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ABSTRACT

We numerically compare four schemes to regularize a three-dimensional two-body problem un-
der perturbations; the Sperling-Biirdet (S-B), the Kustaanheimo-Stiefel (K-S), and the Biirdet-
Ferrandiz (B-F) regularizations and a three-dimensional extension of the Levi-Civita (L-C) reg-
ularization we developed recently. As for the integration time of the equation of motion, the
least is the unregularized treatment, then the K-S, the extended L-C, the B-F, and the S-B
regularizations. However, these differences become significantly small when the time to evaluate
perturbations becomes dominant. As for the integration error after one close encounter, the K-S
and the extended L-C regularizations give the least in the tie, next comes the S-B, then the B-F,
and the unregularized scheme for the unperturbed orbits with the eccentricity less than 2. This
order is unchanged significantly by various kinds of perturbations. As for the integration error
of elliptic orbits after multiple orbital periods, the situation remains the same except for the
rank of the S-B scheme, which varies from the best to the second worst depending on the length
of integration and/or on the nature of perturbations. Also we confirm that the Kepler energy
scaling enhances the performance of the unregularized, the K-S, and the extended L-C schemes.
As a result, the K-S and the extended L-C regularizations with the Kepler energy scaling provide

the best cost performance in integrating almost all the perturbed two-body problems.

Subject headings: celestial mechanics—methods: numerical

1. Introduction

The two-body regularization is an efficient tool
to integrate perturbed two-body problems numer-
ically. This is true not only in astrodymanics
(Bond & Allman 1996) but also in N-body sim-
ulations (Aarseth 2003). Originally it was devel-
oped to avoid the numerical difficulty in integrat-
ing nearly parabolic orbits like those of comets.
However, its effectiveness was confirmed even
for nearly circular orbits (Arakida & Fukushima
2000). This is due to its better numerical stability
than the unregularized Keplerian motion (Stiefel
& Scheifele 1971).

There are four schemes of three-dimensional
two-body regularization. They are, in the chrono-
logical order of publication, (1) the Sperling-
Biirdet (S-B) regularization (Sperling 1961; Biirdet
1967, 1968), which is also known as the Birdet-
Heggie regularization in the field of N-body simu-

lation (Heggie 1973), (2) the Kustaanheimo-Stiefel
(K-S) regularization (Kustaanheimo & Stiefel
1965), (3) the Biirdet-Ferrandiz (B-F) regular-
ization (Biirdet 1969; Ferrrandiz 1988), and (4)
an extension of Levi-Civita (L-C) regularization
which we developed recently (Fukushima 2007).
See Table 1 of Fukushima (2007) for their sum-
mary.

Recently a simple technique called the Kepler
energy scaling (Fukushima 2003) has become to
be known to enhance the performance of orbit in-
tegrations with the minimum increase of compu-
tational labor. So we consider the three modifi-
cations, t0o; (5) the unregularized treatment with
the Kepler energy scaling (Fukushima 2003), (6)
the K-S regularization with the Kepler energy scal-
ing (Fukushima 2004), and (7) the extended L-C
regularization with the Kepler energy scaling de-
scribed in Appendix B4 of Fukushima (2007).



In this report, we present numerical compar-
isons of these schemes together with the unreg-
ularized formulation in the light of their compu-
tational cost and performance. All the numeri-
cal experiments given here are conducted at a PC
with an Intel Pentium M chip of 1.3 GHz clock,
the used programming language is the COMPAQ
Fortran 6.6B compiler under the MS Windows
XP Pro SP2, and the computing environment
is double precision with the machine epsilon of
2753 ~ 1.11 x 1016,

2. Comparison

2.1. Computational Time

First we compare the computational cost. As
a typical example, we evaluate the computational
time to integrate the equations of motion of two-
body problems under N-body perturbations. To
be more realistic, we simulate the orbit integra-
tion of Icarus in the heliocentric coordinate sys-
tem where we count the perturbations due to ma-
jor planets and a group of massive asteroids, the
heliocentric orbits of which are approximated by
given Keplerian orbits. Refer Table 1 for the ini-
tial Keplerian elements of Icarus and Jupiter, the
largest perturber, in the heliocentric ecliptic coor-
dinate system at the epoch J2000.0.

We compare the seven schemes described in §1
as well as the unregularized treatment, namely the
direct integration in Cartesian coordinates. For
each of these formulations, we conduct a test inte-
gration of Icarus covering about one million years
and measure its execution time. We confirm that
the measured computational times do not depend
on the initial conditions of Icarus including the ini-
tial eccentricity. The reason we choose an elliptic
orbit as a test case is to run a long time integration
so that we can ignore the effect of the initial over-
head such as the transformation to the regularized
variables.

It is obvious that the unregularized treatment
without the Kepler energy scaling runs fastest.
Then we plot the ratios of the computational time
of the schemes relative to that of the fastest treat-
ment as a function of the number of perturbers.
See Figure 1, where we omit the curves for those
with the scaling since the additional computation
time due to the scaling is too small to be seen.
Among the regularized schemes, the fastest is the

K-S, next comes closely the extended L-C, then
the B-F, and the S-B scheme as the slowest. When
compared with the unregularized treatment, the
regularizations require 33, 35, 38, and 62 % more
computation time in the order of the K-S, the ex-
tended L-C, the B-F, and the S-B schemes if no
perturbations are considered. These numbers re-
duce to 21, 22, 26, and 39%, respectively in the
case of comets/asteroids in the solar system when
the perturbations due to eight classic planets are
considered.

