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Abstract

The accumulation of the round-off errors causes the linear drift of
the conserved quantities of the rigid body rotation simulated by the
existing symplectic integrators. This associates with the quadratic
deviation in the orientation of the rotating body. The phenomenon
is eminent in the single precision integration and in the long-term
double precision integration. We suppress it by rewriting the two-
dimensional rotation operation used in the integrators into a leap-frog
form. The resulting new symplectic integrators realize a meaningful
single precision simulation of the rigid body rotation.

1 Introduction

1.1 Symplectic integration of the rigid body rotation

The symplectic integration is a popular tool to study various dynamical sys-
tems numerically (Sanz-Serna, 1992; Sanz-Sema and Calvo, 1994; Hairer et
al., 2002; Leimkuhler and Reich, 2004). The rotational motion of rigid bod-
ies is no exception (Ge and Marsden, 1988). It is vitally investigated in
the molecular dynamics and astrophysics (Bond et al., 1999; Marsden et al.,
1999; Benettin et al., 2001; Miller et al., 2002; Hairer, 2003; McLachlan and
Zanna, 2004; Hairer and Vilmart, 2006; Okumura et al., 2007; Ortolan and
Saccon, 2012). Refer to Fasso (2003) comparing three major symplectic in-
tegrators of the rigid body rotation (McLachlan, 1993; Reich, 1994; Touma
and Wisdom, 1994).

Recently, some integrators were proposed to utilize the analytical solu-
tion of the torque-free rotation of an asymmetric rigid body (Celledoni and
Séfstrom, 2006; van Zon and Schofield, 2007a,b; Celledoni et al., 2007). This
is at the cost of a significant increase in CPU time at each time step since
it requires the numerical evaluation of some special functions: the Jacobian
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elliptic functions and the incomplete elliptic integral of the third kind re-
garded as a function of that of the first kind (Fukushima, 2009¢c). As for the
precise and fast computation of these elliptic functions and elliptic integrals,
refer to a series of our works (Fukushima, 2009a,b, 2010, 2011a,b,c, 2012).
When the torque is sufficiently small as in the case of asteroids in the solar
system (Fukushima, 2008a,b,c), this formulation enables us choosing a large
step size, and therefore, the total computational time is expected to decrease
significantly.

1.2 Problem of the existing symplectic integration

Vilmart (2008) discovered that the symplectic integrators using the analyt-
ical solution of the torque-free rotation have a problem: an undesired linear
growth of the energy error. He conjectured that this is caused by uneven ap-
pearance of local round-off errors in evaluating the body-fixed components of
the angular velocity vector by the elliptic functions. Since this phenomenon
appears even in the torque-free rotation, it becomes a serious trouble in all
the rotational motions.

We conducted a similar investigation on the symplectic integration of the
rigid body rotation by the integrators without using the elliptic functions
and integrals. Fig. 1 shows the averaged energy errors of the torque-free
rotation of a single water molecule integrated by the 3R splitting method
(Dullweber et al., 1997) in the single precision environment. We omit the
results obtained by the other symplectic integrators, i.e. those of the type SR
or RS in terms of Fasso (2003). This is because all of them give essentially the
same results and the 3R approach is the best for a water molecule (Dullweber
et al., 1997).

Plotted are the relative errors of the rotational energy as a function of
time. The marks in Fig. 1 illustrate the mean values of 1000 integrations with
different initial conditions. The initial values of the body-fixed components
of the angular velocity vector were randomly chosen while the magnitude of
the vector is kept the same. Meanwhile, the initial values of the orientation
matrix were produced from the Euler parameters the numerical values of
which were randomly assigned while satisfying the unitary condition. The
standard deviations of the energy errors with respect to the initial values are
shown as the error bars although they are hardly visible at this scale.

The observed energy dissipation mostly disappears in the double preci-
sion integration as will be seen later in §3.3. Also, the smaller the step size is,
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Figure 1: Linear decrease of the rotational energy of the torque-free rotation
of a water molecule obtained by the existing symplectic integrator. The
averaged relative errors of the rotational energy, 6T = (T — Ty) /To, for some
different step sizes are plotted as a function of the physical time, ¢t. Here
Py = 27 /wy is the initial period of rotation.

the larger the energy error becomes. This is in the opposite sense to the re-
sults of the non-symplectic integrators such as the fourth-order Runge-Kutta
method. These facts indicate that the observed phenomenon is induced by
the accumulation of round-off errors. Dullweber et al. (1997) already noted
this kind of feature in explaining their Figs 13 and 14.

