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1 Variational formulation
We consider the classical n-body problem for which the equation of

motion is given by

m`q̈` =
∂V

∂q`
, q` ∈ R3, ` = 1, 2, . . . , n

where an overdot denotes differentiation with respect to the time vari-

able, m` (> 0) is the `-th mass and

V (q1, . . . , qn) =
∑
i<j

mimj

‖qi − qj‖

represents the (negative-)potential energy with the unit gravitational

constant.
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The n-body problem is equivalent to the variational problem with

respect to the action functional

A(q) =
∫ T

0

L(q, q̇)dt

where the function L is the Lagrangian

L(q, q̇) =
1
2

∑
mk‖q̇k‖2 +

∑
i<j

mimj

‖qi − qj‖
.

Denote the configuration space by X̂ where

X =
{
q = (q1, . . . , qn) ∈ (R3)n |

n∑
k=1

mkqk = 0
}

∆ij = {q ∈ X | qi = qj}, ∆ =
∪
i<j

∆ij , X̂ = X − ∆
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and let
Λ = H1(R/TZ, X̂ ).
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2 Symmetric constraint

Assume the all masses are equal.

Let G be a group and let

τ : G → O(2), ρ : G → O(3), σ : G → Sn,

be homomorphisms. We define the action of G to Λ by

g · ((q1, . . . , qn)(t)) = (ρ(g)qσ(g−1)(1), . . . , ρ(g)qσ(g−1)(n))(τ(g−1)t)

for g ∈ G and q(t) = (q1, . . . , qn)(t) ∈ Λ. Let

ΛG = {q ∈ Λ | g · q = q}, AG = A|ΛG .
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3 Choreographic constraint

We take G as the cyclic group Cn = 〈g | gn = 1〉 of order n. The

homomorphisms are defined by

τ(g) =
(

cos 2π
n − sin 2π

n
sin 2π

n cos 2π
n

)
ρ(g) = E3 σ(g) = (1, 2, . . . , n).

Theorem (Barutello-Terracini, Nonlinearity 04)

The minimizers of ACn are just rotating regular n-gons.
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4 Symmetric choreographic constraint

We take G as the dihedral group Dn = 〈g1, g2 | g2
1 = gn

2 = (g1g2)2 =

1〉. The homeomorphisms ρ, σ, τ are defined by

τ(g1) =
(

1 0
0 −1

)
, ρ(g1) =

 1 0 0
0 1 0
0 0 −1


σ(g1) = (2, n)(3, n − 1) . . .

([n − 1
2

]
+ 1, n −

[n − 1
2

]
+ 1

)
τ(g2) =

(
cos 2π

n − sin 2π
n

sin 2π
n cos 2π

n

)
, ρ(g2) = E3, σ(g2) = (1, 2, . . . , n).

Because ΛDn ⊂ ΛCn and ΛDn includes the rotating regular n-gons,

the minimizers of ADn are the rotating regular n-gons.

7



The set of minimizers is R+ t R− where R+ (resp. R−) is the set of

the solutions with positive (resp. negative) z-component of q̇1(0). R+

and R− are topologically equivalent to S1.
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5 Mountain Pass Solution
Let

Γ = {γ ∈ C([0, 1], ΛDn) | γ(0) ∈ R−, γ(1) ∈ R+}

and let
d = inf

γ∈Γ
max

q∈γ([0,1])
A(q).

Theorem (S.) There is a periodic solution which attains d. The

solution has at most one collision.
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Outline of the proof

Applying the mountain pass theorem on the set of curves connecting

these two components, there is a mountain pass solution. The Morse

index of the mountain pass solution is no more than 1.

On the other hand for any solution with a collision, we can make the

modified curves with lower value of action functional in two orthogonal

direction in ΛDn . Thus the mountain pass solution has no collision.

The other trivial solutions are the rotating regular n-gon which rotates

several times per the period T . Morse index of these solutions are

greater than 1 if n = 2m.
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6 Minimax solution
Let

Ω = {f : D → ΛDn | f |∂D ∈ Homeo(∂D, R+)}

and let
c = inf

f∈Ω
max

q∈f(D)
A(q).

Theorem (S.)

There is a periodic solution which attains c. The solution

may have at most two collisions.

Outline of the proof

The existence follows from the minimax theorem. The Morse index is

no more than 2.

Morse index of the other trivial solutions are greater than 2 if n =

6m.
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