General Relativistic Three-body Problem

Hideki Asada (Hirosaki U, Japan)

--- My talk about Hirosaki papers ---

Chiba, Imai, <u>HA</u>, Mon. Not. Roy. Astr. S, 377, 269 (2007) Arxiv:astro-ph/0609773.

Imai, Chiba, <u>HA</u>, Phys. Rev. Lett. 98, 201102 (2007) Arxiv:gr-qc/0702076.

Torigoe, Hattori, <u>HA</u>, Phys. Rev. Lett. 102, 251101 (2009) Arxiv:gr-qc/0906.1448

<u>HA</u>, Phys. Rev. D 80, 064021 (2009) Arxiv:gr-qc/1010.2284

Yamda, <u>HA</u>, Phys. Rev. D 82, 104019 (2010) Arxiv:gr-qc/1010.2284

Yamda, <u>HA</u>, Phys. Rev. D 83, 024040 (2011) Arxiv:gr-qc/1011.2007

Ichita, Yamda, <u>HA</u>, Phys. Rev. D 83, 084026 (2011) Arxiv:gr-qc/1011.3886

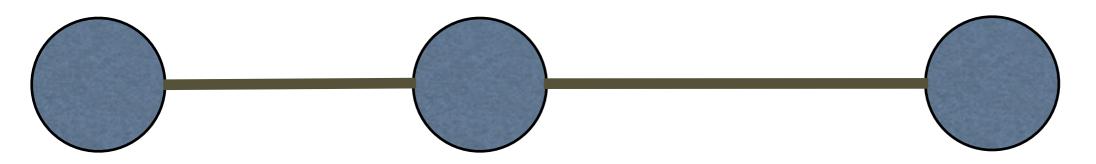
See Yamada poster

N-body Problem in Newton gravity

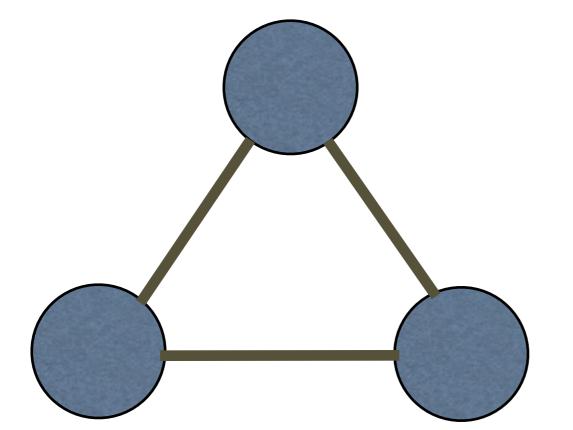
2-body problem solved by (E, L) **E < 0** elliptic parabolic E = 0E > 0 hyperbolic

3-body

Euler's collinear solution (1765)



Lagrange's triangle (1772)



Poincare

N = 3 (or more)

impossible to describe all the solutions to the N-body problem.

of new solutions is increasing.

Remarkable one was found

Figure-eight solution!

Moore, Phys. Rev. Lett. 70, 3675 (1993)

Chenciner, Montgomery, Ann. Math. 152, 881 (2000)

Non-periodic

- Periodic
- General binary
- · Euler's collinear solution
 - Equal mass binary in circular orbit

Choreographic

• Figure-8

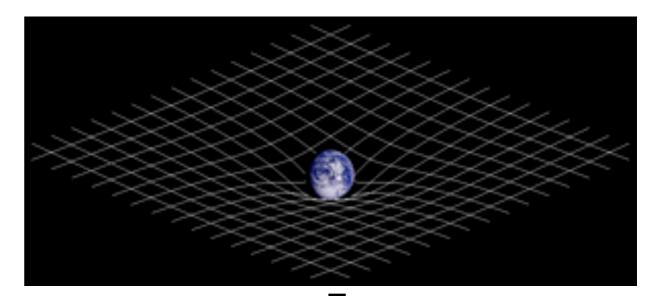
Let us re-examine 3-body problem in the framework of general relativity

GR = General Relativity Newton

Gravity = Force

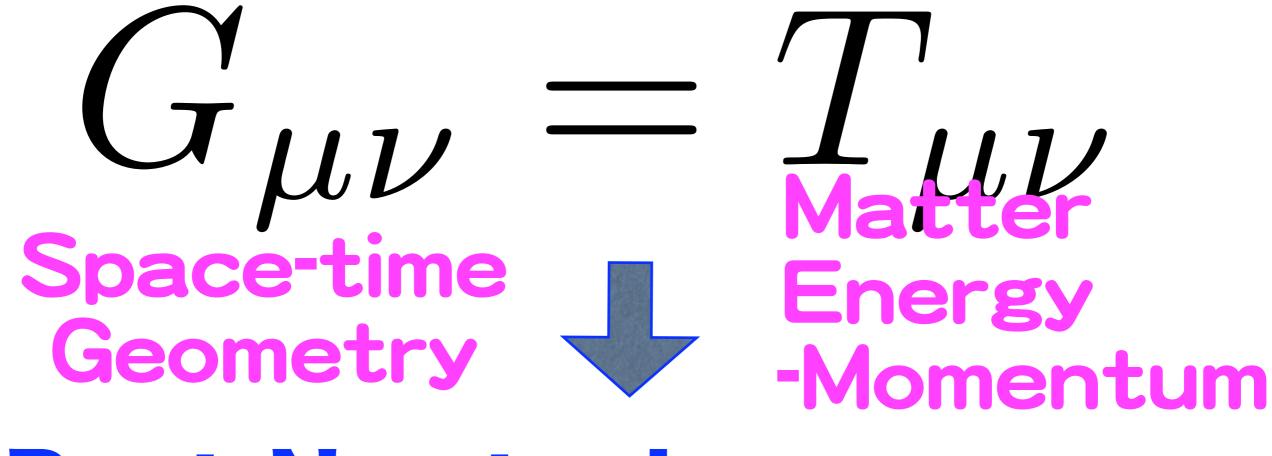
Einstein

Gravity =



Curved Space-time

light ray bends gravitational waves



Post-Newtonian approx.

Newton + 1PN + 2PN + ...
$$\frac{v}{c}^2 + \frac{v}{c}^4$$

Dominant corrections

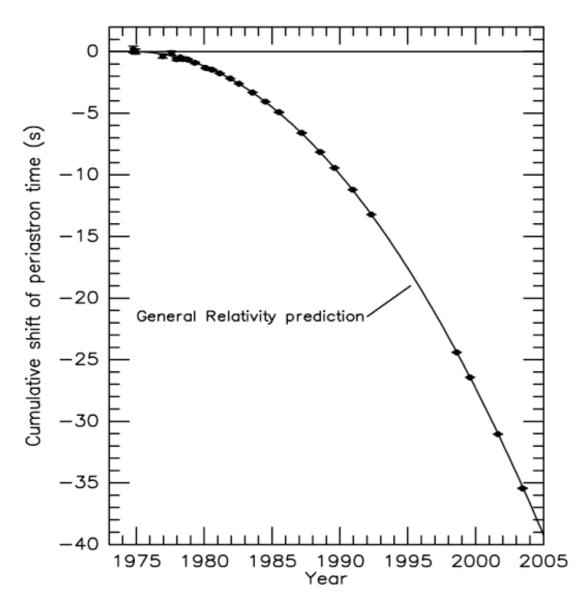
General relativistic effects Periastron advance Mercury Time delay **GPS** Light bending **Gravitational Lens** Binary pulser Hulse-Taylor

GW=Gravitational Waves

Tiny ripples of a curved space-time

Generated by accelerated masses

No direct detection so far



Will, LRR (06)

Figure 7: Plot of the cumulative shift of the periastron time from 1975 - 2005. The points are data, the curve is the GR prediction. The gap during the middle 1990s was caused by a closure of Arecibo for upgrading [272].

indirect evidence by Binary Pulser

LCGT->KAGRA(Japan)

LIGO(US)

Part 1: Choreography

Part 2: Euler+Lagrange's solutions

In Celestial Mechanics, a solution is 'choreographic'

if

every massive particles move periodically in a single closed orbit

1) Implication of Choreography to GR 2)

Effects of
GR
to Choreography

1)Implication ofChoreographyto GR

2)
Effects of
GR
to Choreography

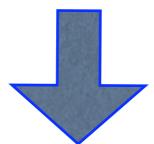
Promising GW sources

Rapidly Rotating Star

Compact Binary System

N=3 (or more) much less attention

Because of Chaos irregular waveform



difficult to detect

Our question

Can three (or more) bodies generate period GW?