An artificial energy dissipation occurs independently on the initial con-
ditions. This fact is troublesome and hinders us to extract the physically
meaningful conclusions from the results of single precision simulation even
though they seem to be stationary and/or ordered.



1.3 Solution to the problem

Traditionally, the problem of accumulation of the round-off errors in the nu-
merical integration has been studied mainly for the multistep methods to
integrate the astronomical orbital motions (Brouwer, 1937; Henrici, 1962;
Quinlan, 1994; Fukushima, 1996; Grazier et al., 2004/05). Recently, it is also
discussed for the symplectic integration in particle physics and astrophysics
(Karney, 1986; Scovel, 1991; Earn and Tremaine, 1992; Petit, 1998; Skeel,
1999; Fukushima, 2001; Hairer et al., 2008; Vilmart, 2008). Among vari-
ous devices proposed, we applied the idea of Karney (1986) to the present
case. Then, we succeeded to resolve this undesired situation in the rotational
motion by a slight modification of the existing symplectic integrators: the
rewriting of the two-dimensional rotation operation into a leap-frog form.
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Figure 2: Constancy of the rotational energy of the torque-free rotation of
a water molecule obtained by the new symplectic integrator. Same as Fig.
1 but after the rewriting of the two-dimensional rotation operation into a
leap-frog form.

Fig. 2 illustrates that the rewritten integrator keeps the constancy of the



rotational energy as we anticipate for the ideal symplectic integrators. This
time, the averaged deviation diminishes according as the step size decreases.
This indicates that the deviations are mainly caused by the truncation er-
rors. In this short article, we explain this new technique and present some
illustrations of its performance.

2 Method

2.1 Two-dimensional rotation

Many symplectic integrators of the rigid body rotation use the two-dimensional
rotation operation as a building block (Fasso, 2003):

(an)_(cosﬁ —sin0><xn> (1)
Ynr1 J  \ sinf cos@ Yo )’

where x and y are either (1) two among three body-fixed components of the
rotational angular momentum, (2) two among three unit vectors consisting
of the orientation matrix, or (3) two among four components of the Euler
parameters (or the unit quaternion) (McLachlan, 1993; Reich, 1994; Touma
and Wisdom, 1994; Dullweber et al., 1997).

For example, the 3R splitting method of the ordering 1-2-3-2-1 uses the
product of five rotations,

hw(n—I—l) hw(n-I-l) . hw(n) hw(n)
i (5o (o o () o, ()

(2)
where (1) R;(f) denotes the two-dimensional rotation operation around the
j-th axis by the rotation angle 6, (2) h is the step size of the integration, (3)
wa (= w1), wp (= wsy), and we (= ws), are the three body-fixed components
of the angular velocity vector, and (4) the superscript denotes the index of
timing such that (n) means when ¢ = t,, = to + nh.

2.2 Rewriting

By increasing the precision of each component of the existing symplectic
integrator part by part, we find that the two-dimensional rotation operation
is the source of serious accumulation of the round-off errors we observed in



Fig. 1. In order to suppress the local production of the round-off errors,
we follow the idea of Karney (1986) to rewrite the two-dimensional rotation
matrix into a triple product of shear matrices as

(=)-CE () o
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If the rotation matrix is approximated, as usually done in the molecular
dynamics simulation (Dullweber et al., 1997, Appendix A), as

where
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we achieve the same approximation by setting 7 as
0
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In general, we may adopt the higher order approximations by truncating the
Maclaurin series expansion of the tangent function as
0 n 3 n > n 1767 n 316° N (7)
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For example, the first four terms are enough to construct an eighth-order
integrator by the composition method (Hairer et al., 2002, Section I1.4).

