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1| Our purpose and
the outline of this talk

I would like to find a useful method to analyze
symplectic maps through the RG method.
(RG method we use here

— a singular perturbation method)
- /

Why?
1. We cannot easily construct reduced symplectic maps.
2. The RG method is a candidate to overcome such difficulty.

In this talk, we present

a N
e a problem of the usual RG method for

symplectic maps

e a method to resolve the problem
\ %

Acoording to this new method,

we can construct the reduced maps for given

symplectic maps as well as ODEs.

In order to do this,
we explain our RG method for ODEs on the next page.
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2| Ordinary Differential Equations

Ex.  (a perturbed oscillator: Hamiltonian System))
d*x 5 5
W—I—Q T = —€<CLQZ—|—[)QZ ),
dg _ o dp__OH
dt  Op’ dt  Op’
2 02,2
p°+ °%q a b
H(q,p) = 5 + 5(5612 + 1614)-

Here, € is the small parameter, a, b, () are the real paramerers.

Regular perturbation solution:

2(t) = 2O0) +eaW(t) +-- -, (i=+v—-1)

AL - aA +3DA[AP o b_AB 3t
x(t) = Ae™ +e( i 20 te"" + 22¢ )
+c.c. + O(e?),

A € C [ the integration constant

c.c.dd the complex conjugate of the preceeding expression

the approximations seem to break down

while “t” satisfies |e t ~ 1|

We should renormalize away the o< ¢ term
which we call “a secular term.”



The RG procedure|] the elimination of secular terms

( Def. of an RG transformation)

~ A+ 3bA|A|?
A(t)EA—i—e(ia +QQ| ’t)+(9(52),

( inverse transformation A = At) + O(e))

~ ~

x(t) = A(t)exp(i€t) + non-secular(A(t)) + c.c.

Construct the eqaution which A(t) satisfies
( O(£?) terms are ignored )

- ~ A A|AJ?
Att+7)— At) = (i *23;’2' )

-+ - by the definition

CaA(t) + 3bA()|At)?
= 5( ? 50 T )

by the inversion of the definition

(Assume that A can be expanded)

_ i
We assume Alt+71) = A(t) + Tcil—t 4.,

(Compare and at order O(T 1) )
dA Y aA + 3bA|Al?

( corresponding to the Landau Eq. in dissipative systems)
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The validity of the RG method

Alt) = AO)exp { i oo+ 3L AO)P)},
z(t) = A(t) exp(iQt) + c.c. + (non-secular terms),
= A(0)exp { it (Q+ —(a+ 3b|A(0)2)) ).

2()

+c.c. + (non-secular terms).

Numeriacl check: (e=01,Q=1a=1,0b=1)

b T 7T T b T T 7 T T

cos(x*sqrt(1+0.1)) ——— cos(x*sqrt(1+0.1)) ——
4k cos(x)-0.1*x/2*sin(x) -~ i 4+ cos(x*(1+0.1/2)) ------- ]
2 r 2 r q
2 F 2 F ]
4 F 4 F .
I S S Y Y S | I S S Y Y S |

0 5 10 15 20 25 30 35 40 45 50 0 5 10 15 20 25 30 35 40 45 50
t t

(left): regular perturbation and the exact solution
(right): RG and the exact solution ,
Short summary : RG procedure

e Get the regular perturbative solution:

<.T — .CU(O) -+ gx(l) + .- >

~

e Get the renormalization transformation: (A(t)

A
e Construct the RGE (Cil—t 2=

e (Construct the renormalized solution if you want)

.
N———



3| Symplectic maps (I) :non-resonant case

Ex. a 2-D symplectic map (z",y") — (x

n—+1 n—l—l)

Y

xn-l—l — " 4 yn—kl’
Yy ="+ ax™ + 2eJ(2")3

g: the small parameter @, JO O(e") paremeters

(=001, a=10, J=1)

Regular perturbation z" = z(O" 4 cx(Un 4 2,2 4

O(e?),
20" = Aexp(ifn) + c.c.
—3ilA|2AT .
g = Z‘, | ne” + (o exp(3i6) terms)
Sm29A ‘4
—9J
x(Q)n _ { | 2| n2
2  sin“ 6
JHAIPA 3 N 90089) it
—1 n e
sinf ‘cos30 —cosf  2sin?é

+( o exp(3i6), exp(5i) terms)

(cosd =1—a/2, A€ C : integration constant)



There is a secular behavior as well as ODEs

(2" & en,e*n?,..) cos30 # cosO is assumed.

RG transformation : To remove the secular behavior

_ 2 Al2
A" = A+¢ 32‘,A| AJn
2\?411?4?4 J2]A\4A 3 9cosb
—9J COS
p 2
e { 2 sin’d et sin 6 <cos39—(3088 * 2811’12(9)71}.

Naive RG map: which A" and A" satisfy

—3tJ 1 —3iJ
An+1:An—l—5 AnQAn+52_ AnQQAn
sin¢9| | {2!<Sil21(9| ) )
—92 cos 6 i J°|A"|* A"
— J2‘An‘4An S | | }
2 sin” 0 sin #(cos 30 — cos 0)
The important thing is that
the naive RG map doesn’t have symplecticity

dATTINATT —dATAAD = O(%), (A" = Al+iAD)



A downside of ‘naive” RG method
for symplectic maps

Breaking down of symplecticity,
the reduced map is a dissipative system!