Ans.

Yes!

Chiba, Imai, HA, Mon. Not. Roy. Astr. S, 377, 269 (2007) Arxiv:astro-ph/0609773.

One example

Figure-8

Assumptions

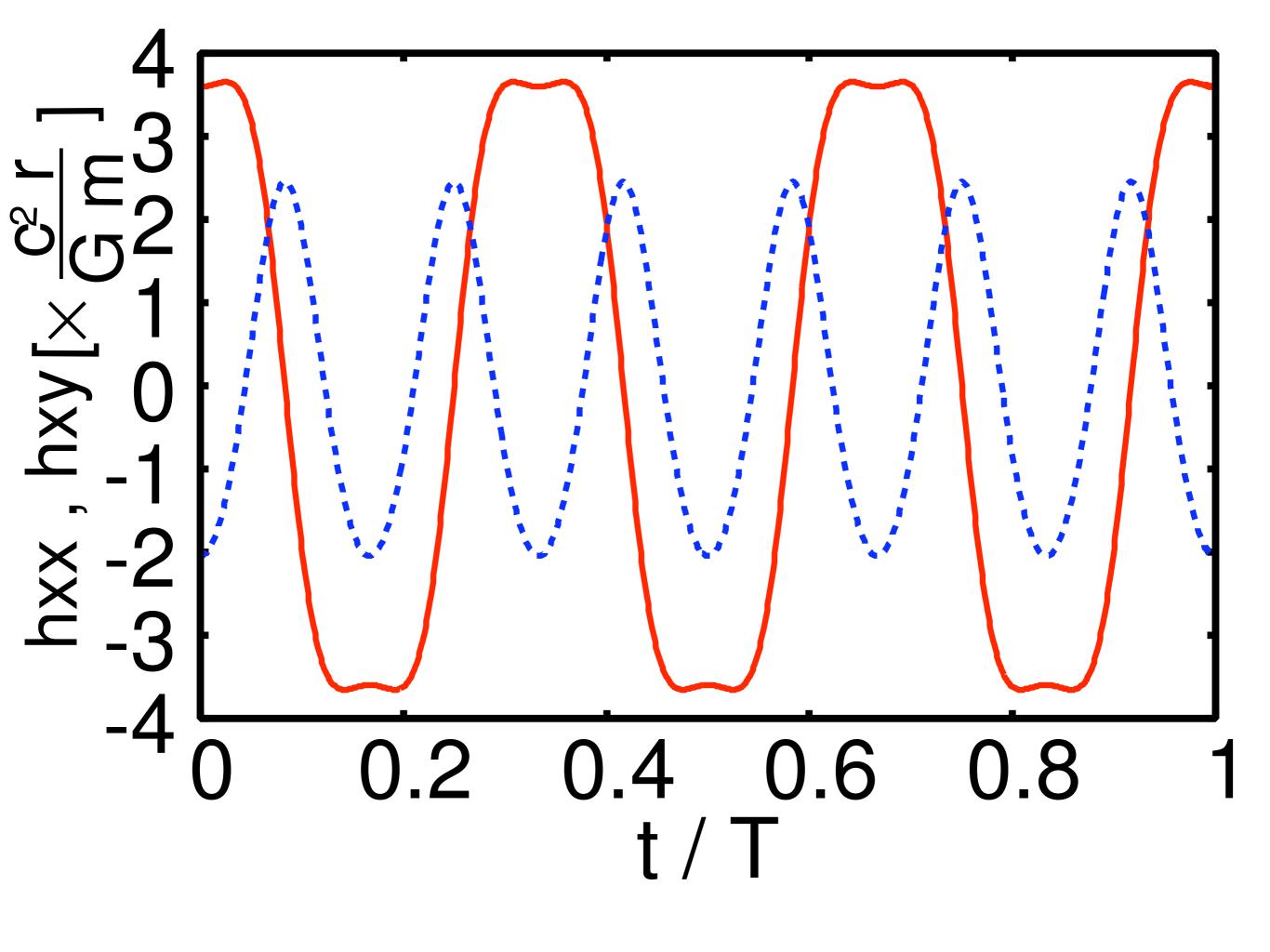
The same plane
The same mass

Computing Waveform via Quadrupole formula

$$h_{ij}^{TT} = \frac{2G\ddot{Q}_{ij}}{rc^4} + O\left(\frac{1}{r^2}\right)$$

$$Q_{ij} = I_{ij} - \delta_{ij} \frac{I_{kk}}{3}$$

$$I_{ij} = \sum_{A=1}^{N} m_A x_A^i x_A^j$$



Implication of Choreography to GR

2)
Effects of
GR
to Choreography

2nd question

Newton's EOM is OK?

Ans.

No!

Imai, Chiba, HA, Phys. Rev. Lett. 98, 201102 (2007) Arxiv:gr-qc/0702076.

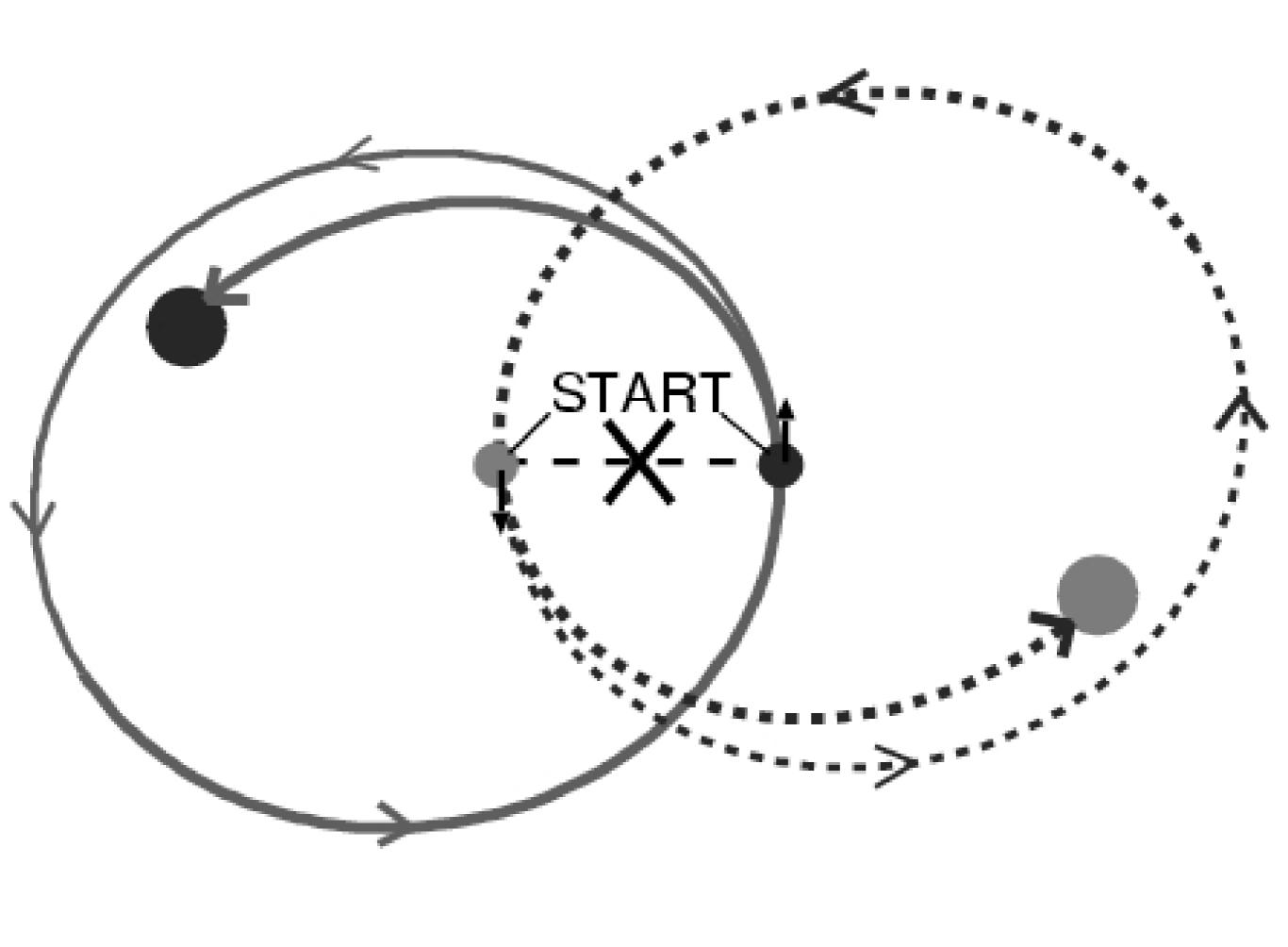
Einstein-Infeld-Hoffman Equation of motion

