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A dynamical system approximation to the

analytical modeling of the roto–translatory
coupling of the Earth internal motions

Alberto Escapa1 & Toshio Fukushima2

Abstract. We construct an analytical model to describe the inter-
nal translational motion of a three layer body. This body is assumed
to be composed of three homogeneous constituents: a rigid spherical
shell enclosing a perfect fluid with a rigid spherical body. By means
of a dynamical system approach based on Lagrangian mechanics, we
compute the equations of motion of the system and its solution in the
small oscillations approximation. This method allows us to obtain
a clear analytical representation of the dynamics. As an application
of the theory, we calculate the characteristics of the internal trans-
lational motion of some three layer models of the Earth, Mercury,
and the icy bodies Europa, Titania, Oberon, Triton, and Pluto.
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1. Introduction

The classical celestial mechanics approach to model the motion of extended
bodies separates it in two parts: one aims at determining the motion of
the barycenter of the body. The other one is concerned with the relative
motion of the body about its barycenter.

In general, the relative motion must be described by giving the tempo-
ral and spatial dependence of a vectorial field, like the displacement vector
of an elastic material or the velocity field of a fluid. The rigid motion
components associated to these fields, i.e. the relative translations or rota-
tions of some constituents of the body, are specially interesting due, among
others, to their influence in the definition of the reference systems linked
to the body. These motions depends drastically on the internal structure
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of the body. For example, the rotational motion of a rigid body is quite
different from the rotation of an ellipsoidal shell filled with a fluid.

From this perspective, one mathematical model particularly interest-
ing is a three layer body composed of an external solid shell containing a
fluid with a solid (Figure 1). Even in the simplified case when the solids are
rigid bodies and the fluid is perfect, the internal dynamics of this system
is very rich since the solid constituents can perform both relative rotations
and translations. The investigation of these rotational and translational
internal motions, and their couplings, as well as their interactions with
the motion of the barycenter of the whole body, represents a challenging
problem.
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Figure 1. Reference (left panel) and instantaneous configura-
tion (right panel) of the three layer model considered in this work

In addition to its dynamical interest, the relevance of this investigation
is amplified if we take into account that this three layer model reproduces
to some extent the real structure of some celestial bodies. It is the case of
the Earth, although other bodies (e.g. Grinfeld &Wisdom 2005, Hussmann
et al. 2006) like Mercury or the medium–sized icy bodies Europa, Titan
Oberon, Triton, and Pluto might present this structure. The observation
of their internal rigid motions, or of the effects induced by them, could
provide some indirect mean to constrain their inner structure.

The complexity of the problem forces to develop a successive approx-
imations scheme in order to construct a reliable mathematical model of
this dynamical system. In this sense, a deep understanding of the roto–
translatory coupling of the rigid internal motions requires first to consider
separately the rotational and translational problems. In this note we will
be concerned with the internal translational motion in the dynamical sys-
tem framework, providing an sketch of the analytical treatment of this
problem. A comprehensive development of it can be found in Escapa &
Fukushima (2010).

At this stage, we are going to consider a simplified model of a three
layer body that describes the main features of the dynamics. Let us recall
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that, with the exception of the Earth, the internal structure of other ce-
lestial bodies is not well determined, so it would not have much sense to
develop a more complex model involving unknown rheological parameters.
In particular, the model is assumed to be composed of three layers of con-
stant density (Figure 1): the mantle with density ρm and mass mm, the
fluid outer core with density ρf and mass mf , and the solid inner core with
density ρs and mass ms. The mantle is a rigid spherical shell with internal
radius df and external dm, and the solid inner core a rigid sphere of radius
ds. The fluid is perfect, i.e. without viscosity and incompressible. The
evolution of the system is a consequence of the gravitational interactions
among the layers and the hydrodynamical interaction exerted by the fluid
on the solid constituents.

