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Abstract

We have studied the change in planetary obliquity near a spin-orbit resonance through
numerical calculations and analytical arguments. To clarify basic process of the obliquity
evolution, we have considered a simple system that consists of a host star, a hypothetical
terrestrial planet, and a hypothetical giant planet. When the precession rate of the spin
axis of the terrestrial planet coincides with the frequency of secular variations in its orbital
inclination, spin-orbit resonance occurs and the obliquity of the terrestrial planet has large
variations. We investigated time evolution of the obliquity near the resonance through
numerical calculations of secular precession equations as well as analytical arguments. We
derived the resonance width semi-analytically. Using this result, we predict the resonance
region as a function of semi-major axis for a given giant planet.

1 Introduction

In general, the orientation of the planets’ spin axis is not fixed, but changes all the time.
Because of their equatorial bulge, planets are subject to torques arising from the gravitational
forces of their satellites, host star and other planets. This causes precessional motion of the spin
axis. Since the planets’ orbits exhibit secular variations induced by gravitational perturbations
exerted by other planets, the obliquity of the planets (the angle of the spin axis relative to the
orbital plane) generally changes periodically, too. At present, Earth’s spin has a precessional
period of about 26,000 years, and its obliquity varies by + 1.3 degrees around the mean value of
23.3 degree. Such obliquity variations would affect the planet’s global climate through insolation
change.

Ward (1974) and Ward & Rudy (1991) showed that large ~ £10 degrees variations of the
obliquity of Mars are caused by the spin-orbit resonance, employing the secular precession
equations (Eq. (1)). Here, spin-orbit resonance means that the precession rate of the spin axis
coincides with one of the eigenfrequencies of secular variations in the orbital inclination.

Overlapping of spin-orbit resonances may cause chaotic variations of the obliquity of ter-
restrial planets (Ward 1992, Laskar & Robutel 1993, Touma & Wisdom 1993). The maximum
oscillation amplitude of orbital inclination at a spin-orbit resonance was approximately derived
by Ward (1993), through a nonlinear analysis of the secular precession equations. If changes



in planetary orbital inclinations are quasi-periodic, secular perturbation theory (e.g., Brouwer
& Clemence 1961) predicts locations of the spin-orbit resonances.

Laskar (1989) showed that orbital evolution of the terrestrial planets has Lyapunov time
scale ~ 107 years, why may imply that the orbital evolution is chaotic on a timescale ~ 107
years (although their orbits are globally stable). The chaotic orbital evolution of planets results
in more complicated obliquity changes (Laskar & Robutel 1993).

With Fourier spectrum of time-dependent eigenfrequencies for orbital inclination variations
obtained by Laskar (1990), Laskar & Robutel (1993) integrated the secular precession equations
with wide ranges of initial obliquity (¢y) and the precession parameter (o). They found large
chaotic regions in the ey-a plane and suggested that the obliquity of all the terrestrial planets
except the Earth in the Solar system could have experienced large and chaotic variations.

Since the procedure to find the chaotic regions by Laskar & Robutel (1993) is rather compli-
cated, it would not be easy to apply their results to more general extrasolar planetary systems.
Laskar & Robutel (1993) suggested that arguments based on the spin-orbit resonances can be
still used to understand qualitative features of their results. Here we are interested in oblig-
uity variations of rocky planets in habitable zone in extrasolar planetary systems where a gas
giant planet(s) has been detected. Large obliquity variations, even if they are not chaotic, may
inhibit habitability.

For this purpose, we re-analyze the spin-orbit resonance in more general form. In order to
clarify fundamental processes of obliquity evolution, we study a system containing a host star,
a hypothetical terrestrial planet and a hypothetical giant planet, in wide parameter ranges.
In particular, we investigate the behavior of obliquity near a resonance through analytical
arguments and numerical calculations of the secular precession equations. In section 2, we
briefly summarize the spin-orbit resonance. We show results of numerical calculations in section
3. In section 4, resonance width is derived semi-analytically. In section 5, we briefly discuss
the regions for a hypothetical terrestrial planet where its obliquity variations become large by
the spin-orbit resonance.

