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N-body Problem

 

2-body problem

in Newton gravity

solved  by

hyperbolic

elliptic
parabolic

E < 0
E = 0
E > 0

LagrangeLagrange

(E, L)
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3-body    
Euler’s collinear solution

Lagrange’s triangle 

(1765)

(1772)
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impossible to describe 
all the solutions 

to the N-body problem.

Henri Poincare

N = 3 (or more) 
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# of new solutions 
is increasing.

Remarkable one  
was found:

Figure-eight solution!
MMoooorree,,  
PPhhyyss..  RReevv..  LLeetttt..  7700,,  33667755  ((11999933))

CChheenncciinneerr,,  MMoonnttggoommeerryy,,  
AAnnnn..  MMaatthh..  115522,,  888811  ((22000000))
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Periodic    
Non-periodic    

Choreographic    

・Equal mass binary 
in circular orbit

・Figure-8

・Euler’s collinear solution
・General binary
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Let us re-examine
3-body problem

in the framework of
general relativity
(Einstein gravity)
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GR = General Relativity
Newton

Gravity = Force
Einstein
Gravity = 

                       Curved Space-time 

light ray bends
gravitational waves
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Gµ� = Tµ�

Newton + 1PN + 2PN + ...

Post-Newtonian approx.

Periastron advance
Dominant corrections

SSppaaccee--ttiimmee
GGeeoommeettrryy

Dominant correctionsDominant corrections

MMaatttteerr
EEnneerrggyy

            --MMoommeennttuumm

�v

c

⇥2 �v

c

⇥4
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General relativistic effects 
Periastron advance

Time delay

Light bending

Binary pulser

Mercury

GPS, Viking, Cassini

Gravitational Lens

Hulse-Taylor
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GW=Gravitational Waves 

Tiny ripples of 
                       a curved space-time 

Generated by
                       accelerated masses

Tiny ripples of 
                       a curved space-time 
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No direct detection so far 

indirect evidence 
                            by Binary Pulser  

08/09/26 10:26Figure 7

ページ 1/1http://relativity.livingreviews.org/Articles/lrr-2006-3/fig_7.html

Figure 7: Plot of the cumulative shift of the periastron time from 1975 – 2005. The points are data, the
curve is the GR prediction. The gap during the middle 1990s was caused by a closure of Arecibo for
upgrading [272].

Will, LRR (06)
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http://www.aei.mpg.de/einsteinOnline/en/spotlights/gw_waves/index.html
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Part 1: Choreography

Part 2: Euler+Lagrange’s  
solutions
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In Celestial Mechanics,

‘choreographic’

every massive particles
if

move periodically
in a single closed orbit

a solution is
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1)
Implication of 
Choreography

to GR
2)
Effects of 

GR 
             to Choreography
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1)
Implication of 
Choreography

to GR
2)
Effects of 

GR 
             to Choreography
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Promising GW sources 

N=1
Rapidly Rotating Star

N=2
Compact Binary System
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N=3 (or more)
much less attention

Because of Chaos
irregular waveform

difficult to detect
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Our question 

Can three (or more) bodies
generate period GW?
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Ans.
Yes!

CChhiibbaa,,  IImmaaii,,  HHAA,,  
MMoonn..  NNoott..  RRooyy..  AAssttrr..  SS,,  337777,,  226699  ((22000077))
AArrxxiivv::aassttrroo--pphh//00660099777733..
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One example
Figure-8

Assumptions 
The same plane
The same mass
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Computing Waveform
via Quadrupole formulaGWs・・・Quadrupole formula

hTT
ij =

2GQ̈ij

rc4
+ O

�

⇧⇤
1

r2

⇥

⌃⌅

where

Qij = Iij � �ij
Ikk

3

Iij =
N⌥

A=1
mAxi

Axj
A
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GWs・・・Quadrupole formula
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1)
Implication of 
Choreography

to GR
2)
Effects of 

GR 
             to Choreography
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2nd question 

Newton’s EOM is OK?
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Ans.
No!

IImmaaii,,  CChhiibbaa,,  HHAA,,  
PPhhyyss..  RReevv..  LLeetttt..  9988,,  220011110022  ((22000077))
AArrxxiivv::ggrr--qqcc//00770022007766..

13年12月7日土曜日



Einstein-Infeld-Hoffman 
Equation of motion 

Einstein-Infeld-Ho�man EOM (G=c=1)
d2xK

dt2
=

⇤

A⇥=K

rAK
mA

r3AK

⌅
1�4

⇤

B ⇥=K

mB

rBK

�
⇤

C ⇥=A

mC

rCA

�

1�
rAK · rCA

2r2CA

⇥

+v2
K + 2v2

A � 4vA · vK �
3

2

�
vA · rAK

rAK

⇥2 ⇧

�
⇤

A⇥=K

(vA � vK)
mArAK · (3vA � 4vK)

r3AK

+
7

2

⇤

A⇥=K

⇤

C ⇥=A

rCA
mAmC

rAKr3CA
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GG  ==  cc  ==11
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A specific question: 
For 2 bodies, 
orbits cannot be closed
because of
periastron advance.

