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Abstract. We qualitatively studied the four-vortex system which
maintains symmetry with respect to the origin. We completely clas-
sified the solutions in the two simple cases. There exist double chore-
ographies.

1. Introduction

Motion of vortices in R2 is described by the following differential equations

żk = i
∑
j ̸=k

Γj

zk − zj
, (k = 1, 2, · · · , N) (1)

where i =
√
−1, zk = xk + iyk ∈ C denotes the position of the k-th

vortex, żk = dzk/dt, and Γk ∈ R\{0} the k-th vorticity divided by 2π. In
general, the cases for N ≤ 3 are integrable, and they have been studied
well [1–5]. In this paper, we study a special case where four vorticies are
kept symmetry with respect to the origin. Namely, the system satisfies the
following conditions through motion.

Γ3 = Γ1, Γ4 = Γ2, z3 = −z1, z4 = −z2 (2)

The equations of motion (1) is reduced to
ż1 = i

(
Γ1

2z1
+

Γ2

z1 − z2
+

Γ2

z1 + z2

)
,

ż2 = i

(
Γ2

2z2
+

Γ1

z2 − z1
+

Γ1

z2 + z1

)
.

(3)

The dynamical system (3) permits two integrals:{
I = Γ1(x

2
1 + y21) + Γ2(x

2
2 + y22),

h = |z1|Γ
2
1 |z2|Γ

2
2(|z1 − z2| |z1 + z2|)2Γ1Γ2 ,

(4)
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where I and h̃ = log h should be called the moment of inertia and the
energy, respectively. Therefore, the dynamical system (3) is integrable. In
principle, the solutions can be obtained by quadrature. Almost all solutions
are periodic or quasi-perodic. The behaviour is not much complicated. It,
however, has not yet enough studied until now.

We find the following theorems in the cases of Γ1 > Γ2 > 0 and
Γ1 > 0 > Γ2.

Theorem 1 There are choreographic solutions, quasi-periodic solutions,
homographic solutions, heteroclinic connections, but no collisions.

Theorem 2 When Γ1 ≥ Γ2 > 0, there are two different regular tetragon
homographic solutions which are stable, and two different collinear
homographic solutions which are unstable.

Theorem 3 When Γ1 > 0 > Γ2, there are two different rhomboidal homo-
graphic solutions which are unstable, but no collinear homographic
solutions. There are heteroclinic connections between the rhomboidal
homographic solutions to infinity.

Theorem 2 and 3 will be shown in the following section, individually. The-
orem 1 will be shown as the summary of them.

2. Symmetric Four-Vortex Problem

2.1. Equations of motion in the polar form

Here we introduce the polar form: zk = rke
iθk . The equations of motion

are transformed to as follows.

ṙ1 =
2Γ2r1r

2
2 sin 2θ

(r21 + r22)
2 − 4r21r

2
2 cos

2 θ
, ṙ2 = − 2Γ1r

2
1r2 sin 2θ

(r21 + r22)
2 − 4r21r

2
2 cos

2 θ
. (5)

If we introduce new set of variables:

θ = θ2 − θ1, ψ =
θ1 + θ2

2
,

then we have
θ̇ =

Γ2r
2
1 − Γ1r

2
2

2r21r
2
2

+
2 (Γ1r

2
2 − Γ2r

2
1 − (Γ1r

2
1 − Γ2r

2
2) cos 2θ)

(r21 + r22)
2 − 4r21r

2
2 cos

2 θ
,

ψ̇ =
Γ2r

2
1 + Γ1r

2
2

4r21r
2
2

+
Γ1r

2
2 + Γ2r

2
1 − I cos 2θ

(r21 + r22)
2 − 4r21r

2
2 cos

2 θ
,

(6)

where θ ∈ (−π, π] and ψ ∈ (−π, π], and the integrals in the new variables{
I = Γ1r

2
1 + Γ2r

2
2,

h = r
Γ2
1

1 r
Γ2
2

2 {(r21 + r22)
2 − 4r21r

2
2 cos

2 θ}Γ1Γ2 .
(7)

The right hand sides of Eq. (4) and (5) do not contain ψ. This means that
the variable ψ is separable. By using the integrals I and h,



2.2. Case 1: Γ1 ≥ Γ2 > 0

Let Γ1 = 1/α2 and Γ2 = 1/β2 with β ≥ α > 0. Transform variables

r1 = α cosφ, r2 = β sinφ,

and we have I = 1. Then, the energy becomes

h = αα−4

ββ−4

cosα
−4

φ sinβ−4

φ((α2 cos2 φ+β2 sin2 φ)2−α2β2 sin2 2φ cos2 θ)α
−2β−2

.

