3$

not exist in Newton

Assume

line up circular motion

Is EIH-EOM satisfied?

Yamada, HA (2010)

$$F(z) \equiv \sum_{k=0}^{7} A_k z^k = 0$$

7th order

$$\begin{split} A_7 &= \frac{M}{a} \left[-4 - 2(\nu_1 - 4\nu_3) + 2(\nu_1^2 + 2\nu_1\nu_3 - 2\nu_3^2) - 2\nu_1\nu_3(\nu_1 + \nu_3) \right], \quad A_3 = -(1 - \nu_1 + 2\nu_3) + \frac{M}{a} \left[6 + 2(2\nu_1 + 5\nu_3) - 4(4\nu_1^2 + \nu_1\nu_3 - 2\nu_3^2) \right], \\ A_6 &= 1 - \nu_3 + \frac{M}{a} \left[-13 - (10\nu_1 - 17\nu_3) + 2(2\nu_1^2 + 8\nu_1\nu_3 - \nu_3^2) \right], \\ &+ 2(\nu_1^3 - 2\nu_1^2\nu_3 - 3\nu_1\nu_3^2 - \nu_3^3) \right], \\ A_5 &= 2 + \nu_1 - 2\nu_3 + \frac{M}{a} \left[-15 - (18\nu_1 - 5\nu_3) + 4(5\nu_1\nu_3 + 4\nu_3^2) \right], \\ &+ 6(\nu_1^3 - \nu_1\nu_3^2 - \nu_3^3) \right], \\ A_7 &= -(1 - \nu_1) + \frac{M}{a} \left[13 - (17\nu_1 - 10\nu_3) + 2(\nu_1^2 - 8\nu_1\nu_3 - 2\nu_3^2) \right], \\ A_8 &= -(1 - \nu_1) + \frac{M}{a} \left[13 - (17\nu_1 - 10\nu_3) + 2(\nu_1^2 - 8\nu_1\nu_3 - 2\nu_3^2) \right], \\ A_9 &= -(1 - \nu_1) + \frac{M}{a} \left[13 - (17\nu_1 - 10\nu_3) + 2(\nu_1^2 - 8\nu_1\nu_3 - 2\nu_3^2) \right], \\ A_9 &= -(1 - \nu_1) + \frac{M}{a} \left[13 - (17\nu_1 - 10\nu_3) + 2(\nu_1^2 - 8\nu_1\nu_3 - 2\nu_3^2) \right], \\ A_9 &= -(1 - \nu_1) + \frac{M}{a} \left[13 - (17\nu_1 - 10\nu_3) + 2(\nu_1^2 - 8\nu_1\nu_3 - 2\nu_3^2) \right], \\ A_9 &= -(1 - \nu_1) + \frac{M}{a} \left[13 - (17\nu_1 - 10\nu_3) + 2(\nu_1^2 - 8\nu_1\nu_3 - 2\nu_3^2) \right], \\ A_9 &= -(1 - \nu_1) + \frac{M}{a} \left[13 - (17\nu_1 - 10\nu_3) + 2(\nu_1^2 - 8\nu_1\nu_3 - 2\nu_3^2) \right], \\ A_9 &= -(1 - \nu_1) + \frac{M}{a} \left[13 - (17\nu_1 - 10\nu_3) + 2(\nu_1^2 - 8\nu_1\nu_3 - 2\nu_3^2) \right], \\ A_9 &= -(1 - \nu_1) + \frac{M}{a} \left[13 - (17\nu_1 - 10\nu_3) + 2(\nu_1^2 - 8\nu_1\nu_3 - 2\nu_3^2) \right], \\ A_9 &= -(1 - \nu_1) + \frac{M}{a} \left[13 - (17\nu_1 - 10\nu_3) + 2(\nu_1^2 - 8\nu_1\nu_3 - 2\nu_3^2) \right], \\ A_9 &= -(1 - \nu_1) + \frac{M}{a} \left[13 - (17\nu_1 - 10\nu_3) + 2(\nu_1^2 - 8\nu_1\nu_3 - 2\nu_3^2) \right], \\ A_9 &= -(1 - \nu_1) + \frac{M}{a} \left[13 - (17\nu_1 - 10\nu_3) + 2(\nu_1^2 - 8\nu_1\nu_3 - 2\nu_3^2) \right], \\ A_9 &= -(1 - \nu_1) + \frac{M}{a} \left[13 - (17\nu_1 - 10\nu_3) + 2(\nu_1^2 - 8\nu_1\nu_3 - 2\nu_3^2) \right], \\ A_9 &= -(1 - \nu_1) + \frac{M}{a} \left[13 - (17\nu_1 - 10\nu_3) + 2(\nu_1^2 - 8\nu_1\nu_3 - 2\nu_3^2) \right], \\ A_9 &= -(1 - \nu_1) + \frac{M}{a} \left[13 - (17\nu_1 - 10\nu_3) + 2(\nu_1^2 - 8\nu_1\nu_3 - 2\nu_1\nu_3 - 2\nu_3^2) \right], \\ A_9 &= -(1 - \nu_1) + \frac{M}{a} \left[13 - (17\nu_1 - 10\nu_3) + 2(\nu_1^2 - 8\nu_1\nu_3 - 2\nu_1\nu_3 - 2\nu_1\nu$$