The excess in computation times directly re-
flects the extra computational labor to transform
the physical time and the position, the velocity,
and the acceleration vectors in Cartesian coordi-
nates to/from each set of the regularized variables
and their derivatives with their own time-like ar-
guments, the procedures of which are summarized
in Table 1 of Fukushima (2007). However, these
additional computational times do not depend on
the nature of perturbations. Therefore, its ratio
relative to the whole integration time decreases
significantly when the time to evaluate perturba-
tions becomes dominant as clearly shown in Figure
1.

2.2. Treatment of Close Encounter

Next we compare how succesfully the close en-
counters are treated by the regularization schemes.
To do this, we examine the integration errors
caused by experiencing a single close encounter
while fixing the number of function calls to eval-
uate the acceleration during the encounter. Since
the degree of difficulty of close encounters mainly
depends on the nominal eccentricity, we measure
the errors while changing the initial eccentricity.
Refer Table 2 for the eccentricities we must face
in dealing with small solar system bodies.

In order to accommodate with closed elliptic or-
bits and open parabolic and hyperbolic orbits to-
gether, we fix the pericenter distance, ¢, and use
a finite fraction of the orbits. More specifically
speaking, we integrate the orbits in a finite range
of time such that the radius vector, r, is less than
or equal to eight times the pericenter distance, i.e.
r < 8q. See Figure 2 for some orbit curves used
for the measurement. In the figure, the attached
numbers show the eccentricity, e. As a result, the
tested arcs of orbit are classified into two cate-
gories; those with e < 7/9 = 0.7777--- and those



with e > 7/9. The former arcs are closed while the
latter ones are open. In the former case, we start
test particles from the apocenter and measure the
integration errors at the next apocenter passage.
In the latter case, we start test particles from a
point when r = 8¢ and measure the integration
errors at the point when r = 8¢ once again.

Let us begin by unperturbed orbits. Figure 3
shows the manner of error growth during the in-
tegration for an unperturbed orbit with the ec-
centricity, e = 0.99. As a numerical integrator,
we adopt the fourth order Runge-Kutta method.
The errors are those in the physical position vec-
tor, x, measured by comparing with the analyti-
cal solution, and divided by gq. We fix the inte-
gration step length measured in the independent
variable of each scheme throughout the integra-
tion. In other words, the integrated positions in
orbits are evenly distributed in the mean anomaly
for the unregularized case, in the true anomaly
for the B-F regularization, and in the eccentric
anomaly for the other schemes. Also we set the
fixed step lengths such that the total number of
integration steps is 64. This number is unchanged
whether the regularization scheme or the initial
eccentricity is altered. In the figure, ‘NR’ stands
for ‘No Regularization’ and ‘4+S’ means that the
Kepler energy scaling is applied. Also we omit the
curves of the extended L-C regularization with or
without the Kepler energy scaling since they are
practically the same as those of the K-S regulariza-
tion with or without the scaling, respectively. It
is obvious that the errors of unreguralized treat-
ment increase significantly according as the time
whether the Kepler energy scaling is applied or
not. On the other hand, the errors of all the regu-
larized formulations are roughly flat with respect
to the time.

In order to evaluate the eccentricity dependence
of the integration errors suffered by experiencing
a single close encounter, we prepare Figure 4 plot-
ting the integration errors at the endpoints as
functions of eccentricity. As the horizontal axis of
the figure, we choose not e but Brunnow’s param-
eter (Colwell 1993), A = (1—e)/(1 +e), to express
all the possible values of eccentricity, 0 < e < +00,
in a compact manner, i.e. —1 < A < +1. Thus
the kinks in graphs when A = 0.125 are due to
the change in the type of tested arcs of orbits con-
nected to the critical value e = 7/9. In the figure,

we omit the curves of extended L-C regularization
whether the Kepler energy scaling is applied or
not since the differences from the corresponding
curves of the K-S scheme are hardly visible.

2.3. Reason of Differences

Figure 4 illustrates large differences among the
tested formulations. To understand the reason,
we note the fact that most of the numerical in-
tegrators are designed to follow orbits the time
variability of which is well approximated by low
order polynomials. For example, the fourth or-
der Runge-Kutta method exactly reproduces the
orbits except for the round-off errors if the time
dependence of orbits is described as a fourth or
lower order polynomial of the adopted time-like
argument. Therefore, the differences in the inte-
gration errors are presumed to be caused by the
differences in functional forms of main variables
with respect to the time-like argument used by
each formulation. For this purpose, we prepare
Appendix describing the solution expressions of
unperturbed Keplerian orbits in the regularized
and unregularized formulations.

Let us examine the solution curves in detail.
As for the unregularized treatment, its main vari-
ables exhibit nonuniform behaviours with respect
to the physical time, t, especially when the or-
bit is nearly parabolic, namely when A\ ~ 0. See
Figures 5 and 6 illustrating the time dependence
of the pericenter component, x, for various eccen-
tricities. Cusped features of the curves near the
pericenter passage, when ¢t = 0, are eminent in
the nearly parabolic cases. This is the main rea-
son why the integration errors of the unregularized
treatment are so large in Figure 4. On the other
hand, when the orbit is almost rectilinear such as
in the case A ~ —1, the integration errors of the
unregularized treatment reduce so drastically that
the unregularized treatment provides the best per-
formance. While, the main variables of the B-F
regularizations, n, and n,, are sinusoidal curves
with respect to its time-like argument, the true
anomaly, f, whichever value the eccentricity takes
as described in Appendix. This is the reason why
the integration errors of the B-F regularization are
almost independent on the eccentricity.