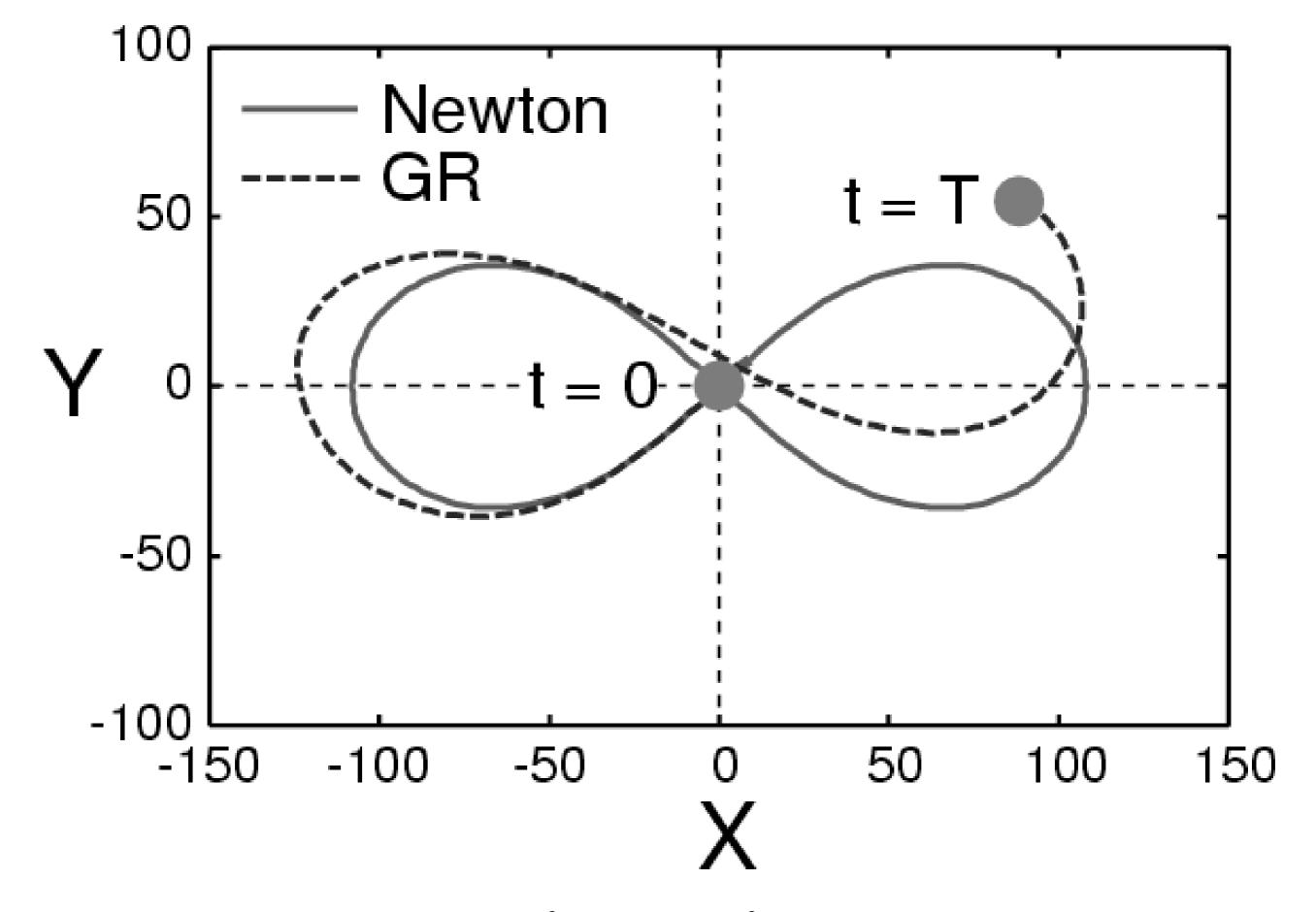
$$\frac{d^{2}x_{K}}{dt^{2}} = \sum_{A \neq K} r_{AK} \frac{m_{A}}{r_{AK}^{3}} \Big[1 - 4 \sum_{B \neq K} \frac{m_{B}}{r_{BK}} \\ - \sum_{C \neq A} \frac{m_{C}}{r_{CA}} \left(1 - \frac{r_{AK} \cdot r_{CA}}{2r_{CA}^{2}} \right) \\ + v_{K}^{2} + 2v_{A}^{2} - 4v_{A} \cdot v_{K} - \frac{3}{2} \left(\frac{v_{A} \cdot r_{AK}}{r_{AK}} \right)^{2} \Big] \\ - \sum_{A \neq K} (v_{A} - v_{K}) \frac{m_{A}r_{AK} \cdot (3v_{A} - 4v_{K})}{r_{AK}^{3}} \\ + \frac{7}{2} \sum_{A \neq K} \sum_{C \neq A} r_{CA} \frac{m_{A}m_{C}}{r_{AK}r_{CA}^{3}}$$

A specific question

For 2 bodies, orbits cannot be closed because of periastron advance.

What happens for figure-8?





lmai, Chiba, HA (2007)

Parametrise initial velocity

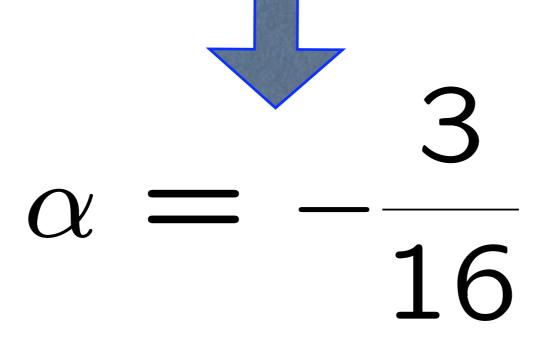
$$\vec{v}_1 = k\vec{V} + \xi \frac{m}{\ell^3} (\vec{V} \cdot \vec{\ell}) \vec{\ell}$$

$$\vec{v}_2 = k\vec{V} + \xi \frac{m}{\ell^3} (\vec{V} \cdot \vec{\ell}) \vec{\ell}$$