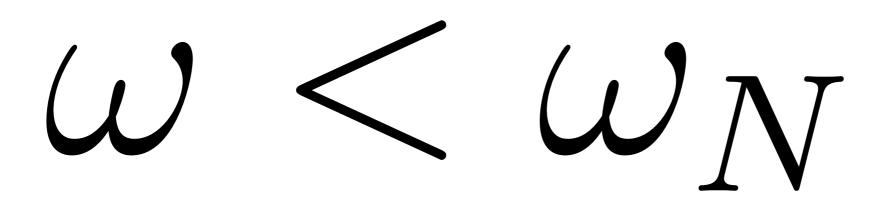
5th order in Newton Gravity

Yamada, HA (2011)

Descartes rule of signs and Slow Motion (PN)

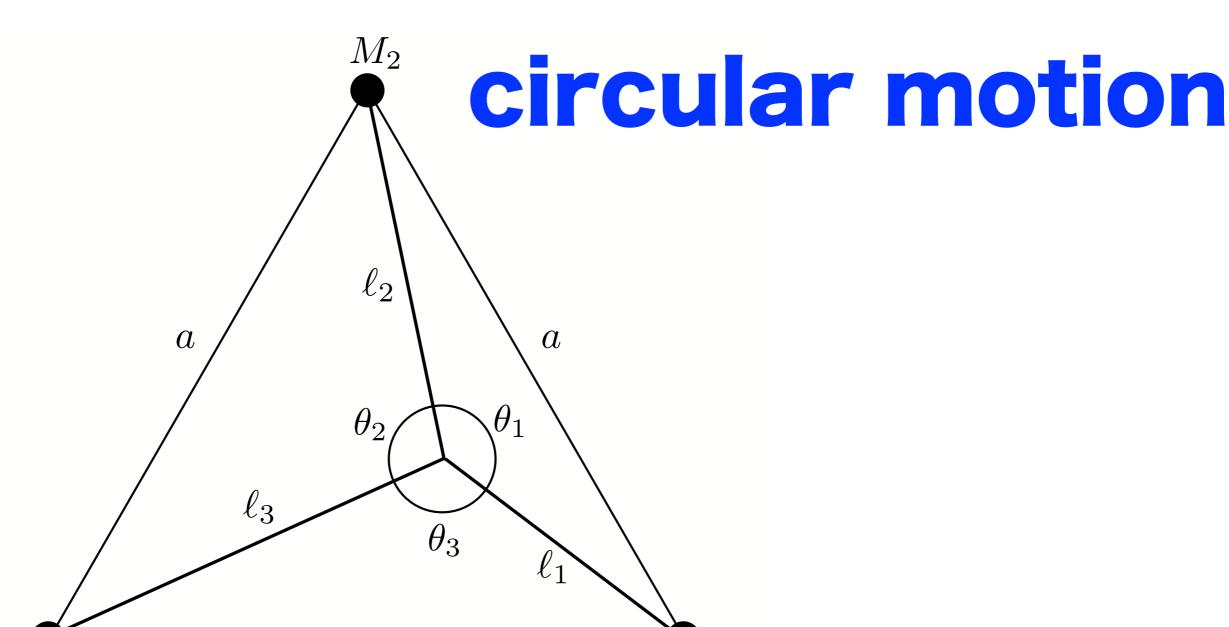
Uniqueness
(z = positive)

For the same mass and full length, one can show



GR angular velocity is always smaller

Assume · · equilateral triangle



a

 M_1

 M_3

Equilateral triangular sol.

is possible in Newton gravity

for three general masses

Ichita, Yamada, HA (2011)

Equilateral triangular sol.is possible at 1PN in GRif and only if either1) Equal finite masses

• mass ratio 1:1:1

2) One finite, two test masses

• mass ratio 0:0:1

A little more...