Next, let us focus our attention on the fact that
the errors of the S-B, the K-S, and the extended L-
C regularizations become drastically small in the



nearly parabolic region, A ~ 0. In the parabolic
limit where A = 0, this is well understood since
the regularized solutions in these schemes are ex-
pressed by at-most cubic polynomials with respect
to their time-like argument, s. Refer Appendix
A.2. Thus the fourth order Runge-Kutta method
perfectly reproduces the orbit.

Then, how are the features in the non-parabolic
case explained? In the elliptic case, the solutions
of the main variables of all the above regulariza-
tions are of the form of harmonic oscillation. We
recall a fact that the global truncation error of a
sinusoidal motion with the angular frequency, v,
by a numerical integrator using a fixed step size,
h, is in proportion to (hv)P where p is the order of
the integrator. Appendix A.1 tells that the nor-
malized angular frequency of the harmonic oscilla-
tion in the extended L-C and the S-B regulariza-
tions for elliptic orbits is (v/1 —e)/2 and /1 —e,
respectively. While, the normalized angular fre-
quency becomes unity in the B-F regularization.
Then the ratio among the magnitude of integra-
tion errors of the B-F, the S-B, and the extended
L-C regularizations as well as that of the K-S reg-
ularization becomes 1: (1 — e)P/? : [(1 — e)/4]P/2.

First, this ratio explains well the fact that, in
Figure 4, the integration errors of the S-B and
the B-F regularizations become the same in the
limit of circular orbit, e = 0. Next, if we sub-
stitute p = 4 for the RK4 integrator, this ratio
mostly explains the differences of these regulariza-
tions. See Figure 7 illustrating the curves of the
S-B and the K-S regularizations with and with-
out the Kepler energy scaling replotted in a log-log
scale. The feature of their eccentricity dependence
is well explained by a model curve based on the
above explanation. Also a constant difference in
logarithm between the S-B and the K-S regulariza-
tions precisely coincide with the prediceted value,
log, 4% ~ 1.2.

On the other hand, the reason why the Kepler
energy scaling improves the orbit integration was
already reported in Fukushima (2003). In short,
it is due to an on-the-fly correction of the inte-
grated variables to satisfy a consistency condition
among them. This mechanism works so efficiently
that, in the case of nearly circular orbits, say when
A > 2/3, or e < 0.2, the unregularized treatment
with the Kepler energy scaling becomes superior
to the B-F and the S-B regularizations so as to

be comparable with the K-S regularization. See
Figure 4 again.

The above line of logic is almost applicable to
the hyperbolic case if we interpret the sine and
cosine functions with the arguments including s
with the corresponding hyperbolic functions and
take care that e > 1 in this case. Then the above
ratio becomes 1 : (e — 1)P/2 : [(e — 1)/4]P/%. See
Figure 7 again.

A decrease of integration errors is also achieved
by reducing the step size, which results the in-
crease in computational time. Therefore, we can
rephrase the above statement as follows; in order
to achieve the same integration precision at end-
points, the extended L-C and the K-S regulariza-
tions run twice faster than the S-B regularization.
Also the S-B scheme requires /|1 — e| times fewer
number of integration steps than the B-F one ex-
cept for some highly hyperbolic cases seen in Fig-
ure 4.

2.4. Effect of Perturbations

Let us examine the effect of perturbations on
the results obtained for unperturbed orbits in the
previous subsection. We consider five kinds of per-
turbations; (1) the third body perturbation, (2)
the general relativistic perturbation, (3) the air
drag perturbation, (4) the radiation pressure per-
turbation, and (5) the nonspherical gravitational
field perturbation. As for the third body pertur-
bation, we choose a coordinate system the origin
of which is the primary body, which we roughly
call the heliocentric coordinate system by imag-
ining cometary orbits in the solar system. Also
we ignore the mass of the secondary body in the
case of third body perturbation. Namely we deal
with an elliptic restricted three-body problem in
three-dimension.

The detailed explanation of the perturbation
models are found in Appendix C of Fukushima
(2005) except the case (4), where we assume that
the acceleration due to the radiation pressure is
given as

aARp = Crpn. (1)

Here n is a unit vector in the direction from a
radiation emitter, such as the Sun in the case of an
artificial satellite orbitting around the Earth, and
crp is a coefficient determined by the following
three factors; (1) the distance from the emitter,



(2) the mass of the secondary body, (3) the cross
section of the secondary body toward the direction
of n. For simplicity, we fix the direction vector as
n = e, i.e. in the y-axis of the inertial coordinate
system. Also we set cgp a numerical constant on
the order of 10~® in the unit system, yu = ¢ = 1.

In all the tested cases, we set the initial Keple-
rian elements of the secondary body relative to the
primary one the same as those of Icarus listed in
Table 1 except the eccentricity, e. In order to make
the maximum strength of perturbations roughly
the same, we fix not a but ¢ when e is altered.
As for the third body perturbation, we choose the
mass of the perturber as 1072 in the unit system
i =1 and all the Keplerian elements of the third
body with respect to the primary one the same as
those of Jupiter as shown in Table 1. This is to re-
semble the orbit of a near-Earth object perturbed
by Jupiter.