What happens 
for figure-8 ?
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43
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Parametrise initial velocityParametrize Initial Velocity

⇧v1 = k⇧V + ⇤
m

⌅3
(⇧V · ⇧⌅)⇧⌅

⇧v2 = k⇧V + ⇤
m

⌅3
(⇧V · ⇧⌅)⇧⌅

⇧v3 = ⇧V

k = �
1

2
+ �|⇧V |2 + ⇥

m

⌅
45
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⌅Ptot = ⌅Ltot = 0 =⇥

� = �
3

16

⇥ = ⇤ =
1

8
46

⌅Ptot = ⌅Ltot = 0 =⇥

� = �
3

16

⇥ = ⇤ =
1

8
46
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Remaining 2 degrees

of freedom

�V = (Vx, Vy)

Numerically computed

47

Remaining degrees 
of freedom 

are numerically 
determined.

((ssaammee  aass  NNeewwttoonn  ffiigguurree--88))  
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Trick Three-Planet Orbit Remains True -- Cho 2007 (504): 2 -- ScienceNOW http://sciencenow.sciencemag.org/cgi/content/full/2007/504/2
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On track.

A planetary figure-8 orbit is 
possible, at least 
temporarily, even if theorists 
account for the effects of 
general relativity.

Credit: Adapted from 
Michael Nauenberg / UC 
Santa Cruz

Trick Three-Planet Orbit Remains True

By Adrian Cho
ScienceNOW Daily News
4 May 2007

If a supreme being were so inclined, it could configure three planets so
that they would race around one another in a graceful figure-8 orbit. 
At least that's what Newton's theory of gravity predicts. Now, a team of 
physicists has shown that the figure-8 orbit is possible even if they use 
Einstein's more-accurate theory of gravity, general relativity.

When two planets cling to each other through gravity, one will orbit the
other by tracing an ellipse over and over. But throw together three or 
more orbs, and their interactions become so complex that chaos 
reigns. (Our solar system remains orderly because the sun is so heavy 
that each planet follows its lead and more or less ignores the other 
planets.) However, in 1993 physicist Cristopher Moore of the University 
of New Mexico in Albuquerque discovered that if he set things up just 
right, then according to Newton's theory, three equal-mass planets 
could chase each other endlessly in a figure 8.

It wasn't clear that Einstein's theory would allow the figure 8, however.
General relativity says that gravity is actually the warping of space and time themselves, and it makes 
small but profound changes to the predictions of Newton's theory. For example, general relativity 
predicts that when one planet orbits another body, its orbit will slowly turn, like the hour hand on a 
clock, producing a complicated flowerlike pattern that doesn't repeat. In fact, once Einstein had 
completed the theory, he immediately showed that it could account for the theretofore unexplained 
turning of the orbit of Mercury. The figure-8 orbit ought to suffer from similar distortions.

But Tatsunori Imai, Takamasa Chiba, and Hideki Asada at Hirosaki University in Japan have found that
they can fiddle with the precise starting positions and velocities to compensate for the distortions and 
keep the planets on the figure-8 orbit, at least in the short term. Using a computer to simulate the 
exact orbit, they find that the planets stay on track for at least 10 cycles, as they report in an 
upcoming issue of Physical Review Letters. The analysis is the first to show that such an oddball orbit 
is possible in Einstein's universe.

"This is indeed an interesting and amazing result," says Luc Blanchet, a theoretical physicist at the
Institute of Astrophysics in Paris. He notes, however, that in its full glory, Einstein's theory says the 
circulating planets should also produce ripples in space and time that will gradually carry away the 
planets' energy. That will eventually spoil the repeating orbit, Blanchet predicts: "I don't expect the 
figure 8 to remain [indefinitely]."

Related sites

More on the figure 8 from the American Mathematical Society
Cristopher Moore's gallery of orbits
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An extension to 2PN �v

c

⇥4

6

FIG. 8: The relative fitting error for the second post-
Newtonian case.

FIG. 9: Comparison of figure-eight motions for λ = 1. The
solid, dotted and dashed lines show the 2PN, 1PN and New-
tonian results, respectively.

It is interesting to note here that the scaling fits (10)
give a practical way to determine when relativistic or
Newtonian approaches are appropriate. For λ = 1 we
have that the ratio of the first coefficient, 0.01617654493
(Newtonian) to the second coefficient 0.002017242451
first-post-Newtonian is nearly 0.12/λ and the second co-
efficient to the third one 0.0002463605227 (dominated
by second-post-Newtonian) is also approximately 0.12/λ.
This indicates that post-Newtonian corrections are im-
portant. For λ = 1 the distance between the initial bod-
ies is 200m, what indicates that for nearly 67M with
M ≈ 3m the total mass of the system has strong post-
Newtonian effects. For λ ≫ 1 Newtonian gravity should
describe the system accurately, while for λ < 1 general
relativistic effects should be very important, eventually
leading to the total collapse of the system. It is inter-
esting to remark here that most of the N -body codes
use some sort of regularization of the Newtonian gravity
for very close encounters [23], instead the natural way
to regularize these close encounters [14] is given by the
General Theory of Relativity, and as we show here, the
post-Newtonian corrections are already non-negligible at
separations of the order of 100M . In any case, for most
of the astrophysical encounters this is way too short dis-
tance, but it can obviously be reached in systems involv-
ing black holes and neutron stars.
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APPENDIX A: THE SECOND
POST-NEWTONIAN THREE-BODY