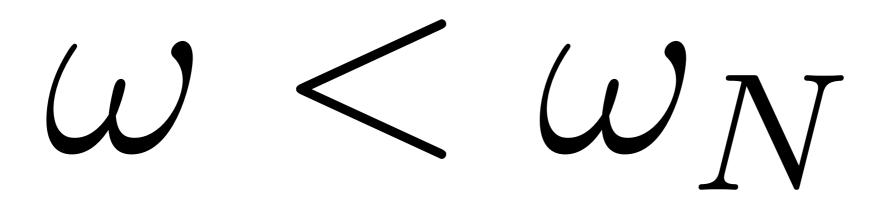
EOM of M1 becomes

$$-\omega^{2} \boldsymbol{x}_{1} = -\frac{M}{a^{3}} \boldsymbol{x}_{1} + g_{PN1} \boldsymbol{x}_{1}$$

$$+ \frac{\sqrt{3}M}{16a^{3}} \boldsymbol{n}_{\perp 1} \underbrace{\frac{M_{2}M_{3}(M_{2} - M_{3})}{M_{2}^{2} + M_{2}M_{3} + M_{3}^{2}}}_{\times \left[10 + \frac{a^{3}}{M^{2}} \left(-4M_{1} + 5M_{2} + 5M_{3}\right)\omega^{2}\right]$$