2.3 Interpretation as the leap-frog integration

Introducing an intermediary variable, y,11/2, we interpret the rewritten op-
eration as the leap-frog integration of a one-dimensional harmonic oscillator
as

Yn+1/2 = Yn + TTnp,

Tpt1 = Tp — OYnt1/2, (8)

Ynt+1 = Yn+1/2 T TTny1,
where z and y are understood as the velocity and the coordinate of the
oscillator, 7 plays a role of the step size, and o/7 = 2/ (1 + 72) is regarded
as the square of the angular velocity of the oscillation. An actual computing
code becomes much simpler:



y += X * tau,;
X -= y * sigma;

y += X * tau,;
Obviously, this procedure is time-reversible. We anticipate that the succes-
sive application of this leap-frog form leads to a better behavior in the local
production of the round-off errors and their global accumulation. Indeed, we

experimentally learn that this form ensures the random feature of round-off
eITors.

2.4 Errors of the rewritten operation
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Figure 3: Error growth of the accumulated two-dimensional rotation opera-
tion. The incremental rotation angle, @, is fixed as 0.1 radian.

Fig. 3 compares the relative errors of the norm of the rotated unit vector,

or, = <\/x% +y2/\/ 23 + y%) — 1, obtained by the standard and the new

operations in the single and the double precision environments, respectively.
We set the initial values as ¢ = 1.0 and 3y, = 0.0 and the incremental
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rotation angle as 6 = 0.1. Since /(27) is irrational, the integrated rotation
state will be ergodic.

In conducting the numerical experiments, all the computation codes were
(1) written in Fortran 90, (2) compiled by the Intel Visual Fortran Composer
XE 2011 update 8 with the level 3 optimization, and (3) executed at a PC
with an Intel Core i7-2675QM CPU and 16 GB main memory run at the
clock 2.20 GHz under the 64 bit Windows 7 OS.

The errors are plotted as functions of the accumulated rotation angle, & =
n#, in a log-log manner. In the case of the standard implementation of the
rotational operation, the errors increase linearly. Once exceeding unity, they
grow exponentially. This feature is irrelevant with the computing precision.
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Figure 4: Stationary phenomena of the error growth of the new two-
dimensional rotation operation. Same as the curve of the new method in
the single precision computation in Fig. 3 but for different values of 6. The
stationary value of |dr| for the case § = 0.1, which was already shown in Fig.
3, is between those for 6 = 1.0 and # = 0.01.

On the other hand, in the case of the new method, the errors are os-
cillating and their magnitude increases in proportion to the square root of



time initially. This means that the local production of the round-off errors
are stochastic and there are no correlation among the local errors (Henrici,
1962). It is the best feature expected in the long-term numerical integration
of the action variables (Brouwer, 1937).

However, the expectation is betrayed in a good sense. The magnitude of
the errors of the new method seems to be stationary when it reaches a certain
amount. Refer to Fig. 3 again. In this specific case, the stationary values
are around 3 x 107 and 2 x 107! in the single and the double precision
environments, respectively. This is quite interesting.

Fig. 4 shows this stationary phenomenon for a wide variety of the in-
cremental rotation angle 6, say ranging from 10™* to 1.0 radian. We have
no theoretical explanation about this behavior. There is no resonant feature
since the ratios of the tested incremental rotation angles to the period, 2,
are irrational.
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Figure 5: Limit cycle of the new two-dimensional rotation operation.
We find that this is caused by a fact that the mapping of the new two-
dimensional rotation operation is trapped into a limit cycle. Refer to Fig. 5.

This is similar to the situation observed in Fig. 1 of Skeel (1999), where an
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ezactly periodic mapping is achieved in a sort of lattice phase space. Curious
is the fact that we take no special care for rounding in the present case. At
any rate, Fig. 3 shows the benefit of rewriting into a leap-frog form.

3 Numerical experiments

Let us examine the computational cost and performance of the new method.
As we observed in the previous section, the implementation of the new
method is simple. Also, the rewritten computational code becomes a lit-
tle more compact, and therefore, it runs slightly faster than before rewriting.
Nevertheless, the comparison of the computational speed in the part of the
torque-free rotation is less meaningful. In practical cases, the torque compu-
tation occupies more than 99% of the total CPU time. Thus, we concentrate
ourselves to the question of the computing precision.