2 Basic Equations and Model

We consider a system containing a host star, a hypothetical terrestrial planet with axisymmetric
shape and negligible mass, and a hypothetical giant planet. We assume the two planets initially
have circular orbits around a host star. We numerically solve the orbit-averaged Euler equations
(secular precession equations) given by Ward (1974):

J
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where § is a unit vector in the direction of the spin axis with components
s, = sinfsin, (2)
sy = —sinfcos, (3)
s, = cos#, (4)

0 is the angle between the spin axis and the z-axis, and 1 is the longitude of the equator of the
terrestrial planet in inertial frame. The precessional constant « is given by
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where (i is the gravitational constant, M; is the mass of the host star. (C' — A)/C, w and «
are the dynamical ellipticity, the spin rate, and the semi-major axis of the terrestrial planet,
respectively. In our calculation, we assume (C'— A)/C and w are constants.

7 is a unit vector normal to the orbital plane,

ny = sin/lsin(), (6)
ny, = —sin/cos(l, (7)
n, = cosl, (8)

where [ is the orbital inclination and € is the longitude of the ascending node of the terrestrial
planet. We here adopt the orbital plane of the giant planet as the reference frame. According
to secular perturbation theories (e.g., Brouwer & Clemence 1961), the variations in [ and
are given as

= const., (9)
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where )y is the initial ascending node of the terrestrial planet. B is

1 M
B = n——20z226( )
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where n is the mean motion of the terrestrial planet, M, is the mass of the giant planet. as is
a/az, where ajy is the semi-major axis of the giant planet. bgl/)z is a Laplace coefficient.
The obliquity of the terrestrial planet ¢, the angle between n and s, is obtained by

TL-8 = COSE. (12)

The relationship between the reference plane, orbital plane and equator is schematically shown
in Figure. 1.
Substitution of Eqgs. (2) to (8) into (1) yields

0 ~ acosel sin(¢yp — Q) + O(1?%), (13)
;/; ~ —acose+ O(I). (14)

with the assumption [ < 1 (Ward 1974; note that definition of ¢ is different). We denote the
precession frequency of the spin axis ~ —acose by pr. When I < 1, 6 ~ €. Since the sign of
0 changes with frequency (¢ — Q), ¢ and 6 usually oscillate with amplitude ~ O(I). However,
when ;/) — Q) ~ —acose+ B ~ 0, oscillation period of ¢ becomes very long and € has a large
amplitude. This is the spin-orbit resonance.
n has dependence as i = (I, Bt). If we scale time by o™, Eq. (1) is transformed to
d—f =[5 -n(l, Ef)][é x n(l, EtN)], (15)
di o) o)

where = at. This equation shows that the evolution path of § is dependent only on the values
of [ and B/a. We will show that the evolution path near a resonance can be written as a form
independent of [ and B/« with further scaling of ¢ and cos e.
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Figure 1: Relationship between the reference plane, orbital plane and equator. § is the unit
vector in the direction of the spin axis, n is the unit vector normal to the orbital plane, ¢ is the
obliquity, € is the angle of the equator relative to the reference plane, > is the longitude of the
equator, [ is the orbital inclination, and €2 is the longitude of the ascending node.
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Figure 2: The time evolution of the obliquity e of the terrestrial planet. g is the initial
longitude of the equator of the terrestrial planet, .

3 Numerical Results

We integrate the precession equations (1) over 10° years, using a fourth order Runge-Kutta
scheme. Here we adopt (C' — A)/A = 0.00335, w = 7.292 x 107° rad/year, which are the same
as the current Earth’s values, My = Mg, ay = 5.2 AU and My = 2M; (M is the mass of
Jupiter).

Figures 2 shows examples of time evolution of € : (a) off-resonance case (¢ = 1.3 AU and
I =1.3%), (b) the case of resonance (¢« = 1.0 AU and [ = 1.3°). Initial obliquity €g is 20° in
both cases. g — €y, where 1) is initial precession angle, is 0°, 45°, 90°, 135°, and 180°. €
oscillates regularly with periods ~ 10 years. In the off-resonance case, the variation amplitude
is ~ O([I), while that in the resonance case is much larger than O([).

