Sample Answers

Question 1

How to get the current directory into the prompt? For example, when your current directory
is now /home/csa0/bin, let prompt be like

fkokus07@csa0: /home/csal/bin/%
and when you cd to /usr/1lib, let prompt be like

fkokus07@csal: /usr/1ib/%

Answer

Actually it is a little bit difficult. You may at first think of a setting like

[% set prompt = ’‘whoami‘@‘hostname*: ‘pwd‘%’)

but it will fail, because the command substitution of ‘pwd‘ is performed only once when a shell
read the .cshrc (or .login) file at the starting up time. The concept for the implementation
is to divide a prompt setting into two procedure:

1. Change the current directory to somewhere, and
2. Change the prompt sign including the directory name there.

One of the typical examples is shown below.

alias setprompt ’set prompt="‘whoami‘@‘hostname‘:${cwd})"’
setprompt
alias cd ’chdir \!* && setprompt’

Only you have to write down above three lines into your .cshrc file. The third line is the actual
alias for cd which at first changes directory, and if it succeeds, sets a prompt sign by setprompt
alias. Content of setprompt is defined before. The middle line is necessary to set the initial
prompt. Try what will happen if you omit the second line.

Question 2

What should we do to remove the files below? They can not be deleted in the ordinary ways.
In addition, how to make the files which have such extraordinary names?

-abc | (which starts with hyphen)

7abc | (which starts with wildcard ?)

*abc | (which starts with wildcard *)

abc def | (which contains blank within)

(which starts with blank)

[5] (whose name is “colon”)
E (whose name is “hyphen + colon”)

Answer

You cannot delete files whose name contain metacharacters of shell in the ordinary ways. In
these cases you have to use relative/absolute referencing, or quotations of shell in order to deny
the meaning of metacharacters.

If a filename contains the wildcards (like ?abc or *abc), you have to quote them in quotations.
For example

% rm ’?abc’

% rm ’*abc’

% rm "?7abc"

% rm "*xabc"

or using backslash,

% rm \7abc

% rm *abc

It is also the same when a filename contains blank (white space), like

% rm ’abc def’

% rm ’ abc’

% rm abc\ def
% rm \ abc

It is also the same when a filename begins with semicolon, like

[% rm 7;1

or

(:% rm \ ;

When a filename begins with hyphen (like -abc) it is a little bit confusing because a hyphen

N N N N N7 N

is not a metacharacter, so the quotations can not deny its meaning. In that case the filename
is interpreted as one of the options for rm command, so you have to specify the filename with
the relative referencing such as

(:% rm ./-abc :)

In this way you can tell your shell that the hyphen does not denote a option of rm command.

When a filename starts with hyphen and semicolon, you have to use both relative referencing
and quoting. For example, you can delete a file named -; like

(:% rm ./-7;° :j

You can create these file in the same way by using a command touch and so on.

Question 3

Someone would like to print out the contents of fileA with line numbers, and did the following
command, but failed.

% cat -n fileA > lpr
Why?, and what is the correct way?

Answer

This is an easy mistake. 1pr is interpreted as a executable command only when it is located
at the top of the command line, or just after the pipe sign |. In the above case, > 1pr means
for shell to create a new file named lpr, so he couldn’t send his data to printer. The correct

way is of course

[% cat -n fileA | lpr)

Question 4

To concatenate fileA and fileB, someone tried the command

% cat fileA fileB >> fileA
In this case, what kind of output did he get? And why is that? Then, What is the best way to
achieve his object?

Answer

Suppose content of fileA and fileB are as follows.

% cat fileA
We are in fileA.
% cat fileB

I am now in fileB.

When you enter the above command, shell will return a warning like

[cat: input fileA is output)

This warning means that the input file of command cat is also used for the output of redirection
>. And the result will be somewhat difficult from what you wanted:

% cat fileA

I am now in fileB.

fileA is now identical with fileB.

The reason is as follows. When you specify cat fileA, shell try to open fileA in the read-
only mode. Also, When you specify > fileA, shell try to open fileA in the overwriting mode,
which contradicts the appointment of read-only mode. Due to this inconsistency, the content
of fileA is once cleared out, and then the command

[% cat empty_file fileB >> fileA)

is performed. That is why fileA becomes identical with fileB.
The best way to achieve his object is to use a temporal file. For example, following procedures
like

% cat fileA fileB > temp__file__
% mv temp__file__ fileA

will satisfy his object. Of course in this case, the original content of fileA will be lost.

