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A simple error analysis for H = T'(p) + V(q) symplectic integrator (i.e. not mixed-variable
type) is presented. The truncation error in a second-order integrator is analytically analyzed
up to first-order approximation for the two-body problem using a canonical perturbation
theory. In H = T'(p)+V (q) type integrators, we cannot employ sophisticated techniques such
as warm start or symplectic corrector for the reduction of secular numerical error. But we
have confirmed that so-called “iterative start,” where we repeat many short-term numerical
integrations while gradually changing initial orbital configuration and searching a point with
minimum numerical error, may reduce the secular numerical error in angle variables under
certain conditions. According to our numerical integrations on two kinds of three-body
planetary systems (weakly and strongly perturbed), simple H = T'(p) + V(q) symplectic
integrators are still useful when employed together with the iterative start. To obtain a
simple interpretation how the errors are reduced (or not reduced in most systems), we take
a nonlinear pendulum system with one degree of freedom for an example, and illustrate
that the reduction of the numerical error in H = T'(p) + V(q) symplectic integrator occurs
when the potential energy of the system is not an “isochrone” one — when the fundamental
frequency of the system depends on initial amplitude of oscillation.

1. Introduction

In dynamical studies of solar and extrasolar planetary objects, analytical complexity of per-
turbation techniques and development of fast computers has led us to the investigation by
numerical methods. One of the promising ways for long-term numerical integrations is sym-
plectic integrator designed specifically to maintain the Hamiltonian structure of equations of
motion (Yoshida, 1990b; Gladman et al., 1991; Kinoshita et al., 1991; Kinoshita and Nakai,
1992; Yoshida, 1993; Sanz-Serna and Calvo, 1994). One of the the typical types of the symplec-
tic integrators splits the Hamiltonian H into two integrable parts as H = T'(p) + V(¢q) where
T, V, q, and p are kinetic energy, potential energy, canonical coordinate and conjugate mo-
mentum, respectively. On the other hand, so called Wisdom-Holman map (also called “mixed
variable symplectic integrator,” and hereafter we call it “WH map”) by Wisdom and Holman
(1991, 1992) can be more accurate by a factor of the ratio of planetary to central mass than
the general-purpose symplectic integrators of H = T + V type. The principle behind the WH
map is to split the Hamiltonian into an unperturbed Kepler part and a perturbation part as
H = Hyep(L) + Hint(1), where L and I denote canonical variables for Keplerian motion symbol-
ically. In each step of the integration, the system is first moved forward in time according to
Kepler motion Hycp, and then a kick in momentum is applied which is derived from the pertur-
bation part of the Hamiltonian, Hj,t. Not only the Keplerian part, but also the interaction part
is analytical since the perturbation Hamiltonian is basically a function of only relative Carte-
sian coordinates. The coordinate transformation between L in Hy., and [ in H;y is efficiently

encapsulated using the Gauf’s f- and g-functions (cf. Danby, 1992).



Also, there are many peripheral techniques for the WH map for the purpose of reducing its
numerical error especially in angle variables. They work mostly owing to the smallness of the
perturbed part of Hamiltonian (Hiy¢) than Keplerian part (Hyep). Saha and Tremaine (1992)
have devised a special start-up procedure to reduce the truncation error of angle variables,
called “warm start,” utilizing one of the characteristics of Hamiltonian system — existence
of adiabatic invariant. They have also invented a symplectic scheme with individual stepsizes
(though not variable stepsizes), dividing the whole Hamiltonian into each planet’s Keplerian
and perturbation parts (Saha and Tremaine, 1994). Wisdom et al. (1996) found a canonical
transformation of variables that eliminates error Hamiltonian and greatly improves the accuracy
of symplectic integration. This transformation is expressed in terms of a Lie operator that must
be applied before each step, and an inverse transformation at the end of each step. This
operation is called “symplectic correction.” Some notes on the dependence of the numerical
error on initial starting conditions in the WH-type symplectic integrators is also mentioned in
Michel and Valsecchi (1996).

There are also many other variants of and modifications to the WH map for the applications
in dynamical astronomy. Those kinds of enhancement in symplectic integrators, especially of
the WH map, now enable us to perform very long-term numerical integrations ten to hundred
times faster than before. With the WH map, timescale of numerical integrations of solar system
planetary orbits have reached the age of the solar system, i.e. 4.5 Gyr (Ito et al., 1996; Duncan
and Lissauer, 1998; Ito and Tanikawa, 2002).

Now, let us be back at the general-purpose symplectic integrators, H = T'(p) + V' (q) type. For
problems proxy to the Keplerian motion, the general-purpose method is less efficient than the
WH map is. However, the general-purpose method has their literal advantage, i.e. generality:
they can be adapted to general dynamical problems which are far from integrable and whose
zeroth order approximate solutions are not known. We can think of many of such far-integrable
problems, as we discover more and more extrasolar planetary systems, since many of the ex-
trasolar planetary orbital configurations so far discovered are significantly unlike ours (Boss,
1996; Marcy et al., 2000; Marcy and Butler, 2000). Typical ones are the planetary systems in
or around binaries. In such systems where the ratio of interaction Hamiltonian Hj,; and Kepler
Hamiltonian Hygp, is generally not sufficiently small, we cannot exploit the near-integrability of
the system which the WH map requires. Also, it is generally not easy to apply the WH map to
situations with a lot of close encounters among particles. Though several variants of the WH
map are now proposed to handle such collisional systems (Levison and Duncan, 1994; Mikkola,
1997; Lee et al., 1997; Duncan et al., 1998; Chambers, 1999; Mikkola and Tanikawa, 1999), such
symplectic schemes might be highly complicated and lose computational efficiency.

Standing on the above viewpoints, we present in this paper a simple error analysis on the
T(p) + V(q) type symplectic integrator (hereafter we call it “TV method” in contrast to the
“WH map”). Since many researches have been already done so far on characteristics of the TV
symplectic method, this paper may be in a sense an expository one. Hence, to make the way of
the error analysis as transparent and general as possible, we take a few very simple dynamical
systems as examples: two-body problem, perturbed three-body problems, harmonic oscillator
with low degrees of freedom, and a nonlinear pendulum with one degree of freedom. Most of

them are nearly integrable, or even analytical solutions are already known. In the former half



of this manuscript, our approach is somewhat close to Kinoshita et al. (1991)’s one. Thus we
have felt it advisable to give more details than would otherwise be necessary. This is also in
keeping with the view of this paper as an expository one.

In Section 2., we present a brief review of symplectic integrators, especially of the TV method.
In Section 3., we will discuss the error Hamiltonian for a first- and second-order TV symplectic
methods for the planar two-body problem. Based on the result obtained in this section, we
demonstrate to calculate some analytical expressions of numerical symplectic solutions using a
canonical perturbation theory in Section 4.. Particularly in the subsection 4.7, we confirm the
dependence of numerical longitudinal error on initial orbital configuration. In certain configu-
rations we can significantly reduce the longitudinal error arising from the symplectic integrator;
in other words, the iterative start works. While in most configurations, we cannot. In Section
5., we argue on the way of error reduction in angle variables by the iterative start in the TV
method. Demonstrations by some numerical experiments in two kinds of three-body systems
are described: One is the orbital motion of a “massive” asteroid perturbed by Jupiter, and the
other is the orbital motion of an extrasolar planet orbiting around a binary system, MACHO-
97-BLG—41. We also mention slightly the “warm start” and its relationship to the topic in this
manuscript. Finally in Section 6., we try to illustrate how the errors are reduced or not reduced
in various dynamical systems. To explain this qualitatively, we have taken a few systems with
low degrees of freedom as examples. We have so far found that we can possibly reduce the
numerical error in TV symplectic method considerably by the iterative start when the poten-
tial energy V of the system is not “isochrone” — when fundamental frequency of the system

depends on initial amplitude of oscillation.

2. Symplectic integrator

First we present a brief review of the generic type of symplectic integrator.
According to Yoshida (1993), explicit symplectic integrators can be reformulated by the Lie
algebra (Neri, 1987). We rewrite the Hamilton equations

dg 9H dp  OH

- R 1
dt dp’ dt dq’ (1)

in the form as
dz

(O 2)

where z = ¢ or p, and the braces {,} stands for the Poisson bracket. When we introduce a

differential operator Dg by

DgF ={F,G}, (3)
then (2) is rewritten as
dz
“_p 4
dt HZ, ( )

so the formal solution, or the exact time evolution of z(t) from ¢t = 0 to t = 7 is given by

2(r) = [eTDH] 2(0). (5)



For a Hamiltonian of the form

H=T(p)+V(qg), (6)

Dy = Dy + Dy and we have a formal solution
2(r) = [e"HP)] 2(0), (7)

where A = Dy and B = Dy. Operators A, B are non-commuting in general.
Kinetic energy T'(p) and potential energy V(q) are individually integrable, so we can get the

exact solutions
2a(r) =[] 24(0), (8)

2p(r) = [¢7P] 2p(0). (9)

Here we should remark that the time evolution of z under e

or e™B keeps the symplecticity
of the system. This fact is one of the most essential cores of symplectic integration theory. For
example, let us take (8) as an example and see how the symplecticity is kept. The symplectic
map (8) is a kind of contact canonical transformation under the Hamiltonian T'(p). Writing

down the canonical equation of motion concerning 7', we have

dg _ 9T(p) dp _ 9T(p)

= = 10
dt op = dt dq (10)
Since T'(p) does not contain ¢, we get
dp
£ _o 11
s, (1)
". p = constant, (12)
hence we know that T'(p) is also a constant. This leads us to
d oT
da_o1w), (13)
dt dp
is a function of p and also a constant.
. q = Ct+qo, (14)

where C and ¢g are certain constants. (14) means that a particle in phase-space (¢,p) moves
linearly with time having a constant velocity. Such an equi-velocity linear motion in phase-space
obviously preserves any volume in phase-space. Then the contact transformation (8) preserves
the symplecticity of the system whatever value 7 has. We can apply the same discussion on
the contact transformation (9), leading to the conclusion that (9) preserves the symplecticity of
the system. Since a product of two canonical transformations is found to be canonical, a map
e™e™B also preserves the symplecticity. This argument is applicable to other systems with any
degree of freedom. This fact ensures us the area (or volume) preservation property of symplectic
schemes. However, note that this character does not directly lead to the conservation of total

energy and total angular momentum of the system in symplectic integration.



Now, what we need is the solution under H = T'(p) + V' (¢q). But since the operators A and B
are not commutable, we have to find a product which approximates e”(“*t5) to an appropriate
order.

There is a formula which exactly answers to our question: Baker-Campbell-Hausdorff (BCH)
formula (Dragt and Finn, 1976; Varadarajan, 1974) about a product of two exponential functions

of non-commuting operators X and Y’; when we write the product as
eXe¥ =7, (15)

Z turns out to be as follows according to the BCH formula

1 1 1
where [X,Y] = XY — YX. For a first-order symplectic integrator, we can apply the BCH
formula to e”(A+5) a5
e™PTeDV = P (17)
and obtain
2
Hi =T+V + 2{V,T} + = (({T.V},V} + {V, T}, T}) + O(+*). (18)

For a second-order symplectic integrator, we obtain
e%DTeTDVe%DT = eTDI:IZDd, (19)

where

~ 1 1
Fona = T+V + 72 (UL VL) = L{WTLT}) + 06, (20)
Similarly in general, for an n-th order symplectic integrator, we find the Hamiltonian H, as
Hy = H + Hey + O(r" 1), (21)

where H = T(p) +V (q) and Heyy = O(7™). We call hereafter H the Hamiltonian of a surrogate
system. We notice that the error of the total energy (ff — H) remains of the order of He,y, i.e.
7", Hgpy 1s a set of terms which consist of n-fold Poisson brackets and called error Hamiltonian.
Note that rigorous convergence of the series (18)(20)(21) is not guaranteed for general nonlinear

systems.

3. Error Hamiltonian of the two-body problem

The purpose of this section is to express the error Hamiltonian H,,, in a second-order sym-
plectic integrator (20) as a function of Kepler orbital elements. We need the error Hamiltonian
to estimate numerical error by symplectic integration in later sections. We take a planar two-
body problem (masses mg and my with p = G(mg + m;)) as an example whose dynamical

characteristics is very well known.



The Hamiltonian for a two-body problem is written in the heliocentric coordinates (g, v)

H:m<”22—’7f> (22)

- momq | | | |
= — = (v =
" mo +my’ Y o -

where

with a set of canonical variables (g, p) and p = mv. Without loss of generality, we can consider
the factor m in the right-hand side of (22), the reduced mass of the two-body system, as
unity. This is possible because there are three units to be determined for a two-body system
to dynamically work: mass, length, and time. The determination of u, semimajor axis a and
the reduced mass m corresponds to the determination of these three units we use. Thus the
Hamiltonian of the two-body problem (22) is reduced to that of a system where a infinitesimally

small mass particle orbits around a central mass (say, the Sun) whose mass is mg + m; as

H=—_Z=Z 23
2 r’ ( )

with canonical variables (g, v). See Appendix A for more details.

Since the kinetic energy T'(v) = v%/2 is a function only of canonical momentum v, and the

potential energy V(q) = —pu/r is a function only of canonical coordinate g, it is clear
oT ov
@) o, V@ _y (i21,9) (24)
9q; dv;

Hence the actual expression of the second-order error Hamiltonian up to O(7?) approximation

becomes from (20)

Herr
T2

= LTV @) V(@) - L V(9. T0).Tw)
L [(ov\* T oV ov o'T V2 92T
S <3C11> Wﬁ—i_ 3(118q281;18vz+<3q2> Dvy?

1 [foT\?* 0%V 0T T 9*V oT\? &*V
o) 7542t (] 75| (25
24 81)1 8q1 81)1 8’02 8q18q2 8’02 8q2
We need partial derivatives of the kinetic energy
2 2
T(w) = 12, (26)
and the potential energy
_1
Vigg=-C=-u(d+d) *, (27)
(25). They become as follows:
oT oT (28)
— = — =
8’01 1, 8’1}2 25
oT\* oT\*
=) = ) = 29
<8’Ul> U1, <8’02> V3, ( )



°T T

81}12 N 81}22 - (30)
o*T
=0 31
81}18’02 ’ ( )
a4 2, 2\"> _ kg OV 2, 2\ T2 _ MG
T Hq1 ((11 + QQ) =3 0 Hq2 ((11 + QQ) T3 (32)
OVN? 5 ors N3 piq OVN? 5 ors, N3 _ 46
<8q1> =pq ((11 +Q2) =6 <8q2> = U7 qs ((11 +42) =6 (33)
OV 1 3¢7 p 2, 2
912 15 (T_g I By (—2(]1 + 92) 5 (34)
PV _ (L BB\ _ B 0 o
s (3 ) - o w
Substituting (28)(29)(30)(31)(32)(33)(34)(34) into (25), we get
Herr 1 M2Q% MZQ% 1 2 M 2 2 3/1'q1q2 2 M 2 2
72 12\ 4f + ) 24 [vlr_5 (_2q1 + q2) 20102 <_ o > +v2r_5 (_2q2 + ql)]
Lp> 1 29, .22 2 2 2 2
= 190 24,5 (—2v1q1 +viq; — 6v1v2q1q2 + V3q] — 21)2q2) . (36)
Now, expressing the angular momentum integral h as
Bo= |gx vl
= (qv2 — Q2v1)2
= ¢jv3 — 2q1q201v2 + G307, (37)
We know that h can be also expressed by Kepler orbital elements as
h = y/pa(l — e2). (38)
Similarly, the energy integral can be expressed as
2 2
v B K 2
7 e () (39)
2 p?
.2 2
.U—T—ﬁ(l—e>, (40)

Using (37), (38) and (40), we can rewrite the quantity in the parentheses in the second term
of the right-hand side of (36) as

—20lq? +vigl — 6vivaqige + viqE — 203q3
=3 (q%v% — 2q1q2v1v9 + q%v%) -2 (q%v% + q%v% + v%qf + v%q%)

=3hr% -2 (q% + q%) (v% —l—vg)

= 3h? — 2r%0?
2 1—62)
=3 1—e2) —2¢2.9 E_L
ua( e> " (r 2pa (1 — €?)
9 212
= 3pa (1—6 ) —dpr 4+ . (41)
a



From (36) and (41), the final form of the error Hamiltonian expressed by the Kepler orbital

elements becomes

et T 2 2pr
Heyw = T34 9475 3,LLa(1—e)—4/M—|- .
2 (6 3a(l—¢e® 2
_ T (6 3a(l=e) 2 . (42)
24 \rt rd ar3

The unperturbed or Keplerian part of Hamiltonian is —%, so the surrogate Hamiltonian H

in the second-order symplectic integrator ends up with

H = H+ Hg +0()

2 2,2 2

I T 6 3a(1—e) 2 4

e —_— - — O . 43
2IZ T 24 <r4 r +0) (43)

Next, let us calculate the secular (i.e. time-averaged) value of the error Hamiltonian (42). To

do this, time-averaged values of -, 4, L are necessary. Using the relationship
T T T

dl 2
S (44)

af a2\/1— 2’

they can be obtained as follows:

= (1—8)7 , (45)
_ (o) <1+5> (46)

— (1—62)7% <1+3762>. (47)

2.2 2
pre [ 6 3a(l—e?) 2
(Her) = i BT
24 \r T ar
2.2 2
woT e
— 1 48
24a4n5<+2>’ (48)

n=v1-—e’ (49)

where



Now we can calculate He, for the first-order symplectic integrator as well. Similar to (20),
the error Hamiltonian for the first-order symplectic integrator becomes according to the BCH

formula as

2
12
For the first term in right-hand side of (50), we get

Her st = % {(V.T} + 5 ({{T, VLV + {{V, T} T} + O(r). (50)

{(V(g), T(p)} = Oqo Op2  Op2 I¢o

dq1 Op1 Op1 Oqu
oV oT n ov oT
0q1 Op1  9q2 Op2
141 H1qz

<8V ar oV 8T> <8V or oV 8T>

— T—B-fvl_'_’r_g.rvz
M
= T—B(r-'v). (51)

Each component of the velocity vector v is expressed by the Kepler orbital elements on orbital
plane as (Danby, 1992)
vlz—%sinf, vzzﬂ(cosf—i—e), (52)
n n
with
g1 =rcosf, qo=rsinf, (53)

which leads to

TV = q1U1 + qav2

=rcos f <—C:Lsinf> + rsin f <a: (C05f+e>>

anr earn

=———sin2f + ﬂSian—i-
2n 21

sin f

earn

= sin f. (54)
n

We already knew the components of the second term in right-hand side of (50) by (42) as

(v vy =2 (59

and
2

(v, T}, T} = 7% (:ma (1-¢?) —apur+ 2‘(‘: ) . (56)

Adding all the relevant terms, we get the final form of the error Hamiltonian up to O(7?%) as

T T2
Herr,lst = 5 {VaT} + ﬁ ({{T> V}: V} + {{V7T}:T})

2 2 2
_rpearn oo 7 (02 p ) g 2
213 g smf—l—12 <’I“4+’I“5 <3ua(1 e) ur o+ a ))

Truean | 7212 3 3a (1 — €2 2
= Mm“ sinf + X —T—4+¥+— . (57)

70 ar?