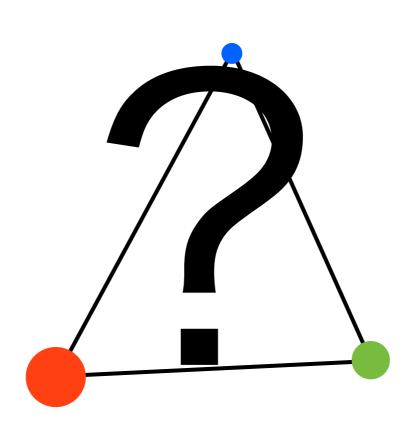
M2=M3, unless test mass

For the same mass and side length, one can show



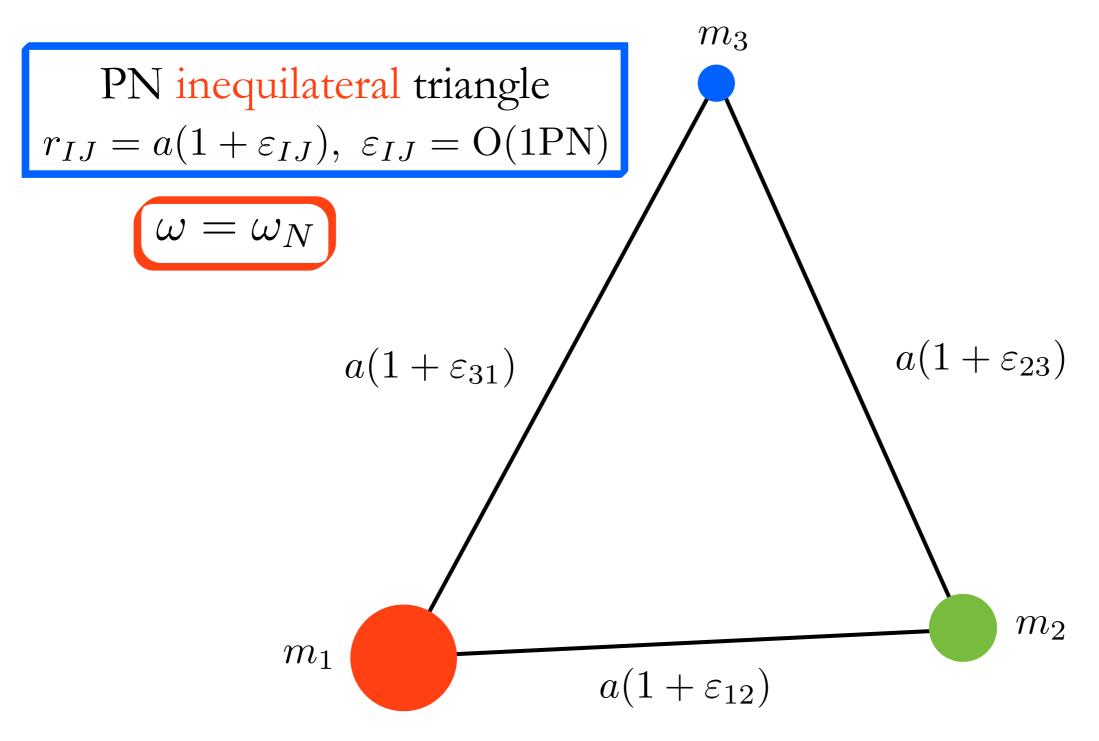
GR angular velocity is always smaller

For the arbitrary mass ratio, a triangular equilibrium solution exist or not?



cf. [Krefetz, Astron. J. **72**, 471 (1967)] for the restricted 3-body problem, that has been used by [Seto & Muto, PRD **81**, 103004 (2010)]

Corrections of distance



We can ignore the 1PN correction to the center of mass

Triangular solution at the 1PN EOM for m_1 becomes

$$-\omega^{2} \boldsymbol{r}_{1} = -\omega_{N}^{2} \boldsymbol{r}_{1}$$

$$+ \nu_{2} \left(-3 + \nu_{1} \nu_{2} + \nu_{2} \nu_{3} + \nu_{3} \nu_{1} - \frac{3}{8} \nu_{3} [5 - 3(\nu_{1} + \nu_{2})] \right) \lambda \boldsymbol{r}_{21}$$

$$+ \nu_{3} \left(-3 + \nu_{1} \nu_{2} + \nu_{2} \nu_{3} + \nu_{3} \nu_{1} - \frac{3}{8} \nu_{2} [5 - 3(\nu_{3} + \nu_{1})] \right) \lambda \boldsymbol{r}_{31}$$

$$- 3(\nu_{2} \varepsilon_{12} \boldsymbol{r}_{21} + \nu_{3} \varepsilon_{31} \boldsymbol{r}_{31})$$

$$\omega = \omega_N \qquad = 0$$

As a result,

$$\varepsilon_{12} = -\left[1 - \frac{1}{3}(\nu_1\nu_2 + \nu_2\nu_3 + \nu_3\nu_1) + \frac{1}{8}\nu_3[5 - 3(\nu_1 + \nu_2)]\right]\lambda,$$

$$\varepsilon_{23} = -\left[1 - \frac{1}{3}(\nu_1\nu_2 + \nu_2\nu_3 + \nu_3\nu_1) + \frac{1}{8}\nu_1[5 - 3(\nu_2 + \nu_3)]\right]\lambda,$$

$$\varepsilon_{31} = -\left[1 - \frac{1}{3}(\nu_1\nu_2 + \nu_2\nu_3 + \nu_3\nu_1) + \frac{1}{8}\nu_2[5 - 3(\nu_1 + \nu_3)]\right]\lambda.$$

Triangular solution for the arbitrary mass ratio at 1PN

[Yamada & <u>HA</u>, (2012)]

Solar system

Corrections for L4 (L5) of Solar system [m]

Planet	Sun-Planet	Sun-L4 (L5)	Planet-L4 (L5)
Earth	-1477	-1477	-1477 -923
Jupiter	-1477	-1477	-1477 -922

