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Two 2.5D models for 2 vortex problem
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Abstract. The well known model for N -vortex dynamics treats a
vortex as a point on the plane or other 2D surfaces. We propose new
two models for point vortex dynamics on the plane in which we take
vertical influence into account, that is, 2.5D models. In this paper
we just prepare the foundation of these models.

1. Introduction

The so-called N vortex problem is described by the following system:

ẋj = −
N∑
k ̸=j

Γk(yj − yk)

r2jk
, ẏj =

N∑
k ̸=j

Γk(xj − xk)

r2jk
, (j = 1, . . . , N), (1)

where (xj, yj) is the coordinate of j-th vortex, Γj ∈ R\{0} is the vorticity,

r2jk = (xj − xk)
2 + (yj − yk)

2 and (˙) =
d

dt
. If we introduce a linear

transformation:

zj = xj + iyj, wj = xj − iyj,

then we have

żj = i

N∑
k ̸=j

Γk

wj − wk

, ẇj = −i

N∑
k ̸=j

Γk

zj − zk
, (j = 1, . . . , N), (2)

with i =
√
−1. This linear transformation is regular, hence the systems

(1) and (2) are equivalent to each other. Equation (2) can be written
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down in the Hamiltonian form through the Legendre transformation of the
Lagarangian (see [Newton, 2000, p. 22]):

L =
N∑
j=1

Γj

[
żjwj − zjẇj

2i
−
∑
k ̸=j

Γk ln(zj − zk)(wj − wk)

]
. (3)

The conjugate momenta with respect to zj and wj are

pj ≡
∂L

∂żj
=

Γj

2i
wj, πj ≡

∂L

∂ẇj

= −Γj

2i
zj,

respectively. Then, we have the corresponding Hamiltonian:

H(z, w) =
N∑
j=1

∑
k ̸=j

ΓjΓk ln(zj − zk)(wj − wk), (4)

where z = (z1, · · · , zN) and w = (w1, · · · , wN). Note that

H(z, w) = H

(
−2iπ

Γ
,
2ip

Γ

)
= H̃(p, π),

and its canonical equations are

dzj
dt

=
∂H̃

∂pj
,
dwj

dt
=

∂H̃

∂πj

,
dpj
dt

= −∂H

∂zj
,
dπj

dt
= − ∂H

∂wj

.

Actually, it is sufficient to use the latter two of these equations in order to
study N vortex problem.

Angular momentum M is a constant along the motion. In fact,

M =
N∑
j=1

Γj(xj ẏj − ẋjyj)

=
1

2i

N∑
j=1

Γj(żjwj − zjẇj)

=
∑
j>k

ΓjΓk,

where we use Equation (2). Note that M appears in the Lagrangian L as
the first term. Similarly, moment of inertia

I =
N∑
j=1

Γj(x
2
j + y2j ) =

N∑
j=1

Γjzjwj
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is constant along the motion because

İ =
N∑
j=1

Γj(żjwj + zjẇj) = 0,

by using Equation (2).

2. Layered Model

We suppose that vortex filament intersects several layers where the inter-
sections appear as point vortex. Vertical distance between two vorteces
on the nearest layers is constant. That is, vortex is treated as piece-wise
linear filament with several point vorteces on independent layers under the
restriction on the vertical distance. We call this model the layered model.

2.1. Double Filaments with Double Layers

Here the case with two filaments bridged over two layers will be discussed
(see Figure 1).

Figure 1. Double Layers Model
Point vorteces indicated by points are connected with sticks.

