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Earth motions

Classical Celestial Mechanics approach (Tisserand1 1892) to
model the motion of an extended Earth divides this complex
problem in two parts

I The motion of its barycenter: orbital problem
I The motion around its barycenter: (mainly) rotational problem

In general both problems are coupled. However, in the Earth case
the orbital problem is almost independent from the rotational one

In this talk we will focus on certain aspects of the Earth’s
rotational motion, assuming the orbital motions to be known
functions of time

1At the end of the document it is given the full information of the
references appearing in this work
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Earth’s rotation

In addition to its theoretical interest, a precise determination of
the rotational motion of the Earth is needed for many practical
applications

I Space navigation
I Ground–based astrometry
I Geodesy
I ...

Besides, since the rotational motion is affected by the internal
structure of our planet, it can also provide insights into the
Earth‘s interior by indirect means
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The Earth rotation problem

The Earth‘s rotation problem consists on determining the
operator R(t) relating celestial and terrestrial systems

A convenient parameterization of the rotation operator is by
means of Euler angles
0 ≤ ψ(t) < 2π, 0 < ε(t) < π, 0 ≤ φ(t) < 2π

R = Rψ,ε,φ = R~e3,φ R~en,ε R ~E3,ψ
,

where

~en =
~E3 × ~e3
‖ ~E3 × ~e3‖

O �

�

�

e
3

E
1

E
2

E
3

e
1

Celest. Mech. Symp., Chiba, Japan 27/10/2012 c©Authors 5/55



Context Dynamical modeling External gravitational potential Hamiltonian solution Summary

Form of the solution I

The particular characteristics of the Earth’s rotation makes
advisable to separate this motion into three parts:
precession–nutation, length of day, and polar motion

The precession–nutation is related with the evolution of ~e3 (figure

axis) in the system
{
O; ~E1, ~E2, ~E3

}
~e3 = (sin ε(t) sinψ (t) ,− sin ε(t) cosψ (t) , cos ε(t))T

Hence, it is provided by determining as functions of time the
angles

I ψ(t), referred as longitude
I ε(t), referred as obliquity
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Form of the solution II

Then, it is considered the evolution of the angular velocity vector
in the system {O;~e1, ~e2, ~e3}

R(t)ṘT (t) =

 0 −ω3(t) ω2(t)
ω3(t) 0 −ω1(t)
−ω2(t) ω1(t) 0


It can be expressed in terms of the time derivatives of Euler angles

ω1(t) = ψ̇(t) sin ε(t) sinφ(t) + ε̇(t) cosφ(t),

ω2(t) = ψ̇(t) sin ε(t) cosφ(t)− ε̇(t) sinφ(t),

ω3(t) = ψ̇(t) cos ε(t) + φ̇(t).

I ω3(t) is related with length of day variations
I ω1(t) and ω2(t) define the polar motion (rotational axis)
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Uniform rotation state

Our daily experience shows that the Earth’s rotation is not very
far from the uniform condition

~ω(t) = ωE~e3 (t) , ωE ∼
360◦

day

It implies that
I There is no polar motion

ω1(t) = 0, ω2(t) = 0

I There is no length of day variations

φ̇(t) = ωE , φ (t) = ωEt+ φ0

I There is no precession–nutation

ψ̇(t) = 0 ⇒ ψ (t) = ψ0 ∼ 0,
ε̇(t) = 0 ⇒ ε (t) = ε0 ∼ 23.4◦
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Observed motion

A careful analysis, however, leads to some small variations with
respect to the uniform rotational state

In this talk we will focus just on precession–nutation changes,
although those small variations are also present in polar motion
and length of day

ψ (t) ∼ 50′′t − 17.2′′ sin

(
2π

18.6
t

)
− 1.3′′ sin

(
2π

0.5
t

)
+ ...