A close model to that described previously was worked out by Slichter
(1961). His study was motivated by the possibility of detecting the inter-
nal translational motion of the Earth inner core after a great earthquake
episode. With heuristical arguments, Slichter showed that the motion of
the system is similar to that of a harmonic oscillator with frequency ω,
usually referred as Slichter mode. This frequency depends on the rheo-
logical parameters of the Earth interior: density of the fluid, of the inner
core, etc. Later, some analytical investigations of this problem were also
performed (see Escapa & Fukushima 2010) like the works of Busse (1974)
or Grinfeld & Wisdom (2005).

Here, we will consider the same problem as that posed in Grinfeld &
Wisdom (2005) but approaching it with different techniques and providing
also some different application. In this problem it is assumed that solid
layers move only translationally, the fluid motion being generated by the
motion of the rigid constituents. The objective is to determine the na-
ture of the dynamics, especially to obtain an analytical expression of the
frequency ω in terms of the physical properties of the three layer body.
This expression will allow us to understand the influence of the motion of
the mantle in ω, since in the works of Slichter (1961) and Busse (1974)
this layer was assumed to be in rest. This assumption was taken as a
consequence of the small size of the Earth inner core with respect to the
mantle. However, as it was pointed out in Grinfeld & Wisdom (2005), it
is not the case of Mercury that has a large inner core. Hence, the interest
of determining the contributions of the motion of the mantle to ω. The
analysis performed in Grinfeld & Wisdom (2005) showed that, as in the
Earth case, also for Mercury that influence is negligible, although these
authors could not find a clear explanation of this fact. Our approach will
allow us to explain well the origin of this circumstance. In addition, we
will also show that the value of ω depends significatively on the different
possible internal structures of some icy bodies. Hence, the observation of
this frequency might provide another complementary way to constrain the
interior of these bodies, which is poorly known.
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2. Dynamical approach

In contrast to other approaches (e.g. Busse 1974, Grinfeld &Wisdom 2005)
the dynamics of the system will be determined through a variational prin-
ciple. Within this framework the equations of the motion are derived from
the kinetic energy, the potential energy, and the generalized forces of the
system. The main advantages of this method are that the solid and fluid
layers are treated as one single dynamical system, and that it is possible to
apply the celestial mechanics tools to study internal translational and rota-
tional motions dependencies, as well as the possible coupling mechanisms
with the external motions.

Another important point is that the hydrodynamical interaction among
the fluid and the solids is automatically incorporated in the kinetic energy
of the system (Lamb 1963, chp. VI). Hence, it is not necessary the calcu-
lation of the effect of the fluid pressures on the surfaces of the solids. This
approach has also been employed successfully in the study of the rotational
motion of a three layer Earth model (e.g. Escapa et al. 2003).

In the case of our model we will construct the equations of motion
from the Lagrange equations

d

dt

(
∂L

∂q̇i

)
−

(
∂L

∂qi

)
= 0, (1)

where the Lagrangian function is the difference between the kinetic and
potential energies

L = T − V. (2)

In this method the dynamical configuration of the system is specified
through the generalized coordinates and velocities qi and q̇i, respectively.
For our model it can be shown (Escapa & Fukushima 2010) that this dy-
namical system has only three degrees of freedom, that is to say, we only
need three independent coordinates qi, and their associated velocities, to
describe its time evolution.

This fact is a consequence of considering only the translational mo-
tion, and the particular symmetry of our system that allows us to link the
evolution of the barycenter of the three constituents of the body. Namely,

if ~ξm, ~ξf , and ~ξs denote the coordinates of the barycenters Om, Of , and Os

with respect to an inertial reference system whose origin O coincides with
the barycenter of the whole body, we have

mm
~ξm +mf

~ξf +ms
~ξs = ~0,

mf
~ξf = mf

~ξm +
ρf
ρs

ms
~ξm −

ρf
ρs

ms
~ξs.