Y
Let’s recover the symplecticity. To do this we take the

continuous-limit of the RG map and use the Liouville op-

erator relation.

What is the Liouvile operator relation?

Ans. Canonical Eqs definitely satisfy this relation

200+ 1) = (14 i+ 20+ -2 ) 200) = explulen) Z10),

Z - atunc. of canonical variables, H : a Hamiltonian.

0Z 8H 07 8]—[
Z = {Z,H

L3Z = Ly(LuZ) _{{Z, H}, HY,

Ex. canonical Eq.

dq dp

The solution can fomally be rewritten as

q(t+u) = exp (ulm)q(t), plt+up) = exp (Llu)p(t),



A strategy for constructing
a symplecticity-preserving RG map

A symplecticity-preserving RG method

[discrete-time | [continuous-time]

e = “time step”

Symp. maps
naive RG (©) |

naive RG maps o
L Liouville operator(#)
(dissipative maps) RG Egs.

; Pros. discretirats (canonical Eqs.)
mp.-Pres. discretizations
Symp.-Pres. RG maps YIp

Equating the “naive” RG map with the relation (#),

we get the corresponding continuous Hamiltonian system.

AL = A pe( ) (), - ()

2
Alt+¢e) = (1+sﬁg+%£§[+---)A(t) ()
, L0
= (1+eLy0+e*(Lye + o )+ )AL,

This identification gives us a canonical differential
Eq. with the Hamiltonian H = HY + eH® + ...
But how do we find the Hamiltonian?




How to find an appropriate Hamiltonian

HW| can firstly be obtained by taking the (¢ — 0) of the

naive RG map:

n+l __ An
lim A A = {HWY A} = LS)A

e—0 e

H®| can be determined by comparing both the Liouville

relation with the naive RG map and using H (1)

2 [’H(l)
Alt+¢) = A(t) +eLymAR) + (L e + VA(E) + - -
AL = A" 4 e(A" term) + 52(A" term)

H® HW |same as H®.

~
In this way, we can systematically find the ap-
propriate Hamiltonian

In this case, the Hamiltonian we have been finding is

H = a(A]+ 43 + B(A] + A3)°.
3J . 9cosb 3 J?
4sin @’ 6:5{281n3(9+Siﬂ9<€0839—€089>} 6

0%
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The Symp.-Pres RG map and its solution

The solution of dA/dt = L), .y A s
—3J

A 2
sm&' 0)

9cos 6 3
2 2L A0V
=14 (28i1’13(9 " sin f(cos 30 — COSQ)H7

A(t) = A(0)exp it

The Symp.-Pres. RG map is obtained here by defining
A = At + ), A" = A1),

_ AN 2
A = A exp [ie 37147

sin 0

9cosb 3
- 2 721 An|4
_ic2 721 A .
A (2 sin® 6 " sin 6(cos 30 — cos 9))}
[We can get the Symp.-Pres. RG map j
This RG map is solvable,
. —3J|AY? _
n A0 20, ..
A" = AP exp |ig( 7 yn +ie( - )n],
Then,
—3J| A"

n AO 0 . 20
T lexp(ifn + ig( " n+ig*(-- - )nl,
yn — xn—l.
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The validity of our method
and a short summary

== TR

2
"Q)
15 [ 4
054 &
> 0 i 3
05 f
1 i
’ A
-15 }‘f* g
2 ! .
2-15-1-050 05 1 15 2

origianl map Symp.-Pres. map

(x and y are constructed by A™ with its definition )

Short summary : the RG method for Symp. maps

e Get the regular perturbative solution:
(x =20 + 2@ 4+ ..

e Get the RG transformation: A" = A+0O(g) - - -

e Construct the “naive” RG map:
(A" = A" + O(g))
e Construct the canonical Eq. by naive RG map:
% = Ly,goA---(#)
e Discretize the solution of (#):
Al = A exp (O(e))
This is definitely symplectic.
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4|Symplectic maps (II) :resonant case

Ex.  The 2dim symplectic map we analyzed

xn — xn e yn—kl’

Yy ="+ az™ + 2eJ(2")3

+1

g: the small parameter @, JO O(g") parameters
This can be written as

"t — 22" cos O 4 2"t = 2e ] (2™)?,

a
29

Resonance we analyze: |cos30 — cosf = O(e)

Here, cos =1 —

0 =5 +e0 + 6% 4+

6" . parameter

L (a) . T

y
d® A N o N O~ O
T o | T T
&

el ) 1 1
6 -4 -2 0 2 4 6
X

(e=0.01, J=10, 0 =10.0)
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The construction of the symplectic RG
map even when a resonant island appears

How is this done?|--- Same as before!
We can take the general strategy we have shown.
s R

1. regular perturbation
2. naive RG method

3. Liouville Operator approach
N J

Regular perturbation : " = O 4 ggMn 4.
2O = A" ce (i=V-1),

2" = (=)i"n[J(A® + 3|A)PA) — 0WA] +cc.

o = DI~ 2|APA + |APA 4 )

(1)2
+J0W (3| APA — A*) — QTA] +i"if P A + c.c..