We can calculate the secular part of Hey 151 by averaging (57) over the period of mean anomaly.
First, as for the term of O(7),

Tpean 1 Tpean (27 sin f
sinf) = — dl
2nr 2w 2n 0 T

1 Tpean /27r sin f idf
2 2n  Jo ay
1 Tpeana(l—€*) (> sinf
2 2n an /0 1+4+ecosf
— 0. (58)

r

As for the terms of O(72), we can calculate them as in the same way with (48). Hence

Tpean . 722 3 3a(l-é? 2
<Herr,1st> = < a smf—l— r —_4+¥+
2nr r r

ar3

2 2 2 —5 2 2

,uT(l—e)Z e 3e 9
= 314+ — 311+ — 2(1—

12 at [ <+2>+<+2>+( e)

P (1— )7 (2+¢7)

12 a?
2.2
I 2
_ W(He). (59)

Therefore we can proceed the same discussion using the secular error Hamiltonian for the
first-order symplectic integrator (59) as well as that for the second-order symplectic integrator
(48). In the following discussion we focus on the second-order symplectic integrator, so-called

“leap frog,” using the error Hamiltonian (48).

4. Analytic solution by a canonical perturbation theory

Based on the result obtained in Section 3., we demonstrate to calculate analytical expressions
of symplectic numerical solutions using a canonical perturbation theory. We can apply the
treatment in this section to symplectic integrators of any order and to perturbation theory to

any order, though it immediately leads to a terrible increase of relevant terms.

4.1 Canonical perturbation theory by the Lie transformation

Hori (1966, 1967) has developed a perturbation method with unspecified canonical variables
utilizing the Lie transformation, and has presented several sample problems by his method (Hori,
1970; Hori, 1971). Hori’s method is characterized for its explicitness of canonical variables; the
bothering inversion of old and new variables after obtaining analytical solution is no longer
necessary. This is one of the major differences of Hori’s new method from traditional canonical
perturbation theories such as by Delaunay or von Zeipel (cf. von Zeipel 1916, Shniad 1970,
Yuasa 1971. Consult textbooks by Boccaletti and Pucacco (1998) or Lichtenberg and Lieberman
(1992) for their general introduction). Let us briefly summarize the Hori’s perturbation method

before applying it to our problem in the next subsection.
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Let &,m be a set of 2n canonical variables and f(&,1n), S(€,n) be arbitrary functions of &, 7.
Differential operators D7 (n = 0,1,2,---) are defined as

DYf = f, (60)
Dif = {f.S}, (61)
D}f = D!Y(Dif). (n>2) (62)

Then, the following theorem is due to Lie (1888): A set of 2n variables x,y defined by the

equation

fay) = > S DL fEm), (63)
n=0 """

is canonical if the series in the right-hand side of (63) converges. € is a small constant indepen-
dent of & and 7.
Let us consider a nearly integrable Hamiltonian system which is described by two-dimensional

Delaunay variables (L, G, 1, g) as
H(LaGalag):HO(L)+H1(L>G7Z7Q)> (64)

where Ho(L) is the integrable part and Hy(L,G,l,g) is the perturbation part. Then, let us
apply the Hori’s perturbation method to the Hamiltonian system (64) to obtain the solution of
the system. The general policy to apply canonical transformation here is to remove all angles

and to make the system be integrable, such as
H*(L*,G%) = Hy(L") + H{ (L*,G"), (65)

where a superscript * symbolically denotes that the variables (or functions) have been canoni-
cally transformed.

As for the zeroth order Hamiltonian, the function form is the same before and after the
canonical transformation:

Hi(L*) = Ho(L*). (66)

Next we introduce a parameter t* which satisfies the following relationship and is removed

later on as

dL*  9Hy dI' _9H;

et _ b 67
dt* alx’  dt*  OL*’ (67)
dG*  0Hy dg*  OH} (68)
e 9g¢*’ dt*  OG*

It is clearly seen that the system H{ is integrable since H{ is a function of only L*. Then we

get the following solution with constants of integration C7, Cy, C5 and Cy as

L* = Cla g* = CZ, G* = 037 (69)
dli*  OH§

pro 8L’8 = constant, (70)

. [* = constant x t* + Cj. (71)

11



As you can see, t* is a time-like variable which describes the evolution of the non-perturbed
(or integrable) system, H.
To the first-order, H becomes the t*-averaged part of H; as

1 T
Hy = (H{(L*,G*,I*,g")) = lim —/ Hy(L*,G*,I*, g*)dt", (72)
T—oo T Jo
or, if Hy is a periodic function of t*, then
1 /T
H = (/LG 1,6 = = [ B, 67,0, g, (73)
p JO

where T}, is the period. Fortunately, the error Hamiltonians He,, we consider here is nearly
periodic in most cases of planetary dynamics, so (73) is convenient instead of (72).
In the actual two-body problem, time ¢ is related only to the mean anomaly [. Hence dt* can

be transformed into dI*/n* in (73) as

1 27
Hf = (H(L*,G*,l*, ¢" = H(L*,G*,l*, ¢g%)dl*
1 ( 1( ’ b s g )) 2mn* Jo 1( ’ sty g )
= HT(L*,G*,—,Q*), (74)
where the sign “—” in H{ denotes the absence of a variable [* by elimination.

Thus the canonically transformed Hamiltonian H* in (65) up to the first-order finally becomes
HY(L*,G% —,g") = Ho(L") + Hy(L",G", =, 9"), (75)
using the first-order generating function Sy to transform H into H*
S1(L*,G*,I*,g") = / (H.(L*,G*,1*,g%) — Hf (L*,G*, —,g")) dt". (76)
Higher-order solutions can be obtained by similar ways.

4.2 Solution for L

Now let us apply the Hori’s method to symplectic integrators. Here we consider that the
integrable part of Hamiltonian Hy in (64) corresponds to H = —% in (43), and the perturbed
part of Hamiltonian H; in (64) corresponds to Heyy in (43). Henceforward we use the notation

Hy as the integrable part and H; as the perturbed part of Hamiltonian in this section. In

summary,
H = H + He ---(43)
! ! ) (77)
H = Hy + H,. ---(64)

Using the Lie transformation (63), we obtain final solutions for L, G,l,g. As for L up to the

first-order,

L = L*+{L* S}
e <8L* 89S, OL*9S, OL*9S, OL* asl>
ol* OL*  OL* ol* ' dg* 9G*  OG* dg*

12
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— L*—
ol*

_ o2 /(H HY)dt*

a ai= /T
1 d

= L*— —— [ (H, — H{)dt"
- [ - )
1

= L' ——(H, - Hy), (78)
n

where % is replaced by n%% since t* affects on Hy only through [*. Note that since the second

term of the right-hand side of the analytic solution (78) is a small quantity of first-order, we
can replace n* by ng here.
In (78), L* and n* are constants which should be determined by their initial conditions (or

observation values). Representing the initial conditions by subscript 0 as Lo and [y, we get

* 1 *
Lo=L*— E(Hm:o — HY), (79)

* 1 *
L :LO—FE(Hl,t:O_Hl)a (80)

where H; ;—¢ is the initial value of H; when ¢ = 0.

Now we can compare the analytic solution of L (80) with a solution by numerical symplectic
integration. Substituting L* of (80) into (78), we have plotted the time variation of the analytic
solution of L in Figure 1 together with a solution by numerical symplectic integration using
the second-order symplectic integrator. We have chosen the value of stepsize 7 as 1/100 of the
orbital period T, i.e. 7/T = 0.01. Initial conditions of the two-body system are listed in Table
1. The analytical solution by (78) and the numerical solution coincide very well within the
first-order approximation. A higher order analytical solution will further reduce the difference

between these two solutions indicated in the lower panel of Figure 1.

semimajor axis a 1.0
eccentricity e 0.5
argument of pericenter (degrees) w 20.0
initial mean anomaly lp 0.0

mass coefficient no 1.0

Table 1. Initial conditions for the two-body system used in this section.

Incidentally, from (78) and (80) we obtain

1 * 1 k
L = Lo+ —(Hio— H})— —(H, — Hj)
n n
1
= Lo+ (Hi=o — H). (81)

This means that the secular error of the action L can be removed up to the first-order by an
appropriate selection of the initial value of Hy so that (Hy;—o — Hy) = Hi4—0 — Hf = 0. It is
the essential idea of the “iterative start” in Saha and Tremaine (1992) intending to reduce the

secular numerical error in the angle I. We will discuss this fact in later sections.
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Periodic variation of L (L0=1.0)
1.000035 . . . .

~

1.000030

1.000025

1.000020

1.000015

1.000010

1.000005

1.000000 ¢

0.999995 |

Time [revolution]
L: Numerical-Analytic (L0=1.0)

0.0
difference —
-40.0
-80.0
0 1 2 3 4 5

Time [revolution]

Figure 1. (Upper) analytic and numerical solutions of the Delaunay element L in the system
described in Table 1. The squares denote numerical solution by the second-order symplectic
integrator and the lines denote solution by the first-order perturbation theory. (Lower) the

difference of the two solutions (numerical — analytical) magnified by 101°.
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4.3 Solution for G

Similar to L, solution for G can be obtained up to the first-order as

G = G*+{G* 5}

o <8G* 981 9G*9S, 9G* 9S8,  9G asl>
- oI oL+ _ 0L ol | agr oG  aG* ag*
a5
= g -2
dg*
* 8 * *
— o - /(H1 _ HY)dt (82)
dg*

However, since H; does not contain ¢g* at all, it becomes

0
adg*

/ (H, — H})dt* = 0, (83)

which means
G = G* = Gy = constant. (84)

Hence there are no secular nor periodic numerical errors in GG in the second-order symplectic
integrator considered here. Actually, it is proved that any type of explicit symplectic integrator
rigorously preserves the total angular momentum of system within the range of round-off errors
(Yoshida, 1990a; Gladman et al., 1991). In Figure 2, we have plotted relative error of the angular
momentum of the two-body system, G/Gy — 1, by the symplectic numerical integration. We
can see the relative error of GG is very close to the order of the round-off of the computation
system, O(10716).

4.4 Solution for [

Same as L and G,

I = "+ {I*,5}
" <az* 951 oI 95, ol 95, ol asl>
a* 9L*  oL* ol ' gr 9G*  0G* dg*
S,
aL*

= [+

= [*4+

S /(H1 — H7)dt". (85)

Now the secular error of [ is caused by [*, and the periodic error of [ is caused by ggi. We

show the specific derivation for each of them in the next sections.
4.4.1 Secular error of |
The canonical equation of motion on [* using the new Hamiltonian (75) is

arr oH*

dt  OL*

15



Relative error of G [G/GO -1]
30 T T T T

10 | 1

-10 +

20 t i

G(numerical)/GO(initial) -1 [*10716]

_30 1 1 1 1
0 1 2 3 4 5
Time [revolution]

Figure 2. The relative error of total angular momentum, G/Go — 1. The quantization around
10716 denotes that the error is due only to round-off because the machine-epsilon of double
precision is 2.2204460492503131 x 10716 in our system (HP-UX 11).
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9 2 72,2 o*2
= -t 7+ Z 51t
oL* 2L* 24a**n* 2
2 2,2 2 #2
_ K Topt 9 x—4 (1 «2\73 e
= Tat 5 o [a (1-¢) <1+ 2)]
2 2 * %2 %2 %3
I T un Se N
= L*3 o 120,*3’)7*5 <1 + 4 ) ) < ﬁ - n*a*2 - TL*CL*) (86)

Now we substitute L* in (80) into the first term of the right-hand side of (86),

po p?
3 = 3
L (Lo + L (Hy =0 — Hf))
2 2
Iz 3 *
K H, - H 87
Lg Lgn*( 1,t=0 1)7 ( )

up to the leading order term of Hy/Hy.
Therefore (86) becomes

dr* w? 32 prln* 5¢*?
== LR (H,o- HY) - 1
dt 0 e oo mHD = gy \ U0 )
2 *
15 2 % 3a 13 >
= — — Hy— — . 88
L‘g +7°n ( " 1,t=0 + SYpEE I (88)
. = L_‘St + 7°n — 7 1,t=0 + W t+ 0- (89)

The second term in the right-hand side of (89) represents the secular error of [ up to the
first-order of the perturbation theory.
4.4.2 Periodic error of [

The periodic error of [ is more complex to calculate. From (85),

o5 _ 9 /(Hl—Hf)dt*

oL* oL
22 ( 6 sa(1-¢?) ) 221+ %

0
- 8L*/ 24 rrd 5 a*r*3 24 a*477*5 . (90)

T*4 P
It is clear that we have to perform following two calculations successively:

1. Indefinite integration of

dt* 1 dr*
/ o ox kT (n:3’4"5)
r n r
2. Partial differentiation of the indefinite integrals by L*.

Since all the periodic terms are of the first-order, the variables with superscript * can be
replaced by those without *. We neglect most of the superscripts * in the following discussion

for simplicity.
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Indefinite integrals of 1/7*" We know relationships between r, f, and [ as

a(l —e?) dl 72

= -7 — = 91
" 1+ecosf’ df a’p’ (91)
and the relationships of cosines
2 1 3 1
cos” f = 5(1 +cos2f), cos”f = Z(COSBJC + 3cos f). (92)
Using above equations,
dl 1 r?
i -4
/T3 /T3 27 f
1
= a3_773(f + esin f) + constant, (93)
di 1 r?
@ /_T_df
A a2y
L1159 4 oesing +  sin2f| + constant (94)
= — — e sin — sin constan
a*nd 2 4 ’
dl 1 r?
b /—T—df
o 5 a?ny
1 1+362 Ft 3+363 .f+362.2f+63.3f+ tant
= — e+ — | sin — sin — sin constant.
a®n’ 2 4 4 12
(95)

Substituting (93)(94)(95) into (86),

6 3a(l—e?) 2 dl N [dl 2 [dl
/<r4‘rs‘m>dl—6/r4‘3“(*e) R

e2 e3 . 3e? . e3 .
<1+2>f+<e—4> smf—4sm2f—4sm3f]. (96)

CL4775

Hence, the first-order generating function S; becomes by (76) with the superscript * as

S, = /(HI(L*,G*,Z*,g*) _HY)dr
72 12 6 3a* (1 - 6*2) 2 2?1+ eZZ
/ 24 Tﬂ - 7"*5 - U,*T*?’ - 24 a*477*5
2 *
R A R (1-e?) 2214 ¢
- ; 24 x4 *D - a*r*3 B 24 a*4,)7*5

rd r
7_2u2

%2 *3 %2 *3 %2
e e . 3e . e . e
W <1+ 2>f*+<e*— 4)Slnf*— 1 sin2f* — 1 s1n3f*—<1+2>l*],
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Partial derivatives by L* Next we have to calculate the partial derivative gi"i. All the
necessary partial derivatives are given in Appendix C. As for the coefficient part in (97), it

becomes (neglecting superscript *)

2,2 4 4
= e = (98)
24n*a**n (pa (1 —e2))2 G
Hence
o u’ 19 s
=u*—G°=0. 99
OL na*n® har (99)
Similarly, periodic terms of f and [ can be differentiated using the relationship
af a L? ol
A e R I — =0 100
oL <T+G2>S1nf’ oL (100)
as
ad e? ad e? e\ of
— 1+ — = f— |1+ — 1+ — ) =
s (5)r = e (5) (%) o
G? G? [a L?)\ .
0 3 0 3 3 0
ﬁ<e—%sinf>:sinfﬁ<e—% —i—(e—%)cosf%
GZ 3 2 3 L2
:m[<1—%>sinf+<e—%> (;—i—a)sinfcosf], (102)
9 (9. o 9 9 o of
3L (e sm2f) = sm2f8Le +e 2c052f8L
G? L?
= E-Ze [sian—i—e(%—i—@) costsinf], (103)
0 de? 0
3L (e3sin3f) = sin3f£ +é- 3C083f£
G? 9| . a L2 .
= 3-36 Sln3f+e<T+G2>COSstmf], (104)
O (1+9)1 = 12 (14
oL 2 oL 2
G2
= 5l (105)

19



Adapting (99)(101)(102)(103)(104) (105) for (97), we get the partial derivative of Sy by L (or

L*) as
951 ?u? | G? G? [a L?\ .
oL ~ 2natyp |27 T e \r Tz )/

G2 3e2 . e3 a L? .
e M7 eI em ) (G e ) sin s
3 G2 L?
_4 L3 2@{51n2f—|—e< G2>SlnfCOS2f}
e
L2 G?
_15.362 {sm3f+e< G2>SlnfCOS3f} Lgl]
G2 G2 362 . 63 a L2 .
—_— L3(f_l)+eL3{<1_4>Slnf+ <€—4> <T+G2>Slnf
2 2 3 L?
+<1+e2> <:+G!2> —1'26 (Sln2f+e< G2>C082f>
1 L?
_1.362 <Sin3f+€<_ G2>C083f> }] (106)

Therefore, from (85) and (89), the final solution for [ up to the first-order perturbation in

this theory becomes as follows:

I = I*4{I*,8}

_ 05
aL*
3a* 7
= 1 ft Hy — | t
0+ L3 + T < U 1,t=0 + 24@*3’)7*3>
,u G? G? 3e2\ . e3 a L2 .
W L3(f l)"‘m ]._T Slnf+ e_z ;‘i_a Slnf

2 a L2 3 . a L2
+ <1+ 2) <r+ G2> — 1'26 <sm2f—i—e (r + 2) cos2f>
1 _ L?
- 3e? <s1n3f +e (— G2> cos3f> }] (107)

The errors of [ are plotted in upper panels of Figures 3, 4, and 5. The upper panel of Figures
3 shows the secular and periodic errors of [ by the numerical symplectic integration and the
analytical perturbation theory, compared with the exact solution of the Keplerian motion. The
upper panel of Figures 4 shows only the periodic errors of I. The upper panel of Figures 5 shows
the difference of the periodic errors of [ by the numerical integration and analytical perturbation

theory. Higher-order analytical solution will reduce the difference between these two.