(3)
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In addition, since the motion of the fluid is only due to that of the solid
layers, and it is assumed that the fluid is perfect, the velocity field of the
fluid has the form (Lamb 1963, art. 136)

~vf (~r, t) = ~∇φ, (4)

where φ is a solution of the Laplace equation in the fluid domain Df

~∇2φ = 0. (5)

This solution must also fulfill the following boundary conditions on the
mantle–fluid surface, ∂Dm, and solid inner core–fluid surface, ∂Ds,

~vf · ~n =
d~ξm
dt

· ~n at ∂Dm, ~vf · ~n =
d~ξs
dt

· ~n at ∂Ds, (6)

the normal vector ~n directed outside the fluid.
A convenient choice of generalized coordinates is to take the position

of the solid inner core barycenter with respect to the mantle, that is to say,

the three components of ~ηs = ~ξs − ~ξm, and the corresponding components
of the velocity d~ηs/dt.

Accordingly to the previous paragraph the dynamics of the system can
be described by giving the temporal evolution of ~ηs. To this end, we have to
construct the expressions of the kinetic and potential energies of the system.
Although our framework allows the consideration of non–linear terms, we
restrict ourselves to the development of a linear theory as it is customary
done in this kind of studies (e.g. Busse 1974, Grinfeld & Wisdom 2005).
It means that we are assuming that the instantaneous configuration of the
system only departs slightly from the reference configuration. In this way,
our study falls in the scope of the theory of small oscillations (e.g. Landau
& Lifshitz 2000, sec. 23), so the kinetic and potential energies will be
quadratic forms in the generalized velocities and coordinates, respectively.

The kinetic energy of the system is given by the sum of the kinetic
energy of each constituent. Specifically, we have that

Tm =
1

2
mm


d~ξm

dt




2

, Ts =
1

2
ms


d~ξs

dt




2

,

Tf =
1

2
ρf

∫

Df

[~vf (~r, t)]
2 dτ 3.

(7)

As regards to the kinetic energy of the solid constituents, Eq. (3) allows
us to write

~ξm =
ms

m

(
ρf
ρs

− 1

)
~ηs = α~ηs, ~ξs = (1 + α) ~ηs. (8)
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So, we obtain

Tm =
1

2
mmα

2

(
d~ηs
dt

)2

, Ts =
1

2
ms (1 + α)2

(
d~ηs
dt

)2

. (9)

With respect to the kinetic energy of the fluid and considering Eqs.
(5), (6), (7), the Gauss–Ostrogradski theorem provides

Tf =
1

2
ρf

∫

∂Dm

φ
(
~∇φ · ~n

)
dS +

1

2
ρf

∫

∂Ds

φ
(
~∇φ · ~n

)
dS =

=
1

2
ρf

∫

∂Dm

φ


d~ξm

dt
· ~n


 dS +

1

2
ρf

∫

∂Ds

φ


d~ξs

dt
· ~n


 dS. (10)

In the small oscillations approximation it can be shown (Escapa & Fukushima
2010) that these integrals can be approached as

∫

∂Dm,s

φ


d~ξm,s

dt
· ~n


 dS '

∫

∂D
(0)
m,s

φ(0)


d~ξm,s

dt
· ~n


 dS, (11)

where the superscript (0) denotes quantities evaluated in the reference
configuration. The function φ(0) is given by (Escapa & Fukushima 2010)

φ(0) =
1∑

m=0

[(
a1mr +

b1m
r2

)
C1m +

(
c1mr +

d1m
r2

)
S1m

]
, (12)

where C1m and S1m, depending on the spherical coordinates θ and φ, denote
the real spherical surface harmonics of the first degree (e.g. Escapa &
Fukushima 2010), and the coefficients a1m, b1m, c1m, and d1m are linear
functions of the components of d~ηs/dt.

In this way, taking into account that the surfaces ∂D(0)
m,s are spheres

centered at O of radius df and ds, the kinetic energy of the fluid turns out
to be

Tf =
1

2

(
2

3
πρfc

)(
d~ηs
dt

)2

, (13)

with

c = 2α2d3f − 2 (1 + α)2 d3s + 3
d3fd

3
s

d3f − d3s
. (14)

The potential energy of the system V arises from the gravitational
interaction among the constituents of the body. However, since the mantle
is an spherical shell of constant density, the gravitational potential in its
interior is constant (e.g. MacMillan 1958, sec. 29), so it does not influence
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the equations of motion. Hence, the relevant part of the potential energy
only comes from the fluid–solid inner core gravitational interaction. Al-
though it is possible to compute analytically this function, we can derive
its form from a physical way of reasoning (Escapa & Fukushima 2010).