ε (t) ∼ 23.4◦ + + 9.2′′ cos

(
2π

18.6
t

)
+ 0.6′′ cos

(
2π

0.5
t

)
+ ...
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Qualitative explanation I

1 External bodies, mainly the Moon and the Sun, interact
gravitationally with the Earth

2 As a consequence of the Earth’s equatorial bulge, this interaction
creates a torque

3 The torque tries to align the figure axis with the vector normal to
the orbital plane

4 Since the Earth is a fast rotator and quasi spherical, this torque
creates the weak precession–nutation motion that reflects the
periodicity of its cause (Moon and Sun orbital motions)
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Qualitative explanation II

Representation of the precessional motion (not scaled)
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Qualitative explanation III

A closer view into the precessional path shows the nutational
motion. For example, over a 18-year period we observe

Taken from Kaplan (2005). Unit= arcsecond

Celest. Mech. Symp., Chiba, Japan 27/10/2012 c©Authors 12/55



Context Dynamical modeling External gravitational potential Hamiltonian solution Summary

Precession–nutation evolution

The longitude and the obliquity are given as quasi polynomials

ψ(t) = Pψ(t) +Nψ(t) + Fψ(t), ε(t) = Pε(t) +Nε(t) + Fε(t)

Pl(t) is the precession (long periodic motion)

Pl(t) =
∑
j=0

c
(l)
j t

j .

Nl(t) is the nutation (quasi periodic motion)

Nl(t) =
∑
i

a
(l)
i cos (nit+ Ξi0) + b

(l)
i sin (nit+ Ξi0) .
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Orbital frequencies

In the former expressions nit+ Ξi0 are related with the orbital
motions of the external bodies viewed from Earth

In the case of the Moon and the Sun, we have

nit+ Ξi0 = Θi = z1il + z2il
′ + z3iF + z4iD + z5iΩ̄, zji ∈ Z,

where l, l′, F , D, and Ω̄ are related with the Delaunay variables
of the Moon and the Sun

The particular set of zji is obtained analyzing the Moon and Sun
ephemeris, which are given as functions of time
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Current nutation amplitudes

In particular, the main nutation amplitudes considered nowadays
by International Astronomical Union resolutions (2000/2006) are

Argument Period Figure axis (arcseconds)

lM lS F D Ω Days ∆ψ(sin) ∆ε(cos)

+0 +0 +0 +0 +1 -6793.48 -17.206416 9.205233
+0 +0 +0 +0 +2 -3396.74 0.207455 -0.089749
+0 +1 +0 +0 +0 365.26 0.147587 0.007387
+0 +0 +2 -2 +2 182.63 -1.317091 0.573034
+0 +1 +2 -2 +2 121.75 -0.051682 0.022439
+0 +0 +2 +0 +2 13.66 -0.227641 0.097846
+0 +0 +2 +0 +1 13.63 -0.038730 0.020073
+1 +0 +2 +0 +2 9.13 0.000082 0.012902

Note that the amplitudes are given at the level of micro arcsecond

A detailed explanation of the current standards can be found on
IERS Conventions (2010) and Kaplan (2005)
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Modeling the Earth’s precession–nutation

In the modeling of the precession–nutation of the Earth enters
different aspects, especially considering the nowadays desired level
of accuracy of a few micro arcseconds

One of the most important aspect is the properties of the Earth
model under consideration
In this way, accordingly to the accuracy requirements of each
epoch, the complexity of the models considered has been
increased

I 1950’s: rigid Earth model
I 1980’s: two layer Earth model
I 2000’s: three layer Earth model
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Hamilton’s principle formulations

Hamilton’s principle can be implemented by

A Lagrangian function L = T − V
I Holonomic coordinates

d

dt

(
∂L
∂q̇i

)
−
(
∂L
∂qi

)
= Qi

I Quasi–coordinates

d

dt

(
∂L
∂ωi

)
+
∑
j, k

cijkωj
∂L
∂ωk

−
∑
r

βri
∂L
∂qr

= Qi

A Hamiltonian function H = T + V

d

dt
pi = −∂H

∂qi
+Qqi ,

d

dt
qi =

∂H
∂pi
−Qpi
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Sketch of the procedure

To describe the evolution of the Earth as a dynamical system we
consider that

I The Earth can be divided in internal quasi spherical layers
I We consider the motion of all the layers, since it avoids the

computations of some internal interactions
I The velocity in each layer with respect to its Tisserand system

(e.g., Escapa 2011) has the form

~V(k) = ~ω(k) × ~r + ~vd(k) =
(
~ωE + δ~ω(k)

)
× ~r + ~vd(k)

It is assumed that the rigid part of the field is dominating∥∥~vd(k)∥∥ ∼ O(1).
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Kinetic energy

The kinetic energy is given by

T(k) =
1

2

∫
V(k)

(
~V(k) · ~V(k)