HAMILTONIAN

In this appendix, we give explicitly the Hamiltonian for
the three body problem at second post-Newtonian order
in the ADM gauge since there are some typos in the sum-
mation of [20]. The equations of motion used in our paper
can be derived straightforwardly from this Hamiltonian,
but are too cumbersome to write down here.

H2PN =
1

16

∑

a

ma

(

p2
a

m2
a

)3

+
1

16

∑

a,b̸=a

mamb
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{
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(

p2
a

m2
a

)2

− 11
p2

ap2
b

m2
am2

b

− 2
(pa · pa)2

m2
am2

b

+10
p2

a (nab · pb)
2

m2
am2

b
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(pa · pb) (nab · pa) (nab · pb)

m2
am2

b

− 3
(nab · pa)2 (nab · pb)
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am2
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}
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Coplanar 3-body Problem
If total P = 0 (COM fixed)

total L = 0 

Tangent lines 
from 3 bodies 

              always meet at a point 

FFuujjiiwwaarraa,,  FFuukkuuddaa,,  OOzzaakkii  ((22000033))

-1.5 -1 -0.5 0.5 1 1.5

-1.5

-1

-0.5

0.5

1

1.5

図 1 ３接線は一点で交わる

2 レムニスケート上のコレオグラフィ [6]

Jacobi の楕円関数 sn, cn でパラメトライズされたレムニスケート

x(t) =
sn(t)

1 + cn2(t)
, y(t) =

sn(t)cn(t)
1 + cn2(t)

で，母数を k2 = (2 +
⇤

3)/4としたものは，ポテンシャルエネルギー

V =
⌅

i<j

�
1
2

ln rij �
⇤

3
24

r2
ij

⇥

の下での運動方程式を満たす．この運動では，通常の保存量以外に原点周りの慣性モーメント
I =

⇤
i(x

2
i + y2

i ) が一定値をとります．
このポテンシャルの第２項は斥力を与えます．運動からポテンシャルは一意的には定まらないの
で，なんとか工夫して，斥力項がないポテンシャルを見つけられないものでしょうか？
すくなくとも，斉次ポテンシャル ��1r� の中には見つけられません．というのは，Chenciner
の提出した問題，“I = const.の８の字解は，斉次ポテンシャルの中では � = �2でしか実現しな
い事を示せ．”[5] を，FFO が肯定的に証明したからです．（数値的には，� = �2の８の字解もレ
ムニスケートではないようです．）

3 慣性モーメントの非一定性 [7]

ポテンシャルエネルギー V� = ��1
⇤

i<j r�
ij (� ⇥= 0)，あるいは V0 =

⇤
i<j log rij の下では，

慣性モーメントが一定な３体８の字解は，� = �2 の場合に限って存在する．

2
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GR figure-8 satisfies
 3-tangent line theorem

In GR, p and v are not 
always parallel 

In GR figure-8, p and v 
are parallel 

Because...
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Part 1: Choreography

Part 2: Euler+Lagrange’s  
solutions
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GR collinear solution

-1

-0.5
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 0.5
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-1 -0.5  0  0.5  1  1.5

Y

X

C

Three masses 
always line up

Euler 
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R23

R12
= z,

R13

R12
= 1 + z
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A �=K

�

C �=A
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r3
CA

GmA

c2rAK

Correction 
 by velocity

Nonlinear gravity

Triple coupling
M1 × M2 × M3
not exist in Newton
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Assume
line up
circular motion

Is EIH-EOM satisfied? 
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Yamada, HA (2010)

A7 =
M

a

�
�4� 2(�1 � 4�3) + 2(�2

1 + 2�1�3 � 2�2
3)� 2�1�3(�1 + �3)

�
,

A6 = 1� �3 +
M

a

�
�13� (10�1 � 17�3) + 2(2�2

1 + 8�1�3 � �2
3)

+ 2(�3
1 � 2�2

1�3 � 3�1�
2
3 � �3

3)

�
,

A5 = 2 + �1 � 2�3 +
M

a

�
�15� (18�1 � 5�3) + 4(5�1�3 + 4�2

3)

+ 6(�3
1 � �1�

2
3 � �3

3)

�
,

A4 = 1 + 2�1 � �3 +
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�6� 2(5�1 + 2�3)� 4(2�2

1 � �1�3 � 4�2
3)

+ 2(3�3
1 + �2

1�3 � 2�1�
2
3 � 3�3

3)

�
,

A3 = �(1� �1 + 2�3) +
M
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6 + 2(2�1 + 5�3)� 4(4�2

1 + �1�3 � 2�2
3)

+ 2(3�3
1 + 2�2

1�3 � �1�
2
3 � 3�3

3)

�
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A2 = �(2� 2�1 + �3) +
M
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�
15� (5�1 � 18�3)� 4(4�2

1 + 5�1�3)

+ 6(�3
1 + �2

1�3 � �3
3)

�
,

A1 = �(1� �1) +
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13� (17�1 � 10�3) + 2(�2
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3)

+ 2(�3
1 + 3�2
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,

A0 =
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�
4� 2(4�1 � �3) + 2(2�2

1 � 2�1�3 � �2
3) + 2�1�3(�1 + �3)

�
.