As for the general relativistic perturbation, we
consider the post-Newtonian term only and set
its nominal magnitude as 10~8 in order to resem-
ble the Sun’s general relativistic effect acting on
Icarus. As for the air drag perturbation, we adopt
a model with a constant drag coefficient for sim-
plicity and set its nominal magnitude as 1078,
which roughly represents the maximum drag of
an artificial Earth satellite in low altitudes. As
for the nonspherical gravitational field, we assume
that it consists of only the spheroidal term with
the coefficient J, = 0.001 in order to mimic the
main perturbation effect on a low-altitude Earth
orbiter. In this case we presume that the primary
body rotates around its figure axis being set the
same as the z-axis of the coordinate system.

In general, an exact solution is not available in
the perturbed case. Then we measure the integra-
tion errors by comparing with a reference solution
which we obtain separately in the same scheme by
using the same integrator but adopting a halved
step size. In the case of the fourth order Runge-
Kutta method, the main error term is known to
be in proportion to h* where h is the step size
adopted. Then we obtain an accurate estimate of
the integration error by the following formula;

Ax & 16 .
X R (1—5> 0x, 06X = Xp — Xp/2, (2)

where xp, and xj/, are the position vector solu-
tions obtained by setting the step size as h and

h/2, respectively. For the regularized schemes us-
ing the time-like arguments other than ¢, we need
another device to synchronize the errors;

0X ~ (xh — Xh/2) — Vh/2 (th - th/2) s (3)

where ¢, and t5,/» are the physical time solutions
obtained by setting the step size of the time-like
argument as h and h/2, respectively. See §3 of
Fukushima (2004).

Let us describe the differences we observe be-
tween the perturbed and unperturbed cases. First,
we confirm that most of the features observed in
Figures 4 and 7 are unchanged except for the fol-
lowing two cases; the third body perturnation and
the J, perturbation for the nearly parabolic re-
gion, A ~ 0. See Figure 8 for the closeup of the
same curves as in Figure 4 but under the third
body perturbation. In the parabolic limit, where
A =0, the S-B regularization gives the least error.
Also the K-S regularization give somewhat better
results than the extended L-C one. This situation
is unchanged by applying the Kepler energy scal-
ing. However, the differences among the best five
schemes shown in Figure 8 are small, say at most
a factor 4. On the other hand, Figure 9 illustrates
the same closeup for the .J perturbation. In this
case, the superiority of the K-S and the extended
L-C regularizations to the S-B ones is unchanged.
In conclusion, the features we observe in the close
encounter experiment of perturbed orbits are al-
most the same as that of unperturbed case.

2.5. Long-Term Error Growth

In N-body simulations, a bottle neck in the
computation is to follow precisely the orbit evo-
lution of a compact binary subsystem with a large
eccentricity but the orbit of which is still elliptic.
In astrodynamics, it is rare but nonzero to deal
with highly eccentric orbits for a long time span.
Then we examine how the integration errors of
such an elliptic orbit grow with respect to time.

For this purpose, we select an unperturbed el-
liptic orbit with e = 0.5 and integrate it for about
one thousand orbital periods. In order to accel-
erate the execution of experiments we replace the
fourth order Runge-Kutta method by the tenth
order imiplicit Adams method in the PECE (Pre-
dict, Evaluate, Correct, Evaluate) mode and fix
the stepsize as 1/64 of the initial orbital period.



The starting tables for the Adams method are
prepared by Gragg’s extrapolation method with a
tiny error tolerance. As an illustration, we plot the
integration errors of all the tested schemes in Fig-
ure 10 as functions of the physical time, . Again
we omit the results for the extended L-C regular-
ization whether the Kepler energy scaling is ap-
plied or not since their differences from the cor-
responding curves of the K-S regularizations are
hardly seen.

The magnitude of errors are different scheme
by scheme from the beginning. During the first
several orbital periods, the highest precision is
achieved by the K-S regularization. It is notewor-
thy that, at this stage, the Kepler energy scaling
does not improve the precision of the K-S regular-
ization significantly. Then comes the S-B, the B-F,
the unregularized scheme with the Kepler energy
scaling, and the worst is the unregularized treat-
ment. These differences are mainly caused by the
same reasons we find in the close encounter ex-
periment; namely the difference in the functional
forms of the main variables with respect to the
adopted time-like argument and the difference in
magnitude of the frequency of associated harmonic
oscillation. Then how do these features change ac-
cording with time?

Except the unregularized treatment which im-
mediately reaches a plateau of errors of the or-
der of unity, the curves obtained are categorized
into two groups; those with a quadratically grow-
ing component and those with a linearly growing
component. The former consists of the B-F regu-
larization and the K-S and the extended L-C regu-
larizations without the Kepler energy scaling. The
latter contains the S-B regularization and the K-S
and the extended L-C regularizations with the Ke-
pler energy scaling. It is quite interesting that the
S-B regularization exhibits a linear growth rate
as the schemes with the Kepler energy scaling al-
though its mechanism is unclear to the author.
This difference in growth rate brings a large dif-
ference in the long run. See Figure 11 for the
eccentricity dependence of the integration errors
after 1024 orbital periods. At this timing, the S-B
regularization provides better results than the K-S
regularization for all the eccentricities.