To investigate the resonance width at « = 1.0 AU, we did similar calculations for different
initial obliquity from 0° to 90° with 1° step size. The minimum and maximum values of €
plotted as a function of ¢ in Figure 3 (the lower panel). p;/a and B/« are also plotted in
the upper panel. The resonance occurs when p;/a ~ B/a. Fig. 3 shows large resonance zone
extending from 15° to 55° around exact resonant obliquity e. ~ 40°, where €, is defined by
B/a = cose,. Even if it has the same initial obliquity, the amplitude depends on ¥y — Q.

To explain these features, we investigate evolution of # = ¢ — Q and its time derivative

Yy = (;/)—Q)/ozﬁ ~ (—acose+ B)/af, where f = /[ cos e, sine, = ¢[(B/oz) 1 — (B/a)? (Egs.
(10) and (14) ). The meaning of the scaling factor /3 for y will be clear later. Since o and B are
fixed, the evolution of ¢ is uniquely determined by that of y. For ¢g— ¢ = 7, time evolution of
y for the results in Fig. 3 is shown in Figure 4. Trajectories starts at ¢g— (g = 7 with different
€0, that is different initial y(= yo). Trajectories with —2 < yo < 2 show libration around the
center of acose = B (y = 0) and v — Q = 7 (¢ = 7 ), while the other trajectories show




circulation. The former cases are “resonance”. The trajectories with libration generally have
large periodic variations, that is, large periodic obliquity variations. Note that as mentioned
before, Eq. (1) is scaled with o and hence the contour map of Fig. 4 holds for the cases which
have the same B/a. For the parameters adopted here, y = —2 and 2 correspond to ¢ ~ 15°
and ~ 55°, respectively, which explains the results in the lower panel of Fig. 3. In this case,
resonant width in y is ~ 2 for that in ¢ ~ 20°.

For other I and B/a(= cose,), the libration range in y can change in principle. Resonance
width depends on cose, and [ as in Figures 5. Since a and B are dependent on a, different
a corresponds to different cose,. From these results and the results with other cose¢, and I,
we found the resonance width changes approximately as oc I'/? and weakly depends on cos e,.
However, we will show the evolution trajectories on the z — y plane do not change for other
and B/a, at least near a resonance.
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Figure 3: The lower panel is the minimum and maximum values of obliquity ¢ over 10¢ years
calculation as a function of initial obliquity ¢y. py and B scaled by « are plotted in the upper
panel.

4 Analytical calculation

We derive an analytical solution to Eq. (1) near a resonance. Near a resonance («acose >~ B),

Eqgs. (2) — (4), (6) — (8), (13) and (14) lead to

SN

v~ afy, (16)
d d

Ey = E(é . h) ~ —afsin x. (17)



Figure 4: Trajectories on x — y plane for the results with ¥y — ¢ = 7 in Fig. 3. Different
trajectories correspond to runs with different yo(eo).
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Figure 5: The same figures as Fig.2 expect for a or . (a) a = 0.8 AUand [ =1.3°. (b) a = 1.0
AU and I = 0.65°.



In the right hand side of Eqs. (16) and (17), we retain the lowest order terms of I, assuming
I < 1. With scaled variables

t = aft, (18)
Eqgs. (16) and (17) are reduced to
d
—r ~ 19
7T Y, (19)
di{y ~ sinz, (20)

which are independent of [ and B/«. The equilibrium points are y = 0 and sinz = 0 (z = 0, 7).
x = 0 is unstable against small displacements. x = 7 is stable.

Let dx and dy be small displacements from the equilibrium point, + = 7 and y = 0. Eqs.
(19) and (20) gives

d
—dxr ~ 21
ks Y, (21)
d
70y x (22)
The solution is
Sz = Ccos(l + ), (23)

where €' and 7 are constants of integration which are determined by initial conditions g and
€o. Substituting Eq. (23) into Eq. (21), we have

oy = Csin(tN—l— ¥). (24)

Eqgs. (23) and (24) represent librating motion centered at « = 7 and y = 0 with libration
period 27 in unit of . The scaling factor an/Icos e, sin ¢, for { appears to be angular velocity
for the libration.