F (z) �
7�

k=0

Akzk = 0

5th order in Newton Gravity

7th order
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Uniqueness

Descartes rule of signs

Slow Motion (PN)
and 

Yamada, HA (2011)

(z = positive)

3 - 2 = 1
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We should remember the transformation as z ↔ 1/z, namely 1 ↔ 3. Hence, zS and

zL correspond to each other as zS = 1/zL. In this sense, it seems natural that the above

argument for discarding zL is very similar to that of zS.

As a result, two of the three positive roots are discarded as unphysical ones. Hence, we

complete the proof of the uniqueness.

We mention an application of the uniqueness theorem for the restricted three-body prob-

lem. We have three possibilities for choosing a test mass as M1 = 0, M2 = 0 or M3 = 0. For

each case, we have only the single collinear solution. Therefore, the three equilibrium points

exist along the symmetry axis of the system, and they are a generalization of Lagrange

points L1, L2 and L3.

Before closing this section, we mention an interesting property of the angular velocity

of the collinear configurations. For the same masses and full length, we have always an

inequality as

ω < ωN , (36)

which means that the post-Newtonian orbital period measured in the coordinate time is

longer than the Newtonian one. Provided that the masses and angular rate are fixed, the

relativistic length a is shorter than the Newtonian one. Detailed calculations are given in

the Appendix.

V. CONCLUSION

We proved the uniqueness of the collinear configuration for given system parameters (the

masses and the end-to-end length). It was shown that the equation determining the distance

ratio among the three masses, which has been obtained as a seventh-order polynomial in

the previous paper, has at most three positive roots, which apparently provide three cases

of the distance ratio. It was found, however, that there exists one physically acceptable root

and only one. The remaining two positive roots are discarded in the sense that they do not

satisfy the slow motion ansatz in the post-Newtonian approximation.

Especially for the restricted three-body problem, exactly three positions of a third body

are true even at the post-Newtonian order. They are relativistic counterparts of the New-

tonian Lagrange points L1, L2 and L3.

It was shown also that, for the same masses and full length, the angular velocity of

12

For the same mass
and full length, 
one can show

GR angular velocity is 
always smaller
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equilateral triangle 

FIG. 1: Equilateral triangular configuration. Each mass is located at one of the apices. We define

θI (I = 1, 2, 3) with respect to the common center of mass.

gPN ≡ gPN1 = gPN2 = gPN3 for M1 = M2 = M3 = M/3. Here, gPN simply becomes

gPN =
M

a3

(
57

12

M

a
− 41

24
a2ω2

N

)
. (33)

One can show gPN > 0 and hence ω < ωN .

IV. SUMMARY

We investigated the post-Newtonian effects on Lagrange’s equilateral triangular solution

for the three-body problem. We found that the equilateral triangular configuration can

satisfy the post-Newtonian equation of motion in general relativity, if and only if all three

masses are equal.

It is left as a future work to examine post-Newtonian perturbations to triangular config-

urations for general masses. The configuration may be non-equilateral or non-periodic.

This work was supported in part (H.A.) by a Japanese Grant-in-Aid for Scientific Research

8

circular motion

Assume ‥
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Equilateral triangular sol. 
is possible 

             in Newton gravity
for three general masses
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Ichita, Yamada, HA (2011)
Equilateral triangular sol. 
is possible at 1PN in GR
if and only if either

1) Equal finite masses
● mass ratio 1 : 1 : 1

2) One finite, 
                 two test masses

● mass ratio 0 : 0 : 1
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A little more...
The above expressions for the inner products are substituted into the R.H.S. of Eq. (8).

After straightforward calculations, the equation of motion for M1 can be written as

−ω2x1 = −M

a3
x1 + gPN1x1

+

√
3M

16a3
n⊥1

M2M3(M2 − M3)

M2
2 + M2M3 + M2

3

×
[
10 +

a3

M2

(
− 4M1 + 5M2 + 5M3

)
ω2

]
, (31)

where we used Eq. (4) for velocity-dependent terms, n⊥1 = v1/ℓ1ω is defined as the unit

normal vector to x1, and gPN1 denotes the post-Newtonian terms defined as

gPN1 =
1

16a4(M2
2 + M2M3 + M2

3 )

×
[
80(M2

2 + M2M3 + M2
3 )M2 − 2(8M3

2 + M2
2 M3 + M2M

2
3 + 8M3

3 )M

−
{

32(M2
2 + M2M3 + M2

3 )M2 + 12M2M3(M2 + M3)M

−(16M4
2 + 41M3

2 M3 + 84M2
2 M2

3 + 41M2M
3
3 + 16M4

3 )
} a3

M
ω2

N

]
. (32)

Here, terms with ω2
N come from the velocity-dependent terms and may be reexpressed by

using Eq. (4).