)
ρ(k)(~r) dτ

3

It can be divided into three terms

T(k) =
1

2
~ω(k)·Πk~ω(k)+

1

2
~ω(k)·~h(k)+

1

2

∫
V(k)

(
~vd(k) · ~vd(k)

)
ρ(k)(~r)dτ

3

With the adopted approximations

T(k) =
1

2
~ω(k) ·Πk~ω(k) =

1

2
~ω(k) · ~L(k)

Therefore, the total kinetic energy of the system

T =
n∑
k=1

T(k)
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Gravitational external potential energy

Due to the gravitational interaction with external bodies

V(k) = −Gm
∫
V(k)

ρ(k)(~r
∗)

‖~r∗ − ~r‖
dτ∗3

To work out this expression it is commonly used the expansion
(e.g., Kinoshita 1977)

V(k) = −Gm
+∞∑
n=0

n∑
m=0

[cnm(k)

rn+1
Cnm (η, α) +

snm(k)

rn+1
Snm (η, α)

]
,

where Cij , Sij are the real spherical harmonics, and r, η, and α
are the distance, colatitude, and longitude of a relevant
perturbing body
The total external potential energy of the Earth is

V =
∑
p

n∑
k=1

Vp(k)
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Other contributions to the dynamics

Elastic deformation of the layers
I Computed through a known expansion of the displacement vector

in spheroidal and toroidal harmonics
I Additional contribution to the kinetic (rotational) energy
I Additional contribution to the external gravitational potential

energy (redistribution tidal potential)

Dissipative torques
I Due to electromagnetic and viscous processes
I Computed through generalized forces

Internal gravitational potential energy
I Caused by the gravitational interaction among the Earth layers
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Algorithm

Summarizing, in the Hamilton’s principle framework

1 The dynamics is described through kinetic, potential energies, and
generalized forces

2 The inertia tensors play a central role
I Increments of inertia tensor have a kinematical or elastic origin

Πk = Π0k + ∆kinΠk + ∆dΠk

I They induce increments in the kinetic and gravitational potential
energy

3 Avoid the computation of pressure torques
4 Similar to the dynamics of several coupled rigid bodies

I In terms of ~L(k), Πk, and ~ei(k).
I Rheological properties of the Earth are described by a small set of

parameters
I Possible to apply the mathematical tools of Celestial Mechanics
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Earth model I

We will consider an Earth model composed of three nearly
spherical, ellipsoidal layers sharing its barycenters

1 An axial–symmetrical rigid mantle
2 An fluid outer core
3 An axial–symmetrical rigid inner core
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Earth model II

Kinematically the configuration of the system is given by

I Solid layers: defined by rotation matrices Rm,s, implying

~Vm,s = ~ωm,s × ~r

I Fluid layer: approximated by a Poincaré flow (e.g., Escapa et al.
2001)

~Vf = ~ωf × ~r (Tisserand system, ~Lf = Πf~ωf )

The main interactions of the system are
1 Hydrodynamical interaction of the fluid with the solids (internal)
2 Gravitational perturbations of the Moon and the Sun, whose orbital

motion is assumed to be a known function of time (external)

Celest. Mech. Symp., Chiba, Japan 27/10/2012 c©Authors 24/55



Context Dynamical modeling External gravitational potential Hamiltonian solution Summary

External gravitational potential

Although there exists a general method for obtaining the
expression of the gravitational potential (Escapa et al. 2008), we
will focus on the second degree terms since they are responsible of
the main contributions to precession–nutation

Second degree harmonic part of the geopotential can be derived
from MacCullagh’s formula

V = G
m

2r5

3

 x
y
z

t

Π

 x
y
z

− trace (Π) r2


Therefore, to obtain both the reference and the redistribution
parts of the potential energy it is necessary to express the matrix
of inertia Π of the three layer Earth with respect to a mantle fixed
system
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Matrix of inertia of the three layer Earth
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Matrix of inertia for solid layers

The mantle and the inner core are assumed to be rigid, so their
associated systems are given by the principal axes systems

In these systems the inertia matrices are
I Matrix of inertia of the mantle

Πm =

 Am 0 0
0 Am 0
0 0 Cm

 , in the Oxmymzm system

I Matrix of inertia of the inner core

Πs =

 As 0 0
0 As 0
0 0 Cs

 , in the Oxsyszs system
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Matrix of inertia of the fluid layer I