As mentioned in Sec. 3, if o, B and [ are given, € uniquely corresponds to some value y.
Therefore Figure 4 explains the evolution of e. If a starting point is on closed trajectory,  and
y librate around the equilibrium point and e exhibits large variation. Equations (19) and (20)
have an integration as

1
H= §y2 + cos z, (25)

where H is constant. Different values of H corresponds to different trajectories. In Fig. 4, we
start with cos = —1. Thus, the trajectory with yo corresponds to the contour of H = yy?/2—1.
Trajectories of libration correspond to —1 < cosz < 1 at y = 0, which is equivalent to
—1 < H < 1. Since |y| takes a maximum value = (/2(H + 1) at cosx = —1(x = ) for each
trajectory,

|Ymax| = 2. (26)

In Fig. 6, these analytical estimates are compared with numerical results in Fig. 4, which
agree with each other. Numerical results with other I and B/« also agree with the analytical
estimates.

Therefore we derived the resonance width semi-analytically as

|dcose| . = 24/1cose,sine,. (27)



The dependence of [dcose| . on € and [ as well as the magnitude in the above almost

completely agrees with the numerical results. Ward et al. (1979) derived |de| ~ {/[/tan e, at
a resonance, through higher order expansion of Eq. (1), although the detailed derivation is not
presented. Although his result does not have any dependence on ¥y and €y — €. and it includes
uncertainty of a numerical factor, it is consistent with Eq. (27) in the limit of de — 0 expect
for a numerical factor.

5 Conclusion and Discussion

We have investigated the evolution of obliquity through analytical arguments and numerical
calculations. We re-analyzed the spin-orbit resonance in a more general form. We considered
a system containing a host star, a hypothetical terrestrial planet, and a hypothetical giant
planet, and calculated the evolution of obliquity € of the terrestrial planet in wide ranges of
parameters I, B, o, and initial conditions of ¢ and ) — Q, where [ is the orbital inclination, B
is the frequency of the orbital variation, « is the precessional constant, ¢ is the obliquity, v is
the precession angle, and () is the longitude of the ascending node.
We found the following results:

1. Evolution of obliquity is described by a contour map on the plane of x = ¢ —
and y = (¢ — Q)/a¢](3/0z) 1 — (B/«a)?. Different contours correspond to

different initial conditions of ¢ and ¢» — ). The contour map does not depend

on [, B, and «.

2. In the librating region centered at a resonant point, cos ¢, = B/aand p—Q =«
(x = m,y = 0), the obliquity has variations with large amplitudes (Fig. 3 and
4).

3. The width of libration region is |§y|max = 2, which reads as

|0 cose| . = 24/] cose,sine,. (28)

The range of the obliquity variation near a resonance e, is

< ¢ < cos™(cos €. — |6 cos € (29)

max) °

cos '(cos e, + |§cose| . )

Note that the width of resonance region does not explicitly depend on the masses and semi-
major axis of the terrestrial planet and the giant planet. In Figure 6, we plot this range as a
function of a, in the case of I = 1.3° and the other parameters given in section 4. If another
giant planet is considered, the large variation regions are expressed by the superposition of spin-
orbit resonances due to individual eigenfrequencies of orbital change of the terrestrial planet.
If the resonant regions overlap, the obliquity variations could be chaotic.

Many extrasolar giant planets have been found around nearby solar-like stars. Substituting
the masses and the semi-major axes of such planets, we can obtain the resonance regions where
obliquity variations are large by the spin-orbit resonance if planetary ellipticities and spin rates
are given. In a system with a giant planet with relatively large semi major axis, Earth-like
planets (small rocky planets) may exist inside the orbits of the giant planet. For life to exist
in such a Farth-like planet, the planet may need to have not only HyO ocean but also orbit
and obliquity with small variation to keep the climate stable. Assuming probable values of
ellipticity and the spin rate, we may evaluate the probability of existence of such “habitable”
planets in extrasolar systems. We will address this issue in next paper.
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Figure 6: Resonance region in the case of [ = 1.3°. The area between the two solid lines
expresses a resonance region. Triangles show the numerical results. Solid lines express the
analytical expression given by Eq. (29)
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