We should note that the third term in the R.H.S. of Eq. (31) is parallel to the velocity of

M1 and thus perpendicular to x1 for a circular motion case. Therefore, the mass M1 can be

in circular motion, if and only if the coefficient of the third term vanishes, that is M2 = M3.

Likewise, the masses M2 and M3 can be in circular motion, if and only if M3 = M1 and

M1 = M2, respectively. Hence, all the three masses can have a circular motion, if and only

if M1 = M2 = M3.

The remaining thing to do is to see whether orbital periods of the three masses are all

the same in order to preserve the triangular shape if M1 = M2 = M3. It is easy to see

this, because one can obtain the post-Newtonian forces gPN2 and gPN3 from gPN1 by cyclic

manipulations as 1 → 2 → 3 → 1, and finally by taking the equality of M1 = M2 = M3,

one can find gPN1 = gPN2 = gPN3. Therefore, it is concluded that the equilateral triangular

configuration remains true for the post-Newtonian equation of motion in general relativity,

if and only if all three masses are equal.

Eq. (31) gives uniquely the post-Newtonian angular velocity as ω2 = Ma−3−gPN , where

7

EOM of M1 becomes

M2=M3, 
unless test mass
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We should remember the transformation as z ↔ 1/z, namely 1 ↔ 3. Hence, zS and

zL correspond to each other as zS = 1/zL. In this sense, it seems natural that the above

argument for discarding zL is very similar to that of zS.

As a result, two of the three positive roots are discarded as unphysical ones. Hence, we

complete the proof of the uniqueness.

We mention an application of the uniqueness theorem for the restricted three-body prob-

lem. We have three possibilities for choosing a test mass as M1 = 0, M2 = 0 or M3 = 0. For

each case, we have only the single collinear solution. Therefore, the three equilibrium points

exist along the symmetry axis of the system, and they are a generalization of Lagrange

points L1, L2 and L3.

Before closing this section, we mention an interesting property of the angular velocity

of the collinear configurations. For the same masses and full length, we have always an

inequality as

ω < ωN , (36)

which means that the post-Newtonian orbital period measured in the coordinate time is

longer than the Newtonian one. Provided that the masses and angular rate are fixed, the

relativistic length a is shorter than the Newtonian one. Detailed calculations are given in

the Appendix.

V. CONCLUSION

We proved the uniqueness of the collinear configuration for given system parameters (the

masses and the end-to-end length). It was shown that the equation determining the distance

ratio among the three masses, which has been obtained as a seventh-order polynomial in

the previous paper, has at most three positive roots, which apparently provide three cases

of the distance ratio. It was found, however, that there exists one physically acceptable root

and only one. The remaining two positive roots are discarded in the sense that they do not

satisfy the slow motion ansatz in the post-Newtonian approximation.

Especially for the restricted three-body problem, exactly three positions of a third body

are true even at the post-Newtonian order. They are relativistic counterparts of the New-

tonian Lagrange points L1, L2 and L3.

It was shown also that, for the same masses and full length, the angular velocity of

12

For the same mass
and side length, 
one can show

GR angular velocity is 
always smaller
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For the arbitrary mass ratio,
a triangular equilibrium solution exist 

or not?

cf. [Krefetz, Astron. J. 72, 471 (1967)] 
for the restricted 3-body problem,

that has been used by [Seto & Muto, PRD 81, 103004 (2010)]

?
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m3

Corrections of  distance

a(1 + �31)

a(1 + �12)

a(1 + �23)

m2
m1

PN inequilateral triangle
rIJ = a(1 + �IJ), �IJ = O(1PN)

! = !N

We can ignore the 1PN correction to the center of  mass
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Triangular solution at 
the 1PN

EOM for       becomesm1

! = !N = 0

�!2r1 =� !2
Nr1

+ ⌫2
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�3 + ⌫1⌫2 + ⌫2⌫3 + ⌫3⌫1 �

3

8
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◆
�r21

+ ⌫3

✓
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3

8
⌫2[5� 3(⌫3 + ⌫1)]

◆
�r31

� 3(⌫2"12r21 + ⌫3"31r31)
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Triangular solution for the arbitrary mass ratio 
at 1PN

[Yamada & HA, (2012)]

As a result,

"12 = �

1� 1

3
(⌫1⌫2 + ⌫2⌫3 + ⌫3⌫1) +

1

8
⌫3[5� 3(⌫1 + ⌫2)]

�
�,

"23 = �

1� 1

3
(⌫1⌫2 + ⌫2⌫3 + ⌫3⌫1) +

1

8
⌫1[5� 3(⌫2 + ⌫3)]