Namely, the linearity of the gravitational potential allows us to visual-
ize the fluid–solid inner core subsystem as composed by two homogeneous
spheres: one of center O, radius df , and density ρf , and the other one
with center Os, radius ds, and density ρs − ρf . By doing so, to construct
the gravitational potential energy of these bodies we can substitute the
sphere of radius ds by a material point P with the same mass and located
at Os. So, the gravitational potential energy is equal to the product of the
potential of the homogeneous sphere of radius df at the position ~ηs by the
mass of the material point P .

Considering the expression of the potential of a homogeneous sphere
(e.g. MacMillan 1958, sec. 29), we find that the part of the gravitational
potential energy that influences the dynamics is given by

V =
2π

3
Gρf (~ηs)

2
[
4

3
πd3s (ρs − ρf)

]
=

2π

3
Gρf ms

(
1−

ρf
ρs

)
(~ηs)

2 , (15)

where G is the universal gravitational constant. This formula coincides
with the given by Slichter (1961) and has also been recovered from pure
mathematical computations in Escapa & Fukushima (2010).

Therefore, summing up Eqs. (9), (13), and (15) the Lagrangian of the
system is

L =
1

2

[
mmα

2 +ms (1 + α)2 +
3

2
πρfc

](
d~ηs
dt

)2

−

−
1

2

[
4π

3
Gρf ms

(
1−

ρf
ρs

)]
(~ηs)

2 .

(16)

As it can be seen, the dynamics has been reduced to that of a harmonic
oscillator with frequency

ω2 =
4π

3
Gρf

(
1−

ρf
ρs

)
ms

mmα2 +ms (1 + α)2 +
2

3
πρfc

. (17)

So, the evolution of ~ηs is given by

~ηs (t) = ~ηs (t0) cos [ω (t− t0)] +
(d~ηs/dt) (t0)

ω
sin [ω (t− t0)] , (18)

the constants ~ηs (t0) and (d~ηs/dt) (t0) providing the initial conditions.
This equation allows us to derive the motion of all the constituents of

our three layer Earth model. The equation (17) agrees with that obtained
by Grinfeld & Wisdom (2005), in spite of the different method employed
in that investigation.
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3. Applications

Next we will show some of the possible applications of the previous an-
alytical model to the internal translational motions of different celestial
bodies. A detailed analysis is presented in Escapa & Fukushima (2010).
Specifically, in this note we will only focus on the influence of the mantle
motion in the value of the frequency ω for the Earth and Mercury. Besides,
we will examine the dependence of this frequency on the thickness of the
external ice I layer of some possible models of icy bodies.

With this aim and in order to determine clearly the influence of the
rheological characteristics of the model in the oscillation frequency, it is
convenient to re–write Eq. (17), or alternatively its associated period. It
can be achieved by considering different asymptotic situations of the model
(Escapa & Fukushima 2010). In particular, after comparing the period of
our model with that of a sphere moving in an unbounded fluid (no mantle
case), and in a fluid limited by a external concentric spherical shell to the
inner core (mantle in rest case), we can write

T =
2π

ω
=

√√√√√√√√√√

3π

G


1 +

1

2

ρf
ρs

+
3

2

(
ρf
ρs

)2
ms

mf

+∆m




ρf

(
1−

ρf
ρs

) , (19)

with

∆m = −
ms

m

(
1−

ρf
ρs

)2

, m = mm +mf +ms. (20)

The second term inside the bracket of the numerator in Eq. (19) gives the
contribution arising from the motion in an unbounded fluid, the third one
the correction introduced when considering an external concentric spherical
shell, and the last one, ∆m, accounts for the contribution of the mantle
motion. This expression shows clearly the influence of each constituent on
the dynamics, since the period is a relatively simple function ρf , and the
ratios ρf/ρs, ms/mf and ms/m.