A(e C) : the integration constant

RG transformation : z" = A"" +c.c.,
“Naive” RG map which A" := A} + ¢ A} satisfies

ATTY = AT+ e (4T (AD)? — 0WAD) + 2] — 24TH(AD)3(A3)?
n n n 6(1)2 n n

+2J0W ((A7)? + 3A7(AD)?) — A - 0 ALY,

APTY = AL 4 e(—AT(ATE + 0WAT) + 2 — 24T (A})*(AL)?

H(1)2
+2J0W ((A7)? + 3(A7)2Ag) — — AL - 0@ AT}
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A symplecticity-preserving RG map
when a resonant island appears

The RG map doesn’t have symplectic symmetry:
+1 +1
dATL A dATTL — GAT A dAD £ 0

Strategy diagram:

[discrete-time | [continuous-time]

. (e = “time step” )
naive RG maps o
Liouville operator(#)

RG Egs.

. o (canonical Egs.)
Symp.-Pres. discretizations

(dissipative maps)

Symp.-Pres. RG maps

Associated canonical Eq.:

dAQ aH(l)
—Z = 4JA+0WA4, = —
dt J ! + 9 ! 8A1 7

HW(A;, Ay) = (JAT —0WA2/2) 4 (JAS — 0 A2/2).

This solution is an elliptic function. It might
be difficult to discretize the soluton...
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A symplecticity-preserving discretization
of an RG flow

Here, we use a “symplectic integrator” to dis-
cretize the flow.
What is the symplectic integrator?
Ans. This is known to be a discritization method designed

for preserving the symplecticity for Hamiltonian flows.

Symp.-Pres. RG map

by using a symplectic integrator for the canonical Eq.
AL = AT 5[4J{A” S(ATAP + 60 A}
WAy + S(—ATAP + gAML,
At — Ay 5( — 4T AT 4+ 6D AT
o (—ATAT DA,
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The validity of some R(G methods
and a short summary

y
& A N o N o~ oo
— T T T
y
S A N o N o~ oo
T
y
S A N o N o~ oo
—TT T

1 1 1 i 1
6 -4 -2 0 2 4 6 6 -4 -2 0 2 4 6 6 -4 -2 0 2 4 6

origianl map  non resonant RG map Symp.-Pres. map

(x and y are constructed by A" with its definition )

Short summary : the RG method for Symp. maps

RG method is also valid even in a resonant case:

e Get the regular perturbative solution:
(CU — ZE(O) _|_ 837(1) _|_ .. )

e Get the RG transformation: A" = A+0O(e) - - -

e Construct the “naive” RG map:

(A" = A" 4 O(e))

e Construct the canonical Eq. by naive RG map:

% - £H(1)+5H(2)A T (‘)

e Symplectic-discretization of (@)
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5] Symplectic map chains :
a discrete Nonlinear Shrodinger Eq.

A coupled symplectic map chain: (z,p}) — (", p/™)
n+l  _.n n
Ly Ly = TP;
n+1 n 2.n n\3 2.,.n
p;  — D = T[—Q T +€{ —oz(x]-) +VAJ- :z:j}},
e : small parameter, ), a, v, 7 :0O(1) parameter
2 n — — Dl n
ANl = af ) — 227 +al

RG transformatlon:
Al =Aj+en(---), 27~ Alexp(—ifn) +c.c.

A; € C are integration constants, cosf = 1—Q%*r%/2,

Symplecticity preserving RG

eTY
(1+ i

4sin 6
- a discrete NLS

(1 ieT?y —3ar?

A2 An—l—l
4sin6 )

Az) exp ( 1€ )A;l

2sin 6

000000000000000000000000000000

A time sequence of SC? in the original system.
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L L L L L A
000000000000000000000000000000 0 5000 10000 15000 20000 25000 30000 35000

reconstructed :1:7f by A? ‘A?f :

[The slow motion of the system is analytically extracted. ]

e Note that the relation

v} ~ Al exp(—ifin) + c.c.

RG valuables A?’ are the slow variables.

Short summary :

e Our method is also useful to N-coupled symplectic maps
e RG valuables are “slow valuables”

e Although I don’t show the case of resonance, we can con-
struct the RG map even when a resonant condition is
satisfied.
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6| Conclusion

We can construct the correctly reduced sym-
plectic maps even when a resonance island ap-

pears

In this talk, we have discussed these topics :

[1] RG method for Diff. Egs.

[2 ] There exists the problem of applying [1] to
Symplectic mappings.

[3] An answer to the problem [2] is that

we use “the Liouville operator relation”

for

naive RG maps.

This method is applicable to study a resonance
island.(see T. Maruo, S. Goto and K. Nozaki,
“Renormalization Analysis of Resonance Structure in 2-
D Symplectic Map”,
http://xxx.lanl.gov/abs/nlin.CD/0309072 (2003).
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