�
�,

"31 = �

1� 1

3
(⌫1⌫2 + ⌫2⌫3 + ⌫3⌫1) +

1

8
⌫2[5� 3(⌫1 + ⌫3)]

�
�.
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Solar system

Planet Sun-Planet Sun-L4 (L5) Planet-L4 (L5)

Earth -1477 -1477 -1477 -923

Jupiter -1477 -1477 -1477 -922

Corrections for L4 (L5) of  Solar system [m]

The sign + corresponds to the increase of  distance
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§３ Summary 
1. Choreography in GR
2. GR extension 

           of Euler + Lagrange  

There remain a lot of 
interesting things to do!
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Thank you !
asada@phys.hirosaki-u.ac.jp
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Gravitational Wave Forms for Two- and Three-Body Gravitating Systems

Yuji Torigoe, Keisuke Hattori, and Hideki Asada
Faculty of Science and Technology, Hirosaki University, Hirosaki 036-8561, Japan

(Received 19 February 2009; published 22 June 2009)

Different numbers of self-gravitating particles (in different types of periodic motion) are most likely to

generate very different shapes of gravitational waves, some of which, however, can be accidentally almost

the same. One such example is a binary and three-body system for Lagrange’s solution. To track the

evolution of these similar wave forms, we define a chirp mass to the triple system. Thereby, we show that

the quadrupole wave forms cannot distinguish the sources. It is suggested that wave forms with higher ‘th
multipoles will be important for classification of them (with a conjecture of ‘ ! N for N particles).

DOI: 10.1103/PhysRevLett.102.251101 PACS numbers: 04.30.Db, 04.25.Nx, 95.10.Ce, 95.30.Sf

Introduction.—Can one see an apple fall on a dark night?
This is an inverse problem in gravitational wave astron-
omy. It can be specifically stated as ‘‘how can we know the
source information such as the number of particles, their
geometrical shape, and motion from observations of gravi-
tational waves?’’ This problem is analogous to the well-
known one for the sound, which was raised by Kac in
Ref. [1]. Seeking an answer is beyond the scope of this
Letter. As a specific issue which is related with the inverse
problem, we shall examine gravitational radiation by a
certain class of orbital motion of self-gravitating objects.

In the near future, direct detection of gravitational rip-
ples (and consequently gravitational waves astronomy)
will come true owing to a lot of effort by ongoing or
designed detectors [2–7]. One of the most promising as-
trophysical sources is inspiraling and finally merging bi-
nary compact stars. Numerical relativity has succeeded in
simulating merging neutron stars and black holes [8–12].
Analytic methods also have nicely prepared accurate wave
form templates for inspiraling compact binaries, notably
by the post-Newtonian approach (see [13,14] for reviews)
and also by the black hole perturbations especially at the
linear order in mass ratio (see also [15] for reviews).
Bridges between the inspiraling stage and the final merging
phase are currently under construction (e.g., [16,17]).

There is a growing interest in potential astrophysical
sources of gravitational waves involving 3-body interac-
tions (e.g., [18,19] and references therein). It is well known
that even the classical three-body (or N-body) problem in
Newtonian gravity admits an increasing number of solu-
tions [20,21]. Some of the orbits are regular, while the
others are chaotic. For simplicity, we focus on several
periodic orbits of the three-body system: Lagrange’s tri-
angle, Henon’s crisscross and Moore’s figure eight, which
are explained later (see also Fig. 1). Here, it should be
noted that Nakamura and Oohara [22] studied numerically
the luminosity of gravitational radiation by N test particles
orbiting around a Schwarzshild black hole, as an extension
of Detweiler’s analysis of the N ¼ 1 case [23] by using the
Teukolsky equation [24], in order to show the phase can-
cellation effect, which had been pointed out by Nakamura

and Sasaki [25]. Their N particles are test masses but not
self-gravitating. Another inverse problem of reconstructing
the gravitational wave signal from the noisy data acquired
by a network of detectors has been discussed (e.g.,
[26,27]). Our aim and setting are completely different
from those of the existing works.
The purpose of this Letter is (1) to point out a case where

very similar shapes of waves are generated accidentally by
different numbers of particles and (2) to show that the
usage of higher multipole contributions will be necessary
for distinguishing such sources. In order to track the evo-
lution of the wave forms, we shall define the chirp mass so
as to extend to a three-body system. Thereby, we shall
show that the octupole order is required to disentangle such
very similar wave forms that coincide with each other at
the quadrupole level. This will suggest that theoretical
wave forms including sufficiently higher ‘th order multi-
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FIG. 1 (color online). Orbital shapes. (a) Top left: circular
orbit for two-body system as a reference. (b) Top right: triangle
solution by Lagrange. (c) Bottom right: crisscross orbit by
Henon. (d) Bottom left: figure eight trajectory by Moore.
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pole will be important for classification of sources gener-
ating such similar wave forms (with a conjecture about ‘
and N).