4.5 Solution for ¢

Same as [,
g = g +{g" 5}
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Secular and periodic error of | (10=0)
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Secular and periodic error of g (g0=20 deg.)
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Figure 3. The numerical and analytical solution of the secular + periodic errors in [ (upper)
and ¢ (lower), compared with the exact solution of the Keplerian motion. The squares denote
the numerical solution by the second-order symplectic integrator, the lines denote the solution

by the first-order perturbation theory.
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(lower), subtracting the secular error shown in Figure 3. The squares denote the numerical

solution by the second-order symplectic integrator, the lines denote the solution by the first-

order perturbation theory.
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o <8g*851 9g% 95, _ 99" 39S, dg" asl>
= 9 7T \ararLr T aL* ai* T 8gr aG*  9G* dg*

951
_ *
AT
0
g e /(H1 _ HY)dr". (108)
Now we know that the secular error of ¢ is caused from g¢g*, and the periodic error of g is

051
oG* *

caused from

4.5.1 Secular error of g

The canonical equation of motion using ¢* using the new Hamiltonian (75) becomes

dg*  OH*
dt —  OG*
_ o /LQ N 7_2/1’2 - 6*2
- OGH L*?  24a*in*® 2
7_2,“ 6*2
* 7_2/1’ 6*2 *

The second term in the right-hand side of (110) represents the the secular error of g up to
the first-order of the perturbation theory. gg is the initial value of ¢ when ¢ = 0.

4.5.2 Periodic error of g

The periodic error of g can be obtained as the same way as [. From (108),

dsl 5} * *
= /(Hl—Hl)dt
9 22 (6 3 (1-¢?) R
- BG*/ 24 o r*d a3 24 a*477*5 de”. (111

Same as [, it is clear that we have to perform the following two calculations successively:

1. Indefinite integration of

dt* 1 dl*
[ = (n =3,4,5)

2. Partial differentiation of the indefinite integrals by G*.

The first task has been already done. The second task is given as follows:

as d .
aG* oG / (Hh = Hi)dt
o 1
= — | (H, — H})dl*
o0G* n* /( ! )
0 7212
_ F(F*T* 112
M [mww (", >], (12)
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where F(f*,1*) denotes the periodic function of f* and I* described in the integrand of (97) as

4

%2 *3 3 *2 *3 *2
FfF 1) = <1+62> f*+<e*—"’ )sinf*— ‘1 sin2f*—e4 sin3f*— 1+"’7 I*. (113)

Henceforward, the variables with superscript * are replaced by those without * since all the

periodic terms are of the first-order of perturbation. We neglect * in the following discussion

for simplicity.
As for the coefficient part in (112),

Therefore
981 0 .
oG~ 9G* /(Hl_Hl)dt
Tt [0 1 0

i [aG <é‘5> FUD+ g5 557 l)] :

It is possible to calculate the partial derivatives of F(f*,1*) in the same way as in [:

d e? de e\ of
aa(”z)f = e<9c;f+<1+2>aa

9 2 3 2
za—ele—T>sinf—l—(e—%)cosf(——l—E)smf],
0 0 0
3G (e2sin2f> = 26£ sin2f + 2¢? cost%
0 L?
= %lZesian—i—%anosQf <%+@> sinf],
0 0 0
el (e?’sin?)f) = Sezi Sin3f+3€3C083f£
0 L?
= %[362Sin3f+3630083f (%—i—@) sinf].
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Substituting (116)(117)(118)(119)(120) into (112), periodic errors of g becomes

051 19

:TZZL*[_C;{(HGZZ) (f—1)+ <e—e43> sinf—?fsinzf—fsmf}
()
+<1—34i2> sin f + <6—1—3>cosf <;+é—z>
—;e <sin2f+ecoszf <;+é—z>>
S EN) o

Therefore, from (108) and (121), final solution for g up to the first-order perturbation can be

obtained as follows:

g = 9" +1{9", 51}
L 05
- dG*
7_2,“ 6*2
= 90 — 740/*3,’7*6 1 + 4 'rL*t

+%[—%{<1+§> (- <e—— smf——s1n2f—§smf}
HE e e
+<1—?’Z2>smf+ <e—ej>cosf<z+éz>
—ge <sin2f+ecos2f <z+ g))
—262 <sin3f+ecos3f <%+é—z>>>}] (122)

The solution for g is plotted in the lower panels of Figures 3, 4, and 5. The lower panel of
Figures 3 shows the secular and periodic errors of g by the numerical symplectic integration
and analytical perturbation theory, compared with the exact solution of the Keplerian motion.
The lower panel of Figures 4 shows only the periodic errors of g. The lower panel of Figures 5
shows the difference of the periodic errors of g by the numerical integration and the analytical

perturbation theory. Higher-order analytical solution will reduce the difference between these

two.
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Difference between numerical and analytic solutions for | (10=0)
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Figure 5. The differences of the periodic errors of I (upper) and g (lower) obtained by the
numerical and analytical methods, which are equivalent to the differences in two data (squares

and lines) in Figure 3.
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4.6 Another interpretation of the numerical error source

The principle source of the numerical error by symplectic integration is that of mean anomaly

[, which grows linearly in time. According to Kinoshita et al. (1991), we can derive the source

of the secular numerical error of [ (89) as follows: The mean anomaly [ of the surrogate system

is dominated by the surrogate Hamiltonian H, and the mean anomaly [ of the real system is

dominated by the real Hamiltonian H. The equations of motion which [ and [ follow except for
periodic parts would be

dl  9H

dt — 9L’

dl OH

respectively. Subtracting (124) from (123), we get

(123)

d /- OH OH
—(z—z) T3
8-[{eI‘I'
oL

2 un 5e?
T 28 1+T ’ (125)

which is equal to Eq. (19) in Kinoshita et al. (1991), and also coincides with the second term

of the right-hand side of our (86) except for the superscript *.
In addition to (125), there is another source of the secular truncation error in the mean
anomaly [ due to the constant part of the truncation error the total energy, E. Since the

surrogate Hamiltonian H is strictly preserved by symplectic integration, we have

H = H(Qmpo) + Herr(‘]mpo) = H(q’p> + Herr(‘]7p)7 (126)

to O(7%) approximation. (g, p,) are initial values, and (q,p) are the approximate solutions
obtained by the symplectic integration. From (126), the truncation error of the total energy

(i.e. secular part of Hamiltonian) becomes

AE = H(q,p) — H(qy,Po) = Herr(q9,Po) — Herr(q, ). (127)

Since Her(qg, pg) is fixed, constant part of AF is given by

AE, = <AE> = <Herr(QOap0) err( 7p)>
= Herr(qupo Herr( >p
2

2
= Hew(q0,P0) — ?75 < ) (128)

In general, we can derive the constant bias in semimajor axis (Aa) due to the constant part

of orbital energy offset (AFE,) as follows:

E=—-—— 129
L, (129)
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I
—_Fr 130
“T TR (130)

12

Hereafter we use AF,. instead of AFE in order to remark explicitly it is constant.

. Aa

From the Kepler’s third law, n?a® = p is fixed in the gravitational two-body problem. Then

the secular error of [ due to Aa can be obtained by taking a variation of the Kepler’s third law:
2An - a® +n? - 3aAa = 0, (132)

. 2Ana 4+ 3nAa = 0. (133)
If we are to express the variation of the time derivative of [ as

% (i— l) = Al = An, (134)

the secular error of [ becomes from (133)

. 3nA
Al = An =21 (135)
2a

Hence the additional secular truncation error of the mean anomaly [ due to AE, is from (128)
and (131)

Al = _3nAa
2a
n u
= — . —-AF
2a 2E? ¢
3np 20\ 2 7212 e?
= —— |\ - Herr ’ ———= |1 o
4a < N) l (qO pO) 24(14775 + 2
3an 2 un e?
= ——H..(q, —— |14+ —=]. 136
L (qO pO) + 8(13?75 < + 92 ) ( )

Now we have the total secular truncation errors for the mean anomaly [ by adding (125) and

(136) as

. 2 un 5e? 3an 2 un e?
Al = — 1+ — ——H. (qy, — 1+ =
12a3n° + 4 + m (d0,Po) + 8a3n® + 2

3an 2 un

= —THerr((Io,Po) + (137)

24a3n3’
which is equal to the second term of the right-hand side of our (89).
However, this derivation in Kinoshita et al. (1991) is somewhat confusing in spite of its
correct solution in (137). Especially, the appearance of the second source of the secular error
Al (136) seems to be too abrupt. This is caused by the confusion of I and L* in (125). After
the operation of time-averaging (by a certain canonical transformation), L*, instead of L, must
be used to describe the canonical equation of motion; (125) should be derived correctly from
the canonically transformed equations of motion such as
arr oOH*
dt oL+

(138)
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Moreover, the averaged value of L is not equal to L*; L* has a constant bias to L, which
is the true reason of the “another source of the secular truncation error in the mean anomaly
due to the constant part of the truncation error in the energy” in Kinoshita et al. (1991). The

detailed and exact form of L* is presented in (80) in the previous sections.

4.7 Dependence on initial configuration

As you can see in the equation (107), the secular numerical error in [ arises from the coefficient

of ¢, namely

3a I
6nsec = T2’fL <—MH17t:0 + W) . (139)

Hereafter we call the coefficient (139) dngec. Note that in the expression of dnge in (139) we
neglected all of the superscripts *.

Not only éngec has a dependence on the initial longitude in H; ;—¢ as discussed in the previous
sections, but this has a dependence on the initial orbital shape, e. The effect of a is only to scale
the unit of time, so we can neglect it from the discussion of numerical error here. We plot this
Ongec’s dependence on initial eccentricity as well as initial starting longitude in the two-body
problem in Figure 6. We can anticipate from (139) that there are certain initial mean anomalies
(lp) which make énge. very small, possible zero. Actually in some cases of higher eccentricities,
Ongec becomes zero at certain values of initial mean anomaly in Figure 6. However, generally
Ongsec does not become zero whatever we change the initial mean anomaly.

In Figure 7, we exaggeratedly illustrate the trajectories of (I, L) of the two-body system
described in this section. “Exact” denotes the exact solution which goes from (1,0) and comes
back at (1,0) again. “Numerical” denotes the symplectic numerical solution which goes from a
different point from (1,0) and does not come back at the starting point. “Synthetic” denotes
the analytical secular solution obtained by the perturbation theory which is close to the time-
average of the numerical solution. As we see, the exact and the synthetic solutions are far from
coincidence when the initial mean anomaly Iy = 0 (left panel), while they coincide pretty well
when the initial mean anomaly [y = 180° (right panel). This result corresponds to the result

shown in Figure 6 in terms of the numerical error of the symplectic integrator.

5. Reduction of errors by the iterative start

In the examples of Kepler problem in the previous sections, we could find an approximate
analytical solution of symplectic numerical error by a perturbation theory. However in general
many-body systems, it is quite difficult, or virtually impossible, to obtain an analytical form
of the numerical error; hence we cannot know which initial mean anomaly would reduce the
numerical error of symplectic integrator in analytical way. Thus we have to depend on a
numerical way to look for the initial conditions which reduce numerical errors. This kind of
numerical method we use when we start our integration has been originally proposed by Saha
& Tremaine (1992) under the name of “iterative start.” Our method is essentially the same
with their iterative start, but a bit different in its way of implementation. We mention our

method and results in two kinds of three-body dynamical system: Sun—Jupiter and a fictitious
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Figure 6. (Upper) the secular error coefficient of mean anomaly in the two-body problem (139)
as a function of initial mean anomaly ly. Five curves show the results when e = 0, 0.1, 0.3, 0.4,

and 0.5. (Lower) an enlarged panel of the central part of the upper one.
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middle-sized body in the asteroidal belt, and a planet orbiting around a binary system named
MACHO-97-BLG—41 which has been discovered by a gravitational microlensing event.

'Exact

'Exact

umerical Numerical

1k etic 4 1k Synthetic
05 4 05 +F R

0 0
-0.5 - 1 -05r R
_1 - 4 _1 o i
-1 -0.5 0 0.5 1 -1 -0.5 0 0.5 1

Figure 7. Exaggerated illustration of the trajectories of (I, L) of the two-body system (see
Table 1). (Left) when Iy = 0. (Right) when [, = 180°. The line denoted “Exact” shows
the exact solution which goes from (1,0) and comes back at (1,0) again. The line “Numerical”
denotes the symplectic numerical solution which goes from a different point from (1,0) and does
not come back at the starting point. The line “Synthetic” means the analytical secular solution
obtained by the perturbation theory which is close to the time-average of the numerical solution.
We have intentionally exaggerated the deviation of the numerical and synthetic solutions from

the exact ones in order to bring out the difference.

5.1 Perturbed motion of a middle-sized planet
5.1.1 Settings of numerical experiments

First we consider a weakly perturbed three-body system, Sun—Jupiter and a fictitious middle-
sized body in the asteroidal belt (see Figure 8). The fictitious middle-sized body has a finite
mass of 1/10 Mypiter, hence the problem is not a restricted one. The initial orbital elements
of the middle-sized body are similar to those of Ceres: when e = 0.1 and e = 0.4, a = 2.6AU.
When e = 0.6, a = 2.2AU so that we avoid its close encounters with the outer planet. The
values of other orbital elements than a or e are the same as those of Ceres. The mass and
initial orbital elements of the outer massive planet in this system is just the same as those of
Jupiter. These initial orbital elements of the bodies are basically taken from the Development

Ephemeris of JPL, DE245 (Standish, 1990).

A principle way to execute the “iterative start” in this section is as follows:

1. Given a nominal set of initial orbital elements, perform an integration with a very high
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6.

accuracy covering a shorter timespan than the main integration.

Choose several initial conditions of all relevant bodies from the results of the accurate

integration.

Perform several short-term integrations with a normal accuracy using the initial conditions

selected above.

Calculate the numerical differences between the accurate integration and each of the short-

term integration.

. Select an initial condition which produces the least numerical error as the set of starting

orbital elements of the main integration.

Perform the main integration using the initial condition selected above.

Note that the integration periods of the accurate integration and the short-term integrations

are much shorter than the period of the main integration. For example, when the period of

the main integration is 1 x 10® years, we would take a 10%*-year for the accurate and the short-

term integration periods. The initial conditions for the short-term integrations are chosen while

the Jupiter-like planet orbits the Sun once (about twelve years). Interval among each initial

condition is ~ 1° in the Jupiter-like planet’s longitude, or about ten days in time. We have

illustrated the situation in Figure 9.

When perturbation to the Kepler motion is very small, we may be able to implement the

“iterative start” on the system in a simpler way as follows:

. Given a nominal set of initial orbital elements, we can fix the Keplerian osculating orbital

orbits of each body.

. Let each body move on its osculating orbit by a small interval (see Figure 8).

. Name each position as 1,2,3,...,n. At each position, perform two sets of numerical

integrations of a short period: one is a very accurate integration, and the other’s accuracy

is the same as that of the main integration.

. Compare the two sets of integrations and calculate their numerical difference at each

position from 1 to n.

. Repeat the above comparison until we reach a certain point, n.

. Select an initial condition which produces the least numerical difference as the starting

orbital elements of the main integration.