3.1 Torque-free rotation

Figs 1 and 2 already depicted the manner of error growth of the rotational
energy, 1', obtained by the existing and the new symplectic integrators of the
rigid body rotation in the single precision environment. Here, T" is defined
as

1
T=3 (Aw? + Bwj, + Cwi), (9)

where A (= 1), B (= I5), and C (= I3) are the principal moments of inertia
of the rotating body in the order of magnitude, A < B < C. In the case of
a water molecule, their ratios are significantly smaller than unity as A/C =
0.345 and B/C = 0.653, respectively.

Let us examine the errors of the other conserved quantities. One is a
norm of the orientation matrix defined as

R=1\/(e4) + (@) + (), (10)

where €4 denotes the unit vector in the direction of the A-axis, and so on.
This is a mathematical constant, and therefore, must be the same indepen-
dently on (1) the initial conditions, (2) the ratios of the principal moments
of inertia, or (3) the magnitude and the nature of the considered torque.
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Another conserved quantities are the inertial components of the rotational
angular momentum vector defined as

Sx=S5-e, Sy=85-&, S;,=5- ¢, (11)

where €y is the unit vector toward the direction of the X-axis, and so on,
and
S = AwA(?A + BngB + Cngc, (12)

is the rotational angular momentum vector.

Figs 6 and 7 show the time dependence of the relative errors of these
conserved quantities of the torque-free rotation. They are the results of
the single precision integration with the step size, h = Py/32, by the 3R
symplectic integrator and its rewriting, respectively. Here, we plotted the
results averaged with respect to 1000 random initial conditions. Obviously,
the errors of the existing symplectic integrator contain linear drifts in all the
conserved quantities while those of the new method are all constant.

3.2 Rotation under an autonomous torque

Let us move to the rotation under a torque. The torque vector is expressed
in the body-fixed frame as

N = N4&4 + Npép + Neée, (13)

where N, through N¢ are the body-fixed components of the torque vector.

As an example of the autonomous torque, we consider the torque caused
by a constant attraction toward the negative z-axis. In this case, N4 through
N¢ are written as

Ny =3Xancng, N =3\Bnanc, No = 3\yngna, (14)

where «, 3, and v are the inertia parameters expressed as

C-B . _A-C _B-A
a:T,/B:T,’)/:T, (15)

while n4 through ne are the cosines to the attraction direction written as

nA A€z, Np=E€p-€z, Nc =¢€c"Ey, (16)

and A is a parameter characterizing the relative strength of the torque.
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Figure 6: Linear drift of the five conserved quantities of the torque-free
rotation of a water molecule obtained by the existing symplectic integrator.
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Figure 7: Constancy of the five conserved quantities of the torque-free rota-
tion of a water molecule obtained by the new symplectic integrator. Same
as Fig. 6 but obtained by the new integrator.
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In this case, the conserved quantities are R, Sz, and the total energy, F,
defined as

E=T+U, (17)
where the potential energy U is written as
_ 3A 2 2 2

Fig. 8 plots the relative errors of the total energy of the rotation simu-
lated by the 3R symplectic integrator where we set A = 1. This value of
A corresponds to the case of a fairly strong torque. Again, we illustrated
the statistical results of a water molecule with 1000 different initial condi-
tions randomly chosen. Although the standard deviations become somewhat
larger, the observed linear drifts remain unchanged. On the other hand, Fig.
9 shows the time dependence of the three conserved quantities, F/, R, and
S, of the rotations computed by the new symplectic integrator. All of them
are mostly constant with time.

3.3 Double precision integration

If we conduct the symplectic integration in the double precision environment,
the feature of the existing method observed in the previous subsections almost
disappears. Refer to Fig. 10 for the constancy of four among five conserved
quantities of the torque-free rotation of a water molecule when h = P/32.
Again, we plotted the averaged results starting from 1000 different initial
conditions chosen randomly.

An exception is the norm of the orientation matrix, R, as shown in Fig.
11. There remains a tiny but secular drift in its errors. We observed essen-
tially the same feature when an autonomous torque is acted on the rotating
body.