The sign + corresponds to the increase of distance

§ 3 Summary1. Choreography in GR2. GR extensionof Euler + Lagrange

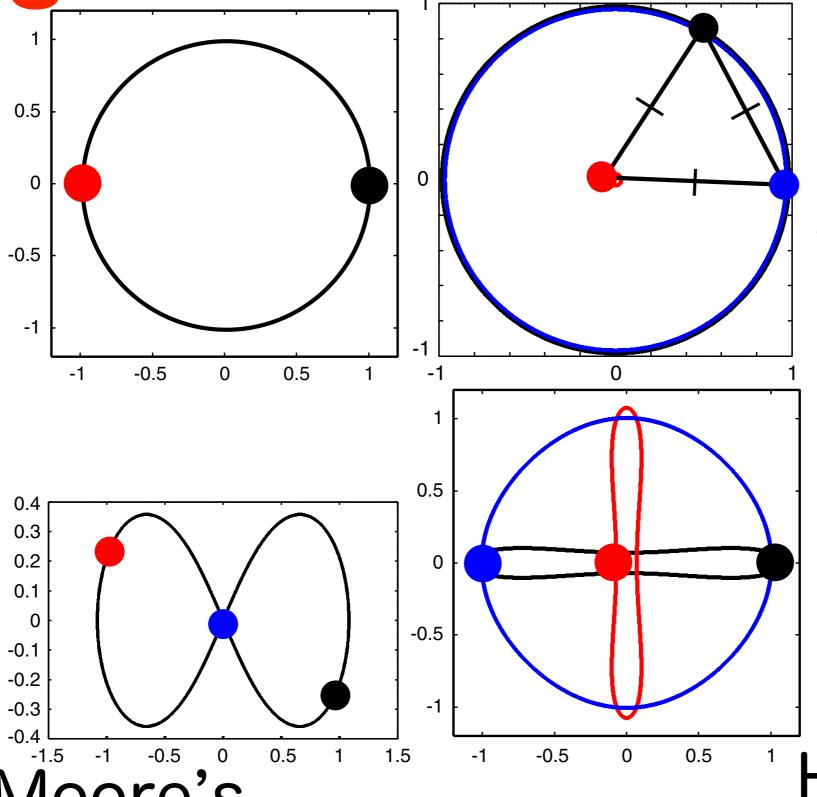
There remain a lot of interesting things to do!

Thank you!