Throughout this Letter, we take the units of G ¼ c ¼ 1.
Some periodic orbits for three-body systems.—For sim-

plicity, we assume that the motion of massive bodies
follows the Newtonian equation of motion. It is impossible
to describe all the solutions to the three-body problem even
for the 1=r potential, as mentioned above. The simplest
periodic solutions for this problem were discovered by
Euler (1765) and by Lagrange (1772). The Euler’s solution
is a collinear solution in which the masses are collinear at
every instant with the same ratios of their distances. The
Lagrange’s one is an equilateral triangle solution in which
each mass moves in an ellipse in such a way that the
triangle formed by the three bodies revolves. Let us take
as another interesting solution the so-called crisscross orbit
found by Henon in 1976 [28]. (See also [29] for the initial
condition for each mass and its recent extensions.)

Since the figure eight solution was found first by Moore
by topological classification [30], choreographic solutions
have recently attracted increasing interests in astronomy,
mathematics and physics, where a solution is called cho-
reographic if every massive particles move periodically in
a single closed orbit. The figure eight solution is that three
bodies move periodically in a single figure eight [30]. The
existence of such a figure eight orbit was proven by
Chenciner and Montgomery [31], where the numerical
initial condition for each mass is also given. This odd
solution is remarkably stable in Newtonian gravity
[32,33]. Heggie discussed a formation mechanism as an
outcome from scattering of two binaries [34]. Its unicity up
to scaling and rotation has been recently proven [35]. The
trick figure eight remains true even if we consider the
general relativistic (GR) effects at the post-Newtonian
order [36] and also at the second post-Newtonian one
[19]. This is a marked contrast to a binary case, which
produces a complicated flowerlike pattern by the periastron
advance in Einstein gravity. It is interesting to investigate
relativistic effects on various kinds of orbital motions,
which are discussed mostly in Newtonian gravity. It is a
topic of future study. The radiation by the figure eight has
been also investigated [18].

Gravitational waves.—In the previous part, we have
mentioned several periodic solutions. Figure 2 shows the
gravitational radiation by massive particles in these peri-
odic motions, where the quadrupole formula is used.

Interestingly, the wave forms from a binary in circular
motion and a three-body system constituting the Lagrange
solution are the same in shape. It is worthwhile to mention
that, if the third mass is extremely small, its contribution to
the quadrupole waves becomes linear but not cubic in mass
because its orbital radius is of the order of a triangle’s side
length, namely, bounded from above. If one adjusts prop-
erly distance r from an observer to the source with the same
orbital period, the wave forms (including the amplitudes)
could perfectly agree with each other.

Chirp mass for three-body systems.—The wave forms
shown above are valid only in the short term. The gravita-
tional waves will gradually carry away the system’s energy
and angular momentum, and will eventually shrink the
orbital size. Consequently, the amplitude and frequency
of the waves will become larger and higher, respectively,
with time. For a binary case, the frequency sweep is
characterized by its chirp mass.
Here, we investigate the evolution of the wave forms for

a three-body system for the Lagrange’s solution (on x-y
plane). The initial positions of each mass denoted by mp

(p ¼ 1, 2, 3) are expressed as x1 ¼ ð0; 0Þ, x2 ¼
að

ffiffiffi
3

p
=2; 1=2Þ, and x3 ¼ að0; 1Þ, where the side of a regular

triangle is denoted as a. We take the coordinates such that
the center of mass (COM) is at rest as ðxCOM; yCOMÞ ¼
að

ffiffiffi
3

p
!2=2; ð!2 þ !3Þ=2Þ, where the total mass and mass

ratio are denoted as mtot %
P

pmp and !p % mp=mtot,

respectively. The orbital frequency ! for the triangle sat-
isfies !2 ¼ mtot=a

3.
Henceforth, it is convenient to employ the COM coor-

dinates (X, Y) that can be obtained by a translation from (x,
y). In the COM coordinates, the location of each mass at
any time is expressed as Xp ¼ apð cosð!tþ "pÞ; sinð!tþ
"pÞÞ, where ap is defined as a1 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2COM þ y2COM

q
, a2 ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ð31=2a=2& xCOMÞ2 þ ða=2& yCOMÞ2
q

, and a3 ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2COM þ ða& yCOMÞ2

q
, respectively, and "p denotes the

angle between the new X axis and the direction of each
mass at t ¼ 0 (see Fig. 3).
By using the standard quadrupole formula, the energy

loss rate for the Lagrange’s orbit is expressed as
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FIG. 2 (color online). Gravitational wave forms in arbitrary
units (T ¼ orbital period). Dotted blue and solid red curves
denote þ and ' modes, respectively. (a) Top left: Gravita-
tional wave forms by binary system with a mass ratio of 2:3 in
circular motion. (b) Top right: Lagrange’s triangle solution for a
mass ratio of 1:2:3. (c) Bottom right: Henon’s crisscross.
(d) Bottom left: Moore’s figure eight. Crisscross and figure eight
have larger curvatures in the orbital shapes than Keplerian and
Lagrangian orbits, which lead to larger acceleration of the
particles and thus relatively stronger radiation.
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orbital shrinking rate
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The equation of motion for each body is rewritten in an
effective one-body form as [20] d2Xp=dt