. Perform the main integration using the set of initial condition selected above.

In the discussions below, we choose the latter procedure. Note again that the procedure is

valid only for a slightly disturbed system such as the Sun—Jupiter—a middle-sized planet. We

cannot apply this simplified procedure to a significantly perturbed system like the planetary
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system around a binary which we will discus later. This is due to a stronger perturbation on
the planetary orbit from the short-term orbital motion of binary.

We fix the period of the accurate and the short-term integrations as 2 x 10* years. We take the
time interval of each set of initial condition as Pjyypiter/360 where Pryypiter is the orbital period
of Jupiter. We choose 360 sets of initial conditions for comparison, meanwhile Jupiter rotates

around the Sun once, and the middle-sized planet does twice or more.

Jupiter

Figure 8. A schematic illustration of the Sun—Jupiter—a middle-sized body system. Each

short-term integration starts at the numbered position from 1,...,n. See also Figure 9.

5.1.2 Results of the numerical experiments

We have performed numerical experiments for the three-body planetary system using the

second-order explicit symplectic integrator described in Section 3.. As for canonical variables

33



t=0 T t

>

-~ short-term integrations

T
|
i
|
} >
I
Hati

longitude of planets

Figure 9. A schematic illustration of our way of implementation of the “iterative start.” Each
short-term integration starts at a different time (or a different orbital position) on a same

dynamical trajectory. See also Figure 8.

used in the scheme, we have adopted the Jacobi coordinate. The shorter integrations are done
with a stepsize of 4 days. As the standard numerical integration with a high accuracy, we
have performed an integration over 2 x 10%-year period with a stepsize of 0.0625 = 1/16 days.
We consider this standard integration much more accurate than the shorter integrations, and
calculate the longitudinal difference of the middle-sized planet between the standard integration
and the shorter integrations. We have chosen 360 sets of initial orbital conditions while Jupiter
revolves once around the Sun from its initial position. We have tested three sets of numerical
integrations, changing initial eccentricity of the middle-sized planet eg; eg = 0.1,0.4, and 0.6.
For eg = 0.6 set, the initial semimajor axis of the middle-sized planet is set as ag = 2.2AU so
that we avoid its close encounter with Jupiter. In other sets, ag = 2.2AU which is similar to

the semimajor axis of Ceres.

The root-mean-square (RMS) of the longitudinal error of the middle-sized planet per year is
shown in Figure 10. Here the horizontal axis is denoted as the initial mean longitude of Jupiter,
but note that the initial mean longitude of the middle-sized planet changes accordingly. If we
fix the mean longitude of one planet and change that of another, it ends up with integration of
the orbital motion in many different dynamical systems. This is not what we mean to study in

this manuscript.

In Figure 10, we notice three interesting characters. First, root mean square (RMS) of the
longitudinal error of the middle-sized planet differs a lot, depending on initial starting point
on the dynamical system. Second, the rate of error reduction is much larger when the initial
eccentricity of the middle-sized planet (eg) is large. When ey = 0.6, maximum difference of the
RMS is nearly two orders of magnitude. Third, there are some spike-like features on the RMS

curves, especially when ey = 0.4.

As for the first point, we can understand it in analogy with the similar analysis in the two-
body problem discussed before. Since in Figure 10 there is no zero-axis in ordinate because
the figure draws the RMS of the planet’s longitudinal error, we drawn a simple average of the

longitudinal error when ey = 0.6 in Figure 11. We clearly see that under certain values of
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the initial conditions, the longitudinal error crosses zero axis. This means when we start the
integrations from such initial conditions that lies on the zero-axis in Figure 11, we can reduce
the longitudinal error of the planet to a large extent. In contrast when we choose a bad initial
condition, the longitudinal error of the planet increases terribly, which degrades the accuracy

of numerical integration very much.

109} eg=0.4

10-1} q

RMS longitude error of the body [deg/yr]
P

10_2 ' €0=O.1 |
0 90 180 270 360

Initial mean longitude of Jupiter [deg]

Figure 10. The RMS numerical error of the middle-sized planet (deg/year) as a function of

Jupiter’s initial mean longitude. ey is the initial eccentricity of the the middle-sized planet.

As for the second point, we see the same trend as in the two-body problem discussed below
(see Figure 6). We chose some of the typical numerical results of time-series and showed them
in Figures 12 (eg = 0.1), 13 (eg = 0.4), and 14 (eg = 0.6). When the initial eccentricity of
the middle-sized planet is not so large as eg = 0.1, the degrees of the error reduction by the
iterative start is not prominent. However as ey grows, the degree of the error reduction becomes
larger, even up to two orders of magnitude (the lower panel in Figure 14). We could find five
initial conditions where the longitudinal error of the middle-sized planet becomes very small (or
possible zero) when ey = 0.6 as in Figure 11. But there is only one condition when ey = 0.4
(near 30 = 360°). When ey = 0.1, we could not find any of such appropriate initial conditions.

At present we do not have a definite answer why these numerical errors can be significantly
reduced much when the initial eccentricity is low in the two-body and weakly perturbed three-
body systems such as discussed above. It may be related to a kind of geometry in phase-space
of the dynamical system. A simple guess goes on like this: when the eccentricities of bodies
are large, geometry of the trajectory in phase-space is somewhat distorted or warped. This

distortion could be common in both the real system dominated by Hamiltonian H and the
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Figure 11. The averaged (simple sum) numerical error of the middle-sized planet (deg/year)

as a function of Jupiter’s initial mean longitude when eg = 0.6 in Figure 10.

surrogate system dominated by surrogate Hamiltonian H in (21). The initial conditions by
which we can significantly reduce numerical error may be intersection points (possibly lines or
plains if dimension of the phase-space is large) of the two distorted trajectories. On the other
hand when the initial eccentricities of the bodies are small, the trajectory may be very smooth,
and the possibility that the two trajectories intersect with each other may become lower, which
leads to the non-existence of the initial conditions that reduce the longitudinal error to nearly
zero in our numerical experiments. This discussion is still a simple guess. We have to seek a

definitive answer confirming the structure of the phase-space in detail.

As for the reason of the third point of the spike-like feature, it is not obvious to explain.
We took an example result of such spike-like features and showed what was going on there
(Figure 15). The figure can be a counterpart of Figure 13 which shows an example time-
series when e¢g = 0.4 with I3 = 358° and I3 = 5°. When [j9 = 148° that is just on the
spike-like area, at the beginning the longitudinal error increases similarly to the results when
l;30 = 5°. However when when t > 5000 years, the slope of the curve of I3 = 148° suddenly
increases, and the error increases rapidly afterwards. This nonlinear behavior of the numerical
error may be similar to the stepsize resonance phenomena reported in WH-type symplectic
integrator (Wisdom and Holman, 1992; Rauch and Holman, 1999) or symmetric multistep
methods (Quinlan and Tremaine, 1990; Fukushima, 1998; Fukushima, 1999). But it would be
not easy nor straightforward to understand why these spike-like features occur only in ¢y = 0.4

systems, and why the spikes can work as not only to decrease the errors but also to increase
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Figure 12. An example of the numerical error in the mean anomaly of the middle sized planet
when ey = 0.1. 10 denotes the initial mean longitude of Jupiter. The unit of the vertical axis is

deg/year, and the unit of the horizontal axis is year.
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Figure 13. An example of the numerical error in the mean anomaly of the middle sized planet
when eg = 0.4. 10 denotes the initial mean longitude of Jupiter. The units of axes are the same
with those of Figure 12.
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Figure 14. An example of the numerical error in the mean anomaly of the middle sized planet
when eg = 0.6. The lower panel is a logarithmic version of the upper one. The units of axes are

the same with those of Figure 12.
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them (cf. Figure 10). Detailed inspection of what is going on in these spike-like regions and of

its dependence on various orbital parameters are necessary to definitely answer our question.
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Figure 15. Another example of the numerical error in the mean anomaly of the middle sized
planet when ey = 0.4, near the spike-like area in Figure 10. The units of axes are the same with
those of Figure 12.

5.2 A planet around a binary star

When we execute numerical integrations in a dynamical system with a small deviation from
a certain integrable system (such as Kepler motion or free rotation of rigid bodies), it is not
so efficient and operative to resort to the iterative start in order to reduce the numerical er-
rors in symplectic integrators. When the motion of planet deviates little from Keplerian, we
should utilize the standard WH map or its variants and extensions, in which we can use many
sophisticated techniques which are easy to implement such as the warm start or the symplectic
corrector (Wisdom et al., 1996). But when we take care of a system which is not so close to
be integrable, we cannot use the method which supposes near-integrability of the system. We
anticipate that the iterative start would have its largest effect in such a far-integrable dynamical
system.

From this viewpoint, we already have a good example of such non-integrable dynamical
systems: An extrasolar planet orbiting around a binary star system, MACHO-97-BLG—41
(Bennett et al., 1999; Albrow et al., 2000). The planetary system around MACHO-97-BLG—41
was discovered by a gravitational microlensing event. Another planetary system (single planet

-+ single star) was also found around MACHO-96-BLG-35 (Rhie et al., 2000), which is expected
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to be a kind of solar system kin comprising a low-mass terrestrial planet and a solar-type star.

As for the planetary system around MACHO-97-BLG—41, the lens system is expected to
consist of a planet of about three Jupiter masses orbiting a binary stellar system comprising
a late-K dwarf star and an M dwarf star. The stars are separated by 1 ~ 2AU (nominally
~ 1.6AU in Bennett et al. paper), and the planet is orbiting around them at a distance of
about several astronomical unit (nominally 7TAU in Bennett et al. paper). Since binary stars
are expected to be much more common in the universe than single stars, it is likely that we find
many more of this type of extrasolar planetary systems in the future.

One of the demerits of the extrasolar planet detection by microlensing events is that the
accuracy of orbital determination is not so high. This is because it is quite hard and generally
impossible for us to re-observe a planetary system which has been found by a microlensing
event. We have to determine the orbital elements of planets through a set of observational data
covering a very short range. Thus orbital elements of extrasolar planets found by microlensing
events should contain large errors. We list the possible range of dynamical parameters of
MACHO-97-BLG-41 planetary system which are taken from Bennett et al. (1999) in Table 2.

Distance to the lens 6.31'(1):2 kpc
Total mass of the lens 0.8 +0.4Mg
Mass of the primary star M; =0.6%+0.3Mg
Mass of the secondary star Ms = 0.16 £ 0.08 Mg

M3 =0.033 £0.017M
(= 3.5+ 1.8Mj)
Separation between two stars 1.5703AU

Mass of the possible planet

Distance between planet and the
5.7706AU

center of mass of the lens

Table 2. Masses and orbital parameters of MACHO-97-BLG—-41 planetary system taken from
Bennett et al. (1999). Mg is the Sun’s mass, and Mj is the Jupiter’s mass.

Among the rather uncertain orbital elements of the planetary system, we have chosen a set
which is shown in Figure 16: the mass of the primary star M; = 0.6Mg, the mass of the
secondary star My = 0.16 M, the mass of the planet M3 = 0.028 My = 3Mj, the separation
between two stars is 1.6AU, and the semimajor axis of the planet in terms of the barycentric
frame of the lens system is 6AU. Since our present integrations for this system are still prelim-
inary, we have fixed the initial eccentricities e, longitudes of ascending nodes €2, inclinations I,

arguments of perihelion w, and mean anomalies [ of the secondary star and of the planet as

€planet,0 = 0, €secondary,0 = 0.1,
Iplanet,O = Isecondary,O =0.1 degrees,
Wplanet,0 = Wsecondary,0 = 0,
Qplanet,O = Qsecondary,o = 07

lplanet,O = 07 lsecondary,O =180 degrees.
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We have selected the non-zero values for inclinations I so that the system composes a three-
dimensional point mass system. By choosing these orbital elements, the ratio of eHj,; and
Hyep in (141) becomes ~ 0.3, which is much larger than the perturbed Keplerian motions as
described in the previous sections. Thus we think it is worth applying the iterative start when
numerically integrating this system.

Several researches have been already done on the dynamical stability of planetary motion in or
around binary stars (Wiegert and Holman, 1997; Holman et al., 1997; Mazeh et al., 1997; Hol-
man and Wiegert, 1999). Based on these previous researches, Moriwaki (2001) has investigated
on the stability and instability of the MACHO-97-BLG—41 planetary system using a high-order
symplectic integrator. Also, Moriwaki and Nakagawa (2002) have performed long-term numer-
ical integrations of the planetary motion with various initial conditions of binary eccentricities,
planetary semimajor axis, planetary eccentricity, and longitude of planetary perihelion. The
aim of their research was to see which kind of initial configuration produces stable orbits over
the whole timespan of their integrations (10% binary periods). Their numerical results show
that the upper limit of the binary eccentricity in this system is 0.4 when the planet starts from
a circular orbit. When the initial eccentricity of the planet becomes large, the stability of the
planetary motion is deteriorated. Hence their numerical integration gives us a hint to deduce the
upper limit of the initial planetary eccentricity (~ 0.3 in Moriwaki and Nakagawa’s estimate).

The specific way to implement the iterative start on the planetary system around MACHO—
97-BLG—41 is just the same as before:

1. Given a nominal set of initial orbital elements of the planet and the binary stars, we
perform an integration with a very high accuracy covering a shorter span than main
integrations. We fix the period of this accurate integration as 2 x 10* years, similar to the

integrations described in the previous section.

2. Choose several initial conditions among the results of the accurate integration for all
relevant bodies. We determine the interval of initial conditions for each shorter-term
integration as Pplanet/360 where Ppjanet is the orbital period of the planet around the
center of mass of the system. Until the planet gets back to its original longitude, the

secondary star rotates around the primary several times.

3. Perform short-term integrations with a normal accuracy using the initial conditions ob-
tained above. We fix the period of this short-term integrations as 2 x 10* years. This
period should be nearly equal to that of the accurate integration so that we can compare

them afterwards.

4. Calculate numerical difference between the accurate and each of the short-term integra-

tions.

In Figure 17 we show the result of the accurate numerical integration of the planetary system
around MACHO-97-BLG—41. More specifically speaking, the “accurate” calculation means
an numerical integration using a fourth-order generic (TV type) symplectic integrator with a
stepsize of 0.0625 days. The planetary orbit rapidly precesses due to the strong perturbation

from the binary stars inside. In contrast, we show several examples of the short-term numerical
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Figure 16. A schematic illustration of the planetary system around MACHO-97-BLG—41
binary. The orbital elements are taken from Table 2. Mg denotes the Sun’s mass (= Mg).
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Figure 17. The result of our accurate numerical integration of the planetary system around

MACHO-97-BLG—41 binary stars. Eccentricity of the binary stars is 0.1. Only the planetary

orbit is drawn here, omitting orbit of the binary stars. The origin of the coordinate is fixed on

the center of the mass of the system. The unit of axes is AU.
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integrations with a moderate accuracy (using the second-order symplectic integrator with a
stepsize of 1.0 days) in Figure 18. Although our numerical integrations are still preliminary,
we can easily find some very interesting results. Among the short-term numerical integrations,
the planetary orbital trajectory is very similar to that of the accurate integration only when
Iplanet,0 = 16°. Other trajectories are quite different, as if each of them shows the orbit in totally
different dynamical systems.

There are two possible causes for the above phenomenon. One is the strong dependence of
the numerical error in symplectic integrator which we have discussed in the previous sections.
Since the disturbance to the planetary orbital motion by the inner binary stars is very large,
the “distortion” of the trajectory in phase-space may be remarkable, which leads to the extreme
difference in enhancement or reduction of the numerical error shown in Figure 18.

The other reason concerns the reliability of the accurate numerical integration. If the accurate
integration is literally “accurate”; that is, exactly expresses the true solution of the differential
equation, there is no problem when using the iterative start. The strong dependence of the
numerical error such as in Figure 18 can be all ascribed to the difference in the initial orbital
positions chosen for the symplectic integration. However, if the accurate integration is not that
“accurate”: i.e. if the solution by the accurate integration contains somewhat “inaccurate”
compositions compared with the true solution, it is not easy for us to distinguish whether the
strong dependence of the numerical error such as in Figure 18 is all due to the difference of chosen
initial orbital positions, or due to the chaotic dynamical character which the system involves.
In other words, when the accurate integration is not sufficiently accurate, we may be comparing
the integration results of many different (and mutually less relevant) dynamical systems, which
is not what we meant. Although we have employed a fourth-order symplectic integrator with
a relatively smaller stepsize in our accurate integration in Figure 17, the accuracy may not
be sufficient. We are now going to confirm the accuracy of our “accurate” integration using
ever higher and more precise integration method, such as a sixth- or an eighth-order symplectic
integrator with some appropriate start-up procedures.

In Figure 19, we show the relationship between the initial mean longitude of the planet
(Iplanet,0) and the RMS numerical errors of the mean longitude and the semimajor axis of the
planet using the same procedures as described in the previous sections. We have extracted
three examples from the results in Figure 19 and drawn the time evolution of the numerical
errors in mean anomalies and semimajor axes in Figures 20 and 21. What we notice first when
viewing these figures is the irregularities of lines; we can hardly see any systematic trend in
the graphs, unlike when we have taken care of a slightly perturbed three-body system in the
previous section. This is we think probably due to the larger perturbation to the planetary
orbit by the inner binary stars. We have to check whether this irregular trend is real or not
using more accurate numerical integrations.