Question 5

On the machines in this classroom, someone who wanted to know the settings of his prompt did
% echo $prompt
However, the shell returned an error message
echo: No match.
and failed. Similar commands like echo $history works. Why is that? What is the best way
to show the setting of prompt successfully?

Answer

See where your prompt is set. You will find it in .cshrc like

[set prompt = "‘whoami‘@‘hostname‘ [\!]%")

which is for example substituted by shell like

[fkokusOS@cse8 1%)

Notice that the exclamation ! will not be substituted because of the negation by preceding \

here. So, when you type above command

[% echo $prompt)

it is expanded to

[fkokusOS@cse8 1%)

Here, shell interprets '1\% as a history event expression, and searches the string which matches

with it. And when shell failed to search any matching strings, he give a waning

[echo: No match.)

and exits. One of the best way to show the setting of prompt successfully is to quote the variable

$prompt in double quotation in order to deny the meaning of metacharacter !, like

[% echo "$prompt")

Question 6

Alias to pwd is perhaps echo $cwd in your .cshrc file. However, alias format like
alias pwd echo $cwd
does not give the right output. Why? What is the right way?

Answer

All aliases are set when shell consults .cshrc file when it starts up. So, if a setting of pwd is
like

[alias pwd echo $cwd)

shell sets alias for pwd to echo cwd (where you were in when shell started). For example, since

shell usually starts up from your home directory (here we put it /home/csa0/you), above setting
will produce the results

% pwd
/home/csal/you

wherever directory you are in. The right way to set an alias for pwd is again to deny the meaning
of metacharacter $ in $cwd not to be substituted (expanded) when .cshrc is consulted, using
double quotations such as

[alias pwd ’echo $cwd’)

This method produces the right result.

Question 7

In SunOS system (which you are using now), how long can words on C shell be? Can you set
a variable which has 1,000,000,000 characters long?

Answer

It is clearly stated at the section of LIMITATIONS in the on-line manual of csh as
LIMITATIONS

Words can be no longer than 1024 characters. The system limits argument lists to
1,048,576 characters. However, the maximum number of arguments to a command
for which filename expansion applies is 1706. Command substitutions may expand
to no more characters than are allowed in the argument list. To detect looping,
the shell restricts the number of alias substitutions on a single line to 20.

So the answer is 1024 characters. Of course this value differs from each operating system
and hardware.

Question 8

Redirection method of >& mixes the standard output and standard error output. Suppose there
is a program which creates both, how can we separate them by using > and >&? Sample code is
as below. Using this code (write, save, compile and execute), try to separate the outputs into
standard output (first fprintf) and standard error output (second fprintf).

#include <stdio.h>
main(){
fprintf(stdout, "This line is for standard output.\n");

fprintf(stderr, "And this line is for standard err output.\n");

Answer

The concept is as follows:
1. Subtract only the standard output from the mixed output.
2. Then, the remnant consists of only the standard error output.

For example, actual implementation is (suppose you named the above executable code as
bothout) as follows:

[% (bothout > file.stdout) >& file.stderr)

An important point here is make the first redirection bothout > file.stdout be braced with
() so that shell will interpret it as a single command. Otherwise, if you do such like

[% bothout > file.stdout >& file.stderr)
shell will give an error message

[Ambiguous output redirect.)
end exits.

Question 9

Editor Emacs makes backup files which start from # or trailing ~ (like #file or file™). Someone
wanted to delete all these files at a time, and made a C shell script like

#!/bin/csh

rm —-f #*x *~

However, it didn’t work. Why is this?, and how you can solve the problem?

Answer

This is rather simple. Remember that the sharp sign (#) in the shell scripts denotes the
begging of comments. So in the second line, * *~ is completely neglected because they are
located after # sign, and shell interprets it as

(o >

and exits without doing anything. To solve the problem, you have to deny the meaning of

metacharacter # in the above script such as

#! /bin/csh
rm —-f \#*x *x~

Question 10

In MS-DOS system, it is possible to rename all the *.foo files to *.bar at a time by using the
command ren. But UNIX equivalent mv can not work in this way. For example,

% mv *.foo *.bar
will fail. Why is that? Then, try to make a shell script which rename all the *.foo files to
* .bar at a time such like

% somescript *.foo *.bar
or

% somescript foo bar

Answer

Why doesn’t mv *.foo *.bar work? Think about how the shell expands wildcards. *.foo
and *.bar are expanded before the mv command ever sees the arguments. Depending on your
shell, this can fail in a couple of ways. C shell prints No match. because it can’t match *.bar.
Bourne shell executes mv a.foo b.foo c.foo *.bar, which will only succeed if you happen to
have a single directory named *.bar, which is very unlikely and almost certainly not what you
had in mind.