Instead of h, we will study α−α−4
β−β−4

h, namely

f(θ, φ) = cosα
−4

φ sinβ−4

φ((α2 cos2 φ+β2 sin2 φ)2−α2β2 sin2 2φ cos2 θ)α
−2β−2

.

2.3. Case 2: Γ1 > 0 > Γ2

Let Γ1 = 1/α2 and Γ2 = −1/β2. Transform variables

r1 = α coshφ, r2 = β sinhφ,

and we have I = 1. Then, the energy becomes

h =
αα−4

ββ−4
coshα−4

φ sinhβ−4

φ

((α2 cosh2 φ+ β2 sinh2 φ)2 − α2β2 sinh2 2φ cos2 θ)2α−2β−2
.

Instead of h, we will study α−α−4
β−β−4

h, namely

g(θ, φ) =
coshα−4

φ sinhβ−4

φ

((α2 cosh2 φ+ β2 sinh2 φ)2 − α2β2 sinh2 2φ cos2 θ)2α−2β−2
.

2.4. Example 1: Γ1 = Γ2 = γ > 0

In this case, the integrals become

I = γ(r21 + r22), h = [r1r2
{
(r21 + r22)

2 − 4r21r
2
2 cos

2 θ
}
]γ

2

.

Assuming I = γ, let

r1 = cosφ, r2 = sinφ.

It is sufficient to take 0 < φ <
π

2
because r1 > 0, r2 > 0. If we permit

binary collision of vorteces, then we extend it to 0 ≤ φ ≤ π

2
. Relations

(θ, φ) =
(
0,
π

4

)
,
(
π,
π

4

)
also express binary collision. By using these

variables, energy can be expressed as

h =
1

2
sin 2φ(1− sin2 2φ cos2 θ). (8)



Then, the equations of motion become

θ̇ = 2γ cot 2φ

(
1

sin 2φ
− 2 sin 2φ cos2 θ

1− sin2 2φ cos2 θ

)
, (9)

φ̇ = − γ sin 2φ sin 2θ

1− sin2 2φ cos2 θ
, (10)

ψ̇ =
γ

sin 2φ

(
1

sin 2φ
+

sin 2φ− cos θ

1− sin 2φ cos θ
+

sin 2φ+ cos θ

1 + sin 2φ cos θ

)
. (11)

The phase space is described in terms of three variables (θ, ψ, φ), and
homeomorphic to S1 × S1 × [0, π/2]. Since h does not include ψ, contours
of h are projection of solution curves (θ(t), ψ(t), φ(t)). Now let us consider
h(θ, φ) as a function of θ and φ. The extrema of h(θ, φ) are summerized
in Table 1 by simple calculations. The contours of h(θ, φ) are illustrated
in Figure 1. This contour map clarifies that the solutions are in general

Table 1. Extrema of h(θ, φ)

α =
1

2
arcsin

1√
3
∈ (0,

π

2
), and β =

π

2
− α.

(θ, φ) h(θ, φ) description(
0,
π

4

)
,
(
π,
π

4

)
0 local minimum

binary collision(
±π
2
,
π

4

) 1

2
local maximum

square homographic solution

(0, α), (0, β), (π, α), (π, β)

√
3

9
saddle

collinear homographic solution

periodic in (θ, φ) except for the cases indicated in Table 1. The solutions
are also periodic in ψ except for binary collision. Let T1 be a period in
(θ, φ), namely

T1 = 2

∫ φmax

φmin

dφ

φ̇
=

∫ φmax

φmin

sin2 2φ cos2 θ − 1

γ sin 2φ sin 2θ
dφ

and let T2 be a half period in ψ, namely

T2 =

∫ π/2

0

dψ

ψ̇
=

∫ π/2

0

(1− sin 2φ cos θ)(1 + sin 2φ cos θ) sin2 2φ

γ(1 + sin 2φ)(1 + sin2 2φ− (1 + cos2 θ) sin 2φ)
dψ.
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Figure 1. Contours of h(θ, φ) with abscissa θ ∈ [0, π] and ordi-

nate φ ∈
[
0,
π

2

]

We can assume
α

β
irreducible for α, β ∈ N. If αT1 = βT2, then the solution

is periodic. Moreover if β is odd number, the solution is choreography. If
T1/T2 is irrational, then it is quasi-periodic.