$$\vec{v}_3 = \vec{V}$$

$$k = -\frac{1}{2} + \alpha |\vec{V}|^2 + \beta \frac{m}{\ell}$$

$\vec{P}_{tot} = \vec{L}_{tot} = 0$



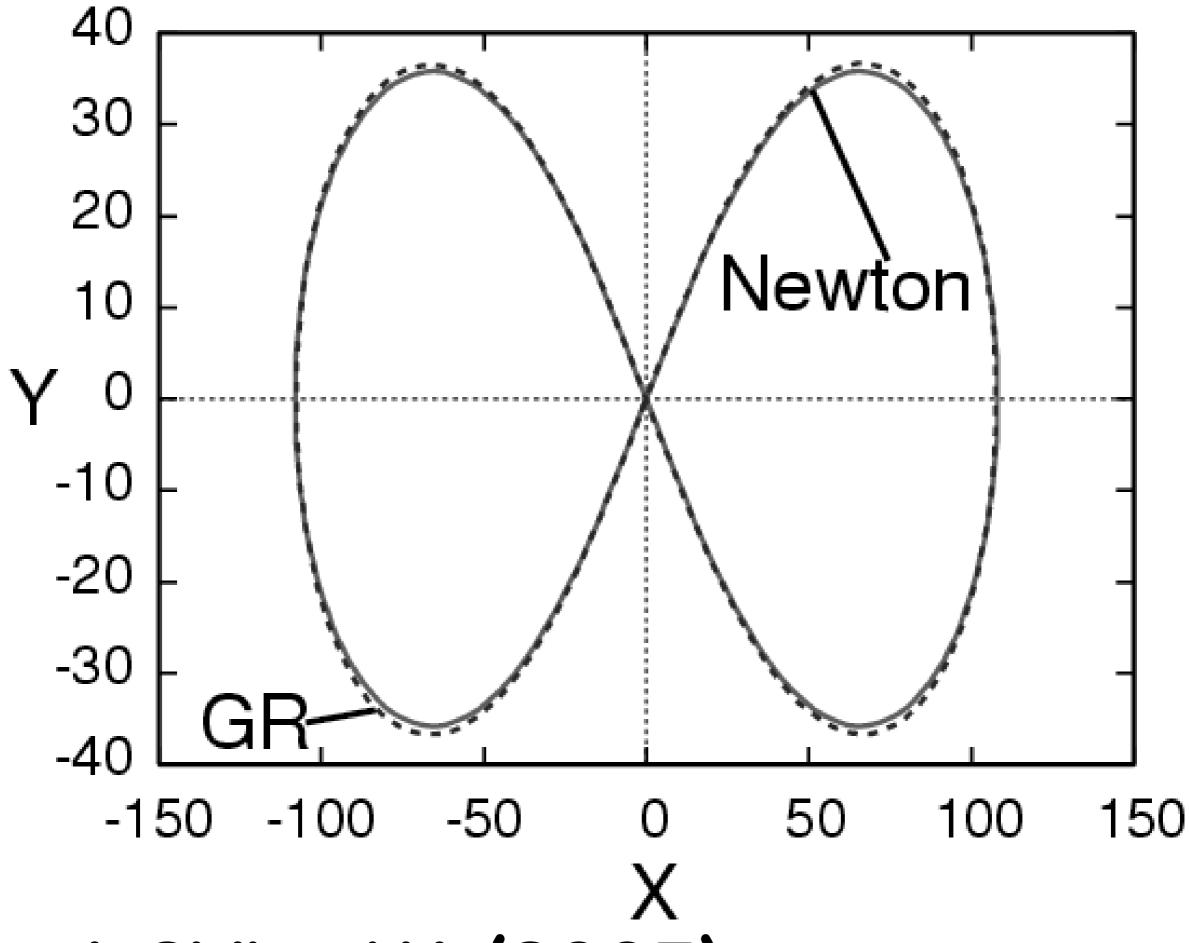
$$\beta = \xi = \frac{1}{8}$$

Remaining degrees of freedom

$$\vec{V} = (V_x, V_y)$$

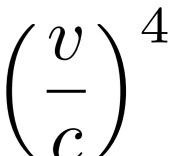
are numerically determined.

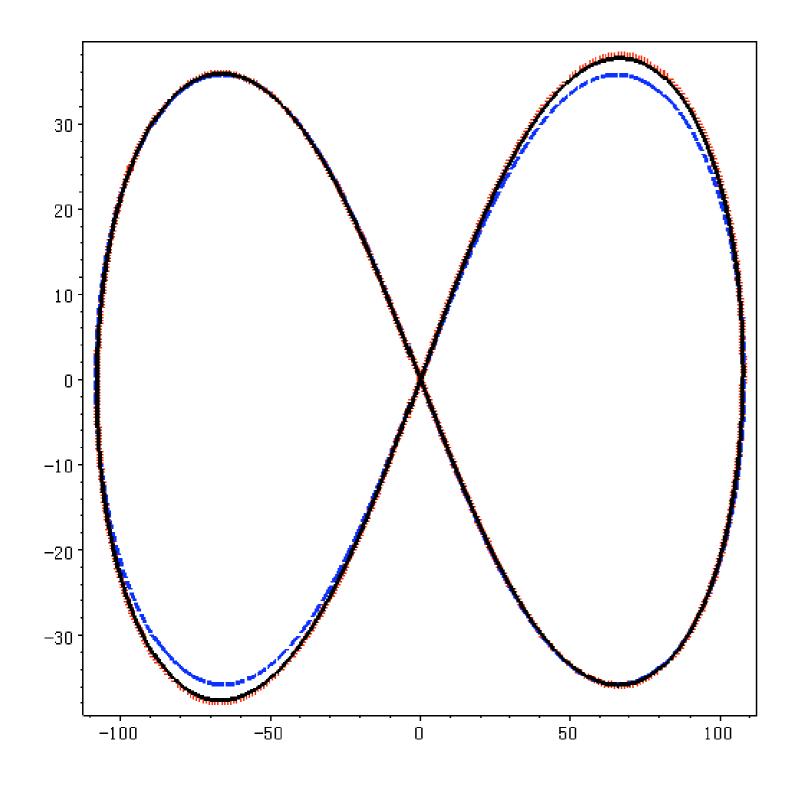
(same as Newton figure-8)



lmai, Chiba, HA (2007)

An extension to 2PN





Lousto, Nakano, Class. Q. Grav. 25, 195019 (2008)

FIG. 9: Comparison of figure-eight motions for $\lambda = 1$. The solid, dotted and dashed lines show the 2PN, 1PN and Newtonian results, respectively.

Choreography or Not

Orbit	Newton	Einstein
		Periastron Shift

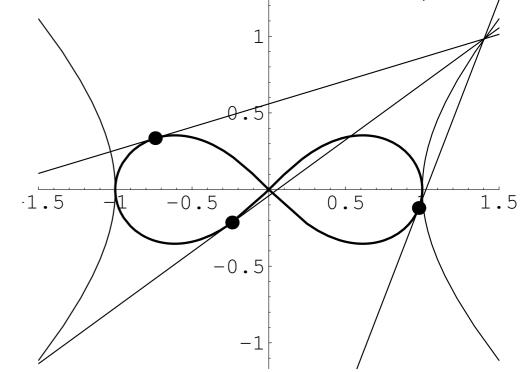
Fujiwara, Fukuda, Ozaki (2003)

Coplanar 3-body Problem

If total P = 0 (COM fixed)

total L = 0

Tangent lines from 3 bodies always meet at a point



GR figure-8 satisfies 3-tangent line theorem Because...