On the other hand, the constancy of all the conserved quantities is main-
tained by the new integrator. Refer to Fig. 12. The magnitude of the
periodic component of 47" is unchanged in the double precision integration.
Meanwhile, the magnitude of the averaged deviations of the other quantities
drastically reduced in the double precision computation.
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Figure 8: Linear drift of the total energy of rotation of a water molecule
under a strong torque obtained by the existing symplectic integrator. Same
as Fig. 1 but for the total energy, F, of the rotation of a water molecule
pulled by a strong attraction toward the negative z-direction.

Table 1: Nontrivial composition coefficients of a fourth order integrators
Omelyan et al. (2002, Eq.(35))

D 4
S 5
d +0.3221375960817984
do +0.5413165481700430
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Figure 9: Constancy of three conserved quantities of the rotation of a water
molecule under a strong torque obtained by the new symplectic integrator.
Same as Fig. 7 but for the rotation under the torque caused by a strong
z-direction attraction when h = Py/32.

Table 2: Nontrivial composition coefficients of a sixth order integrators
Kahan and Li (1997, s9odr6a)

D 6
s 9
dq 4+0.3921614440073141
dy +0.3325991367893594
ds —0.7062461725576393
dy 4+0.0822135962935508
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Figure 10: Constancy of the four conserved quantities of the torque-free rota-
tion of a water molecule. Same as Fig. 7 but for T', Sy, Sy, and S obtained
by the existing symplectic integrator in the double precision environment.

Table 3: Nontrivial composition coefficients of an eighth order integrators
Kahan and Li (1997, s170dr8a)

D 8
s 17
dy +0.1302024830888900
do 4+0.5611629817751083
ds —0.3894749626448472
dy 4+0.1588419065551556
ds —0.3959038941332375
dg +0.1845394609783157
dr 4+0.2583743876863220
dg 4+0.2950117236093102
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Figure 11: Secular drift of the norm of the orientation matrix of the torque-
free rotation of a water molecule obtained by the existing symplectic inte-
grator. Same as Fig. 10 but for the norm of the orientation matrix, R.
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Figure 12: Constancy of the five conserved quantities of the torque-free ro-
tation of a water molecule obtained by the new symplectic integrator in the
double precision environment.
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3.4 High order integration

Let us examine whether the observed behavior of the second-order symplectic
integrators is common to the case of higher order integrators. We construct
the fourth-, the sixth-, and the eighth-order methods from the corresponding
second-order ones by the composition method (Hairer et al., 2002, Section
IT1.4). A p-th order, s-stage integrator is time-symmetrically composed as

Sp(h) = Sy (dih)o--+08y (ds_1h) oSy (dsh) 0 Sy (ds_1h)o---0S, (dih), (19)

where h is the step size, So(h) is the second-order symplectic integrator, and
the composition coefficients, d;, must satisfy the condition

s—1
1=d,+2) dj. (20)
j=1

For the numerical experiments in this article, we adopted (1) the 4th-order,
5-stage method of (Omelyan et al., 2002, Eq.(35)), (2) the 6th-order, 9-stage
method of (Kahan and Li, 1997, s9odr6a), and (3) the 8th-order, 17-stage
method of (Kahan and Li, 1997, s17odr8a). We selected these methods
because they produce the least errors among the similar composition methods
of the same order. The non-trivial coefficients, d; through d,_;, of these
methods are quoted in Tables 1 through 3 for the readers’ convenience.

We begin with the single precision computation. Refer to Fig. 13 showing
the manner of error growth of the torque-free rotation in a log-log graph.
Again, we plotted the averaged results of a water molecule starting from
1000 random initial conditions while omitting the error bars in the figure.

In the case of the existing symplectic integration, unchanged is the ap-
pearance of a linear drift in the errors of the rotational energy. When the
order is increased, the magnitude of the linearly-growing component increases
while that of the periodic component decreases. This is because an increase
in the order means an increase in the number of stages, and therefore, leads
to an increase in the number of two-dimensional rotational operations.