2 ¼
"MpXp=jXpj3, where we define the effective mass as
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The orbital frequency is the same for each body, which
provides an identity as Mp=a

3
p ¼ !2 from the above ef-

fective one-body equation of motion. One can reexpress ap
as ap ¼ ðMp=mtotÞ1=3a in terms of Mp because !2 ¼
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3.
For the triangle solution, we obtain the sum of the
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By assuming adiabatic changes, we use the energy balance
between the system energy loss and gravitational radiation.
We find
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which provides the shrinking rate of the triangle due to gravitational radiation reaction.
Since the gravitational waves frequency fGW is twice of the orbital one, we have f2GW ¼ mtot=#

2a3. Therefore,
d lnfGW=dt ¼ "ð3=2Þd lna=dt. Using this in Eq. (4), we obtain
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where we defined a chirp mass as
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It is worthwhile to mention that the frequency sweep for
the triple system can take the same form as that for
binaries. One can show that Eq. (6) recovers the binary
chirp mass in the limit of m3 ! 0.

Equation (5) suggests that we cannot distinguish
two cases of the binary and triple systems by using only
the quadrupolar parts even if the frequency sweep is
observed.

Octupole wave forms.—In a wave zone, the gravitational
waves denoted by hTTij can be expressed asymptotically in

multipolar expansions [37]. The ratio of the octupole part
to the quadrupole one is of the order of v=c, where v is a
typical velocity of the matter. For instance, it is about 10%
if a ¼ 100mtot, which is assumed in order to exaggerate the
octupole correction in Fig. 4.

After straightforward calculations, one can obtain an
expression of octupolar parts of the gravitational waves

that are generated by the three-body system for the
Lagrange’s solution with arbitrary mass ratio. For instance,
one of the relevant octupole moments is expressed as

Ixxy ¼
1

20

X3

p¼1

mpjXpj3 sinð!tþ "pÞ "
1

4

&
X3

p¼1

mpjXpj3 cos3ð!tþ "pÞ: (7)

Ixyy can be obtained by interchanges as x $ y and sin$
cos. By using such analytic expressions, one can obtain the
octupole contributions to wave forms.
It should be noted that no octupole radiation is emitted

along the orbital axis for any planar motions. Let us take
the observational direction along x axis. Then, we have
only þ mode without & mode. Figure 4 shows that a

FIG. 3. Definition of "p in the Lagrange’s triangle solution.
The angle "p is measured from X axis to the direction of each
mass at the initial time.
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It is worthwhile to mention that the frequency sweep for
the triple system can take the same form as that for
binaries. One can show that Eq. (6) recovers the binary
chirp mass in the limit of m3 ! 0.

Equation (5) suggests that we cannot distinguish
two cases of the binary and triple systems by using only
the quadrupolar parts even if the frequency sweep is
observed.

Octupole wave forms.—In a wave zone, the gravitational
waves denoted by hTTij can be expressed asymptotically in

multipolar expansions [37]. The ratio of the octupole part
to the quadrupole one is of the order of v=c, where v is a
typical velocity of the matter. For instance, it is about 10%
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octupole correction in Fig. 4.
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difference between the wave forms (one by the binary and
the other by the triplet) comes up at the octupole order. The
octupole radiation amplitude by binaries is proportional to
the mass difference [38]. On the other hand, the octupole
radiation exists for triangles even if they are all equal
masses. Cases of various mass ratios and observational
directions are a topic of future study.

Conclusion.—In summary, we have examined different
numbers of self-gravitating particles in gravitational waves
astronomy. In order to track the evolution of the similar
wave forms from the two-body and three-body systems, we
have defined a chirp mass to the three-body case. We have
shown that the wave forms at the quadrupole level cannot
distinguish the sources even with observing frequency
sweep. Our example suggests that theoretical wave forms
including higher multipole parts will be important for
classification of such similar imprints. Higher post-
Newtonian corrections both to the wave forms and to the
motion of bodies should be incorporated. This is a topic of
future study. In particular, the stability of the Lagrange
orbit due to GR effects is poorly understood.

It is conjectured by induction from our result that clas-
sification of N (or fewer) particles producing (nearly) the
same wave forms requires inclusions of the ‘th multipole
part with ‘ ! N. Cases of ‘ < N are realized for instance
by the crisscross and figure eight. Proving (or disproving)
this conjecture is left as future work.
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FIG. 4 (color online). Gravitational wave forms in arbitrary
units for a binary (solid black curve) with m1:m2 ¼ 2:3 and a
Lagrange solution (dotted red curve) with m1:m2:m3 ¼ 1:2:3,
where both the quadrupole and octupole parts are included. As a
reference, we give the quadrupolar wave forms from the same
sources (dashed blue curve). We assume a ¼ 100mtot in order to
exaggerate a correction by the octupole (nearly 10% expected in
this figure). One can see that the dashed blue curve will overlap
with the solid black one after they are shifted by choosing the
initial phase. This coincidence is because the octupolar waves
for the binary case are proportional to the mass difference [38]
and thus relatively small in this figure.
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