Figures 10 and 11 may give an impression that
the S-B regularization becomes superior to the K-
S and the extended L-C regularizations in the long

run, say after 1024 orbital periods. However, this
is not always true. Figure 12 shows the perturba-
tion type dependence of the integration errors of
the S-B regularization for about one million orbital
periods. As seen there, the performance of the S-
B regularization is significantly degraded when the
perturbations depend on the velocity such as the
cases of the air drag perturbation and the general
relativistic perturbation.

On the other hand, we confirm that the features
of the other schemes observed in Figures 10 and 11
are mostly unchanged when the type of perturba-
tions is altered. This means that the performance
rank of the S-B regularization depends on both the
time of comparison and the type of perturbation.
For example, if we compare the short time perfor-
mance, say the errors after a few hundreds orbital
periods, the K-S regularization without the Kepler
energy scaling is superior to the S-B regulariza-
tion as seen in Figures 4. Under the perturbations
independent on the velocity, this order is reversed
in the long run say after some thousands revolu-
tions. In this sense, we should say that the S-B
regularization is fragile.

In any event, the superiority of the K-S and
the extended L-C regularizations with the Kepler
energy scaling is unchanged thanks to the fact that
they share the properties that the initial errors
are small and the errors grow almost linearly with
respect to time.

2.6. Cost Performance Diagram

In order to examine the numerical stability and
the total cost performance of the tested schemes
for long orbit integrations, we integrate the same
test orbit in the previous subsection while chang-
ing the step size in a wide range; from a few steps
per period to some thousands steps per period.
Figure 13 illustrates the errors after 1024 orbital
periods as functions of the step size in a log-log
scale. Once again we omit the results of the ex-
tended L-C regularization with and without the
Kepler energy scaling since they are practically the
same as the corresponding K-S regularization re-
spectively. The horizontal axis of the figure shows
the number of steps per orbital period. Since the
computational time per each single step does not
change significantly scheme by scheme as we learn
from Figure 1, this number is almost in propor-
tion to the computational time. On the other



hand, the vertical axis indicates the integration
precision. Although these are the results for un-
perturbed orbits, we confirm that they remain the
same under various kinds of perturbations for the
indicated timing of comparison, i.e. after 1024 or-
bital revolutions. Then this diagram shows the
cost performace of tested schemes in the sense that
a scheme is of a high cost performance if its curve
locates in the left lower place and vice versa.

Obviously the K-S regularization with the Ke-
pler energy scaling as well as the extended L-C
one with the same scaling is of the highest cost
performance. Next comes the S-B regularization
and the K-S regularization without the Kepler en-
ergy scaling in the tie. However, this is correct for
the chosen timing, after 1024 orbital periods. If it
is earlier, then the K-S regularization without the
Kepler energy scaling ranks the second best and
the S-B one does the third. If it is later, then the S-
B regularization becomes the second best. In any
term, the B-F regulzarization becomes the fourth,
the unregularized formulation with the Kepler en-
ergy scaling ranks the fifth, and the unregularized
treatment is the worst.

Besides the cost performance, the figure re-
veals two other aspects; the stability limit and the
achievable precision. For each curve in the dia-
gram, there is a certain lower limit of the number
of steps per orbital period which assures a reli-
able integration. The smaller the number is, the
more stable the scheme becomes. The figure shows
that the number is 22 for the extended L-C and
K-S regularizations with and without the Kepler
energy scaling, 44 for the S-B and the B-F regular-
izations and the unregularized treatment with the
Kepler energy scaling, and 48 for the unregular-
ized treatment. Note that these numbers depend
on the adopted numerical integrator.

Of course, this is the result obtained for the
tested eccentricity, e = 0.5. Additional experi-
ments indicate that the numerical values for the
extended L-C, the K-S, the S-B, and the B-F reg-
ularizations are in proportional to v/1 —e. Thus
the difference in the stability region is a direct
result of the difference in the frequency of har-
monic oscillation associated with the regulariza-
tion; (v/1 — e)/2 for the extended L-C and the K-
S regularizations and /1 — e for the S-B and the
B-F regularizations and the unregularized treat-
ment.

On the other hand, the achievable precision of
integration is indicated by the minimum of the
integration error with respect to the step size. It
is clear that the schemes with the Kepler energy
scaling are of a higher achievable precision than
those without it. This is mainly due to the facts
(1) that the initial errors of the methods with the
Kepler energy scaling can be reduced to the level
of machine epsilon if an appropriate step size is
chosen and (2) that the growth rate of their errors
are small.

3. Conclusion

We compare various aspects of four existing
schemes to regularize a three-dimensional two-
body problem under perturbations; the Sperling-
Biirdet (S-B) regularization also known as the
Birdet-Heggie regularization, the Kustaanheimo-
Stiefel (K-S) regularization, the Biirdet-Ferrandiz
(B-F) regularization, and a three-dimensional ex-
tension of the Levi-Civita (L-C) regularization we
developed recently. Also we test the unregular-
ized treatment, and the enhanced versions of the
unregularized treatment, and the K-S and the ex-
tended L-C regularizations with the Kepler energy
scaling.