On the other hand, in the case of the new method, an increase in the
order results a decrease not only in the periodic error component but also
in the secularly-growing error component, the magnitude of which grows in
proportion to v/£. The growth rate of 1/2 indirectly shows that the nature
of the observed errors are stochastic Brouwer (1937); Henrici (1962).
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Figure 13: Effect of the order increase of the symplectic integrators. Same
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the results of the fourth-order symplectic integrators composed from the
corresponding second-order ones.
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Figure 14: Applicability to the high order symplectic integrators. Same
as Fig 13 but obtained by the second- through the eighth-order integrators
executed in the double precision environment. The difference between the

existing and the new integrators are hardly visible except for the eighth-order
methods.
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The difference observed in the single precision computation mostly dis-
appears in the double precision integration. Fig. 14 illustrates the averaged
energy error of the same torque-free rotation of a water molecule but com-
puted by the second- through the eighth-order symplectic integrators in the
double precision environment. Again, we omit the error bars.

In the case of the second- through the sixth-order methods, the constancy
of the energy errors seems to be maintained well. Meanwhile, a small linear
drift emerges after around 1000 rotation periods in the eighth-order method
of the existing symplectic integration.

3.5 Long-term integration by a high order method

Comparing the results of the single and the double precision integrations
presented in the previous subsections, one may think that the existing sym-
plectic integrator is reliable if used in the double precision environment. This
is not completely correct. The change of the computing precision does not
resolve the problem of the accumulated round-off errors but only delays the
appearance of the linearly-growing error component of the conserved quan-
tities.

Consider a long-term integration of the torque-free rotation of a water
molecule. This time, we fixed the initial condition of the body-fixed compo-
nents of the angular velocity vector as

2 2
YA _ g5, PE g, YO +\/1 — (“’—A> - <°"—B> ~ 087,  (21)
Wo Wo Wo Wo Wo

and that of the Euler parameters to specify the orientation matrix as

0=05 @ =-02 g¢=-03 ¢=+/1-¢—¢—¢E~079. (22)

The motion is as regular as seen in Fig. 15.

Fig. 16 illustrates the long-term error growth of the torque-free rotation
of a water molecule obtained by the single precision symplectic integrations.
We observe a similar feature as illustrated in Fig. 3, the case of the two-
dimensional rotation operation. Namely, the energy errors of the existing
integrators grow linearly while those of the new ones reach a plateau.

Next, we consider the rotation of a water molecule under the torque we
examined in §3.2. Fig. 17 shows the feature of the rotation starting from the
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qd;
o

Figure 15: Behavior of a torque-free rotation of a water molecule. Depicted
are the first three components of the Euler parameters, qq, q1, and ¢o, of the
torque-free rotation of a water molecule started from the initial conditions:

wa/we = 0.5, wp/wy = 0.0, g = 0.5, ¢ = —0.2, and ¢ = —0.3.
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Figure 16: Long-term behavior of the low order symplectic integration. The
errors of the rotational energy of a water molecule are plotted as functions of
time in a log-log manner. Shown are the results obtained by the second- and

the fourth-order symplectic integrators in the single precision environment
for the step size h = Py/32.
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Strongly Torqued Rotation of Water Molecule

1.2

1
0.8
0.6 £
0.4

11

0

1

t/Py

Figure 17: Behavior of the rotation of a water molecule under a strong torque.

Same as Fig. 15 but for the case under the torque caused by a strong attrac-

tion toward the negative z-direction.
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above initial condition for the first 10 nominal rotation periods. The rotation
is fairly distorted by a strong torque as seen in Fig. 17.

Figs 18 and 19 show the long-term error growth of the total energy of
this rotation obtained by the existing and new eighth-order integrators, re-
spectively. In the case of the existing integration, linear drifts appear sooner
or later. Meanwhile, the errors of the new integration seem to increase in
proportion to the square root of time. This means that they are caused by
the randomly produced round-off errors.
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Figure 18: Long-term behavior of the existing high order symplectic integra-
tion. The errors of the total energy of a water molecule under a strong torque
are plotted as functions of time in a log-log manner. The results obtained by

the existing eighth-order symplectic integrator are shown for a few different
step sizes.

