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Abstract. The three-body problem is reexamined in the frame-
work of general relativity. The Newtonian three-body problem ad-
mits Euler’s collinear solution, where three bodies move around the
common center of mass with the same orbital period and always line
up. We show that the collinear solution remains true at the first
post-Newtonian order with a correction to the spatial separation be-
tween masses. Also we prove the uniqueness of the configuration for
given system parameters (the masses and the end-to-end length).

1. Euler’s collinear solution in the Newton gravity

Figure 1. Schematic figure for a classical configuration of three
masses denoted by M1 , M2 and M3.

1



2

The location of each mass MI (I = 1, 2, 3) is written as XI ≡ (xI , 0).
Without loss of generality, we assume x3 < x2 < x1. Let RI define the
relative position of each mass with respective to the center of mass XG ≡
(xG, 0), namely RI ≡ xI −xG (RI 6= |XI | unless xG = 0). We choose x = 0
between M1 and M3. We thus have R3 < R2 < R1, R3 < 0 and R1 > 0.

It is convenient to define an important ratio as R23/R12 = z. Then we
have R13 = (1+z)R12. The equation of motion in Newton gravity becomes

R1ω
2 =

M2

R2
12

+
M3

R2
13

, (1)

R2ω
2 = −M1

R2
12

+
M3

R2
23

, (2)

R3ω
2 = −M1

R2
13

− M2

R2
23

, (3)

where we define

RIJ ≡ XI − XJ , RIJ ≡ |RIJ |. (4)

First, we subtract Eq. (2) from Eq. (1) and Eq. (3) from Eq. (2) and
use R12 ≡ |X1 − X2| and R23 ≡ |X2 − X3|. Next, we compute a ratio
between them to delete ω2. Hence we obtain a fifth-order equation as

(M1 + M2)z
5 + (3M1 + 2M2)z

4 + (3M1 + M2)z
3

− (M2 + 3M3)z
2 − (2M2 + 3M3)z − (M2 + M3) = 0. (5)

Now we have a condition as z > 0. Descartes’ rule of signs : the number
of positive roots either equals to that of sign changes in coefficients of a
polynomial or less than it by a multiple of two. According to this rule, Eq.
(5) has the only positive root z > 0, though such a fifth-order equation
cannot be solved in algebraic manners as shown by Galois. After obtaining
z, one can substitute it into a difference, for instance between Eqs. (1) and
(3). Hence we get ω.

2. What happens in GR ?

2.1. The EIH equation of motion for a many-body system

In order to include the dominant part of general relativistic effects, we take
account of the terms at the first post-Newtonian order. Namely, the bodies
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obey the Einstein-Infeld-Hoffman (EIH) equation of motion as

d2rK

dt2
=

∑
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∑
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∑
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2.2. The seventh-order equation

Similarly to the above Newtonian case, we obtain a seventh-order equation
as

F (z) ≡
7∑

k=0

Akz
k = 0, (6)

where we define the mass ratio as νI ≡ MI/M for M ≡
∑

I MI and

A7 =
M

a

[
−4 − 2(ν1 − 4ν3) + 2(ν2

1 + 2ν1ν3 − 2ν2
3) − 2ν1ν3(ν1 + ν3)

]
,

A6 = 1 − ν3 +
M

a

[
−13 − (10ν1 − 17ν3) + 2(2ν2

1 + 8ν1ν3 − ν2
3)

+ 2(ν3
1 − 2ν2

1ν3 − 3ν1ν
2
3 − ν3

3)

]
,

A5 = 2 + ν1 − 2ν3 +
M

a

[
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3)
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1 − ν1ν

2
3 − ν3

3)

]
,
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M

a

[
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3)
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2
3 − 3ν3

3)

]
,
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A3 = −(1 − ν1 + 2ν3) +
M

a

[
6 + 2(2ν1 + 5ν3) + 4(−4ν2

1 − ν1ν3 + 2ν2
3)

− 2(−3ν3
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2
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3)

]
,
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M
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[
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− 6(−ν3
1 − ν2
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3)

]
,

A1 = −(1 − ν1) +
M

a

[
13 + (−17ν1 + 10ν3) − 2(−ν2

1 + 8ν1ν3 + 2ν2
3)

− 2(−ν3
1 − 3ν2

1ν3 − 2ν1ν
2
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,

A0 =
M

a

[
4 + 2(−4ν1 + ν3) − 2(−2ν2

1 + 2ν1ν3 + ν2
3) + 2ν1ν3(ν1 + ν3)

]
.

This seventh-order equation is symmetric for exchanges between ν1

and ν3, only if one makes a change z → 1/z. This symmetry seems to
validate the complicated form of each coefficient.

3. Uniqueness of solutions

The seventh-order equation has at most three positive roots, which ap-
parently provide three cases of the distance ratio. Here we show that
the remaining two of the three positive roots must be discarded. Let the
smaller root and the larger one be denoted as zS and zL, respectively.

First, we consider the smaller positive root zS, where we assume zS ¿
1. Then, the seventh-order equation is approximated as

A1zS + A0 = 0.

We thus obtain an approximate form of the smaller root zs that leads to

ωS = O

(
1

a

)
,
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though ω2
N = O(M/a3) for the Newtonian case. This ωS implies an ex-

tremely fast rotation, since the rotational velocity becomes as

vS ≈ aωS = O(1),

namely, comparable to the speed of light. This unacceptable branch of
such an extremely fast motion contradicts with the post-Newtonian ap-
proximation. Hence, zS must be abandoned.

Similarly, the larger positive root zL also must be discarded.

As a result, two of the three positive roots are discarded as unphysical
ones. Hence, we complete the proof of the uniqueness.

4. Conclusion

We obtained a general relativistic version of Euler’s collinear solution for
the three-body problem at the post-Newtonian order. Studying global
properties of the seventh-order equation that we have derived is left as
future work.

It is interesting also to include higher post-Newtonian corrections,
especially 2.5PN effects in order to elucidate the secular evolution of the
orbit due to the gravitational radiation reaction at the 2.5PN order. One
might see probably a shrinking collinear orbit as a consequence of a decrease
in the total energy and angular momentum, if such a radiation reaction
effect is included. This is a testable prediction.

It may be important also to search other solutions, notably a rela-
tivistic counterpart of the Lagrange’s triangle solution (so-called L4 and
L5 in the restricted three-body problem). Clearly it seems much more
complicated to obtain relativistic corrections to the Lagrange orbit.
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