First, the comparison of computational time in-
dicates that a regularization requires 30-60 % ex-
tra time at most. However, this additional cost
reduces to a negligible portion when the time to
evaluate perturbations becomes large. Second, we
compare the capability of close encounter. The
highest performance is achieved by the K-S and
the extendeded L-C regularizations with the Ke-
pler energy scaling. The difference between them
is negligiblly small. Next rank the K-S and the
extendeded L-C regularizations without the scal-
ing, then the S-B regularization, the B-F regu-
larization, the unregularized treatment with the
scaling, and the unregularized treatment without
the scaling. This order is unchanged with respect
to the nominal eccentricity except when the or-
bit is almost hyperbolically rectilinear. Third, we
compare the long-term performance in elliptic or-
bits. The comparison in the initial errors, namely
the errors after one orbital period, does reflect the
result we obtained in the close encounter exper-
iment. On the other hand, there is a significant
difference in the maqnner of error growth. The



S-B regularizations and the schemes with the Ke-
pler energy scaling grow linearly with respect to
time while the other schemes grow faster, namely
quadratically. This tendency is almost indepen-
dent on the nature of perturbations for the first
thousand orbital periods. However, the S-B reg-
ularization gives very poor result in the long run
when the perturbations depend on the velocity. As
a result, we conclude that the highest cost perfor-
mance is realized by the K-S and the extended L-C
regularizations with the Kepler energy scaling.



APPENDIX

A. Regularized and Unregularized Solutions of Keplerian Motion

In the below, we summarize the two-dimensional solutions of unperturbed two-body problems in the
orbital plane expressed in the extended L-C, the S-B, and the B-F regularizations as well as the unregularized
formulation. In this case, the solutions in terms of the extended L-C and the K-S regularizations reduces to
that of the original L-C one by assigning zero values for the two components of the orbital angular momentum
vector as Ly = Ly = 0 in the former and the third and the fourth components of the fictitious position and
velocity vectors, uz = uqs = ws = wy = 0, in the latter. Also, by taking the orbital plane as the z-y plane,
we can nullify the z-components of the S-B variables as z = P. = 0. Next, we make P, = 0 by assuming
that the positive z-axis in the physical space is in the direction of the pericenter. Further, we count from a
pericenter passage all the time-like arguments; namely the physical time, ¢, for the unregularized treatment,
the fictitious time, s, for the extended L-C, the K-S, and the S-B regularizations, and the true longitude, 6,
for the B-F regularization. As a result, the time-like argument of the B-F regularization reduces to the true
anomaly, f. In order to simplify the following expressions, we adopt a unit system such that y = ¢ = 1.
Some regularized variables remain constants in the unperturbed orbits as

e—1
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K =

, L=+1+e, P,=c¢, (A1)

where K is the Kepler energy, L is the total orbital angular momentum, and P, is the z-component of the
Laplace vector. To recover the dimensioned expressions, we note that the dimensions of non-zero variables,
which will appear in the below, are as follows; (1) u1 and us are of the dimension /g, (2) wi and wy are of

the dimension /i, (3) x, y, and r are of ¢, (4) v, and v, are of \/u/q, (5) p and o are of 1/q, (6) K is of
w/q, (7) Lis of \/ug, (8) P, is of p, (9) tis of \/¢3/u, (10) s is of \/q/u, and (11) e, f, na, ny, m., and m,

are of no dimension.

A.1. Elliptic Orbit

First, we assume that the eccentricity, e, satisfies the condition, 0 < e < 1. Then, the nonconstant
variables of the L-C regularized solution are the two-dimensional fictitious position vector, (uy,uz), the two-
dimensional fictitious velocity vector, (w;,ws), and the physical time, ¢, as functions of the fictitious time,

s, as
e - 522

wy (e, s) = dui(e,s) _ = 1_esin{( l—e)s}’

ds 2 2

dus(e,s) 1+eCOS{(\/1—e)s}
ds 2 2 ’
(Vi—e)s—esin{(vVI—¢)s}

t(e,s) = /0 [uf(e,s") + u3(e,s')] ds’ = = 6)3 i (A2)

Although the above expressions of wus(e, s) and t(e, s) seem to be singular due to a divisor, v/1 — e, they
remain well-defined in the limit e — 1.

Next, the nonconstat variables of the S-B regularized solution are the two-dimensional physical position
vector, (z,y), the radius vector, r, the two-dimensional physical velocity vector, (v, vy), and ¢ as functions



of s. The solution expressions of z, y, and r are derived from those of u; and us as

cos {(VI—e)s} —e

1—e ’

z(e,s) = ui(e,s) —ui(e,s) =

y(e,s) = 2uq (e, s)ua(e, s) = i te sin{(v1—e¢)s},

r(e,s) = ui(e,s) + ui(e,s) = 1- ecosl{(_ el —e) S},
2 us(e,5)us (€, 5) — uale, Jws(e,5)] _ —vI—esin{(vI=7)s)
r(e, s) l—ecos{(vVI—e)s} ’

_ 2[ui(e, s)wa(e, 8) + usle, s)wy (e,5)] (1 —e)yv/IT+ecos{(vV1I—e)s}
vy(e,s) = - ,
r(e, s) 1—ecos{(vVI—e¢)s}
and that of (e, s) is the same as in the above. Again, all these expressions remain well-defined in the limit
e — 1.

As a by-product, the unregularized solution is given in parametric representations of x, y, ve, vy, and ¢
by means of s as

v.(e,s) =

(A3)

z(e,t) = z(s(e, b)), yle,t) =y(s(et)), vale,t) =v.(s(e,t)), vyle,t) =vy(s(e,t)), (A4)

where the inverse function, s(e, t), is not analytically expressed in terms of elementary functions but obtained
by solving the universal Kepler’s equation, t(e, s) = t, with respect to s. The detailed procedure to solve the
equation for arbitrary value of e is described in Fukushima (1999), where the notations used, G and L, are
to be translated as (v/1+ e)s and (v/1 + e)t in terms of the convention used in this Appendix, respectively.