3.6 Rotation under non-autonomous torque

Finally, we show the errors of the symplectic integrators used in simulating
the rotation under a non-autonomous torque. As the rotating body, we
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Figure 19: Long-term behavior of the new high order symplectic integration.
Same as Fig. 18 but by the new eighth-order symplectic integrator.
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chose the asteroid Ida. It is a lemon-shaped body with the ratios of the
principal moments of inertia, A/C' = 0.23480 and B/C = 0.92912. As the
non-autonomous torque, we selected the gravitational tidal torque of the
Sun acting on Ida while we fixed the orbit of Ida around the Sun as a pure
Keplerian orbit. In Fukushima (2008a), we extensively simulated the rotation
of this asteroid by high-order Adams methods in the PECE mode.

The torque expression is the same as Eq.(14) where A and n4 through ne
are differently given as

G Msyn _T-€a _7-€p T éo
5 nap = , Np = , N = .
r r r r

A=

(23)

Here G'Msg,, is the heliocentric gravitational constant, 7 is the heliocentric
position vector of the asteroid, and r = |7] is its distance from the Sun.

As the orbital elements of Ida, we adopted their nominal values as (1) the
semi-major axis, a = 2.862 AU, (2) the orbital eccentricity, e = 0.0452, (3)
the orbital inclination, I = 1.138 degree, (4) the longitude of ascending node,
2 = 324.218 degree, (5) the argument of perihelion, w = 108.754 degree, and
(6) the mean anomaly at the perihelion passage, My = 191.869 degree. On
the other hand, we assume that the initial value of the rotational angular
velocity, wy, is that corresponding to the observed rotation period, 0.193 day.
These values imply that the relative strength of the considered torque is as
small as ~ 2.8 x 1077.

The considered dynamical system has no Hamiltonian. Of course, it
is possible to introduce a psuedo-Hamiltonian by adding one more free-
dom. However, we dare not to adopt this approach and integrate the non-
Hamiltonian equations of motion as if they are so. This may sound inappro-
priate. Nevertheless, the smallness of the perturbation in this case will allow
us to reach a meaningful result as will be shown below.

Fig. 20 illustrates the relative errors of the rotation angle, ¢, and of the
norm of the orientation matrix, . They are plotted as functions of time in a
log-log manner. It is easy to obtain the errors of R since it is a mathematical
constant. However, this is not the case of ¢.

No analytical solution is available for the problem considered here. Then,
we measured the errors of ¢ by comparing with the reference solution ob-
tained by the same numerical integrator with a halved step size. Since the
order of the adopted integrator is as high as 8, halving the step size makes
the truncation errors of the reference solution negligibly small.
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Figure 20: Long-term error growth of the rotation of the asteroid Ida under
the gravitational tidal torque by the Sun. Compared are the relative errors
of the rotation angle, ¢, and the norm of the orientation matrix, R, obtained
by the existing and the new eighth-order symplectic integrators.
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Fig. 20 tells us that the existing symplectic integrator results a small but
non-zero linear drift in |0 R|, say after 10° rotation periods. This associates
with an error component in ¢ growing quadratically with respect to time,
which emerges at the same timing.

Meanwhile, the result of the new symplectic integration seems to be
stochastic. Namely, the errors in R grows in proportion to v/t while those
in ¢ does in proportion to tv/t. This resembles the famous Brouwer’s law
Brouwer (1937); Henrici (1962); Hairer et al. (2008).

4 Conclusion

We observed that the accumulation of the round-off errors causes the linear
drift of the conserved quantities of the rigid body rotation obtained by the
existing symplectic integrators. In the single precision environment, the phe-
nomenon is so serious that no meaningful conclusions can be extracted from
the results of simulation. In the double precision computation, it becomes
eminent in the long-term and high-precision integration by the high order
methods.

In order to resolve this problem, we replace the two-dimensional rotation
operation used in the existing symplectic integrators with its leap-frog form.
The replacement costs no extra computational labor. Rather, it simplifies the
rotational operation a little. On the other hand, the replacement effectively
reduces the accumulation of the round-off errors. This technique works also
for the high order symplectic integrators constructed by the composition
method.

In conclusion, the new symplectic integrators realize a physically mean-
ingful execution of the single precision integration of the rigid body rotation.
This will open a gateway to utilize GPGPUs like the NVIDIA GeForce or the
AMD/ATT Fusion in simulating a large-scale dynamical system containing
the rigid body rotation.
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