From this expression we will be able to obtain the relative difference
between the associated periods of the translational motion when the mantle
can move T ; or when it is assumed to be in rest T̂ , that is to say, by taking
∆m = 0 in Eq. (19). This difference is computed from

∆T =
T − T̂

T
. (21)

If, in addition, it is assumed that ∆m is small with respect to the other
terms appearing in Eq. (19), as it is the case for the Earth and Mercury, we
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can derive a simple first order analytical expression that accounts for that
relative difference ∆T . Namely, by performing a Maclaurin’s expansion of
Eq. (21) in ∆m, we found

∆T =
1

2

∆m

1 +
1

2

ρf
ρs

+
3

2

(
ρf
ρs

)2
ms

mf

+ ... (22)

This expression in combination with Eq. (19) allows to understand why
the effect of the translational motion of the mantle is almost irrelevant for
the Earth and Mercury. First, let us note that ∆T is negative since it is
also the case of ∆m. As a result, the motion of the mantle shortens the
period of the oscillations. This is evident from Eq. (19): since ∆m < 0,
when considering the mantle contribution the numerator is smaller, hence
the period is shorter.

With regard to its magnitude, the relative difference is proportional to
∆m what means that depends directly on the factorms/m and the contrast
of densities (Eq. 20). In addition, the approximation of ∆T is divided by
a function that contains, not only the contrast of densities ρf/ρs, but also
the ratio between the mass of the inner core and the mass of the fluid.
Hence, the effect of a massive inner core in ∆m may be compensated in
some amount when divided by ms/mf , since if the mass of the inner core
is significant in comparison with that of the whole body, it will also be
significant in comparison with the mass of the fluid, so the ratio ms/mf

will have a large value.

Table 1. Influence on the mantle motion in the internal trans-
lations period of the Earth and Mercury

Body ms/mf ρf (kg m−3) ρf/ρs ∆m T (h) T̂ (h)

Earth 0.05 12000 0.92 -0.0000 4.2356 4.2358
Mercury 6.35 8000 0.84 -0.0149 8.3900 8.3977

In Table 1 we show the different quantities entering in Eq. (19) and the

associated periods T and T̂ for Earth and Mercury, considering the values
of the physical characteristics of the Earth and Mercury models given in
Grinfeld & Wisdom (2005). We see that in the Earth case the influence
of the mantle motion is negligible as a consequence of the smallness of the
inner core and the similarity of the densities ρf and ρs. It implies that
∆m is very small and, therefore, the relative percentage variation ∆T is
minute.

For Mercury the variation ∆T is almost insignificant, but the reasons
are different. In contrast to the Earth the ratio ms/m accounts for about
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60% of the mass of Mercury. On the other hand, the density contrast of
Mercury is, roughly speaking, low as in the Earth case. These two facts
explain the origin of the value ∆m which remains relatively small due to the
dependence with (1− ρf/ρs)

2
∼ 0.025. At the same time, and it is also an

important difference with the Earth case, since the inner core is massive the
ratio ms/mf is also larger. This ratio is multiplied by the factor (ρf/ρs)

2,
but it does not change significantly its value due to the fact that ρf is close
to ρs. So, when divided by the terms containing ms/mf the contribution
of the mantle ∆m motion is reduced even more, providing a percentage
relative variation of ∆T ' −0.1%.

Therefore, the influence of the mantle motion on the translational
period of our model does not only depend on the relative size of the inner
core, but also on the density contrast between the fluid and the inner core
and the ratio of their respective masses. Hence, a significative influence of
the mantle motion requires, in addition to a massive core, a non too small
fluid layer with a high density contrast. In this situation, the influence of
the ratio ms/mf can be relatively compensated by the factor (ρf/ρs)

2 and
the contribution ∆m is not substantially reduced .