Since the mantle and the inner core evolve independently, view
from the mantle the fluid has a time dependent inertia matrix

�
f

�
f

0 0

�
as �

as
'

We can write

Πf = Π0
f + Π

′
as −Π0

as

Π0
f and Π0

as are constant
matrices

Π
′
as are the time

dependent part

The dependence is entirely
due to the relative rotation
of the inner core
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Matrix of inertia of the fluid layer II

The matrices of inertia of the fluid and the auxiliary shell (as)

Π0
f =

 Af 0 0
0 Af 0
0 0 Cf

 , Π0
as =

 Aas 0 0
0 Aas 0
0 0 Cas


To compute the matrix Π

′
as, we have

Π′as = RTsm ΠasRsm, with Oxmymzm
Rsm−→ Oxsyszs

Then, the inertia matrix of the fluid is

Πf =

 Af 0 0
0 Af 0
0 0 Cf

+(Cas −Aas)

 k21 k1k2 k1k3
k1k2 k22 k2k3
k1k3 k2k3 k23 − 1

 ,

ki being the components of the inner core figure axis
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Matrix of inertia of the Earth: final form

The matrix of inertia is the sum of those of its constituents

Π = Πm + Πf + Πs

Accordingly to the previous results we can split it in the form

Π =
(
Πm + Π0

f + Π0
s

)
+
(
Π′s −Π0

s + Π′as −Π0
as

)
Explicitly,

Π = A

 1 0 0
0 1 0
0 0 1 + e

 +As (es − δ)

 k21 k1k2 k1k3
k1k2 k22 k2k3
k1k3 k2k3 k23 − 1

 ,

with (
k1 k2 k3

)T
= RTsm

(
0 0 1

)T
,

and the ellipticities

e =
C −A
A

, es =
Cs −As
As

, δ =
Aas − Cas

Aas
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External gravitational potential expression

Therefore, the external gravitational potential can be written as
(Escapa et al. 2011, 2012)

V = V2 + ∆V =

= G
m

r3
{AeC20 (η) +

+ As (es − δ)

[
2
(
k23 − 1

)
− k21 − k22

2
C20 (η, α) + k1k3C21 (η, α) +

+ k2k3S21 (η, α) +
k21 − k22

4
C22 (η, α) +

k1k2
2

S22 (η, α)

]}
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External gravitational potential expression

The term V2 is common for one, two, and three layer Earth
models, since depends on the moments of inertia of the whole
Earth (although the response to it is different)

The term ∆V is intrinsically due to the three layer Earth model.
It is originated by the differential rotation of the inner core with
respect to the mantle

As far as we know, its effects on the Earth’s precession–nutation
has not been quantified previously
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Hamiltonian formalism

Earth rotation studies with Hamiltonian formalism (some
examples)

1 One layer rigid Earth models
I Kinoshita (1977)
I Souchay, Losley, Kinoshita, & Folgueira (1999)
I Escapa, Getino, & Ferrándiz (2002)
I Getino, Escapa, & Miguel (2010)

2 One layer elastic Earth models
I Kubo (1991, 2009)
I Getino & Ferrándiz (1995)
I Escapa (2011)

3 Two layer Earth models
I Kubo (1979)
I Getino (1995a, 1995b)
I Getino & Ferrándiz (1997, 1999, 2000, 2001)
I Ferrándiz, Navarro, Escapa, & Getino (2004)

4 Three layer Earth models
I Escapa, Getino, & Ferrándiz (2001, 2011)
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Hamilton equations

The evolution of a dynamical system is described in terms of a set
of canonical variables (p, q) and Hamilton equations

ṗi = −∂H
∂qi

+Qqi , q̇i =
∂H
∂pi
−Qpi ,

where the Hamiltonian can be written as

H = T + V,

and Qp, Qq are the canonical forces, accounting for dissipative
processes
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Canonical variables: Andoyer variables

The moments p are given by

p1 = ~L · ~E3, p2 = ~L · ~e~L, p3 = ~L · ~e3

The conjugate variables q are define with the help of

~eI =
~E3 × ~e~L
‖ ~E3 × ~e~L‖

, ~eσ =
~e~L × ~e3
‖~e~L × ~e3‖

We have that

q1 → ~E3∠~eI , q2 → ~eI∠~eσ, q3 → ~eσ∠~e3

Usually, we note the Andoyer canonical set as

p2 = M, p1 = Λ = M cos I, p3 = N = M cosσ,

q1 = λ, q2 = µ, q3 = ν
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Canonical variables: Andoyer variables