You can do it with a loop to mv each file individually. C shells has its own variable substitution
feature, so you can use simple loops like:

#! /bin/csh -x
foreach f (*.foo)

mv $f $f:r.bar
end

Or if you want you specify the extensions from your command line, use $argv[] like

#! /bin/csh -x

set extl = $argv[i]

set ext2 = $argv[2]
foreach file (*.${extl})

mv $file $file:r.${ext2}
end

You can simply execute the script by specifying both extensions as

(:% script foo bar :j

Question 11

Below, a C shell script to exchange the two file names is shown. This script does not work if

each specified file is a directory file. Rewrite the script and make it handle the directory files
also.

#! /bin/csh
if ($#argv != 2) then
set cmd = $0
echo "Usage: $cmd:t [filel] [file2]"
exit
else
if (! -e $argv[1]) then
echo "$argv[1] does not exist."
exit
else if (! -e $argv[2]) then
echo "$argv[2] does not exist."
exit
else
set TMPFILE = /tmp/NAME1_____
/bin/cp $argv[1] $TMPFILE
/bin/mv -f $argv[2] $argv[1]
/bin/mv -f $TMPFILE $argv[2]
/bin/rm -f $TMPFILE
endif
endif

Answer

mv command will not move a directory from one file system to another. So in this case, you

have to change your current directory to the parent of the object directory. To implement this,

commands basename and dirname are available.

e basename

basename deletes any prefix ending in / and the suffix, if present in string. It directs the

result to the standard output, and is normally used inside substitution marks (¢ ¢) within
shell procedures.

e dirname

dirname delivers all but the last level of the path name in string.

Of course you can implement the directory exchanging by using —r or -R option of cp command.
According to the on-line manual of cp,

-r

-R

Recursive. If any of the source files are directories, copy the directory along with
its files (including any subdirectories and their files); the destination must be a

directory.

Below is one of the examples of the script which we use basename and dirname commands.

Try to write down and execute it.

#! /bin/csh
if ($#argv != 2) then
set cmd = $0
echo "Usage: $cmd:t [filel] [file2]"
exit
else
if (! -e $argv[1]) then
echo "$argv[1l] does not exist."
exit
else if (! -e $argv[2]) then
echo "$argv[2] does not exist."
exit
else
if (-d $argv[1] && -d $argv[2]) then
#
case of directory
#
set TMPDIR = __TMPDIR__
pushd ‘dirname $argv[1]°
/bin/mv -f $argv[i]:t $TMPDIR
popd
pushd ‘dirname $argv[2] ¢
/bin/mv -f $argv[2]:t $argv[i]:t
popd
pushd ‘dirname $argv[1]®
/bin/mv -f $TMPDIR $argv[2]:t

popd

10

else if (-f $argv([l] && -f $argv[2]) then
#
case of file
#
set TMPFILE = /tmp/NAME1_____
/bin/cp $argv[1] $TMPFILE
/bin/mv -f $argv[2] $argv[1]
/bin/mv -f $TMPFILE $argv[2]
/bin/rm -f $TMPFILE

else

echo "Cannot exchange file and directory."
endif
endif
endif

Question 12

Below, a C shell script to calculate the total bytes in subdirectories recursively is shown. At
the top of the script, the C shell variable nonomatch is set. What for? (hint: try to make an
empty subdirectory, and run the script)

#! /bin/csh
set nonomatch
if ($#targv != 1) then
echo "usage: $0 directory"
exit
endif
set count = 0
foreach file ($1/%)
if (-f "$file") then
set size = ‘/bin/ls -1 "$file"*
else if (-d "$file") then
set size = ‘/bin/ls -1d "$file"‘
set recurse = ‘$0 "$file"
@ count = $count + $recurse
else
echo "$file not included in the total" >>! /tmp/notintotal
continue
endif
@ count = $count + $size[4]
end

11

echo $count

Answer

When you unset nonomatch in the above script, perhaps an error message like

foreach: No match.
@: Expression syntax.

will appear and the script terminates abnormally. In general, to debug a C shell script, you can
specify -x option such as

#! /bin/csh -x

which means to set the echo variable; echo commands after all substitutions and just before
execution. You can then see the implementation of command substitutions visually.