The second application that we are going to treat is concerned with
some icy bodies that also present a three layer structure but composed of
an external ice I layer, covering a subsurface water–ammonia ocean that
contains a large rocky inner core. This kind of models have been worked
out in Hussmann et al. (2006). They who found that, under the proper
conditions, some medium–sized outer planet satellites and large trans–
neptunian objects might have a subsurface ocean due to the presence of
ammonia. In particular, we will consider the three layer models of Europa,
Titania, Oberon, Triton, and Pluto developed in that work.

Depending on the initial concentration of ammonia the depth of the
subsurface ocean of the model is different. In turn, it implies a change
on the thickness of the ice I layer. In this way, for each body we have a
family of models differing in the thickness of the ice I layer that runs into
an interval of possible values [dmin, dmax]. From our perspective, it will be
interesting to analyze if the period of the internal translations (Eq. 19)
could differentiate those models, that is to say, to determine whether the
period depends significatively on the thickness of ice I layer or not. If it is
the case, observing the value of the period of the internal translation could
provide another indirect mean to constrain the internal structure of these
bodies.

In Table 2, and considering the data provided by Hussmann et al.
(2006), we have computed the different periods associated to the inter-
nal translational motions of some three layer models of Europa, Titania,
Oberon, Triton, and Pluto. Since the densities of the ice and liquid layers
were taken to be equal, and the sum of the depths of these layers was
constant, the sum of the masses mm +mf remains also constant for each
body too (see Hussmann et al. 2006). Let us note that for these bodies
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Table 2. Physical parameters for some models of icy bodies
with a possible subsurface ocean and their associated internal
translational periods

Body ρf/ρs ds (km) ms/m d (km) ms/mf T (h)

Europa 0.24 1405.0 0.92 79.5 22.58 6.39
77.5 22.01 6.32
74.8 21.27 6.24
70.0 20.07 6.11
57.0 17.38 5.79

Titania 0.29 519.8 0.58 253.1 36.76 9.03
229.7 14.28 6.29
217.6 10.68 5.73

Oberon 0.29 481.0 0.54 264.4 33.93 8.75
241.1 13.17 6.15

Triton 0.29 1017.0 0.72 200.5 7.66 5.11
194.9 7.32 5.05
187.5 6.91 4.97
174.8 6.29 4.86
143.9 5.13 4.63

Pluto 0.29 830.2 0.64 260.6 8.22 5.27
248.7 7.28 5.11
234.9 6.40 4.94
214.5 5.41 4.75
179.9 4.23 4.51

the contrast between the inner core and the fluid densities is very high,
since they are composed of very different materials: silicate rock versus
H2O (ρf =1000 kg m−3). In particular, we have that ρf/ρs is about 0.29
(0.24 in the case of Europe), in contrast to the Earth or Mercury situa-
tions where we had the values 0.92 and 0.84, respectively. In addition, all
these bodies have large rocky core when compare with the total mass of
the body. In this sense, they are in the opposite situation as the Earth
case: they have large inner cores and a high contrast density.

From Table 2 it is derived that for all the bodies the value of the
internal translational period lies between four and nine hours, this value
differentiating among the diverse possible models for the same body. To
discuss this differentiation, i.e. the dependence of the period with the
thickness of the ice I layer, or alternatively, with the depth of the subsurface
ocean, in Figure 2 we have plotted the period of these bodies against a
normalized–like thickness of the ice I layer d̄, instead of the real thickness
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Figure 2. Dependence of the internal translational period with
the thickness of the ice I layer for different models of Europa,
Titania, Oberon, Triton, and Pluto

d. We have introduced this variable d̄ to represent in one single graphic all
the situations and is defined as

d̄ =
d− dmin

dmax − dmin

, d̄ ∈ [0, 1] , (23)

where dmin and dmax denote, respectively, the minimum and maximum
thickness of the ice I layer of the body. For example, in the case of Europe
dmin = 57.0 km and dmax = 79.5 km which correspond to the normalized
values d̄ = 0 and d̄ = 1.