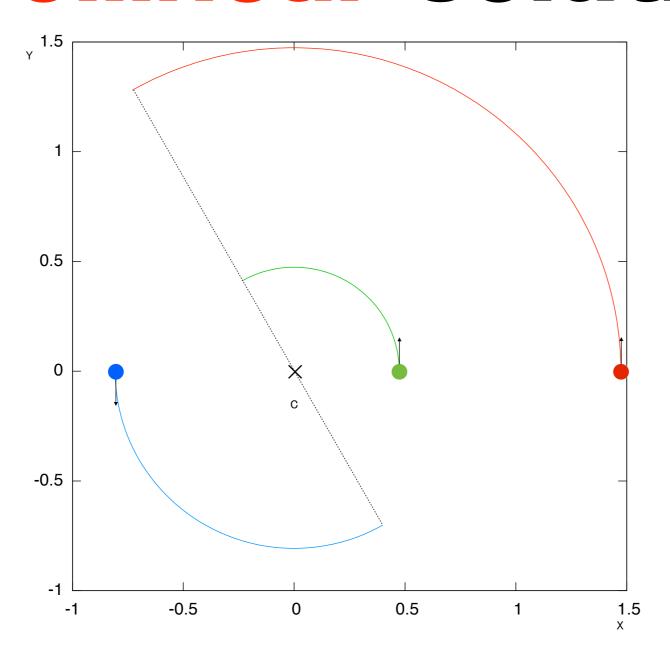
In GR, p and v are not always parallel
In GR figure-8, p and v are parallel

Part 1: Choreography

Part 2: Euler+Lagrange's solutions

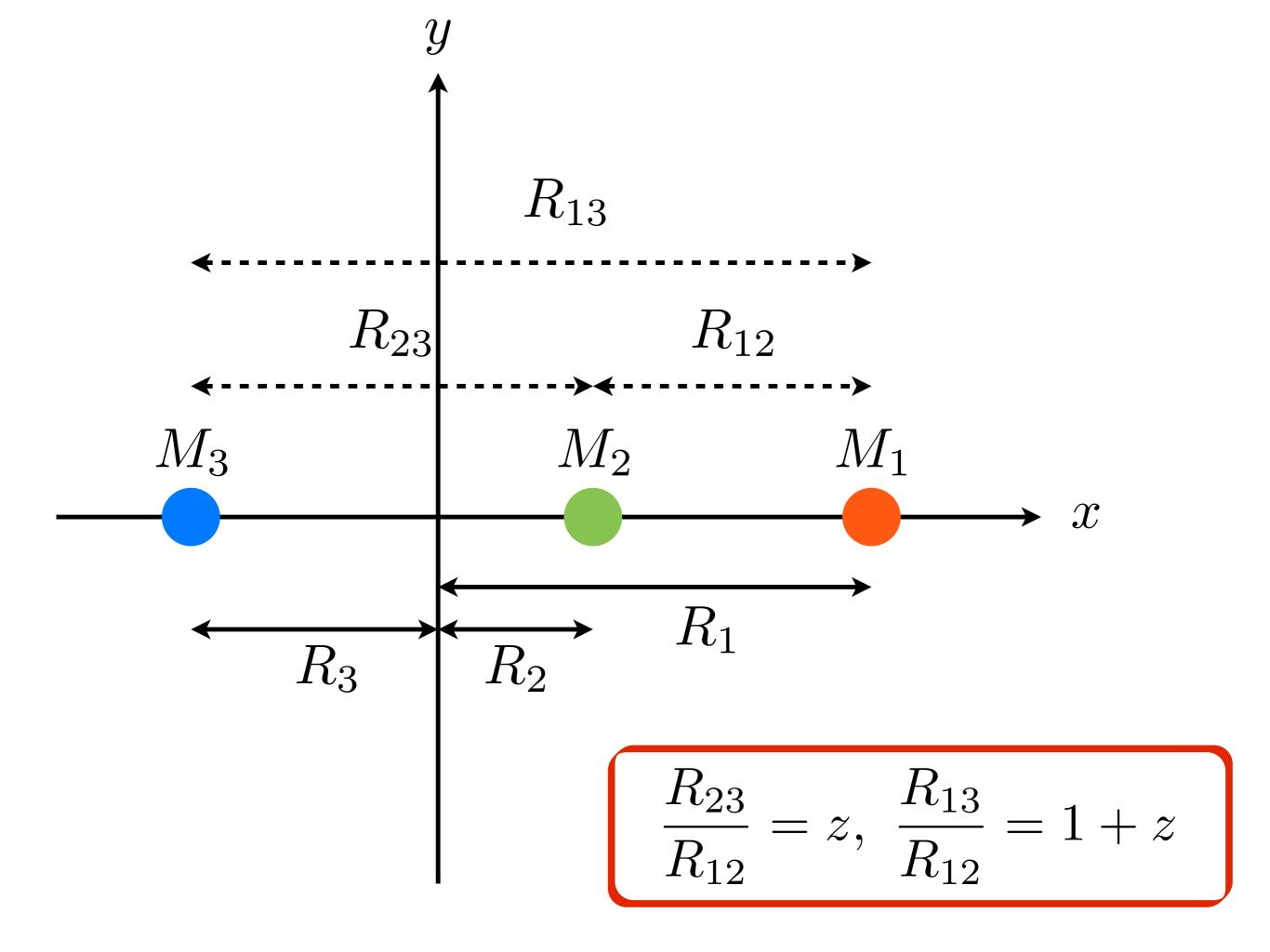
See also Poster by Yamada

GR collinear solution



Euler

Three masses always line up



Nonlinear gravity

$$\frac{d^{2} \boldsymbol{r}_{K}}{dt^{2}} = \sum_{A \neq K} \boldsymbol{r}_{AK} \frac{Gm_{A}}{r_{AK}^{3}} \left[1 - 4 \sum_{B \neq K} \frac{Gm_{B}}{c^{2} r_{BK}} - \sum_{C \neq A} \frac{Gm_{C}}{c^{2} r_{CA}} \left(1 - \frac{\boldsymbol{r}_{AK} \cdot \boldsymbol{r}_{CA}}{2r_{CA}^{2}} \right) \right]$$

$$+ \left(\left(\frac{\boldsymbol{v}_K}{c} \right)^2 \right) + 2 \left(\frac{\boldsymbol{v}_A}{c} \right)^2 - 4 \left(\frac{\boldsymbol{v}_A}{c} \right) \cdot \left(\frac{\boldsymbol{v}_K}{c} \right) - \frac{3}{2} \left(\frac{\left(\frac{\boldsymbol{v}_A}{c} \right) \cdot \boldsymbol{r}_{AK}}{r_{AK}} \right)^2 \right]$$

$$+\frac{7}{2}\sum_{A\neq K}\sum_{C\neq A}\boldsymbol{r}_{CA}\frac{Gm_C}{r_{CA}^3}\frac{Gm_A}{c^2r_{AK}}$$

Triple coupling $M1 \times M2 \times M3$

not exist in Newton

Assume

line up circular motion

Is EIH-EOM satisfied?

Yamada, HA (2010)