This model assumes two vorteces on each layer, that is, the first and
the second vortex z1 and z2 on the first layer, and the other two vorteces
z3 and z4 on the second layer. Similarly to (10), we have the Lagrangian
with constraint as follows:

L =
4∑

j=1

Γj

2i
(żjwj − zjẇj)− (Γ1 + Γ2) ln(z2 − z1)(w2 − w1)

−(Γ3 + Γ4) ln(z4 − z3)(w4 − w3)

+λ1(D
2
1 − d21) + λ2(D

2
2 − d22), (5)

where λ1 and λ2 are Lagrange’s multipliers, and

D1 ≡ |z3 − z1|, D2 ≡ |z4 − z2|, (6)
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and d1 and d2 the corresponding values, respectively. Here we introduce
the relative coordinate ζ ≡ (ζ1, ζ2, ζ3, ζ4):

ζ1 ≡ z2 − z1, ζ2 ≡ z4 − z3, ζ3 ≡ z3 − z1, ζ4 ≡ z4 − z2. (7)

This can be regarded as a linear transformation z 7→ ζ with its domain:∑4
k=1 Γkzk = 0. Here we write z as a row vector (z1, z2, z3, z4). This

transformation looks singular. However this is invertible iff (Γ1 +Γ4)(Γ2 +
Γ3)(

∑
k Γk) ̸= 0 because the image space: ζ1 − ζ2 − ζ3 + ζ4 = 0 as well as

the domain: Γ1z1+Γ2z2+Γ3z3+Γ4z4 = 0 is 3D subspace. In fact, we have
the following inverse transformation:

z1 =
(Γ1 − Γ)(Γ2ζ1 + Γ3ζ3)− Γ4(Γ3ζ2 + Γ2ζ4)

(Γ2 + Γ3)Γ
, (8)

z2 =
(Γ− Γ2)(Γ1ζ1 − Γ4ζ4) + Γ3(Γ4ζ2 − Γ1ζ3)

(Γ1 + Γ4)Γ
, (9)

z3 =
Γ2(Γ4ζ4 − Γ1ζ1)− (Γ− Γ3)(Γ4ζ2 − Γ1ζ3)

(Γ1 + Γ4)Γ
, (10)

z4 =
Γ1(Γ2ζ1 + Γ3ζ3) + (Γ− Γ4)(Γ3ζ2 + Γ2ζ4)

(Γ2 + Γ3)Γ
, (11)

where Γ =
∑

k Γk. Let us introduce a matrix C = (cij) for convenience
such that

zt = Cζt, (12)

where At indicates the transposed matrix of A. Similarly, we introduce the
relative coordinate ϱ ≡ (ϱ1, ϱ2, ϱ3, ϱ4):

ϱ1 ≡ w2 − w1, ϱ2 ≡ w4 − w3, ϱ3 ≡ w3 − w1, ϱ4 ≡ w4 − w2. (13)

We regard this equation as a linear transformation w 7→ ϱ with its domain:∑4
k=1 Γkwk = 0. Here we write w as a row vector (w1, w2, w3, w4). This

transformation is also regular iff (Γ1 + Γ4)(Γ2 + Γ3)Γ ̸= 0. The inverse
transformation is given by

wt = Cϱt. (14)

The first term of the Lagrangian L is the angular momentum M. This is
also transformed through the linear transformation (7) and (13) as follows.

2iM =
4∑

j=1

Γj(żjwj − zjẇj) = żGwt − zGẇt = ζ̇Gϱt − ζGϱ̇t
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with G =diag(Γ1,Γ2,Γ3,Γ4) and G = CtGC. The matrix G becomes a
diagonal matrix again:

G = diag(γ1, γ2, γ3, γ4), (15)

with

γ1 =

(
(Γ− Γ1)Γ2

(Γ2 + Γ3)Γ

)2

Γ1, γ2 =

(
Γ3Γ4

(Γ1 + Γ4)Γ

)2

Γ2,

γ3 =

(
(Γ− Γ3)Γ1

(Γ1 + Γ4)Γ

)2

Γ3, γ4 =

(
(Γ− Γ4)Γ2

(Γ2 + Γ3)Γ

)2

Γ4.