Another difficulty when we adopt the iterative start on a strongly perturbed dynamical system
such as the planetary system around MACHO-97-BLG—41 binary stars is related to its non-
integrability. A weakly perturbed system such as what we have described in the previous sections
is also a non-integrable system, but we call it “nearly integrable.” In nearly-integrable systems,
especially those which are close to the superposition of the two-body system, we know that

many of angle variables degenerate. Hence there is a considerable difference in the timescale of

45



100 - ; - - - - 100 - . . . .

80

80

60

40

20

-20

-40 -20 0 20 40 60 80

100 . 100 . .
80 t 80 t :
60 60 :
40 40 :
20 t 20 t :

0 0 -
20 | 20 | :

40 20 0 20 40 60 80 40 20 0 20 40 60 80

Figure 18. Some example results of the short-term numerical integrations (2 x 10* years) of the
planetary motion around MACHO-97-BLG—41 binary stars when the eccentricity of the binary
stars is 0.1. Upper left: [, janet,0 = 16°, upper right: [ janet,0 = 34°, lower left: Ijjanet,0 = 198°,
and lower right: Ijjanet,0 = 360°. Only the planetary orbit is drawn here, omitting the orbit of
the binary stars. The origin of the coordinate is fixed on the center of mass of the system. The

unit of axes is AU.
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Figure 19. The relationship between the initial mean longitude of the planet (lplanet,o; degree)
and the RMS numerical errors of the mean longitude (upper; degree) and semimajor axis (lower;
AU) of the planetary orbit in the MACHO-97-BLG—41 system. Each length of numerical data
used for the comparison between the accurate and the short-term integrations is 2 x 10% years.

The origin of the orbital elements is the center of mass of the system.
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Figure 20. The numerical difference of the planetary mean anomaly in the MACHO-97-BLG—
41 system when [pjanet,0 = 198°, lplanet,0 = 360°, and lyjanet,0 = 16°. The unit of the vertical
axis is degree, and the unit of the horizontal axis is year. The origin of the orbital elements is

the center of mass of the system.
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Figure 21. The numerical difference of the planetary semimajor axis in the MACHO-97—
BLG-41 system: (upper) when lyjanet,0 = 198°, (middle) when ljjanet,0 = 360°, (lower) when
Iplanet,0 = 16°. The unit of the vertical axis is AU, and the unit of the horizontal axis is year.
The origin of the orbital elements is the center of mass of the system.
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each variable in the system. Then it is enough for us to focus on a variable having the shortest
timescale in error reduction procedures such as the iterative start (for example, mean anomaly
in the Kepler motion). In other words, it is easy for us to guess by which variables we should
evaluate numerical errors. However, in strongly perturbed systems such as the planetary system
around MACHO-97-BLG—41 binary stars, it is not so easy to determine a variable by which we
evaluate numerical errors. As we can see in Figure 18, such a system dose not degenerate any
longer, with all angle variables changing quickly. Then, it is not clear whether or not an initial
orbital position which reduces the numerical error of one variable also produces the minimum
of the numerical error of other variables. In addition, orbits may not be bounded in such a
strongly perturbed system: For example, in Figure 22 we show three example results of the
“accurate” integrations when the eccentricity of the inner binary stars of MACHO-97-BLG—41
increases to 0.15 from 0.10. We see that the semimajor axis of the planet changes rapidly and
secularly, which may indicate that the planetary motion is unbounded and unstable. We think
it is still an open question what kind of variable should be used in such systems to reduce the
numerical error most efficiently.

As for a planetary system around or inside a binary such as MACHO—-97-BLG—41, a dedicated
symplectic algorithm developed recently is available (Chambers et al., 2002; Quintana et al.,
2002). However, Chambers’ algorithm still exploits the fact that the system is nearly integrable
and bounded. If planets goes out or into binary stars, or if the actions of planets change secularly,
it is not sure that the dedicated algorithm works as well. The iterative start works possibly well
even in such a system keeping the symplecticity, since it is derived from the general-purpose

symplectic integrator, H = T'(p) + V(q) type.
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Figure 22. Three example results of the short-term numerical integrations (2 x 10* years) of
the planetary motion around MACHO-97-BLG—41 binary stars when the eccentricity of the
binary is 0.15. Left: ljanet,0 = 40°, middle: lpjanet,0 = 96°, and right: lpjanet,0 = 221°. The unit

of axes is AU.

5.3 Relationship to the “warm start”

It is meaningful to consider whether there is any relationship between the items in this

manuscript and a special start-up procedure called “warm start” (Saha and Tremaine, 1992;
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Saha and Tremaine, 1994).
The discussion below follows Saha & Tremaine (1992). As we have seen in the previous
sections, Hamiltonian H for a surrogate system dominating the WH-type symplectic map can

be written as follows.

ﬁ =H+ Herra (140)
H = Hyep + ¢Hin, (141)
67'2 2 2
Herr = ﬁ{{erpaHint}a erp} + O(f T ) (142)

We define the actions and the angles in a real system as J = (Jy, Jo, J3) and 8 = (01,65, 63).
Also, the Kepler Hamiltonian Hye, is described by Delaunay variables as usual L = (L, G, H)
and I = (I, g,h). Although the Delaunay variables are dedicated to the Kepler motion, the
discussion here can be extended to any kind of nearly integrable problems.

We know that the difference between H and Hyep is only O(e€) where € is the order of magnitude

of the perturbation we consider now. Then we can write as

Ji=L+0(e), 6 =101+4+0(e),
Jy =G+ O(e), 0 =g+O(e), (143)
Jy = H +0(c), 0s=h+0(e).

Since Hyep, is a function of L only (i.e. Hgep = — > ; ZHL’Z), all the dependencies of Hye, on
Ja, J3,01, 05,05 are restricted to O(e). Then we get l
O0Hyep O0Hyep
= =0 144
8J2 (6)7 8J3 (6)7 ( )
0 Hyep 0 Hyep OHyep,
=0 =0 = O(e). 145
891 (6)7 892 (6)7 803 (6) ( )

Substituting (144) and (145) into (142) and evaluating the Poisson bracket {,} by canonical

variables of the real system (J,0), we can rewrite the error Hamiltonian H,.,. Then we imme-

diately find that only a term including ag}fp remains up to O(e) approximation since the error

Hamiltonian He,, originally has a factor e (142).

€72 (OHyep \ 2 [ 02 Hipt
Hy = —— P n O(272). 146
24 < EYA > g6,z ) TOET) (146)

Here we are supposed to concern only bounded motions such as a stable planetary dynamics

or a rotational motion of planet. Then, a(;ail‘;t in (146) consists of only periodic terms: if there

. . 2
1s a constant term in aag;t, e.g. Ch as

82[—Iint
=C 147
8912 1 ( )
which leads to OH.
int
= (0 C 148
90, 101 + Co, (148)



where C is another constant of integration. Let us define .J; p, . as an action due to Hjy.

Then, from (148),

dJl Hing 8Hint
) 1n — — _C 0 _ C 149
dt 80, 101 = €2, (149)
Tl = —Cot + f(0151), (150)

where f(6;;t) is a function of §; and t. Equation (150) means that there appears a secular

if there is a constant term in Zflgt in (146), which leads to a

90,2
possible secular collapse of the system. Thus %ﬁ‘;t in (146) must consists of only periodic

motion in the action Ji g,

int

terms. The fact that aggi;t is expressed only by periodic terms indicates that there are no
“raw” angles 0 in the disturbing function which describes planetary perturbation. All of the
angles appear as the form of periodic functions such as sin @ or cos 6.

From (146), we can decompose the error Hamiltonian He,, into the superposition of Fourier

components as
How = e Y X ()™ 4 0(7%), (151)
m

where m = (my,my, m3) is a integer vector and each m; takes any value from —oo to +oo,
and X, is the coefficients of Fourier transformation. Since H. has no secular term other than
O(€%7?), and since only 6; is directly related to time, Xy, should be zero when m; = 0. Hence

the time-averaged (i.e. secular) value of Hegyy should be
(Hep) = O(272). (152)

The fact described by (152) plays an essential role in the principle of the warm start.

If we define the canonical frequency of the real system H as

W=, (153)

..NI:J—ET2Z—€‘ A (154)
m

and the canonical frequency of the surrogate system H becomes

&) ‘”Z? = T (H() + (HanlD))
= LHE:I)—FO(GQTQ)
oJ

= w(J)+0(&7?). (155)

The fundamental idea of the warm start described in Saha & Tremaine (1992) is to make
the difference between J and J as small as possible at the start of symplectic integration, and
keep the difference small all through the integration using the adiabatic invariant character of
Hamiltonian systems.

Thus we can understand that the warm start is effective only when the error Hamiltonian

consists only of periodic terms as in (151), and when its averaged value becomes far smaller
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(as in (152)). In this case, the warm start is more effective and easier to implement than the
iterative start. However, when the error Hamiltonian does not consist only of periodic terms
such as in (48), the warm start is no longer valid. We have to resort to other general method,

such as the iterative start.

6. Interpretation and other analytical examples

As discussed above, we can reduce the numerical error of H = T'(p) + V(q) type symplectic
integrator by choosing certain starting conditions. But mostly, the numerical error does not
decrease significantly (cf. when eg = 0.1 in Figure 10). What is the difference between systems
where we can and cannot reduce the numerical error of the symplectic integrator?

To answer this question, we have applied a canonical perturbation theory to several simple
dynamical problems. We consider a symplectic integrator dominated by a surrogate Hamiltonian
H = H+ Hy,, as a kind of nearly-integrable, disturbed Hamiltonian problem. If the Hamiltonian
of the real system H is integrable (e.g. the Kepler motion or the harmonic oscillator) and Heyy
is sufficiently small, we can obtain approximate solution of the system, i.e. numerical solution
by symplectic integrator including numerical errors.

Suppose the surrogate Hamiltonian takes the following form:
ﬁ(ea J) = H(J) +Herr(9aj)7 (156)

where 6 and J are the angle and action variables of the real system, H. J is an integral (or
constant) in H, hence H includes no angle, 6. .J would be no longer a constant (nor action) in
the surrogate system IjI, but J and 0 still serve as canonical variables in the surrogate system
as H(6,J).

Here we suppose that the degree of freedom of the system is one for simplicity. Extension
to problems with larger degrees of freedom is in principle possible, though it generally requires
formidable algebra. Since we focus ourselves on a first-order solution here, using a traditional
theory (von Zeipel, 1916) or a standard theory exploiting Lie series (Hori, 1966; Deprit, 1969)
makes no difference.

Averaging He, by the angle 6, we obtain the new Hamiltonian H* in general as

H*(J") = H(J")+ (Hen(6",J7)) (157)
= H*(J*) + H: (J%). (158)

err

Then we get the canonical equations of motion for the new system as

dJ* OH*(J*)

= 159
dt o0* 7 (159)
ao* _ ofr
dat 9J*
_ OH*(J*) | OHZ.(J¥)
- a.J* + aJx (160)
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but since H* includes only J* and does not include the angle variable 6%, J* is a constant (or

an integral) and 6* exhibits a equi-velocity linear motion in phase-space as
J* = constant, 6% = wt + constant, (161)

where w is the canonical frequency of the new system defined as

OH*(J*)

)= "5

(162)

In the following subsections, we take several simple Hamiltonian systems as examples, and
see how the solution (i.e. the numerical solution by the symplectic integrator) would be by the

canonical perturbation theory.

6.1 Harmonic oscillator

Let us begin with the simplest system, the harmonic oscillator with one degree of freedom.

The Hamiltonian of the system is

2
mw
0 2
+

2
p
H:T(P)‘*‘V(Q):% 5 ¢

(163)

where ¢ and p are canonical coordinate and momentum. wg is a constant which describes
the oscillation frequency of the system, and m corresponds to the mass of the oscillator. The
angle/action variables (,.J) of the harmonic oscillator are obtained, for example, through the

Poincaré transformation as

2J
q =4/ ——sind, p=+/2mwyJ cos¥. (164)

mwo

The Hamiltonian (163) becomes now
H = wol. (165)

Thus we found the system integrable.

6.1.1 Numerical errors of the first-order formula

According to the BCH formula, the error Hamiltonian of the first-order symplectic integrator

becomes as follows:

72

H,, = g{v, T} + 35 (DL VLV + (V. THT)) + O, (166)

where 7 is the stepsize of integration. Each Poisson bracket becomes

orTov 9T oV

vy = —2 1 _ 277
1} dq Op  dp Iq
= —whqp
= —wlJsin26, (167)
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{T,V} = wiqp = wiJTsin 20, (168)

(wvv) = {edw "0}

_ 4.2
= TMmweq

= —2uwiJsin’#, (169)

) = {-ion 2|

w2p2
m

= —2uwlJcos?. (170)

Hence

o = TAVT}+ T ((TVLV)+ {V.TLTH +0()

2
= —waJsm 20 —{— — (—ZWS’Jsin2 0 — 2w J cos® 0) +0(7*)

= —§w0Jsm 20 — T—wS’J + O(73). (171)

Hereafter we write the Hamiltonian H = H + H,, for simplicity as
H(a, ']) :H0(07 J)+H1(97J)7 (172)

according to the way in the previous section (see (77)).

Then we get
2

H(0,J)=wyJ — —wOJsm 20 — 1—w0J + O(?). (173)

We transform the original Hamiltonian H(6,.J) into an integrable form H*(J*) through a
canonical transformation. If we assume that the new Hamiltonian H* would be expanded into

the form

H*(J*) = Hy(J*)+ H{(J*) + Hy(J*) + -+, (174)

and the generating function S of the transformation could be the form
S(O%, J%) = So(0%, J*) + S1(0°, J*) + So (6", J*) + - -, (175)

where the order of magnitude of H;yi/H; and S;1/S; (i = 0,1,--) equals to that of the
perturbation, i.e. O(7).

Omitting all the algebra on the way, we would obtain
H{(J*) = Ho(J*) = woJ™, (176)
hence the zeroth-order Hamiltonian is uniquely determined. As for the first-order Hamiltonian,

Hi(J*) ={Ho(6",J"), So (0", ")} + H1 (0", J). (177)

99



Here we have to determine both Hf(J*) and So(6*,J*) simultaneously. Thus we request

Hi(J*) not to contain any angle variables as
Hi(J*) = (H1(6%, %)) g (178)
and let Sy include the rest of periodic terms as
{Ho(0",J"),S1(6%, ")} = (H1 (0%, J%)) g — H1(6",T"). (179)

Now let us remember the canonical equations of motion for unperturbed part of the Hamil-

tonian in the transformed system

d0*  9Hy dJ*  9H, (180)
atr*  aJ*’  dt*  96*’

where t* is the “time” for this system. Using (180), the Poisson bracket in (177) becomes

N N O0Hy 05 0Hy 05
{HO(Q o ),50(9 o >}(0*,J*) = 0% O.J* - a.]* 96*

_ <850 dJ* 95y dH*)

oJ* dt*  00* dt*

d Sy
= — ; 181
. (181)
Thus (179) becomes
dSo * Tk R * Tk * Tk
W = - {HO(Q o] )550(9 o )} = H1(9 o] ) - <H1(9 o ))0* ’ (182)
L Sp= /(H1 _HY). (183)
Substituting the specific form of H; (173) into (178), we obtain
T 72
Hi(J*) = (—ZwdJ*sin20* — —wsJ*) +0O(r?)
2 12 o
72
= ——wiJ+0(r3). (184)
12
The final Hamiltonian up to the first-order approximation is thus
2
H*(J*) = HE(J*) + HE(J*) = woJ* — %wg’,}* +O(r). (185)
The canonical equations of motion for (6%, .J*) system are
do*  OH*(J*) 2 .
_ T 186
dt a1+ 0T 1Mw (186)
and 4 OHH(JY)
=_ =0. 187
dt a0* (187)
Thus J* is a constant, and the canonical frequency of the new system w(J*) becomes
* aH*(']*> % 7_2
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which is also a constant. Since the relationship between the new and old variable has the form
0 = 6* + periodic terms, J = J* + periodic terms, (189)

the secular numerical error in the angle 6 is produced from the second term in the right-hand
side of (188), —%wg, which is a constant. In this sense, we cannot manage to reduce the
secular numerical error of the angle § when we solve the motion of the harmonic oscillator by

the first-order symplectic integrator; the error does not depend on initial starting conditions.