$$F(z) \equiv \sum_{k=0}^{7} A_k z^k = 0$$

7th order

$$\begin{split} A_7 &= \frac{M}{a} \left[-4 - 2(\nu_1 - 4\nu_3) + 2(\nu_1^2 + 2\nu_1\nu_3 - 2\nu_3^2) - 2\nu_1\nu_3(\nu_1 + \nu_3) \right], \quad A_3 = -(1 - \nu_1 + 2\nu_3) + \frac{M}{a} \left[6 + 2(2\nu_1 + 5\nu_3) - 4(4\nu_1^2 + \nu_1\nu_3 - 2\nu_3^2) \right] \\ A_6 &= 1 - \nu_3 + \frac{M}{a} \left[-13 - (10\nu_1 - 17\nu_3) + 2(2\nu_1^2 + 8\nu_1\nu_3 - \nu_3^2) \right] \\ &\quad + 2(\nu_1^3 - 2\nu_1^2\nu_3 - 3\nu_1\nu_3^2 - \nu_3^3) \right], \\ A_5 &= 2 + \nu_1 - 2\nu_3 + \frac{M}{a} \left[-15 - (18\nu_1 - 5\nu_3) + 4(5\nu_1\nu_3 + 4\nu_3^2) \right] \\ &\quad + 6(\nu_1^3 - \nu_1\nu_3^2 - \nu_3^3) \right], \\ A_6 &= 1 - \nu_3 + \frac{M}{a} \left[-15 - (18\nu_1 - 5\nu_3) + 4(5\nu_1\nu_3 + 4\nu_3^2) \right], \\ A_7 &= 1 - 2\nu_1 + \nu_3 + \frac{M}{a} \left[-15 - (18\nu_1 - 5\nu_3) + 4(5\nu_1\nu_3 + 4\nu_3^2) \right], \\ A_8 &= 1 - 2\nu_1 - 2\nu_3 + \frac{M}{a} \left[-15 - (18\nu_1 - 5\nu_3) + 4(5\nu_1\nu_3 + 4\nu_3^2) \right], \\ A_9 &= 1 - 2\nu_1 + \nu_3 + \frac{M}{a} \left[-15 - (18\nu_1 - 5\nu_3) + 2(5\nu_1\nu_3 + 4\nu_3^2) \right], \\ A_9 &= 1 - 2\nu_1 + \nu_3 + \frac{M}{a} \left[-15 - (18\nu_1 - 5\nu_3) + 4(5\nu_1\nu_3 + 4\nu_3^2) \right], \\ A_9 &= 1 - 2\nu_1 + \nu_3 + \frac{M}{a} \left[-15 - (18\nu_1 - 5\nu_3) + 4(5\nu_1\nu_3 + 4\nu_3^2) \right], \\ A_9 &= 1 - 2\nu_1 + \nu_3 + \frac{M}{a} \left[-15 - (18\nu_1 - 5\nu_3) + 4(5\nu_1\nu_3 + 4\nu_3^2) \right], \\ A_9 &= 1 - 2\nu_1 + \nu_3 + \frac{M}{a} \left[-15 - (18\nu_1 - 5\nu_3) + 4(5\nu_1\nu_3 + 4\nu_3^2) \right], \\ A_9 &= 1 - 2\nu_1 + \nu_3 + \frac{M}{a} \left[-15 - (18\nu_1 - 5\nu_3) + 4(5\nu_1\nu_3 + 4\nu_3^2) \right], \\ A_9 &= 1 - 2\nu_1 + \nu_3 + \frac{M}{a} \left[-15 - (18\nu_1 - 5\nu_3) + 4(5\nu_1\nu_3 + 4\nu_3^2) \right], \\ A_9 &= 1 - 2\nu_1 + \nu_3 + \frac{M}{a} \left[-15 - (18\nu_1 - 5\nu_3) + 4(5\nu_1\nu_3 + 4\nu_3^2) \right], \\ A_9 &= 1 - 2\nu_1 + \nu_3 + \frac{M}{a} \left[-15 - (18\nu_1 - 5\nu_3) + 4(5\nu_1\nu_3 + 4\nu_3^2) \right], \\ A_9 &= 1 - 2\nu_1 + \nu_3 + \frac{M}{a} \left[-15 - (18\nu_1 - 5\nu_3) + 4(5\nu_1\nu_3 + 4\nu_3^2) \right], \\ A_9 &= 1 - 2\nu_1 + \nu_3 + \frac{M}{a} \left[-15 - (18\nu_1 - 5\nu_3) + 4(5\nu_1\nu_3 + 4\nu_3^2) \right], \\ A_9 &= 1 - 2\nu_1 + \nu_3 + \frac{M}{a} \left[-15 - (18\nu_1 - 5\nu_3) + 4(5\nu_1\nu_3 + 4\nu_3^2) \right], \\ A_9 &= 1 - 2\nu_1 + \nu_3 + \frac{M}{a} \left[-15 - (18\nu_1 - 5\nu_3) + 4(5\nu_1\nu_3 + 4\nu_3^2) \right], \\ A_9 &= 1 - 2\nu_1 + \nu_3 + \frac{M}{a} \left[-15 - (18\nu_1 - 5\nu_3) + 4(5\nu_1\nu_3 + 4\nu_3^2) \right], \\ A_9 &= 1 - 2\nu_1 + \nu_3 + 2\nu_1 + \nu_3 + 2\nu_1 + \nu_3 + 2\nu_1 + 2\nu_3 + 2\nu_1 + 2\nu_1 + 2\nu_2 + 2\nu_1 +$$

5th order in Newton Gravity

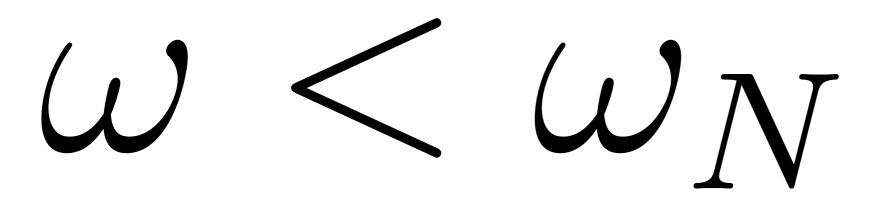
Yamada, HA (2011)

Descartes rule of signs and Slow Motion (PN)

Uniqueness

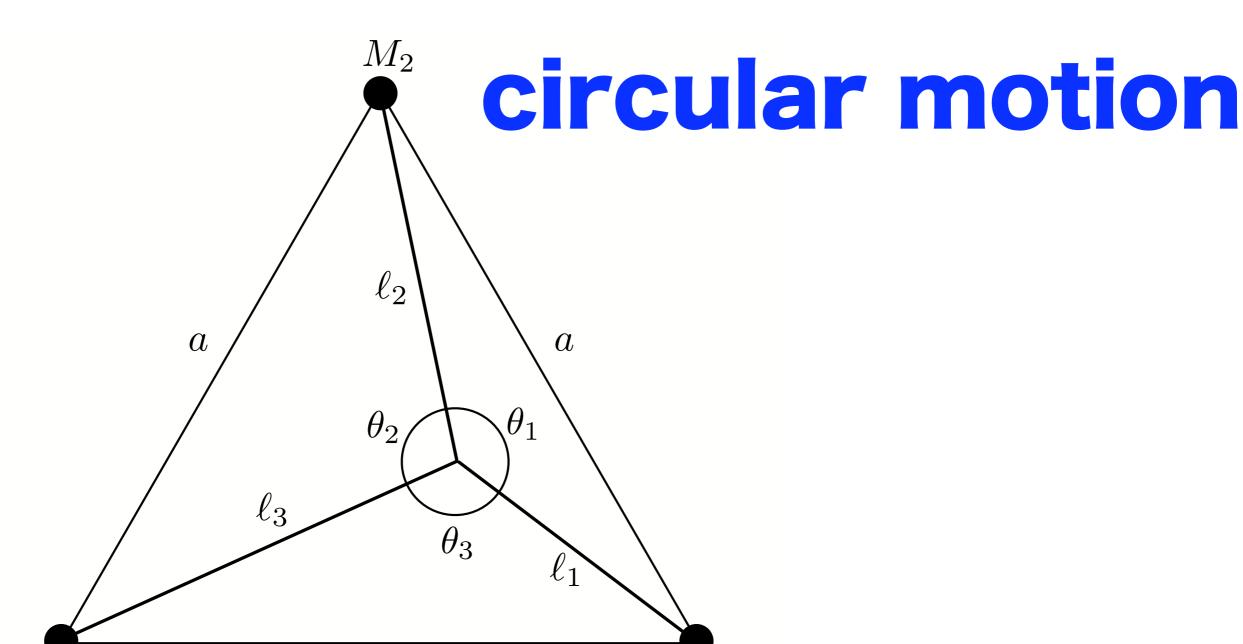
(z = positive)

For the same mass and full length, one can show



GR angular velocity is always smaller

Assume · · equilateral triangle



a

 M_1

 M_3

Equilateral triangular sol.

is possible in Newton gravity

for three general masses

Ichita, Yamada, HA (2011)

- Equilateral triangular sol. is possible at 1PN in GR if and only if either
- 1) Equal finite masses
- 2) Two equal finite,

one test masses

3) One finite,

two test masses

A little more...