(16)

Then we have

M =
1

2i

4∑
j=1

γj(ζ̇jϱj − ζj ϱ̇j). (17)

In addition, we have

D2
1 = |ζ3|2 = ζ3ϱ3, D2

2 = |ζ4|2 = ζ4ϱ4, (18)

Thus, the Lagrangian becomes

L = M− (Γ1 + Γ2) ln ζ1ϱ1 − (Γ3 + Γ4) ln ζ2ϱ2

+λ1(ζ3ϱ3 − d21) + λ2(ζ4ϱ4 − d22), (19)

with d1 and d2 positive constant. Thus the following Euler-Lagrange equa-
tions are obtained.

ζ̇1 = i
Γ1 + Γ2

γ1ϱ1
, ζ̇2 = i

Γ3 + Γ4

γ2ϱ2
, ζ̇3 = −i

λ1

γ3
ζ3, ζ̇4 = −i

λ2

γ4
ζ4, (20)

ϱ̇1 = −i
Γ1 + Γ2

γ1ζ1
, ϱ̇2 = −i

Γ3 + Γ4

γ2ζ2
, ϱ̇3 = i

λ1

γ3
ϱ3, ϱ̇4 = i

λ2

γ4
ϱ4. (21)

The corresponding Hamiltonian is given as follows:

H = (Γ1 + Γ2) ln ζ1ϱ1 + (Γ3 + Γ4) ln ζ2ϱ2

−λ1(ζ3ϱ3 − d21)− λ2(ζ4ϱ4 − d22), (22)

which can be obtained from (17), (18), (20), and (21). through the Legen-
dre transformation. The Hamiltonian is a constant along motion because
it does not explicitly depend on time t. General solution of (20) and (21)
can be derived easily. Integral constants appeared in the general solution
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are choosen so as to satisfy the condition on the total energy, angular
momentum, linear momentum and moment of inertia.

We ca obtain the following relation quite algebraically:

4∑
k=1

γkζ̇kϱk = ζ̇Gϱ = żGwt =
4∑

k=1

Γkżkwk

=
4∑

k=1

Γk{xkẋk + ykẏk + i(xkẏk − ẋkyk)}

= İ + iM, (23)

where I is the momentum of inertia. On the other hand, we have

4∑
k=1

γkζ̇kϱk = i(Γ− λ1d
2
1 − λ2d

2
2)

by using Equations (20) and (21). This implies I and M being constant.

3. Anisotropic Model

In N vortex problem on the plane, vortex filaments are regarded as parpen-
dicular line to the plane and reduced to points on the horizontal plane. In
fact, vortex filaments are not linear, nor parpendicular, but wound and in-
clined more or less. To reflect the inclination on the problem, we introduce
anisotropy to the problem.

3.1. One vortex problem

Two vortex problem can be treated as the one vortex problem by taking
relative coordinates as well as the Kepler problem. We can easily introduce
anisotropy to this problem as follows:

H = γ ln(ξ2 + εη2), (24)

where ε > 0 is the coefficient of anisotropy. We can assume ε < 1 without
loss of generality. The corresponding Hamiltonian system is reduced to

ξ̇ = − εγη

ξ2 + εη2
, η̇ =

γξ

ξ2 + εη2
. (25)

It is easy to show that anisotropic one vortex problem is similar to isotropic
one vortex problem.
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Theorem: There exists a scaling transformation which modifies anisotropic
one vortex problem to isotropic one vortex problem.

proof: Introduce the following transformation:

Y =
√
ε η, s =

√
ε t,

then, we have

ξ′ = − γY

ξ2 + Y 2
, Y ′ =

γξ

ξ2 + Y 2
,

where prime (′) denotes derivative with respect to s. □

Using Hamiltonian (22), we can obtain the general solution:

(ξ, η)(t) =

(
e

h
2γ cos(

√
ε (t− t0)),

e
h
2γ

√
ε
sin(

√
ε (t− t0))

)
, (26)

where h is the value of H, and t0 is the time origin.

4. Further Development of Models

The layered model will be developed to the case of multiple layers with
three or more vortex filaments.

The anisotropic model will be developed to the three or more vorteces
case.
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