O

Z

z

L

X

x Y

� �

�

I

�

Andoyer plane Equator

Ecliptic
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Canonical variables: Andoyer modified set

Variables associated to the mantle x1(m)

x2(m)

x3(m)

 = R3(ν)R1(σ)R3(µ)R1(I)R3(λ)

 X1

X2

X3

 ,

Λ = ~L · ~E3, M = ~L · ~e~L, N = ~L · ~e3(m)

Variables associated to the remaining layers x1(k)
x2(k)
x3(k)

 = R3(λ(k))R1(I(k))R3(µ(k))R1(σ(k))R3(ν(k))

 x1(m)

x2(m)

x3(m)

 ,

N(k) = ~L(k) · ~e3(m), M(k) = ~L(k) · ~e~L(k)
, Λ(k) = ~L(k) · ~e3(k)
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Andoyer modified set: dynamical meaning

We have the following relationships

Angular momentum in the terrestrial frame L1

L2

L3

 =

 M sinσ sin ν
M sinσ cos ν

N

 ,

 L1(k)

L2(k)

L3(k)

 =

 M(k) sinσ(k) sin ν(k)
−M(k) sinσ(k) cos ν(k)

N(k)


Angular velocity

~ω(k) = Π−1
k
· ~L(k), ~ω(m) = Π−1m · (~L−

∑
k 6=m

~L(k))

Relation with Euler angles

ψ = λ+ σ
sinµ

sin I
, ε = I + σ cosµ, φ = µ+ ν − σ cos I sinµ

sin I
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Approximate analytical solution

Direct integration of equations of motion is unfeasible

dpi
dt

= −∂H
∂qi

,
dqi
dt

=
∂H
∂pi

The Hamiltonian of our system always can be decomposed

H = H0 + χH1, with 0 ≤ χ� 1

To use perturbation methods requieres a known solution of

dpi
dt

= −∂H0

∂qi
,
dqi
dt

=
∂H0

∂pi

In the Earth case
|H −H0|
|H0|

∼ 10−7,

where, at least, H0 must contain the main part of T
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Hori‘s method (Hori 1966): first order

To perform a canonical transformation (p, q)→ (p∗, q∗)

K(p∗, q∗) = K0 +K1, W(p∗, q∗) =W1

It can be achieved using an average condition

K(p∗, q∗) = H0 +H1sec, W(p∗, q∗) =

∫
UP
H1per dt

The integral to obtain W is computed over the unperturbed
solutions

dpi
dt

= −∂H0

∂qi
,
dqi
dt

=
∂H0

∂pi

The evolution of any function is given by through

f(p, q) = f(p∗, q∗) + {f,W} ,

being (p∗, q∗) the solution of the transformed system
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Canonical formulation of our problem

In the case of the three layer problem under consideration
I We express the kinetic and potential energy in terms of an Andoyer

modified set

~L =

 M sinσ sin ν
M sinσ cos ν

N

 , ~Lf, s =

 Mf, s sinσf, s sin νf, s
−Mf, s sinσf, s cos νf, s

Nf, s

 ,

Rsm = R3 (λs)R1 (Is)R3 (µs)R1 (σs)R3 (νs)

I At the first order, we can take the Hamiltonian as

H = T + ∆V

I The nutations come from ∆V, to be determined with Hori‘s
method by taking H0 = T .
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Kinetic energy

We assume a rigid rotation field of velocities

When the kinematical increment of the inertia tensor is small

(Πf )−1 =
(
Π0
f

)−1 − (Π0
f

)−1 (
Π′as −Π0

as

) (
Π0
f

)−1
The kinetic energy of the system can be written

T =
1

2

(
~L− ~Lf − ~Ls

)T
Π−1m

(
~L− ~Lf − ~Ls

)
+

1

2
~LTf
(
Π0
f

)−1 ~Lf +
1

2
~LTs Π−1s ~Ls

−1

2
~LTf

[(
Π0
f

)−1 (
Π′as −Π0

as

) (
Π0
f

)−1] ~Lf
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Kinetic energy in Andoyer variables

The kinetic energy of the system is (Escapa et al. 2001)