asada@phys.hirosaki-u.ac.jp

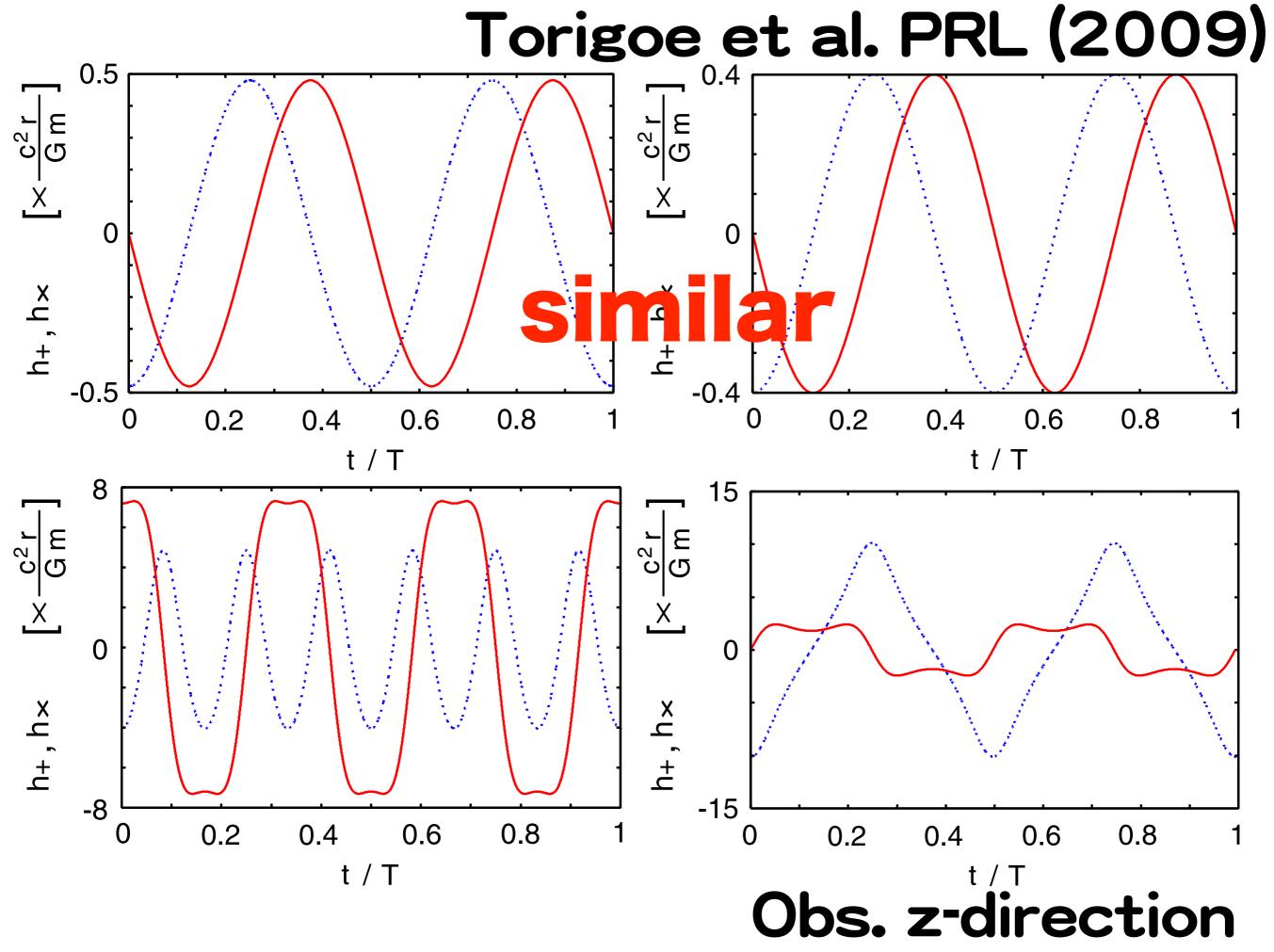
GWs

Torigoe et al. PRL (2009)



