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Choreography

e C. Moore (1993): finds numerically

e A. Chenciner and
R. Montgomery (2000):
prove the existence

e (C.Simo (2000):
finds lots of N-body choreography numerically
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Three-Body Figure-Eight .
Choreography

i=1,23 m;=1




Figure-Eight solution for V,

V. — a1r® for o #£ 0
“ Jlogr fora=0
Numerical evidence

Moore: Exist for a < 2
CGMS: Exist for a < 0 and Stable a = —1 + €

{-2. ., 0.00009958317, 7.9761, -7.97Y5531, 15. 9604}
0.2

Figure-Eight for -2 < a <1, T =1.
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Figure Eight has
Zero Angular momentum

Why L =07
Total angular momentum is conserved.
Therefore,

ZQiAQi=Z<QiAQ¢ >= 0.
7 ;

<e®> : time average

Then, what does L = 0 mean?
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Three Tangents Theorem
(FFO)

Theorem (Three Tangents). If

Zz'pi = 0 and ZZ qi\p; = 0, then
three tangents meet at a point.




Theorem (Three Tangents). If

Zz'pi = 0 and ZZ qi\p; = 0, then
three tangents meet at a point.

holds for general masses m,;.

e — 1.O,m2 = 1.1,m3 ==
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Three Tangents Theorem

Theorem (Three Tangents). If

Zipi = 0 and ZZ qi\p; = 0, then
three tangents meet at a point. 2

Proof. Let C} be the crossing point
of two tangents p; and ps.
sl
lien, > (¢ — C:) Ap; =0,
(g1 — Ct) Ap1 =0 and
(g2 — Ci) Ap2 = 0. oo e By = e

gz — C:) Aps =0. [] pi A\ Dpj

C';: the “Center of Tangents”
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e Shape of the orbit of Figure
Eight x(t) and the orbit C(t)
are still unknown.

e Three Tangents Theorem
gives a criterion for the
orbit.

¢ For example ...
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Simplest Curve:
Fourth order polynomial

24+ ax?y? + Byt = 2 — 42

0.6¢ 0.6} y
0.4¢ 0.4t
Q.21 2L

5 5 1.5 0.5 OS5 1.5
0

a=") o=l
(numerical)
Candidate;

Lemniscate (2% +y°)° = z° — ¢
and its scale transform T — UT,Yy — VY




Three Body Choreography
on the Lemniscate (FFO)

Choreograpgy on the Lemniscate

B sn(t)  sn(t)cen(t) .o 243
) = <1+cn2(t)’ 1—|—cn2(t)> Wt R =

(qi(t) = q(t)
{ a2(t) = q(t +T/3)
\ Q3<t) — Q<t T 2T/3)7
satisfies the equation of motion ¢; = — a@ U with
q;



Potential Energy

2 2.3 ;
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I?} Con stan Cy of
the Moment of Inertia

(FFO)

Moment of inertia [ = Z gt 0.4}
i

Potential energy " "y " .

VQZ{T: for a # 0

logr for a = 0.

Problem (Chenciner). Show that

the moment of inertia I stays con-
stant if and only if o = —2.
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Why 1/rA2 so special?
Lagrange-Jacobi identity |

; 1 3
IZZQ?, K:qu7 Va:azrija

=]
1
d?1
= — — W — T, = g — =L @)
For o = —2,

ﬁ—élEi —2 t _|—Clt_|_62'
dl

e — o = == =T =10
5 const., 1 ’dt() Cq
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Convexity of Each Lobe

(FM)

Theorem (FM). Fach
lobe of the eight solution
1S @ CONVET CUTrve.

GG
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Computer assisted proof:
T. Kapela & P. Zgliczynski

K

—aE=r g —"0

2l
ol
1l

Tié Tz i 2T 3 2T & T




After my talk
at Math Seminar, Kyoto Univ.,
a man came to me

and said

“IFERO—KRTRDOIXEAN?”

( “Three normal lines meet at a point, don’t they?” )




(Because | know they don’t meet by simulations.)

Then,
Kameyama Pointed out ...

1,3 S

“They meet at a point for Isosceles and Eular configurations.”




On my way home,
| have a lot of time to
consider...

e Why the three normals do not meet at a point?
e What will happen if they meet at a point?
e What is the differences between tangents and normals?