6.1.2 Numerical errors of the second-order formula

The error Hamiltonian of the second-order symplectic integrator can be obtained by the BCH

formula up to O(7?%) as

2 1
Hoe = 75 (HTV). V)= S {VT)TY). (190
We have already calculated the Poisson brackets {{T,V},V} and {{V,T},T}, so
12 1
ﬁHerr = {{T> V}7 V} - 5 {{VaT}aT}
2,2
= muwiq® — “oP_
m
2J 3
= muw; <> sin2g — 20 (2mwo.J) cos® 6
muwy 2m
= 2wlJsin?0 — wiJ cos? 0
3
J
- w% (1 — 3cos26). (191)
Averaging this error Hamiltonian, we obtain
H{(J%) = (a0, %) = =0 (192)
which leads us to the final Hamiltonian as
2
H*(J*) = Hi(J*) + Hi (J*) = woJ* + ;—4wS’J* +O(r). (193)
The canonical equations of motion for (6*, J*) system are
dg*  OH*(J*) . 4
Rl S — 0] 194
7 97 w0+24w0+ (), (194)
and 47 OHM(JY)
= — =0. 195
dt o0* (195)
Thus J* is again a constant, and the canonical frequency of the new system becomes
OH*(J*) . 2 .
T =22 g = = 196
oy = 2L wo+ T (196)

which is also a constant. Since the relationship between the new and old variable has the form
0 = 6* + periodic terms, J = J* + periodic terms, (197)

the secular numerical error in the angle 6 is produced from the second term in the right-hand
side of (196), %wg’, which is a constant. Thus we know that we cannot reduce the secular

numerical error of the angle 6 arising from the second-order symplectic integrator.
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6.2 Nonlinear pendulum

As seen before, the harmonic oscillator produces no secular numerical error in the first- and
second-order symplectic integrator. We guess this is ascribed to the isochrone character of the
potential of the harmonic oscillator—eigenfrequency of the system does not depend on the initial
amplitude of oscillation. The eigenfrequency of the harmonic oscillator does not contain action
variables; wy is a pure constant, not a function of action variable such as wg(.J). The isochrone
characteristic is typical of the harmonic oscillator. In contrast, the Keplerian potential, —p /7,
is not isochrone. The eigenfrequency of the Keplerian motion (i.e. mean motion n) depends on
the initial amplitude of oscillation (i.e. semimajor axis a) as n = \/u/a®. We already knew that
the Keplerian motion produces the secular numerical error in angle variables when we use a
first- and second-order symplectic integrator. In this subsection, we check whether a nonlinear

and non-isochrone pendulum causes any secular numerical error in symplectic integrators.

6.2.1 Angle and action variables

We begin with the following Hamiltonian

2 2.2 4 2.6
p wWoq €q €q
Har) =5+~

SREE (198)

which is originally derived from the Hamiltonian of a pendulum having the form of H = % +
bcos g, but with a slight modification (Boccaletti and Pucacco, 1998). We recognize € as a small

and constant parameter. The unperturbed part of the Hamiltonian (198) is

2 2.2
p* | wig
Ho(g,p) = 5 + =5 (199)

which is identical to the Hamiltonian of the harmonic oscillator. Since we already knew the
relationship between (¢,p) and the action-angle variables (6,.J) of the harmonic oscillator as

(164), we can rewrite the Hamiltonian (199) as
HO(J) = wOJ, (200)

which leads to the new form of the whole Hamiltonian as

eJ? e2.J3
H(0,J) = wJ — =—
(0,7) = wo T = =+ 95600 |

(201)

Now we start to obtain the action (J*) for the Hamiltonian system (201) which allows us to

write

H(,J) = H*(J*
= H}(J") +eH{(JY) +EHI(T) +---, (202)

through the canonical transformation of Hori (1966). Note that we implicitly assume that the
Hamiltonian H (60, .J) nor H*(J*) does not contain time explicitly,
Let the generating function S of the transformation (6,.J) — (0*,J*) as

S(6*,J%) = S1(6*, J*) + €S (0, J*) + €2S3(0*, J*) 4 - --. (203)
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We apply the Lie’s expansion theorem to H(6,.J), and get

H(0,J) = H(6",.J*) + e {H(6*,.J*), S(6*, .J*)} + é {{H(6*,J%),S(6*, J)}, S0, J*)} +---.

(204)
Substituting (201) and (203) into (204), we get
H(0,J) = Hy(0*,J*) + eH (0%, J*) + € Hy (0%, J*) + - --

+6{H0+6H1+€2H2+"',S1+652+6253+"'}

2
+i{{H0+6H1+62H2+"',Sl+€SQ+62S3+“‘},SI+€SQ+62S3+"'}+"'

2
= Ho(6%,J%) + eH (6%, J*) + Hy (0", J*) 4 - -
+e{Ho(0*, J%),S1(6%, T} + € ({Ho(0%,J"), So(6%, J*)} + {H1 (6%, J*), S1(0", J*)})
2
+% {{Ho(6", J%), 51(6%, J)}, 51(6%, ")} + O(€”). (205)

Equating the two Hamiltonians H(#,.J) and H*(.J*), comparing the terms of each order of e
in (202) and (205), we obtain the result for O(e®) as

H(J*) = Ho(J*) = woJ*. (206)
For O(e!), we get
Hi(J*) = {Ho(0", J"), Hi (0", ")} + Hy (0", J"). (207)

Let us consider the canonical equations of motion of the unperturbed system H{(J*), intro-

ducing a time-like variable t* as

d0*  OH(J*)  dJ*  9HY(JY)

= = 208
dt* aJ 7 dt* o6* 7’ (208)
. J* = constant, 0" = wet" + 6], (209)
which leads to
OH}; 0S1 OH§ 0S5y
H* J* S 9* J* — 0 _ 0
LHG (), Su(6%, ) 00* 9J*  9J* 06"
B (851 dJ* n 251 d@*)
B dJ* dt*  96* dt*
d Sy
As a rule of usual perturbation theory, we request H;(J*) not to contain t* as
Hi(J*) = (Hi(0%, "))
I I A
= T/ [— : sin* (wot™ 4 65) | dt*
0
w g, dt*
= — — in® 0% ——do*
2«/0 [ 6 " ] do*
27 J*Z
= =2 / [— s’ 9*] do*
T .Jo
,]*2
= = (211)
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The leading term of the generating function S; becomes

sy = [ =) ar

_ (45,
N dt*
J*2 1 do*
= / <cos 20% — =~ cos 40*>
12 4 @
J* 1
= <sin 20" — —sin 40") , (212)
24w 8

neglecting a constant of integration.

For O(e?) terms, we get

H;(‘]*) = {H0(0*7 ‘]*)7 52(0*7 ‘]*)} + {Hl(e*a J*)a 51(9*, J*)}

1 Tk x T T x T
+§ {{H0(0 7‘] )7‘51(0 7‘] )}751(9 aJ )} +H2(9 aJ )7 (213)
and we request again
Hy(J*) = (H2(0%, J7)) (214)
and
dSs

{Ho (J%), $2(0%, J")} = - (215)

de*”
Thus we can calculate ever higher-order components of H and .S; in similar ways. The new

Hamiltonian and canonical frequency of the system up to O(€) now become

J*2
H*(J*) = Hj(J") 4+ eH{ (J*) = woJ" — € R (216)
and OH*(J* J*
w(J*) = 8J(*> =wo — € (217)
The canonical equations of motion written in the new variables are
o OH*(J¥)
a — 9J
= w(J*) = constant, (218)
dJ* OH*(J*)
= — = 219
dt a0* ’ (219)
. J* = constant. (220)

The relationship between old (0, .J) and new (6%, J*) variables is now explicit using the Poisson

bracket operator Dg = {, S} as

0 = ePso*
o 2
= 0"+ e S(0%, ) + S {07, S0, T} S(0%, T + - (221)
J = ePsg*
o 2
= T = eSO, ) + 5 (LT S(0%, T S0, T 4 (222)
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Substituting the specific form of Sy (212) into (221) and (222), we get

J*
0 =0"+¢
wo

1
<Sin 20% — 3 sin 49*> + O(€?), (223)

*

J=J"—¢

1
<cos 20" — — cos 49*> + O(€). (224)
wo 2

Since (6, J) are the angle and action variables in the Hamiltonian system Hj of the harmonic
oscillator, the relationship between (¢,p) and (6, .J) has been described in (164). Now in the
perturbed system (198), (0,.J) are no longer angle/action variables, but are still canonical
variables described in (223) and (224). Hence we obtain the final solution (g, p) for the system
(198) by substituting 6 and J of (223) and (224) into the (¢, p)-(6, J) relationship of the system
Hy, i.e. (164). Thus we get

2J* J* 1 J* 1
g = [1 _ € (cos 20* — — cos 49*)] sin [0* . <sin 20" — —sin 40*)] + O(é?),
wo 12w 4 12wq 8
(225)

J 1 J 1
p= \/2on [1 - 1;w0 <cos 20 — 1 €08 49)] cos [9 + 1;00 (Sin 20 — S Sin49>] + O(€*). (226)

Hereafter we consider (6, .J) as (6%, J*), neglecting the superscript * attached. Hence we get

2J eJ 1 . eJ . 1. 2
q= \/ {1 1 <cos 20 — 1 cos49>] sin [9 + B <Sm 20 — 3 Sln49>] +0(€%), (227)

wo wo wo

J 1 J 1
p= \/2on [1 - 1;w0 <cos 20 — 1 €08 49)] cos [9 + 1;00 (Sin 20 — S Sin49>] + O(€*). (228)

6.2.2 Error Hamiltonian in symplectic integrator

Let us consider a situation where we numerically calculate the solutions of a system dominated

by the Hamiltonian (198) up to first-order, namely

2 2.2 4
p Woq €q
H =— - 229
gp) =2 + 2T (229)
When we write the Hamiltonian as H = T'(p) + V (q),
2 2.2 4
p “oq €q
Tp)=—, Vi(g) = - — 230
W=". V=2 (230)
The error Hamiltonian for the first-order symplectic integrator thus becomes
T
Herr,lst = 5 {V(Q)aT(p)}
. ToVaor
 29q Ip
T €
= 3 <W§q - 6q3> p- (231)
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By (227),

8.J3
¢ = ’/—Bsingﬁ—i—O(e)
“o

1 [8J3
= —/—5 (3sinf —sin30) + O(e), (232)
4 wo
which leads to

J
wiq — %qg =/2Jw} [Siﬂ@ + 22

) 1 8J3
( sin @ + — sin 39)] (3 sin f — sin 30)
wp \ 2 4 64

. eJ 5 8]3 eJ 1 el [8J3
ano |y (1457 5) - 551 +Sm30l\/724w01+81\/ﬁl

5 1 V23 8.J3
= sin @ [ 2Jwi + € <48\/2J3w0 — 8\/8J3w0>] + €sin 30 <wo 4+ — 51 ) ,

96
(233)

up to O(€). Thus the error Hamiltonian in (231) becomes

2 €
*Herr,lst = <wg(] - q3> p
T 6

5 1 V23 8J3
= [sinG < 2Jwi + € <48\/2J3w0 — 8\/8J3w0>> + esin 30 (wO + — 52 )]

96
eJ 5 . 1 .
X v2Jwy [cos@—{— <Sln9—|—sm30>]
24w \ 2 4

1
2Jw0{sin9cos9 [ 2Jw8’ +€ (48\/2J3w0 — 8\/8J3w0>]

<\/2J3w0 N 1 [8J3

96 24\ W
J 5
+ 24w0\/2jw0 sin 6 <— sin 6 + —sm39>] }
5 1
= v/2Jwp{ = sin 29 2Jwi + € <E\/ 2J3wy — g\/&]SWO)]

1
2
J3 1 8] 1
wo — [ —5 | = (sin 46 + sin 20)
24 2
5 5 1 1
+ 24w0\/2Jw8 <4 — 4 o8 20 — S cos 46 + s cos29>] }, (234)

up to O(e). Hence if we average He,. 15t over 6, then we get

+ €

) sin 30 cos 0

51 J
Heopp1st) = €e——/2J \/2Jw3
(Herr15t) UV TG, V0

5

= —woJ?. 235
6T96w0 ( )
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In order to estimate the numerical error of the first-order symplectic integrator when adopting
to the nonlinear pendulum system, we now apply the Hori’s perturbation theory to a Hamilto-

nian

2 w2 2 € 4
H = % i 02q - 214 + Herr 1. (236)
We rewrite the above Hamiltonian as

H:HU(J)+H1(97 J)7 (237)

where ) ) . )

J
P L L O S (239)

2 2 24 16

from (216), and

Hl(ea J) = Herr,lst(ea ‘])> (239)

from (234). Since we already knew the averaged perturbation Hamiltonian as (235), applying

the perturbation theory gives us a new transformed Hamiltonian as

*2
* * * 5 ol
H*(J*) = woJ" —¢ 16 + ET%M()J 2 (240)
and a new canonical frequency as
OH*(J*) € 5
J)= ———— =wy— =J" —eT——wpJ". 241
W)= e T gl e gpe (241)

Now that the canonical frequency w includes the action J* as w(J*), we may be able to make
it approach the real value, wg — g.Jo where Jp is the initial (or “observed”) value of the action
in real system.

The canonical equation of motion for J* becomes as

dJ* OH*(J*)

dt 90+ (242)

from which we know that J* is a constant. According to the relationship between old and new

variables of (222), we get

.] — eEDsJ*
* 9 * Tk 62 * * Tk * ok

= J _689*5(9 7'])+3{{J 75(0 7J)}7S(9 7J)}
d

= J" - H, — H}) dt*
ae*/( 1 Hi)
1

— J'— — (H,—H}). (243)
wo

Suppose J = Jy when ¢t = 0, then
* 1 *
Jo=J"— — (Hi—0 — HY), (244)
wo

since J* and HY are constants, so

* 1 *
CoJE = .]()—l- w_(Hl’tZO —H1>. (245)
0
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As for 6*, the canonical equation of motion becomes

6" OH*(J%)

dt o.J* -
= wo—*J*—i-GT%J*
= wp— % (Jo + 030 (Hit=0 — Hf)) + 5759% <J0 + io (Hyt=0 — Hf))
B %JO - <ET% a g) Hl’tc(:o_ E GT%JO' (246)

In (246), the first two terms in the right-hand side (wo — §Jo) denote the canonical frequency
of the unperturbed Hamiltonian system, (238). Other terms denote numerical secular error of
the angle variable, . What is most important here is that the secular (or constant) numerical
error

—J 247
wo + €T 96 05 ( )

may depend strongly on initial values of J, 6, and parameters €, 7, and wy. Although we do

< 5w0 6> Hl,t:O — Hik 5(4)()

not demonstrate here, certain combinations of these parameters may reduce the secular error
of (247) nearly equal to zero. Other combinations may terribly increase the secular numerical
error. This kind of error reduction happens only when the canonical frequency of a Hamiltonian
system depends on its initial oscillation amplitude; in other words, when the potential of the
Hamiltonian is not isochrone, and dependent on .J. The reduction or non-reduction of the
secular numerical error in planetary longitudes seen in the previous sections is thus qualitatively

understood to some extent.
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Appendix A. Jacobi coordinate

We request a Hamiltonian used in the WH map to have the following properties:

1. As for the Keplerian part, it should have the same form as the Hamiltonian of the two-body

problem, % — %, or the sum of this form.

2. As for the interaction part, it should be described only by the relative distance, such as
V(r).

3. The magnitude of the interaction part should be much less than that of the Keplerian
part (Hyep > Hing).

However, simple heliocentric or barycentric coordinate does not satisfy the above requests.

For example, writing the Hamiltonian using the barycentric coordinate ends up with

Gmom,; Gmgm,; ) GmZmJ
H =
o (L T ) S
2 N 2 N N

P§ p; Gmom; Gmom,; Gmomj Gm;m;

= 0 . — —
2my ;<2mi |rz~—r0|> Z|rl—r0| Z “ |ro — 74 ;];J i — 75

_ pg n ivj < pz2 Gmgml> Z Z Gm,m] (248)
2mo i \2mi |1 — 7o oS i rjl’

where we cannot classify the kinetic energy of the Sun (p%/?mo) into Hyep nor Hipg. One of
the canonical variables which suits our request is the Jacobi coordinates (Plummer, 1960). The

Jacobi coordinates r; are defined as

7= Z mjr;, (249)

Uz 1
where
o;=0i—1+mi, o9g=myg= Mg, o_1=0, (250)
fng = =L, (251)
o}
i = G, (252)
0i—1

Canonical momenta which are conjugate to r; are

P; = m;v;, (253)
and the velocities are N
5y = I (254)
v; = .
Cdt

In this manuscript, we have utilized the Jacobi coordinate system in our symplectic numerical
integration of the H = T(p) + V(q) type. Thus the discussion below has a certain sense to

describe our method of numerical integration in detail.
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The advantage of transforming to the Jacobi variables is that in the barycentric frame, the

kinetic energy of the N + 1-body system becomes

N I~)2
-, (255)
=1 2
without terms of the central mass as follows (Plummer, 1960).
When we represent the position of the barycenter of the particle of 1 to 7 as R;,
oiR;, = moro+ miry +more + mi_17mi—1 + myr;, (256)
oi1Ri1 = morg+miry +mary + mi_17ri_q. (257)
Subtracting (257) from (256),
0iX; — 01 X1 =mir; = (0 — 051)7i, (258)
which is due to the definition of o; (250). By the definition of the Jacobi coordinates 7,
T, =1, — Ri_1, (259)
“r, =7+ R;_4. (260)
Substituting (260) into (258),
oiR; —o;1Ri—1 = (05 — 0i—1)(7i + Ri—1), (261)
Uz(Rz — Ri—l) = (O’i — UZ'_1>”IV'Z'. (262)

Hereafter we concentrate on the x-components of the vectors »;, 7;, R;: x;, ;, and Xj,
respectively. Taking the square of (258) and (262),

(0i —0i_1)?2? = (0,X; — i1 Xi_1)?, (263)

(07 —0i1)? @2 = 02 (X; — X41)%. (264)

(2

Performing the operation (263) — (264) x “=1, we get

2( 2 0Oi-1.9
(0i = 0i-1) <$1 Ty
12
0i—1

= (0 X; — 01X 1)% — (Xi — X; 1)

)

2
= 012Xz2 — 20501 X; X1 + O'l‘zleizfl — 0;-10; (Xlz —2X; X1 + Xl>
= Xl2 (022 - Uiai—1> + Xi271 (0'1271 — O'iO'i_l)
= (i —0i1) (0: X2 =0 1 X2,). (265)

In the case of finite-mass system, o; # o;_1, then

(i —0i-1) (:L‘ZZ - 0219%12) =0 X} —0; 1 X2, (266)

i
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Addition of all the equations of the type (266) from i =0 to 1 = N,