Finally, the nonconstant variables of the B-F regularized solution are the two-dimensional unit position
vector in the orbital plane, (ng,ny), the two-dimensional unit vector perpendicular to the former, (m,,m,),
the inverse radius, p, its derivative with respect to f, o, and ¢ in terms of not s but the true anomaly, f, as

na(f) == =cosf, n,(f) =" =sinf,

r

) dny (f)

dng

=

ma(f) = df = —sinf, my(f) = df = cos f,
o=t Ly gy B e,

_ap . 1 1 esin f ev1—e2sin f
t(e’f):/o Lp(e, f') (m)3 lf—?tan <1+m+ecosf>_ 1+ecosf ] (45)

This expression of ¢(f) is effective for all the possible values of f in the range —oo < f < 400 and remains
well-defined in the limit e =+ 1. Note that the solution expressions of n,, n,, m,, and m, are independent
on e.

A.2. Parabolic Orbit
The solution expressions of the parabolic orbit are directly derived from those of the elliptic orbit by

taking the limit e — 1. In fact, the L-C regularized solutions become

* wi(1,8) =0, wa(l,s) = —=, t(1,8) =5+ =, (A6)

ur(l,s) =1, us(l,s) = 7
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and the S-B regularized solutions become

52 52 —2s 2v/2
r(l,s) =1— 5 y(1,8) =V2s, r(l,s)=1+ 5 v.(1,8) = CERE vy(1,5) = CEWRE

(A7)
and that of (1, s) is the same as in the above.

All these expressions are at most cubic polynomials of s. Therefore they are numerically integrated with
no truncation error if the order of the adopted integrator is greater than three such as the fourth order
Runge-Kutta method. Again, the unregularized solution expressions are provided in terms of the above S-B
solution expressions by solving the Kepler’s equation, which reduces to a cubic equation named Barker’s
equation.

On the other hand, the B-F regularized solution is unchanged except for ¢, which is given as

t(1, f) = V2tan (g) + g tan® <§> . (A8)

A.3. Hyperbolic Orbit

The hyperbolic expressions are simply obtained from the elliptic ones by replacing the trigonometric
functions with the corresponding hyperbolic functions for the arguments including s while taking care that
e > 1. Thus the L-C and the S-B solutions become

ui (e, s) Zcosh{%}, uz(e,s) = Ztisinh{%}’

wi (e, s) = 7"62_1 sinh {(7V6_1)8} . wale,s) = \/e2+ 1 cosh{ (Ve—1) s} ’

2 2
Heos) = esinh {(vVe—1)s} — (Ve— l)s’ reos) = ecosh{(ve—1)s} —1
) (m)3 e—1
e = OO = s (e
(e = Vi (Ve T) 5} (-DverTeosh{(Ve-T)s} 0

ecosh{( )s}—l vyle,8) = ecosh{( )s}—l

Once again, the unregularized solution is given as z(e,t) = x(e, s(e,t)) and so on where s(e,t) is obtained
by solving the universal Kepler’s equation.

Also, the B-F regularized solution is unchanged except for ¢, which is given as

_ 1 eve? — Lsin f _ \/ej f
te, f) = ( 6_1)3 T T ecosf — 2tanh 1{ mtan <§> }] (A10)

This time, the range of f is limited as |f| < © — tan~!+v/e2 — 1, which assures that p(e, f) > 0 and the
hyperbolic arctangent in the above is well-defined.
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Fig. 1.— Computational time comparison of two-
body regularizations. Shown are the ratios rela-
tive to that of the unregularized treatment. In
the figure, ‘SB’ means the Sperling-Biirdet regu-
larization, ‘BF’ does the Biirdet-Ferrandiz regu-
larization, ‘LC’ does a three dimensional exten-
sion of Levi-Civita regularization, and ‘KS’ does
the Kustaanheimo-Stiefel regularization. We omit
the results of those with the Kepler enegy scal-
ing since the differences due to the addition of the
scaling are hardly visible.



TABLE 1
KEPLERIAN ELEMENTS ADOPTED FOR NUMERICAL EXPERIMENTS

Name a (AU) e I(°) Q (°) w (°) My (°) q (AU) A=(1—-e)/(1+e)

Icarus 1.078 0.827 22.9 88.1 31.3 323.8 0.1865 +0.0947
Jupiter  5.2026 0.0485 1.303 100.471 14.337 95.752 4.9503 +0.9075

TABLE 2
COMETS AND ASTEROIDS WITH LARGE ECCENTRICITIES

Object Type ID (Name) e q (AU) A=(1—-e)/(1+e)
Hyperbolic Comets C/1980 E1 (Bowell) 1.0558 3.377 —0.0271
C/1997 P2 (Spacewatch) 1.0250 4.263 —0.0123
C/1999 U2 (SOHO) 1.0243 0.040  —0.0120
C/2002 Q3-A (LINEAR) 1.0228 1.309 —0.0113
Nearly Parabolic Comets  C/1973 E1 (Kohoutek) 1.000008 0.1424 —4.0 x 107°
C/1962 C1 (Seki-Lines) 1.000003 0.0314 —1.5x 107"
C/QOOO Wi (Utsunomiya—Jones) 0.9999997 0.3212 +1.5 X 1077
C/1910 A1l (Great January Comet)  0.999995 0.1290 +2.5 x 10~
C/1882 F1 (Wells) 0.999994 0.0608  +3.0 x 10~°
Unnumbered Asteroids 2005 VX3 0.99756 4.115 +0.00112
2006 VZ13 0.99744 1.102 +0.00128
2002 RN109 0.99566 2.691 +0.00217
1996 PW 0.99003 2.518 +0.00501
Numbered Asteroids 87269 (2000 OO67) 0.96132 20.7661 +0.01972
65407 (2002 RP120) 0.95503 2.4679 +0.02300
20461 (Dioresta) 0.89972 2.3963 +0.05279
3200 (Phaeton) 0.89005 0.1398 +0.05817