CliGE



Three Normals Theorem

Theorem (Three Normals). If

S .pi=0and . q;-p; =0, then
three normals meet at a point.

Proof. Let (), be the crossing point
of two normals to ¢; and ¢s.

Then, ZZ(QZ = Cn) -pi = 0,

(@1 —Cy)-p1 =0 and

(Q2 e Cn) - p2 = 0.

ol =05 s =0 []

holds for general masses m;.

C',,: the “Center of Normals”
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Then,
Yamada noticed that ...
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Circumcircle Theorem

Theorem (CircumCircle). If
o =0, > 0 Ap: = 0 and
>..qi-pi =0, then C; and C,, are
the end points of a diameter of
the circumcircle for the triangle

d1424s3.

Proof. Angles C,q;C,, are

90 degrees for i =1, 2, 3. 12

holds for any masses m,;.

Ct
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Centres for
figure-eight solution
under 1/rA2 potential

E=—Scons it st

V),
- ;K\'\

Purple circle: Circumcircle. Purple point: Circumcenter.
Yellow point: Center of force. Small eight: Orbit of center of force.
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Centres for
figure-eight solution
under 1/rA\2 potential

E=——cons it st}

What does this mean ?...
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Synchronised Triangles for
figure-eight under 1/r/\2

{50, 0.855161; {20, 0.855161;

(= M8 N (2SS SR )

Two triangles are congruent
with reverse orientation.

Because ...
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Similar Triangles in g & p space

Theorem (Similar Triangles).
If>,pi=0,>.¢6Ap;, =0 and
S:g:pi =0, then

triangle whose vetices are q; and
triangle whose perimeters are p;
are stmilar

with reverse orientation.

Proof. Look at the
angles yellow colored
and red colored.

It is obvious. []

Remark: This theorem
holds for any masses m;



Ratio

g2 —a3|  |es—a1| |@1 — @2 |

AR R s i e S, 8 1
- myimoms  maoms(gz — ¢3)? msmi(gs —q1)? mimae(q1 —q2)® | MI

where

<
||




Similarity in g-v space

Equations we have used are

Zmzqz—O Zmzvz—O
Zmz% Uz_o Zmz%/\vz_o

We have the following three equivalent relations

mimj(Qi - Qj)2 - mkvi mk@l}% AU (”Ui RE Uj)Q
MI s e IO MK ’
mege  mgve  mimi(ge= g;)> L (v — W
I B e MI MK
g - m;
= M

e LN (PR e T (R L )
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Area

p1Ape = —k*(q2—q1) A (g3 —q1)

K

= ———miMom AN —+ A\ + A\
TR (i A2+ g Ngz+q3 Aqr)

K
= —7m1m2CI1 N q2.

) miq =0 = mymagqi A g2 = mamaga A gz = mamiqz A\ .

Therefore, we get
qi N\ q; i v; N\ Uj

= I\
I K




Energy balance for the orbits
under homogeneous potentials

So far, we do not use the explicit form of the potential.
We assumed only the existence the orbits
with L=0 and dI/dt=0.

What will happen for orbits under 1/rA2 potential?

What will happen if L=0 and dI/dt=0 orbits are allowed
under the other homogeneous potentials?
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Energy balance
for the orbits under 1/r/A\2

d?] M0
—_— = O == B == )
o =2

dt2 U
1< &)
dl 1 mlmgmgK 1
L=0 =—=0=— = .
dt T MI W




Energy balance
for the orbits under log r

d*1 i




for the orbits under other
homogeneous potentials

For o # 0, —2,
d*1 i o ol
k (]
dl K2
ie— 0, e =O:>;mimj|pk‘a =K<m177\;7?3 ) = const
ij

= Conceptional proof of the “Chenciner’s Problem”?
“No figure-eight with I = const. exept for a = —2”.
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Conclusion 1:
Synchronised Triangles for
|l=const., L=0 orbit.

mimj(% iy %)2 = mkvi mkq;% . mz"mj(’vi e Uj)z

MI RSl MK

mk@li mk:U]% mimj(Qi = Qj)2 mimj(vi = ’Uj)2

1 K M1 MK
mi—i—mj




‘Conclusion 2:
Synchronised Triangles for
figure-eight under 1/r/\2
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I have a dream.
One day, someone mail me
and say
“Finally,
I have solved the figure-eight !” |

Thank you.