N
> (o

1=0

— i) (r? _

UNXZQV - Ung

UNX]2\7-

Since o; — ;1 = m;,

N
S ma?
=0

Oi—1 .
Ti-1 2

( o_1 = 0)

!

ag;

(008 = 01 X2,) + (01 XF = 00 XE) + (2X5 — 1 XF)

+ (UN—1X12\]71 — 0'N72X]2\7,2> + (UNX]2\7 - O'Nle]val)

(267)

N
Oi—1 ~9 2
Zmi Z; +O’NXN
o

i=0 ¢
N
> mi
i=1
N

- =2 2
Z m;z; + onXy-
1=1

0i—1 ~9

i +onXy (o1 =0)

04

(268)

The relations between the coordinates have been written down for one kind only. But they

are linear and the same for all three coordinates v; = (zj,v;,2:), i = (%4, ¥i, 2i), and R; =

(X;,Y;, Z;) separately as

N
=Y mifi +onYR,

Above derivation can be applied also to the velocity components

as

N
> miy; (269)
=0 i=1
N N
Zmiz? = Zﬁzlézz +onZ3%. (270)
=0 i=1
dr L.
vi= = (@i, Uiy 2i), (271)
N dr Loz
v; = % = (xiaybz’i)) (272)
dR .
t
N N .
Zmlxzz = Zrﬁlxl + UNXZQV, (274)
1=0 =1
N N, _
D omigp = > il +onYg, (275)
2=0 =1
N N ‘
Zmlzf = Zngz + UNZ]2\7- (276)

=1
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Adding (274), (275), (276), we can represent the kinetic energy of the system

g:n; (92 +9% + 22) :i’; (3 +3; + %) +%N (X2 +V%+2%),  (@m
=0 i=1

or using the momentum p,; and p;

> P} _ <~ Bi |, PR
to— ¢ 278
0 2m1 =1 27’;74 + 2Mtot, ( )

1=

where pp, is the total momentum of the barycenter (total momentum of the whole system), and
Mt is the total mass of the system, M, = Zi]\io m;. Then, the general Hamiltonian for the
N + 1-body (one central mass and N planets) becomes

_ p2R N _ mZmJ
= 2Mt0t 12 277’7,2 Z Z (279)

By construction, the total momentum pp is an integral of the motion, which means that the
center of mass moves as a free particle. Hence the center of mass contribution to the Hamiltonian
p%%/ZMtot will be omitted. Thus the problem of N 4+ 1 bodies is reduced to a problem of N
fictitious bodies with mass m;, and the total order of the differential equations of motion is

reduced by 6. In view of (253) and (254), we can rewrite the full Hamiltonian as

N g2 NN g2
H = - B
; 2m; ;)j:zi;_l |ri — 7]
N -2 N ;2 N N 2
D; k*m;mg k“m;m; (
= (A - = 280)
= 2mi ; Ti iz—;j—zi—:&-l ri =74

where r; denote the heliocentric distance, |7; — r¢|. Note that we have changed the index j to

i for simplicity in the second sum of (280). Adding and subtracting the quantity

N 192
k
PRI (281)
=1
into the righthand-side of (280), the Hamiltonian becomes
N .9 N ;9 N ;9 N ;9 N N 2
B D; k“m;mg k“m;mg k*m; k*m;m;
H = Zm.—i_(_z 3 +Z 7 >_ r _Z Z v — 7
i=1 ¢ i=1 ¢ i=1 ¢ i=1 ¢ i=1j=i41 17" J
_ N ( f)? B k2mim0> . g: <k2mim0 B k2mim0> B i i kzmimj
=1 21 i i=1 i Ti 1= 1] 141 | - Tj’
N p? m;mg Zmam;
= Z<2f.—ﬂz - >+k22mlmo<—> ZZ — (282)
1=1 i Ti i=1j= z+1 - rjl
The relationship
kzmi = kzﬁ?’ﬁl
m;
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m;
01
okl
= kg
= [immi, (283)

is used in the first sum in the righthand-side of (282).
Thus the Hamiltonian in (282) becomes a desirable form for the WH map as

H = Hyep + €Hin, (284)

where

N ~92 -
; _omym
tp =3 (25— ) 259

= 2m; Ty

€Hing = Hdirect + Hindirect, (286)

2
Hdirect - Z Z k mzm] (287)

i=1j= z—|—1 B r]|
al 11

Hipgirect = k Zmzmo <_ - _> . (288)
=1 Ti Ti

The magnitude of Hgjpeer is O(m?). The magnitude of Hipgirect is also O(m?) because of the
difference of close terms 1/7; — 1/r;, O(m). Hence the magnitude of eHjyy becomes O(m) times
smaller than that of the Kepler Hamiltonian, Hyep.

Note that some numerical inaccuracies can arise from Hjpgirect in Which a subtraction of two
quantities at the same order is performed. Straightforward evaluation of these expressions can
be avoided by certain reformulation as used in Encke’s method (Battin, 1987).

We can also obtain expressions for the angular momentum by the Jacobi coordinates. See
Plummer (1960) for detail.

Two-body Hamiltonian in the Jacobi coordinates and energy integral

Consider the Hamiltonian of the two-body problem written in the Jacobi coordinates using

p = k?(mgo +mq). From (285) when N = 1, we can easily obtain

~2

P . MM

Hopody = = — fli——— (289)
2m1 T1
Using the following relationships

iy = Oy = 0™ (290)

o1 mo + my
i = Ilp2 _ M}ﬁ} (291)

] momy

;‘1 =T, 'l~)1 = V1, pl mlvl, (292)
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we get

mo + my momq 2 mo +my, 9 Momp Mg
H2body v - k

2m0m1 mo + my mo mo +m1 71

1 momq 9 k2m1m0

§m0 + mi ! T1
_ momy ’U_% K
mo +mq 2 71
2
_ (ﬁ _ ﬁ) , (293)
2 T1

with a set of canonical variables (71, p;) = (r1, miv1).

The equation (293) indicates that the general two-body Hamiltonian Hspeqy is not identical

2

to the usual “energy integral,” % — £, by a factor of the reduced mass, m; = 2™ When we
0+m1
analyzed the error Hamiltonian Hg,, in the previous sections, we have taken that this reduced
mass m; = nzr(‘)(ji_";il as unity for simplicity, and treated
Hoyogy = L (294)
2body — 2 ’1“1’

with canonical variables (r1,v1); i.e. usual heliocentric position and velocity. We can normalize

the two-body Hamiltonian (293) into the form of (294) through a certain conversion of units.

Appendix B. Canonical relative (DH) coordinates

Let the coordinates and velocities of planets viewed from barycentric frame as p; and p;. The

relationship between the coordinates and velocities based on heliocentric frame r; and 7; is

N N .
> =1 MyT; .. 2 =1 M7

pz 1 pz 7 M—l—Z;V:lmJ,

- , (29)
M + Zj‘vﬂ mj

where N is the number of planets and M is the central mass. If we denote the position of the

central mass by p,,

N
=T
N
M+ 3751 mj
N
Zj:l mjyT;

S L, (296)

P = T

since obviously 7. = 0 in heliocentric coordinate.
Below, we consider separately the kinetic energy and potential energy of the system.

Total kinetic energy of planets T}, is
1 N
-2
T, = B Z m;p;
j=1
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l\'J \

N N . 2
_ = MTi
a 2:: <] M+Z 1m1>

N

2

1 2 N (Zi]\il mﬂ‘i) ' (ZzNzl mz'f"z')
R ZLEN VRS> el AP PR B X o)
+ s j= (M +2in mz)
(297)
The kinetic energy of the central mass T, is
M
T. = 7[’3
oM S e\
2 M + Z =1y
N N
- %«ZF”W”>«ZF”W”) (298)

2 N 2
(M + 55 my)
Hence the total kinetic energy of the system T becomes

T =T,+T.

N N .
1 .9 2%, mr; )
=1 M +35 m;

N (Zf\; mifbi>2 + (Zij\il mz‘?)z'>2 + (Zij\il miéi)Q ]
my

(M + Zfil mi)z
+% (sz\il m1x1)2 + (ZZJ\;1 mi?)i)2 + (ZZJ\;1 mié’i>2
2 (M + Zfil mi)Q
1N, 1 2N mir;
=_ _Z jEL T g
2 Jz:l J 2 z*:1 M + Zz 1My !
M N 2 N 2 N 2
+ + Z —1m; . % {(Z mzxz> + (Z m1y2> + (Z m1z1> } . (299)
(M +3N, mi) i=1 i=1 i=1

The second term in the right-hand side of the equation (299) becomes

2N ma 25N mii ) )
——Z —_— ’I'j:—— —_— ij’l"j
M—i—Z 1mZ M—{—Z —1mi) i3

Jj=1 =

mdependent of j

- - - [<Z mzxz>2 + <1§; miyi>2 + <1§; mﬂi) 2} : (300)

_M+Ei:1mz [
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which ends up with the final form of the total kinetic energy 1" as

T = T,+T.
18 (ZzNzl mz‘fi“i)Q + (Zi]\; mi?)z')? + (ZZN:l miéi)z
- - (ot
() 4 (S )+ (5 i)
+§ M'{'Zz‘]\; my
1 1 (ENmein) (2N i)+ (D mes)’
= §jz::1mjr32'—§ =1 Mjrlzivllim =1 M%) (301)

Thus we can express the total kinetic energy T only by the heliocentric velocities, 7;.
If we consider 7 as a canonical coordinate, the canonical conjugate momenta p to r are derived
from Lagrangian
L(r,7)=T(7) — V(r), (302)
where T'(7) is kinetic energy and V(7) is potential energy.

If we define a temporary coordinate r* as

r* m;r;, 303
M+Zzlmzz it (303)

then the kinetic energy T'(7) is expressed as

N N
1 M+>:1,m;

Hence the canonical momenta p become

oL
Pi = 5,
0 )
— o (T() = Vi)
T
D
M+ m d 1 N
= mr; — QQT*. g —ij,,'.j
2 or; M—i—ZJ 1M i
N 1
= mﬂ"i— M+ij ')? —mi
= i M—i—Z —m;
= m(r;—77)
1 N
= m;l|lr,—- ——— m;ir; | . 305
1 7 M—i-z lm]]z:l 77 ( )

The canonical momenta p; in (305) are equivalent to those of what are used in so-called
“democratic heliocentric” or “mixed-center” coordinate, which are
N

P, (306)

inert mg

P;=p;
12
Mtota,l j=0
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N
Miota = M+ my, (307)
=1
where p%nert denotes momenta reckoned from a certain fixed point in the inertial frame (for
example, barycenter, i.e. essentially the same as m;p; in (295)). We now show that the momenta
in (305) and momenta in (306) are rigorously equivalent.

Since r are the heliocentric coordinate,

) plnert plnert
Ti={q; — 4oy = ZT 7310 ) (308)
(2

where we define g, as the coordinate reckoned from certain fixed point in the inertial frame
(this is equivalent to p; in (295)). Then, »* becomes by (303) as

N inert inert
) 1 p iner
= Z mi; = Sy (22— P, (309)
Mtotal Mtota,l 1 ™o
This leads to the expression of p; in (305) as
. .
P, = mir; —mr;
inert inert N inert inert
— o [P _ PO . 1 S Pj Po
= 7 i j
my ™mo Miotal i=1 my ™mo
e e N pinert M
_ inert ? _inert 7 . J J . inert
mo total my mo
7=1
. N .
_ inert m; inert inert m; Mj inert
P} Z p} p + —
— z 0 0
Mtotal Mtotal j=1 mo
inert 1nert g g J inert
= b P; ——+ ) | P
Mtotal Z mo Mtotal JZ::l mo
m; 1
_ 1nert 1nert 7 inert
= p} M Zp [ {1 = 37— (Miotal = mo)}] Py
tota,l mo total
— pinert _ mq Zpinert _ mg <1 _ <1 _ mo >> pinert
- [ i 0
Mtotal j=1 J mo Mtotal
— plnert m; pipert m; inert
)
Mtotal - I Mtotal
71=1
M N
_ inert ? inert
= p" - P, (310)

J
Mtota,l j=0

which is rigorously equivalent to the momenta used in “democratic heliocentric” (DH) coordi-
nate, P; in (306). The idea of the democratic heliocentric was first advocated by Poincaré and
have been described in detail in Charlier (1902) as a name of “Canonische relative Coordinaten.”

Later, this coordinate was born again to be used in SyMBA in Duncan et al. (1998) as follows.
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Below, Q, and P; are canonically conjugate each other.

q; — 90 (Z:L 7N)
Q; 1
' m;q., (1=0
Mtotjz:;) Jq] ( )
my N
pl_MZ Zp_p (1_17 >N)
P, = N
ij. (1=0)
=0

The Hamiltonian described by the DH coordinate is as follows:

H = erp + Hgun + Hint,

N 2
| P;] G'm;mg
He = - )
ep = 2 ( 2m; Qi

=1

N 2

1

Hypm = — |3 P;
sun 29me 12::1 AR
Gm;m;
mt Z Z »
i=1 j=1+1 ‘Q Q_7|

(311)

(312)

(313)

(314)

(315)

(316)

Note that the Hamiltonian is now divided into three parts, not into two parts as in the

generic WH map in (141). This is because of the existence of the Sun’s kinetic energy Hgyy.

The amount of computation does not increase significantly by the additional procedures due to

this new division, since the procedure which involves Hg,, is summing up of linear terms of P.

Appendix C. Partial derivatives of Kepler orbital elements

The partial derivatives of true anomaly f by the Delaunay variables L and G end up with

2 a 2
ﬁ:G_<_+L_>Smf,

OL el3\r G?
af G [a L?
9G = el? ( " G2> sinf,
from the relationship
af L?
5, = ca o I

However, we are likely to obtain wrong solutions such as

af G? (2a L L? f
= | = sin
OL el3\ r G? ’

74
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(318)

(319)

(320)



or

of G (2a L*\ .
__ G (2% L7 321
oG B <7~ +G2>Smf’ (321)

instead of the correct (317) or (318) due to the usual expressions of % in some of the standard
celestial mechanics textbooks (e.g. p. 567 in Brouwer and Clemence (1961), p. 349 in Nagasawa
(1983), and Eq. (2.104) at p. 39 in Kinoshita (1998)) as

af  [a L*\ .
e (; + E) sin f. (322)

To avoid such confusion, we must derive % and % through the definition of differential
transformation: using Jacobian matrices. % and % are obtained through a differential trans-

formation of variables from Kepler orbital elements to Delaunay elements as
(da,de,dw,dI,dQ,df) — (dL,dG,dH,dl,dg,dh) (323)

However, the relationship between f and [ is not explicit because of the existence of Kepler’s

equation u — esinu = [. We have to calculate the following three conversion matrices

(da,de,dw,dI,dQ,df) — (da,de,dw,dI,dQ, du), (324)
(da,de,dw,dI,dQ,du) — (da,de,dw,dI,dS2,dl), (325)
(da,de,dw,dI,d),dl) — (dL,dG,dH,dl,dg,dl), (326)

and multiply them to reach our final goal, (323).
As a set of independent variables to describe the Kepler orbital motion, we consider the

following four sets:
e Using mean anomaly [ as (a,e,w, I,$,1)
e Using true anomaly f as (a,e,w, I, €, f)
e Using eccentric anomaly u as (a,e,w, I, u)
e Delaunay canonical variables (L, G, H,l, g, h)

Hence there are 4P, = 12 differential transformations among them:

da, de, dw, dI, dS, df)
da,de,dw,dI,dS, df)
da,de,dw,dI,dS, df)
da,de,dw,dI,dQ, du)
da,de,dw,dI,d), du)

)

( (da,de,dw,dI,dQ, du)
(

(

(

(

(da,de,dw,dI,dS), du
(

(

(

(

(

(

(da,de,dw,dI,d,dl)
(dL,dG,dH,dl,dg,dh)
(da, de, dw, dI,dS, dI)
(da,de,dw,dI,dS2, df)
(dL,dG,dH,dl,dg,dh)
da, de, dw, dI, dS2, dI) (da, de, dw, dI, dS, df)
da,de,dw,dI,dQ,dl) (
da,de,dw,dI,dQ,dl) (
dL,dG, dH, dl,dg, dh) (
dL,dG,dH,dl,dg,dh) (
dL,dG,dH,dl,dg,dh) (

da,de,dw,dI, d), du)
dL,dG,dH,dl,dg,dh)
da, de, dw,dI, dS2, dI)
da,de,dw,dI, dS), du)
da,de,dw,dI, dS), df)

L A

-3
ot



This section gives the forward transformations such as

(da, de, dw, dI,dS, df )
!
(da,de,dw, dI,dS?, du)
!

(da, de, dw, dI,dS, dI)

!
(dL,dG,dH,dl,dg,dh).