NOTE.—Selected are the top four or five objects in each category taken from the NASA /JPL Small-Body Database
Search Engine. In choosing the nearly parabolic comets, we omit those assumed with pure parabolic orbits.
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Fig. 2.— Sample orbits used for the close en-
counter experiment. Attached numbers are the
orbital eccentricity, e. We use the arcs of orbits
satisfying the condition r < 8¢, where r and ¢ are
the radius vector and the pericenter distance, re-
spectively. According to the value of eccentricity,
the arcs are classified into two categories; open
arcs and closed ellipses. The case of e = 7/9 is the
critical case separating these two categories.
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Fig. 3.— Integration error growth in one close en-
counter for an unperturbed nearly parabolic orbit
with the eccentricity, e = 0.99. In the figure, ‘NR’
means the unregularized scheme and ‘4+S’ denotes
the application of Kepler energy scaling. We omit
the curve of a three-dimensional extension of the
Levi-Civita regularization since it is practically the
same as that of the Kustaanheimo-Stiefel regular-
ization. This similarity is unchanged whether the
Kepler energy scaling is applied or not. Note that
the range of the true anomaly, f, is limited such
that r < 8¢; namely |f| < cos™[(e — 7)/(8e)] ~
139.362°.
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Fig. 4.— Eccentricity dependence of integration
errors after one close encounter for unperturbed
orbits. Again we omit the curves of a three-
dimensional extension of the Levi-Civita regu-
larization whether the Kepler energy application
is applied or not since they are practically the
same as those of the corresponding Kustaanheimo-
Stiefel regularizations. The kinks of all the curves
when A = (1 —e)/(1 + e) = 0.125 are due to the
change of type of the tested orbit arc whether
it is open (when A < 0.125) or closed (when
A > 0.125). The reason of a kink of the curve
‘NR+S’ when A ~ 0.85 is unclear to the author.
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Fig. 5.— Variation of the pericenter-direction

component of the position vector, z, in the un-
regularized treatment: closed arcs. Shown are the
curves for closed arcs of orbits, namely in the case
0.125 < XA < 1. The variable z is expressed in a
unit system such that 4 = ¢ = 1. The range of
the physical time, ¢, is also normalized.
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Fig. 6.— Variation of z(t) in the unregularized
treatment: open arcs. Same as Figure 5 but for
open arcs of orbits, namely —1 < A < 0.125. This
time, the ranges of the physical time are limited
such that r < 8¢.
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Fig. 7.— Closeup of some curves in Figure
4 expressed in a log-log scale with respect to
(1 —e)/(1+e)|. Both the elliptic (e < 1) and
the hyperbolic (e > 1) branches are shown to-
gether for the Sperling-Biirdet regularization and
the Kustaanheimo-Stiefel regularization with and
without the Kepler energy scaling. Once again
we omit the curve of a three-dimensional exten-
sion of the Levi-Civita regularization whether the
Kepler energy application is applied or not since
they are practically the same as those of the cor-
responding Kustaanheimo-Stiefel regularizations.
Also illustrated is a model curve of the eccentric-
ity dependence of the global truncation errors of
the associated harmonic oscillation by a fourth or-
der integrator.
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Fig. 8.— Same as Figure 4 but under the third
body perturbation. We omit the results of the
Biirdet-Ferrandiz regularization and of the unreg-
ularized treatments with and without the Kepler
energy scaling since they are of less performance.
Only the region near A ~ 0 is magnified.
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Fig. 9.— Same as Figure 8 but under the .J» per-
turbation.
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Fig. 10.— Growth of integration errors for an un-
perturbed elliptic orbit. We omit the curves of
the extended Levi-Civita regularization with and
without the Kepler energy scaling since they are
practically the same as those of the corresponding
Kustaanheimo-Stiefel regularizations.
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Fig. 11.— Eccentricity dependence of integration
errors for unperturbed elliptic orbits after 1024 or-
bital periods. This time, the errors are normalized
by not g but a. The tested eccentricities are 0.0,
0.01, 0.05, 0.10, 0.15, ..., 0.95, and 0.99. Again we
omit the curves of the extended Levi-Civita reg-
ularizations with and without the Kepler energy
scaling.
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Fig. 12.— Perturbation type dependence of the in-
tegration error growth of the Sperling-Biirdet reg-
ularization. The perturbations tested are the third
body perturbation, the air drag perturbation, the
general relativity perturbation, the radiation pres-
sure perturbation, and the J, perturbation.
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Fig. 13.— Cost performance diagram for an un-
perturbed elliptic orbit; e = 0.5. Once again we
omit the curves of the extended Levi-Civita reg-
ularization with and without the Kepler energy
scaling since they are practically the same as those
of the corresponding Kustaanheimo-Stiefel regu-
larizations.
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