Theorem 1 : In the equi-vortex symmetric four-votex system (5,6,7),

• Square homographic solution is stable.

• Collinear homographic solution is unstable.

• There exist heteroclinic solutions connecting two different collinear
homographic solutions.

• All solutions other than heteroclinic solutions are periodic or
quasi-periodic. Among them double choreography exists.

• No solutions begin from (end at) binary collision
(Binary collision is irregularizable).

2.5. Example 2: Γ1 = −Γ2 = γ > 0

In this case, the integrals become

I = γ(r21 − r22),

h =
r1r2

(r21 + r22)
2 − 4r21r

2
2 cos

2 θ
.

Moreover introduce the following transformation by letting I = γ.

r1 = coshφ, r2 = sinhφ.

It is sufficient to take φ > 0 because r1 > 0, r2 > 0.



Figure 2. (a) collinear homographic solution, (b) double chore-
ography, (c,d) two different solutions in the neighborhood of het-
eroclinic solutions

Equations of motion with h are rewritten to the following expressions
by using new variables.

θ̇ =
2γ(sinh2 2φ sin2 θ − 1) cosh 2φ

(1 + sinh2 2φ sin2 θ) sinh2 2φ
(12)

φ̇ = − γ sinh 2φ sin 2θ

1 + sinh2 2φ sin2 θ
(13)

ψ̇ = −γ(cosh
2 2φ+ sinh2 2φ cos2 θ)

(1 + sinh2 2φ sin2 θ) sinh2 2φ
(14)

h =
sinh 2φ

2(1 + sinh2 2φ sin2 θ)
. (15)

The phase space is described in terms of three variables (θ, ψ, φ), and
homeomorphic to S1 × S1 × R+. Since h does not include ψ, contours of
h are projection of solution curves (θ(t), ψ(t), φ(t)). Now let us consider
h(θ, φ) as a function of θ and φ. The extrema of h(θ, φ) are summerized



in Table 2 by simple calculations. The contours of h(θ, φ) are illustrated
in Figure 3.

Table 2. Extrema of h(θ, φ) for Γ1 = −Γ2 = γ > 0
(θ, φ) h(θ, φ) description
(∗, 0) 0 local minimum

binary collision(
±π
2
,
1

2
ln(1 +

√
2)

)
1

4
saddle

rhomboidal homographic solution

0 0.5 1 1.5 2 2.5 3
0

0.5

1

1.5

2

2.5

3

Figure 3. Contours of h(θ, φ) for Γ1 = −Γ2 = γ > 0 with
absissa θ ∈ [0, π] and ordinate φ ∈ [0, π]

Elementary calculations clarify no local maxima in h(θ, φ). In Figure
3, solutions below the bounded heteroclinic solution are periodic in θ while
one above it excape to infinity as t→ ±∞. On the other hand, any solution

is periodic in ψ. We can assume
α

β
irreducible for α, β ∈ N. If αT1 = βT2,

then the solution is periodic. Moreover if β is odd number, the solution is
choreography. If T1/T2 is irrational, then it is quasi-periodic.

Theorem 2 : In the anti-equi-vortex symmetric four-votex system (8,9,10),



• There never exist square homographic solution and collinear ho-
mographic solution

• Rhomboidal homographic solution is unstable.

• There exist bounded heteroclinic solutions connecting two dif-
ferent rhomboidal homographic solutions.

• There exist unbounded heteroclinic solutions connecting rhom-
boidal homographic solutions and infinity.

• All solutions other than heteroclinic solutions and escapers are
periodic or quasi-periodic. Among them double choreography
exists.

• No solutions begin from (end at) binary collision
(Binary collision is irregularizable).

Figure 4. (a) rhomboidal homographic solution, (b) double
choreography, (c,d) two different solutions in the neighborhood
of heteroclinic solutions
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