Lagrange's Triangle

Moore's Figure-8 Henon's Criss-cross



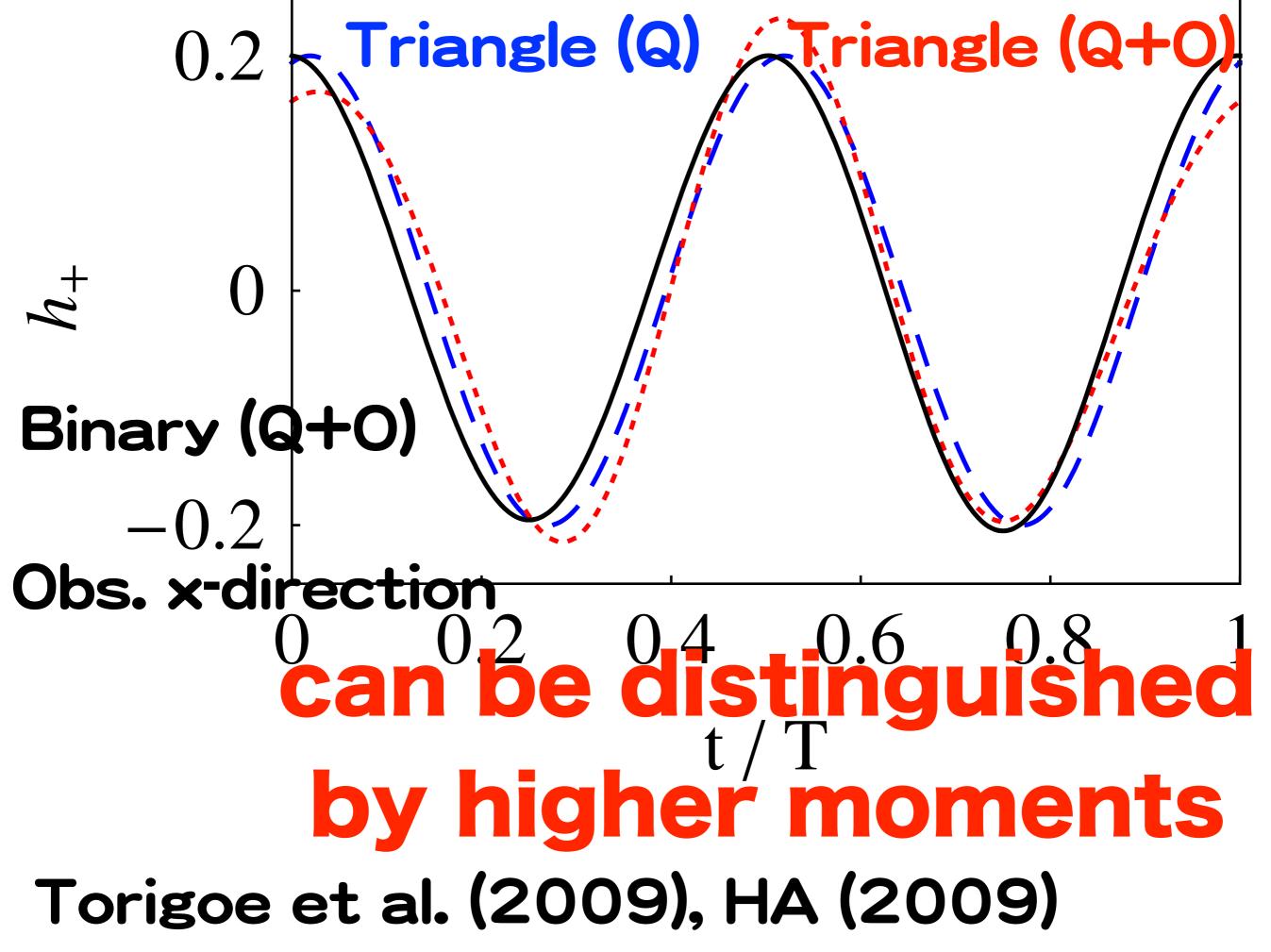
orbital shrinking rate

$$\frac{1}{a}\frac{da}{dt} = -\frac{64}{5}\frac{m_{\text{tot}}^3}{a^4} \frac{\left\{\sum_p \nu_p \left(\frac{M_p}{m_{\text{tot}}}\right)^{2/3}\right\}^2 - 2\sum_{p \neq q} \nu_p \nu_q \left(\frac{M_p}{m_{\text{tot}}}\right)^{2/3} \left(\frac{M_q}{m_{\text{tot}}}\right)^{2/3} \sin^2(\theta_p - \theta_q)}{\sum_{p \neq q} \nu_p \nu_q - \sum_p \nu_p \left(\frac{M_p}{m_{\text{tot}}}\right)^{2/3}}$$

$$f_{\rm GW}^2 = m_{\rm tot}/\pi^2 a^3$$

$$\frac{1}{f_{\rm GW}} \frac{df_{\rm GW}}{dt} = \frac{96}{5} \pi^{8/3} M_{\rm chirp}^{5/3} f_{\rm GW}^{8/3}$$

same as binary!

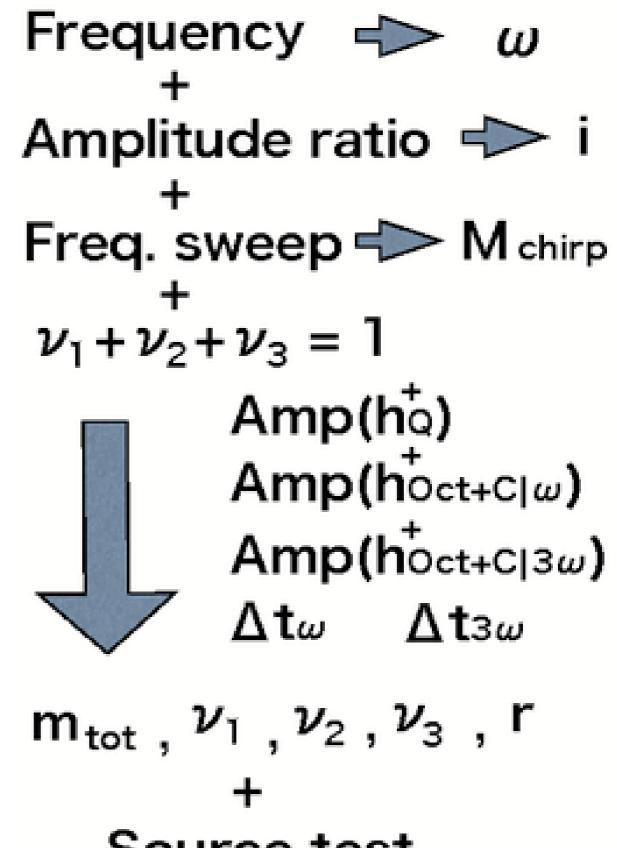


Flow chart

Is GW source a binary?

Paramater determinations of particular 3-body

HA (2009)



Source test

or others