As in hints, try to make an empty subdirectory. Here we suppose it is named empty/. Then
run the script (here we call it total) by

[% total empty)

and see what will happen. Probably, logs like

if (1 != 1) then

set count = 0

foreach file (empty/*)
foreach: No match.

will be shown. What does this mean?
Shell will try to match all the files to a variable $file at the line

[foreach file ($1/%))

in the above script, and expands asterisk *. However, in this case $1 is substituted with an

empty directory, so there is no file in $1; i.e. shell can not match any filenames to $file. That
is the reason why shell returns an error like

foreach file (empty/*)
foreach: No match.

By setting nonomatch in the script, shell won’t expand asterisk *. In the case of an empty
directory, shell simply skip it and there will occur no error.

12

Question 13

Make a shell script which rings the terminal bell, such like
% bell (rings once)
% bell 5 (rings five times)

Answer

These are easy to implement. Escape sequence (control codes) for terminal bell is “G (control
+ G), so the simplest example with no argument is

#! /bin/csh
echo -n G

Option -n of echo means not to add a NEWLINE to the output. If you want to make the
script understand the command line argument, one of the examples becomes such like below.

#! /bin/csh
if ($#argv < 1) then
set i =1

else if ($#argv > 1) then
echo "usage: $0 [number]"
exit

else
set i = $argv[i]

endif

while ($i >= 1)
echo -n ~G
sleep 1
Q@ i--

end

Try to write them down and execute.

Question 14

What should we do to get the list of all files which satisfy the three conditions
1. which are under /home, and
2. which are modified within these two weeks, and
3. which have the octal permissions of 644 (-rw-r--r--).

by one line command? (hint: use the command find)

13

Answer

The exact answer is:

[find /home -mtime -14 -perm 644 -print)

find is a very powerful command which recursively descends the directory hierarchy for each
pathname in the pathname list, seeking files that match a logical expression written using the
operators. About the detail you should consult the on-line manual or textbooks. Briefly explain,

above condition

1. is satisfied by the path list /home
2. is satisfied by the option -mtime -14

3. is satisfied by the option -perm 644
Likewise, if you want to find all files which satisfy the conditions

1. which is under current directory
2. which has not been accessed during these three weeks
3. which has the octal permissions of 755 (-rwxr-xr-x).

4. which is an ordinary file

you can achieve your object by simply enter a command

[find . ~type f -perm 755 -atime +21 -print)

Question 15

What way are there to know whether the user to whom you sent an E-mail has read your mail

or not?

Answer

Simply you can make it by finger command. If you run the command and get following
output like

7 N
% finger tito

Login name: tito In real life: Takashi ITO
Directory: /home/pluto/tito Shell: /bin/csh
New mail received Tue Jan 10 18:31:56 1995;

unread since Tue Jan 10 18:26:00 1995

then he has new mails unread. In the case of following output like

14

% finger tito
Login name: tito In real life: Takashi ITO
Directory: /home/pluto/tito Shell: /bin/csh

No unread mail

then he doesn’t have any unread mails, so it’s likely for him to have already read your mail.
For more detailed part, consult the on-line manual of finger command.

Question 16

Make aliases as follows:
1. Sort the results of ps -aux in order of process ID (PID).
2. Sort the results of ps -aux in order of the CPU time used by each process.

3. Show your processes only in the results of ps -aux.

Answer

You have to become familiar with sort and grep command. Since both of them are quite
major and popular commands, there will be detailed explanations about them in your textbooks.
The exact method to implement 1 is for example

[% alias pss ’/bin/ps -aux | sort -n +1’)
Then a result will be sort in order of PID as

USER PID %CPU %MEM SZ RSS TT STAT START TIME COMMAND

root 0 0.0 0.0 0 07 D Jan 5 0:26 swapper
root 1 0.0 0.1 52 24 7 S Jan 5 0:01 /sbin/init -
root 2 0.0 0.0 0 07 D Jan 5 0:00 pagedaemon
root 51 0.0 0.0 72 07 IW Jan 5 0:08 portmap

root 56 0.0 0.0 40 07 IW Jan 5 0:00 keyserv
hiroshi 1506 0.0 0.0 72 O0p3 IW Jan 6 0:00 -sh (csh)
hiroshi 13814 0.0 0.0 72 Op7 IW Jan 9 0:00 -sh (csh)
hiroshi 13838 0.0 0.0 308 Op7 IW Jan 9 0:00 -csh (tcsh)
root 15680 0.0 0.0 36 07 1IW 18:07 0:03 in.rlogind
root 15783 0.0 0.1 36 28 7 S 18:18 0:04 in.rlogind
root 16852 0.0 0.9 24 208 ? S 18:39 0:00 in.comsat