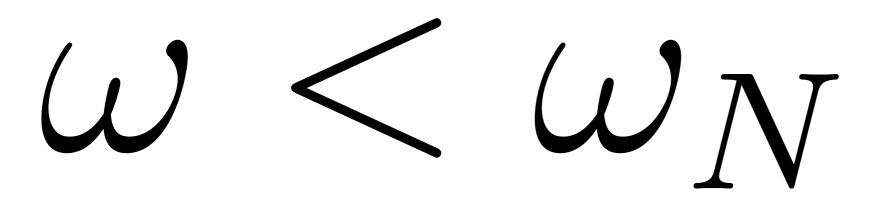
EOM of M1 becomes

$$-\omega^{2} \boldsymbol{x}_{1} = -\frac{M}{a^{3}} \boldsymbol{x}_{1} + g_{PN1} \boldsymbol{x}_{1}$$

$$+ \frac{\sqrt{3}M}{16a^{3}} \boldsymbol{n}_{\perp 1} \underbrace{\frac{M_{2}M_{3}(M_{2} - M_{3})}{M_{2}^{2} + M_{2}M_{3} + M_{3}^{2}}}_{\times \left[10 + \frac{a^{3}}{M^{2}} \left(-4M_{1} + 5M_{2} + 5M_{3}\right)\omega^{2}\right]$$

M2=M3, unless test mass

For the same mass and side length, one can show



GR angular velocity is always smaller

Torigoe et al. PRL (2009) GWs

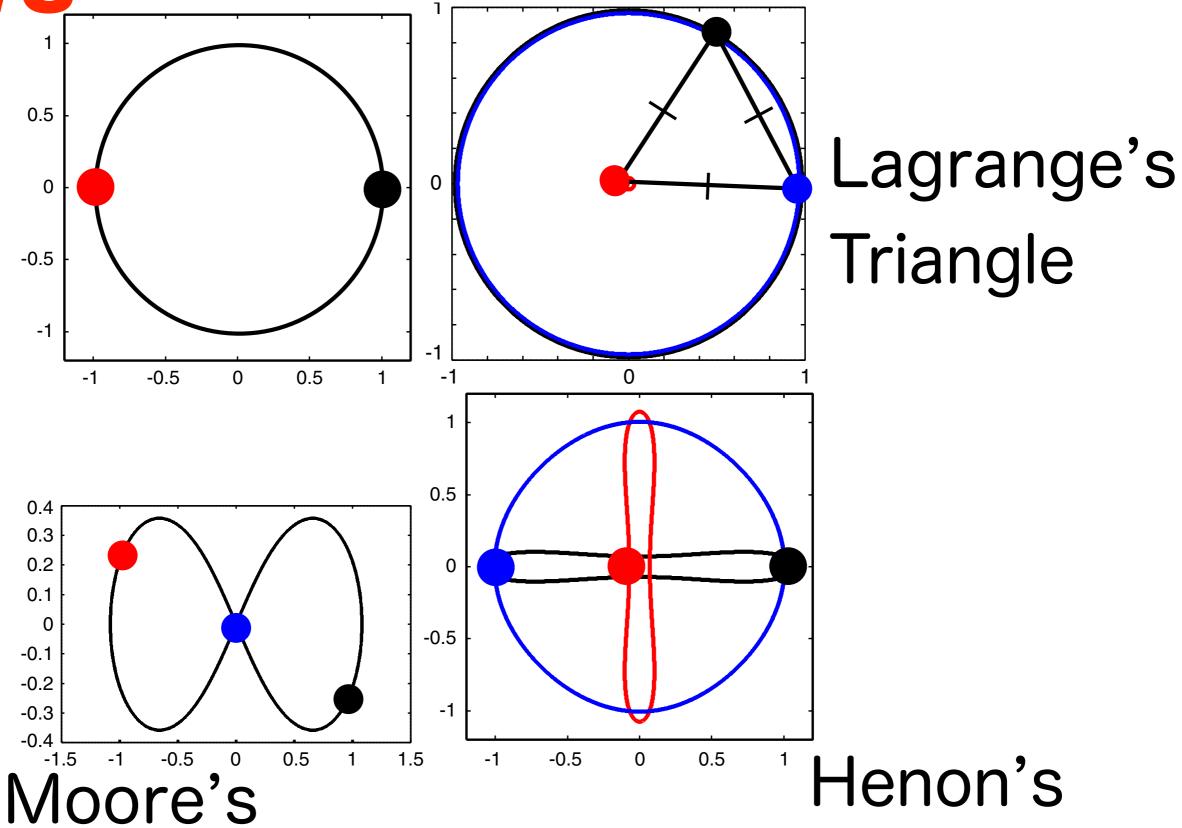
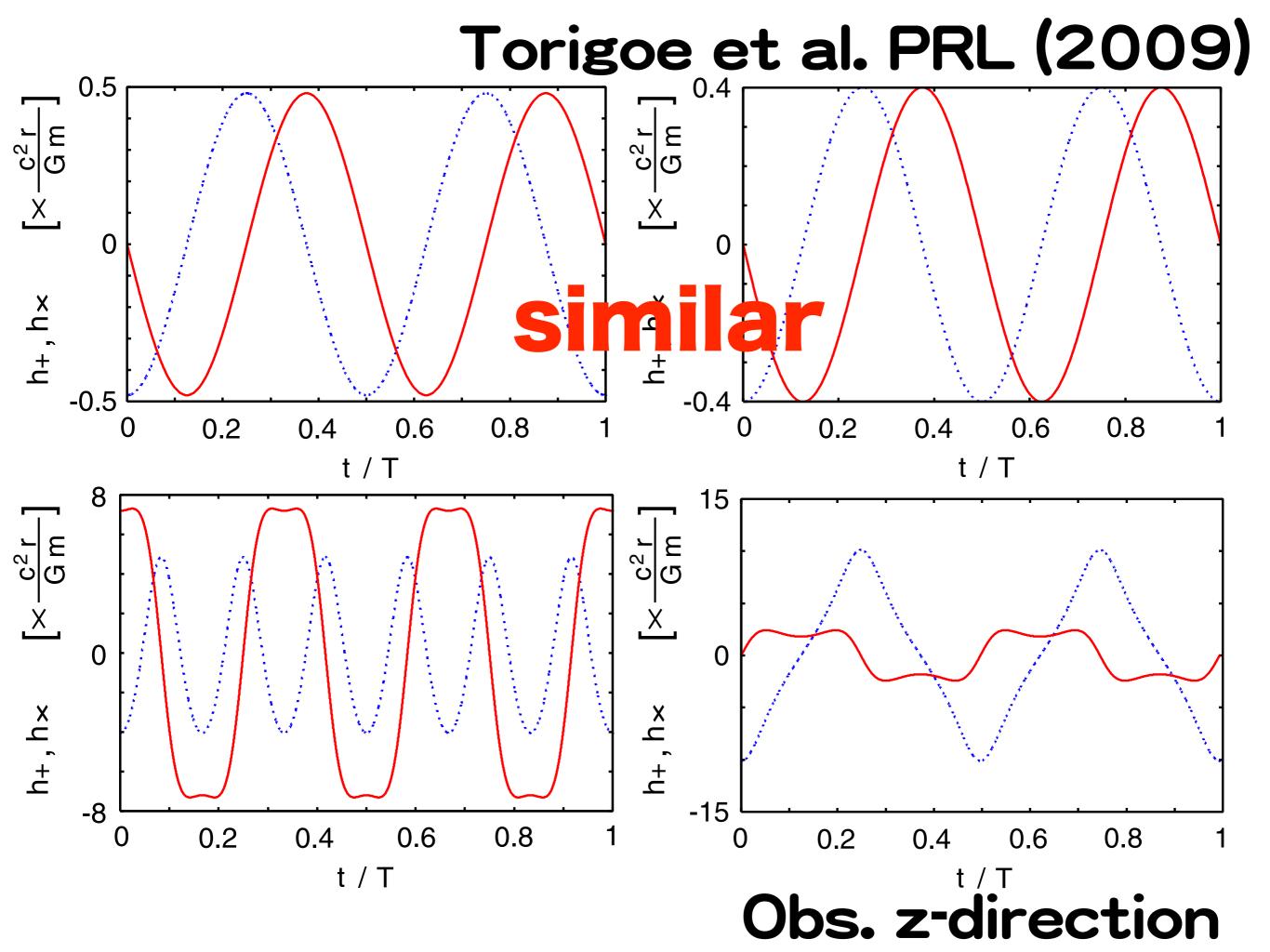