Table 2 and Figure 2 reflect that the period increases with the increase
of the thickness of the external ice layer. As a matter of fact, with our
approximations the period of each body is exclusively a function of d̄. This
circumstance comes from Eq. (19): the dependence of T on d̄ arises only
through the dependence of T on mf , since the parameters m, ms, dm, ρf
and ρs are constant for all the models of the same body. In addition, the
constancy of mm + mf and ρm implies that the mass of the ice layer is
only a function of d̄. Namely, we have that

mm =
4

3
πρm

(
d3m − d3f

)
=

4

3
πρm

[
d3m − (dm − d)3

]
. (24)



13

On the other hand, the expression of the period given by Eq. (19) can

be easily written in terms of mm what provides the dependence T = T
(
d̄
)
.

Since when the ice thickness increases the mass of the mantle mm increases
too, the denominator m − ms − mm, equal to mf appearing in Eq. (19)
decreases (recall that m and ms take the same values for all the models of
each body). So, the fraction ms/mf is greater and it is also the case for
the numerator of the fraction inside the square root. Therefore, the period
is increased.

Let us underline that the difference in the value of the periods asso-
ciated to models with different ice-I thickness is significative. In fact, the
relative difference between the opposite situations d̄ = 0 and d̄ = 1 for
each body, 1 − T (0)/T (1), is about a 10%, with the exceptions of Titania
and Oberon when it reaches a 37% and a 30%, respectively. In addition in
these cases the absolute differences are specially relevant, since they are of
the order of three and two hours.

Another interesting feature of these icy bodies (Escapa & Fukushima
2010) is that the influence of the motion of the ice I layer on the value
of the period of the translational oscillation cannot be neglected, since
ignoring that contribution can cause relative error of the order of a 10% in
the period of oscillation. It is an important difference with respect to the
Earth and Mercury cases, showing the need of considering in the modeling
of the internal dynamics of these systems the motion of the external layer.

4. Summary

In this investigation we have presented an analytical model to describe
the internal translational motion of a three layer body. This theoretical
treatment has been developed from the methods of dynamical systems.
In particular, the differential equations that governs the time evolution
of the constituents have been obtained from a Lagrangian approach by
constructing the kinetic and gravitational potential energy of the system.
This approach avoids the computation of the interactions among the fluid
and the solids, since they are automatically included in the kinetic energy
of the system. In a linear approximation, the equations of motion have
led to a solution of an oscillatory type. Our analysis has allowed us to
express the frequency of that oscillation in terms of some basic physical
characteristic of the model, providing a clear interpretation of the influence
of the body constituents on the value of the frequency.

As two initial applications of our theory we have considered the in-
ternal translation motions of the Earth and Mercury, and of some possible
models of the icy bodies Europa, Titania, Oberon, Triton, and Pluto. In
the Earth and Mercury cases we have found the reason that explains why
the motion of the mantle does not influence significatively the value of the
translational frequency. For the Earth it is due to the small inner core,
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whereas for Mercury, in spite of the fact of having a large inner core, it is
the joint consequence of a small density contrast, and a thin fluid out core
when compared with the mass of the solid inner core.

As regard to the icy bodies we have shown that the translational fre-
quency could provide a possible method to constrain the internal structure
of these bodies, since the differences in its value for different models of
the same body can be of the order of hours. In this way, we could infer
some limit to the thickness of the ice I layer, or the depth of the subsurface
oceans, of these bodies. This could have some interest in the design of
the Europa Jupiter System Mission (2009), one of whose objectives is to
determine the internal structure of Europa and Ganymede.

Finally, let us point out that one of the advantages of our dynamical
system approach is that the extension within this framework seems reliable.
So, in addition to incorporate some improvements in the physical charac-
teristics of the model, it would also be possible to include in our study the
internal rotational motions drawing a clear picture of the roto–translatory
coupling of the internal rigid motions. This work is now in progress and
will be presented in a forthcoming communication.
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