The latter half can be done similarly, and omitted here.
Note that the lines and columns in the Jacobian matrices described here may be transposed

from those in usual textbooks. In the following discussion,

1— 2
r=a(l —ecosu) = u, (327)
1+ecosf

n=v1-—e’ (328)

We frequently consult the relationship between eccentric anomaly u and true anomaly f

sinu = ﬂ, cosu = ﬂ, (329)
14+ ecosf 14+ ecosf
dnfo_SnU_ o cosu—e (330)
1 —-ecosu 1 —ecosu
Appendix C. 1 (da,de,dw,dl,dQ,df) — (da,de,dw,dl,dY, du)
Since the Kepler orbital elements a, e, w, I, 2 are independent with each other,
8a_8a_8a_8a_0 8a_1
de 0w O 0 7 9da
de Ode Jde de 86_1
da  Ow O 9Q 7 Ode
8w_8w_8w_8w_0 8w_1 (331)
da  de O 9N T dw
81_81_81_81_0 8[_1
da  de dw O oI
89_89_89_89_0 89_1
da e O  Ow = 90

Hence the differential transformation matrix in this case becomes

da da
de de
dw da,e,w, 1,9, f) | dw
ar | = dae,w,1,Qu) | dI
dQ dQ
df du

76



da  Jda da 9da Bda Ja da

da Oe ow ol o) ou
de de de e de e de
da Oe ow ol o) ou
dw Odw Ow Odw Ow Ow dw
— da de ow oI Iy ou
~ | ar ar or o1 a1 ar dI
da Oe ow ol o) ou
99 90 90 o a9 99 IO
da Oe ow ol of) ou
of of of of of o1 du
da de ow oI o0 ou
1 O 0 da
1 0 de
1 0 dw
= (332)
1 0 dl
0 10 40
af of
0o % 00 0o YU du

Only % and % should be taken into account in all the components of (332). % can be
obtained as

%COSJC = —Sinfg
15)
= 8_ ((cosu — 6)(1 — ccos u)71>
e
= —1-(1—eCOSu)*l+(—e—|—c05u).(_1)‘(1_ecosu)72(_cosu)
—1 + —e 4 cosu
- cosu
1—ccosu (1—ecosu)?
1
= A ccosay LT ecosUT (et cosu)cosu
1 2
= m(cos u—1)

—sinu

(1 —ecosu)?

sinu 2
- 1 —ecosu

: 2
= - <Smf> (.- (329)) (333)
n
of 1 sin? f 1. L? .
'.'<9e:<—sinf> <— e >:n281nf:G281nf (334)
.. af - .
Similarly, 3: is obtained as
0 . ,Of
%cosf = —smf%
0
= 3 ((cosu —e)(1— ccosu)fl)
u

= —sinu(l —ecosu) ! 4 (—e+cosu)-(—1)- (1 —ecosu) 2esinu
—sinu —e + cosu .
= — esinu
1—ecosu (1—ecosu)?
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1

sinu

(1 —ecosu)?

(1—e”)

B n? sin

_ sin? f

N sin u
. Of _< 1
T ou sin f

Therefore (332) becomes

da
de
dw
dl
dQ

df

Note that at this point

S ()
(1 —ecosu)? \ sinu

(. (329))

sin? f nsinu 1
sinw | 1—ecosusinu

da
de
da,e,w, 1,9, f) | dw
A a,e,w, I,Qu) | dI
s
du
1 O 0
1 0
1 0
1 0
O 1 0
3 d
0o % 00 0 U
1 O 0
1 0
1 0
1 0
O 1 0
0 Losinf 00 0 =@

of I

= sin f,

Oe G?

da
de
dw
dl
s
du

da
de
dw
dI
s
du

ﬁ [—sinu(l — ecosu) — esinu(—e + cos u)]
—ecosu

(335)

(336)

(337)

(338)

in the final result (337). This expression is due that we consider the true anomaly f as a
function of (e, u), not (e,l) as in (322).

Appendix C. 2 (da, de, dw, dI,dQ, du) — (da, de, dw, dI, d<, dl)

When we consider the independence of the mean anomaly ! from any other Kepler orbital

elements as

ol ol ol a9l ol _
da Oe Ow oI 90
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ol
al

L

(339)



the differential transformation matrix in this case becomes

da da
de de
dw _0(a,e,w,1,Q,u) | dw
dI  Aa,e,w, I,Q,0) | dI
ds2 ds2
du dl
el el 2] el o] el
90 9e ow ol o0 ol da
de e fe Qe de Qe de
da Ode ow oI 90 ol
dw Ow dw dw Odw Ow dw
— da de ow ol 90 ol
N or oI oI oI oI 91 dI
da Jde ow ol 00 ol
20 90 90 99 90 90 dO
da de ow oI 90 ol
du  du Ou du Odu du dl
da de ow ol 90 ol
1 O 0 da
1 0 de
1 0 d
= “ (340)
1 0 dl
0 10 || do
ou du
0 2 90 0 2 dl
Only % and %—’; should be taken into account in all the components of (340). ?’TZ can be
obtained from the partial derivative of the Kepler’s equation
u—esinu =1, (341)
by e
ou < i+ 8u> al 0 (342)
— — (sinu+ecosu— | = — =0.
Oe Oe Oe
ou
(11— — =i 343
(1 —ecosu) 5 = Sinu (343)
9 . .
SOuw_ s s e (344)
de 1—ecosu n

Similarly, % can be obtained from the partial derivative of the Kepler’s equation by [ as

-7 = __=1 345
ol e Ta T (345)
ou

(1 — — =1 346
( eCOSu) 8[ ) ( )
ou 1 a

v @ 347
ol 1—ecosu T ( )
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Therefore the final form of the transformation matrix (340) becomes

Appendix C. 3

da
de
dw
dl
ds
du

da
de
d(a,e,w, I,Qu) | dw

da,e,w, I,9Q1) dI

dQ)

dl
1 O 0 da
1 0 de
1 0 dw
1 0 dl
0 10 0

ou ou

0 Be 0 0 0 a1 dl
1 O 0 da
1 0 de
1 0 dw
1 0 dl
0 1 0 0
0o =L 00 0 2 dl

(da,de,dw,dI,d),df) — (da,de,dw,dI, dS, dl)

This transformation matrix is obtained as a product of the two matrices

and

as

da
de
dw
dl
dQ

df

8(@,6,W,I,Q,f)

8(01, e? w’ I? Q’ l)

8(&,6,(&),],9,]“)

a(a/ie)w)I)Q)f)
8((1,7 e7w7l7 Q’ u)

d(a,e,w, I,Q,u)

da,e,w, I,9,1)

da da da da da
da 9a de 0w Ol 00
de oc 0 De  de  de
da Ode ow ol o0
dio 0w dw dw dw  Ow
— da Ode Ow OI 0N
dI oI oI oI oI oI
da Oe ow oI o0
0 o9 00 09 99 00
da Ode ow ol o)
dl ofr or or of of
da de ow ol o0

da

de

A a,e,w, I,Qu) | dw

d(a,e,w, I, u)

d(a,e,w, I,Q,1) dI
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dl
s
dl
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Note that at this point

O 0 1
1 0 1
1 0
1 0
1 0 0
a9 0 0 o Y 0 du
O 0 1
1 0
1 0
1 0
10 0
Losinf 00 0 @ 0
O 0
1 0
1 0
1 0
10
é—isinf—{—%% 0 0 0 %9
O 0
1 0
1 0
1 0
1 0
(¢+L)sinf 00 0 %2

af a L*\ .
e (?*@) sinf,

in the final result (349). This expression is due that we consider the true anomaly f as a

sin f

da
de
dw
dI
s
dl

o O o o o

0 0 O

da
de
dw
dl
dQ
dl

3l O O O o O

da
de
dw
dl
s
dl

da
de
dw
dI
ds2
dl

(349)

(350)

function of (e, 1), which is different from the results in (337) where f is a function of (e, u).

Appendix C. 4 (da,de,dw,dI,dQ,dl) — (dL,dG,dH,dl,dg,dh)

This transformation matrix contains the differential transformation from Kepler orbital ele-

ments to Delaunay canonical variables as

da
de
dw
dI
dQ
dl

8(0’7 e) w) I) Q’ l)
8(L7 G) H) l7 g7 h)
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dL
dG

dH
dl

dh
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oL oG 9H 9l dg oh dL
Jde de Jde de Jde Jde
oL 9G 9H ol dg oh dG
dw  dw  dw  dw dw  dw dH
— oL 0G OH ol dg doh (352)
a1 ol &I dI 8l I dl
oL 0G OH ol dg oh
90 90 99 90 90 90 dg
oL O0G OH ol dg oh
oL ol oL 9L 9l Ol dh
oL O0G OH ol dg oh
Appendix C. 4.1 Partial derivatives of a
Representing a by L using its definition,
LZ
a=". (353)
W
We then know that a depends only on L. Hence
0 2L
ga _ = (354)
oL 7
8a_8a_8a_8a_8a_0 (355)
oG 9H 9l 99 Oh
Appendix C. 4.2 Partial derivatives of ¢
Representing e by Delaunay elements using its definition
G2
Tz =1- e?, (356)
G2
We then know that e depends only on L and G. Hence
1
e 0 G? 1 G?\ ?2G? G?
e P i (T A T A (358)
oL 0L L2 2 L? L3 el3
—1
de _ 9 | G _1[ G? 2(2G>_ G (359)
oG~ 9G L2 2 L? L?) eL¥
de de Jde  Oe
= =" 0. (360)

OH ~ al a9 0oh
Appendix C. 4.3 Partial derivatives of w

Since the argument of perihelion w is equal to g by its definition, w is independent from all

the other Delaunay variables than g as

v _dw_Be _w 0w B (361
oL  90G 9H 9l  On 7 dg
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Appendix C. 4.4 Partial derivatives of [

Representing I by Delaunay elements by its definition

H

I=— 362

cos ek (362)

which means that I depends only on G and H, which leads to
of oI 01 oI

= = = = 363
oL 9l 09g Oh (363)
Partial derivative of (362) by G gives
H . oI
— @ = —smfﬁ, (364)
.ol H  Geosl 1 (365)
"TOG  G?sinl  G?sin]  Gtanl
Similarly, the partial derivative of (362) by H becomes
1 al
5 = —sin Iﬁ, (366)
al 1
S = . 367
oH Gsinl (367)

Appendix C. 4.5 Partial derivatives of ()

Since the longitude of ascending node €2 is equal to h by its definition, 2 is independent from
all the other Delaunay variables than h as
o 09 09 _8(2_8(2_0 ow

T T — =1. 368
oL 0G OH ol dg " Oh (368)
Appendix C. 4.6 Partial derivatives of [
Since the mean anomaly [ is identical to a Delaunay variable [,
al ol ol ol ol ol
= = = = =0 =1. (369)

8L 8G ~ OH dg oh  al
Using results of (354), (355), (358), (359), (360), (361), (363), (365), (367), (368), and (369),

the transformation matrix (352) becomes as

da %0 0 00 0 dL
o o
de de  fc 0 0 0 dG
dw B 0O 0 0 010 dH
- ol OH
dI 0 2L 2 00 0 dl
dQ 0 0 0 0 01 dg
dl 0O 0 0 100 dh
% 0 00 0 dL
G2 G
& -5 00 0 dG
dH
- g 7(1) 701 g (1) g dl (370)
Gtanl T Gsinl
0 0 0 1 dg
0 100 dh
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Appendix C. 5

(da, de, dw,dI,dQ, df) — (dL,dG, dH, dl, dg, dh)

This transformation matrix is obtained as a product of the three matrices of

8(0;7 e’ w’ I’ Q’ f)
da,e,w, I, u)

a(a,eaw7jaﬂau) _

a(a/, e’ w’ I’Q’l) B
and
8(0/’ 67 w’ 17 Q’ l)
a(L,G,H,l,g,h)
as
8(0/’ 67 w’ 17 Q7 f)

da

de
oL
dw
oL
o1
oL
o0
oL
ol
oL

da

de

oG
ow
oG
oI

oG
9
oG
ol
oG

da
ow

da

de
OH
Ow
OH

oI
OH
29
OH
ol
OH

da
ar

da

Jde
ol
dw
ol
o1
al
[219]

ol

al
al

da
oQ

da
ou

da

de
Oh
dw
Oh
o1
oh
1219

ED

al
ok

8(a767w7l797f) 8(a767w71797u) 8(0/767("}7[7971)

8(L7 G7 H’ l7 g7 h)

1

0
1 0

1 0

1 0

10

Lsinf 0 0 0 @

1

ou
de

OO
0
1 0
0
1 0
00 0 &
1
1
sinf 9 0 0
n

3l ©O ©O © O O

8(a7 67 w) I) Q’ u) 8(0/’ e’ w) I) Q’ l) 8(L7 G7 H) l7 g’ h)

da
oL
de
oL

o

o o O

= o O O o O

S O O = O O

o = O O O O




da
de
dw
dl
s

df

m 0
G _ G
el3 el?
x| 2
0 __1
Gtanl G'sin I
0 0
0 0
1 0 2L
1 O X (‘;2 OG 0 0 0
P Tel? 0 0490
1 0 0 0 0 0 1
1 1
O 1 0 0 Gtanl  Gsinl 0 0
1 0 0 0 0 0 0
. 2
0 (2+L)sinf 0 0 0 <7 0 0 0 10
2L 0 0 0
& G
el3 T el? 0 0 0
0 0 0 0 1 0
1
0 Gtanl T Gsinl 0 0 0
0 0 0 1
2 2 . 2 . 2
%(%—i—é—)smf —egg(ﬁ—k@)smf 0 00
Hence the final matrix becomes
dL
dG
_ Oa,e,w,1,9Q,f) | dH
N o(L,G,H,l,g,h) dl
dg
dh
o o o 0 o o
oL oG oH ol g oh dL
de de de Ide e de Fle
oL oG OH ol dg oh
dw Odw dw dw dw Ow dH
_ oL oG OH ol dg Oh
= oI oI 8 8l 8l 8l d
oL oG OH ol Jg oh
99 99 909 92 90 9Q dg
oL oG OH ol Jg oh
of of of of of of dh
oL oG OH ol dg oh
% 0 0 0 0
G2 G
I® —erz 0 00
0 0 0 0 1 0
= 1 1
0 Gtanl T Gsinl 0 0 0
0 0 0 0 1
2 . 2 . 2
eCz:; (9+@)smf —%(%—i—éz)smf 0 000

N
~

Thus we have reached the conclusive partial derivatives of (317) and (318).
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= o O O O O

S O O = O O

dL

dG

dH
dl

dh

o = O O O O

(371)
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Appendix C. 6 (da,de,dw,dl,dQ,du) — (dL,dG,dH,dl,dg, dh)
This transformation matrix is obtained as a product of the two matrices of

8(@, e? w’ I? Q’ u)

8(@, e’ w’ I’ Q’ l)
and

d(a,e,w, I,Q,1)

8(L7 G7 H7 l7 g7 h)
as

8((1/’6,(&},],9,“) _ 8(a767w71797u) 8(61'767("}7[797[)
8(L7G7H7l7g’ h) B 8(a767w71797l) 8(L7 G7H7l7g7 h)

da da da da da da da Oda Jda Oa da da
da de dw 91 o9 ol oL oG oOH ol dg oh
de de de de de de Ode Jde Ode de Qe Qe
da de dw oI 80 ol oL oG oOH ol dg oh
dw Odw Ow Ow Ow Ow dw Ow Odw Ow Odw Ow
_ da de Ow OI 9Q Ol 0L oG ©OH 9l 9dg Oh
= %1 o1 a1 a1 a1 a1 ol ol o1 91 ol ol
da Oe Ow oI o0 ol oL oG OH ol dg Oh
a0 80 a0 8 4N 8 99 99 9N 90 9 a0
da de  Ow ol 90 ol L OG OH ol dg Oh
Ou  Odu  du  Hu du du aL a8l 8l 8l Bl
da de ow ol o0 ol 8L O8G OH ol dg oh
1 0 2690 0 00 0
de  de
1 0 ge be g 0 0 0
_ 1 0 0 0 0 01 0
- ol oOH
1 0 0 2L 9H o g g
1 0 0 0 0 0 0 1
o o
0 S_Z 0 0 O ﬁ 0 0 0 1 0 0
2L
1 O 0 (1;2 OG 0 0 O
1 0 oG 00 0
_ 1 0 0 0 0 1 0
- 1 1
1 0 0 Gtanl  Gsinl 000
O 1 0 0 0 0 0 0 1
sin f
0 " 0 0 O % 0 0 0 1 0 0
2L 0 0 0 0
& G
el3 T el? 0 00
_ 0 0 0 0 1 0
- 1 1
0 Gtanl T Gsinl 0 00
0 0 0 0 1
G2 sin f G sin f
el3 7 T el? n 0 % 00
2L 0 0 0 0
G2 G
P el? 000
0 0 0 1 0
B 0 Lo _—_1_9 90 (373)
GtanI ~ Gsinl
0 0 0 0 0 1
Jsinf -2l 0 2 0 0

0]
=]



Thus finally,

da
de
dw
dI
dQ
du

Now the forward six transformations in

(da, de, dw, dI,dQ2, df) — (dL,dG,dH,dl,dg, dh)

have all been completed.

d(a,e,w, I,Qu) | dH

dL
dG

(L, G, H,l,g,h) | di

fa  Oda
8L 9G
de  Oe
8L 9G
dw  Ow
8L 9G
oI a1
8L 9G
99 o0
8L 0G
Ou  Ou
8L 9G
2L
o
eLl3
0
0
0
o
opsin f

dg
dh
0Oa  da  da
OH ol dg
De  de  de
OH ol dg
w  Odw  Ow
OH ol dg
o1 oI ol
OH ol dg
90 99 89
OH ol dg
Ou  du du
OH ol dg
0 0
G
T el? 0
0 0
1 __1
Gtanl Gsin I
0
sin f
T el 0

87

3 © O O O O

o O O = O O

dL
dG

dH
dl

dh

o = O O O O

dL
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