Figure-8

Henon's Criss-cross



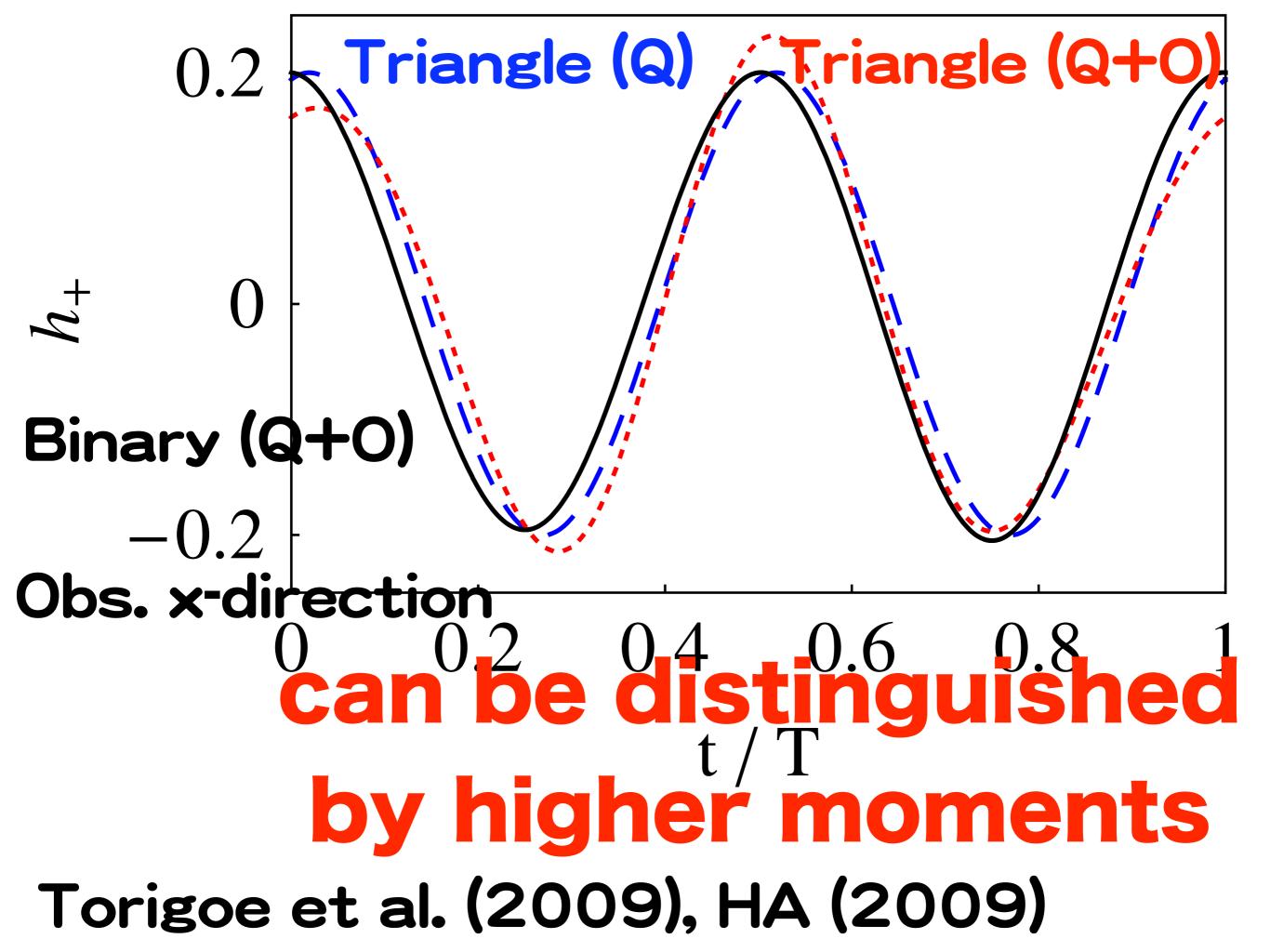
orbital shrinking rate

$$\frac{1}{a}\frac{da}{dt} = -\frac{64}{5}\frac{m_{\text{tot}}^3}{a^4} \frac{\left\{\sum_p \nu_p \left(\frac{M_p}{m_{\text{tot}}}\right)^{2/3}\right\}^2 - 2\sum_{p \neq q} \nu_p \nu_q \left(\frac{M_p}{m_{\text{tot}}}\right)^{2/3} \left(\frac{M_q}{m_{\text{tot}}}\right)^{2/3} \sin^2(\theta_p - \theta_q)}{\sum_{p \neq q} \nu_p \nu_q - \sum_p \nu_p \left(\frac{M_p}{m_{\text{tot}}}\right)^{2/3}}$$

$$f_{\rm GW}^2 = m_{\rm tot}/\pi^2 a^3$$

$$\frac{1}{f_{\rm GW}} \frac{df_{\rm GW}}{dt} = \frac{96}{5} \pi^{8/3} M_{\rm chirp}^{5/3} f_{\rm GW}^{8/3}$$

same as binary!

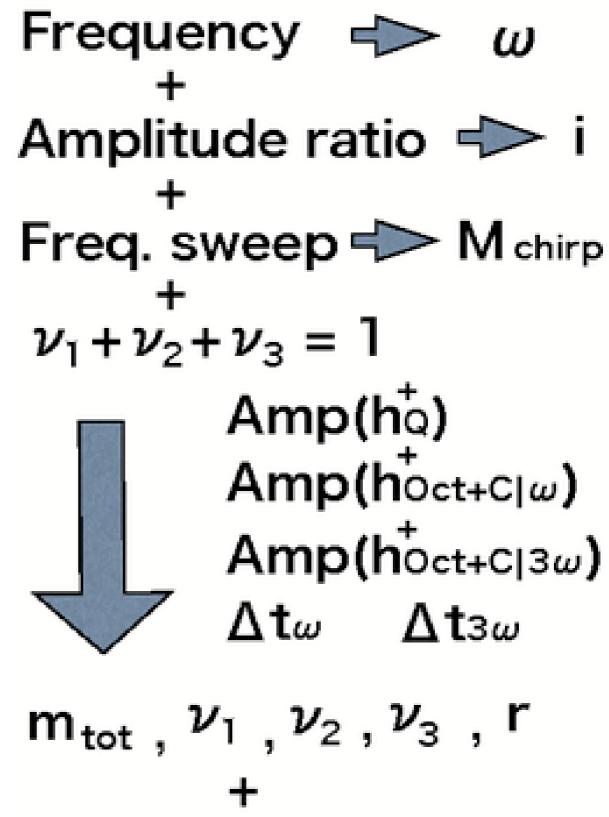


Flow chart

Is GW source a binary?

Paramater determinations of particular 3-body

HA (2009)



Source test

or others

§3 Summary

- 1. Choreography in GR 2. GR extension of Euler+Lgrange Similarity and difference in Newtonian and GR sol.
 - A lot of interesting things

to do!