T =
1

2Am

(
K2 +

Am +Af

Af
K2

f +K2
s

)
+

1

2Cm

(
N2

+
Cm + Cf

Cf
N2

f +N2
s − 2NNf − 2NNs + 2NfNs

)
+
KKf

Am
cos (ν + νf ) +

KKs

Am
cos (ν + νs)

+
KfKs

Am
cos (νf − νs) +

1

2

(
1

Cs
− 1

As

)
Λ2
s

+
1

2As
M2

s + Tas,

where

K =
√
M2 −N2, Kf,s =

√
M2

f,s −N2
f,s

Tas is the term responsible for the coupling between mantle and
the inner core through fluid interaction
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Potential energy in canonical variables

The potential energy ∆V is given by

∆V = As (es − δ)

[
2
(
k23 − 1

)
− k21 − k22

2
C20 (η, α) + k1k3C21 (η, α) +

+ k2k3S21 (η, α) +
k21 − k22

4
C22 (η, α) +

k1k2
2

S22 (η, α)

]}
We must to express it in terms of the canonical variables

I The rotation Rsm allows us to write ki k1
k2
k3

 = RT
sm (λs, Is, µs, σs, νs)

 0
0
1


I The geocentrical coordinates (r, η, α) must be referred to the

ecliptic of date (Kinoshita 1977)
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Analytical solution

The Hamiltonian is now expressed in an Andoyer–like canonical
set of variables

H = T + ∆V

Since the direct solution of the equations of motion is not
possible, we will apply Hori’s perturbation method

The unperturbed part H0 = T accounts for the hydrodynamical
internal interactions

The perturbation term H1 = ∆V is due to the change in the
external gravitational potential caused by the relative rotation of
the inner core

This procedure allows us to obtain first order analytical
approximate solutions to the contribution to the Earth’s
precession–nutation
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Unperturbed problem

The equations of motion are given by

ṗ = −∂T
∂q

, q̇ =
∂T
∂p

The evolution of some canonical variables is direct

M = CωE , Λ = cte.λ = cte., µ+ ν = ωEt+ ωE0

The time evolution of the remaining variables is given by the
system

U̇

V̇

Ẇ

Ż

 = iωEJ


U
V
W
Z

 , where


U = iM sinσe−iν

V = −iMf sinσfe
−iνf

W = −iMs sinσse
−iνs

Z = iMs sin Ise
i(µs+νf )
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Generating function. First order solution

The secular part of the potential is given by the average over the
unperturbed problem

H1sec =< ∆V >= 0,

since all the perturbation is (quasi) periodic
The periodic part provides the generating function

W =

∫
UP

∆V dt

Since H1sec = 0, there is no contribution to the precession
With respect to the nutation, we have that

I The nutation in longitude is computed through

∆ψ = {ψ,W}
I The nutation in obliquity is computed through

∆ε = {ε,W}
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Numerical estimation

The order of magnitude of the contributions previously determined
analytically (Escapa et al. 2011, 2012) is

Argument Period Figure axis (µas)

lM lS F D Ω Days ∆ψ ∆ε

+0 +0 +0 +0 +1 -6793.48 2.79 -0.31
+0 +0 +0 +0 +2 -3396.74 0.00 -0.01
+0 +1 +0 +0 +0 365.26 14.95 9.29
+0 -1 +2 -2 +2 365.25 -1.78 0.48
+0 +0 +2 -2 +2 182.63 44.61 -19.92
+0 +1 +2 -2 +2 121.75 1.64 -0.72
+1 +0 +0 +0 +0 27.55 -2.22 0.02
+0 +0 +2 +0 +2 13.66 7.17 -3.08
+0 +0 +2 +0 +1 13.63 1.22 -0.63
+1 +0 +2 +0 +2 9.13 0.96 -0.41
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The presence of the inner core induces a new contribution into
the external gravitational potential of the Earth

This contribution is intrinsically a three layer effect, not present in
one or two layer models, due to the relative rotation of the inner
core with respect to the mantle

By means of a Hamiltonian approach we have obtained the effect
of this variation on the rotation of the Earth (precession–nutation)

Specifically, the motion of the figure axis is affected through new
contributions to the nutational terms

The amplitudes of the new contributions are of the order of tens
(µas) for some nutational arguments

As far as we know, these contributions are not taken into account
currently. In view of its magnitude they should be incorporated to
the actual standards and models
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