15

You have to use option +number of sort to specify the sort field in your data. The option -n

means
-n

Numeric collating sequence. An initial numeric string, consisting of optional
blanks, optional minus signs, and zero or more digits with an optional decimal
point, is sorted by arithmetic value.

according to the on-line manual.
Similarly, the exact method to implement 2 is for example

[% alias psc ’/bin/ps -aux | sort -n +2’)

Then a result will be sort in order of %CPU as

USER PID %CPU %MEM SZ RSS TT STAT START TIME COMMAND
hiroshi 641 0.0 0.0 68 0 co IW Jan 5 0:00 -csh (csh)
hiroshi 1493 0.0 0.0 28 0 co IW Jan 6 0:00 /usr/X11R5/bin/xinit

root 15783 0.0 0.1 36 28 7 S 18:18 0:07 in.rlogind

wnn 419 0.0 0.0 2064 07 IW Jan 5 0:01 jserver

tito 15902 7.7 1.1 60 248 pl1 S 18:46 0:00 emacs

tito 15901 30.8 2.1 220 476 pl R 18:46 0:00 od -a filetestch

Implementation of alias 3 needs help of grep. An exact method is for example

[% alias psy ’/bin/ps -aux | sort -n +1 | grep ‘whoami‘’)

Here it is better to specify your login name by ‘whoami‘ in case you have different login names

in each machine.

Question 17

Try to write one of the UNIX commands cat by yourself (simple version is enough) using C
language or shell script. Send the code (or script) by E-mail.

Answer

The possible answers vary very much. For example, one of the simplest examples using putc
function is as follows:

#include <stdio.h>

16

main(argc, argv)
int argc;
char *argvl[];
{
FILE *fin;
int c;
if ((fin=fopen(argv[1], "r")) == NULL){
perror (argv([1]);
exit(1);
}
else {
while ((c=getc(fin)) != EOF){
putc(c, stdout);
}
fclose(fin);
}
}

What this code does is quite simple,
1. Read a character one by one from the input file, and
2. Display it on-screen (standard output) one by one whatever it is.

Of course it cannot accept any command line options. When you want to concatenate several
files at a time, combine above C code with below C shell script (mycat to be a name of above
C program)

#! /bin/csh

while ($#argv > 0)
mycat $argv[1]
shift

end

You can well simulate /bin/cat by this script.
For reference, a actual source code of cat is shown below. This is a version which is now used
in a free UNIX system (BSD/386). Try to read and run it if you want.

/*

*x Copyright (c) 1989 The Regents of the University of California.
* All rights reserved.

*

* This code is derived from software contributed to Berkeley by
* Kevin Fall.

17

Redistribution and use in source and binary forms, with or without

modification, are permitted provided that the following conditions

are met:

1. Redistributions of source code must retain the above copyright
notice, this list of conditions and the following disclaimer.

2. Redistributions in binary form must reproduce the above copyright
notice, this list of conditions and the following disclaimer in the
documentation and/or other materials provided with the distribution.

3. All advertising materials mentioning features or use of this software
must display the following acknowledgement:

This product includes software developed by the University of
California, Berkeley and its contributors.

4. Neither the name of the University nor the names of its contributors

may be used to endorse or promote products derived from this software

without specific prior written permission.

THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ‘‘AS IS’’ AND
ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
ARE DISCLAIMED. 1IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS

OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
SUCH DAMAGE.

¥ X K X K X X X X K X X X X X X X X X X X X ¥ X ¥ X * *

*
~

#ifndef lint

char copyright[] =

"Q(#) Copyright (c) 1989 The Regents of the University of California.\n\
A1l rights reserved.\n";

#endif /* not lint */

#ifndef lint

static char sccsid[] = "@(#)cat.c 5.15 (Berkeley) 5/23/91";
#endif /* not lint */

#include <sys/param.h>

#include <sys/stat.h>

18

#include <fcntl.h>
#include <errno.h>
#include <unistd.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <ctype.h>

int bflag, eflag, nflag, sflag, tflag, vflag;
int rval;

char *filename;

void cook_args(), cook_buf(), raw_args(), raw_cat();
void err __P((int, const char *, ...));
main(argc, argv)

int argc;

char **argv;

extern int optind;

int ch;

while ((ch = getopt(argc, argv, "benstuv")) != EOF)
switch (ch) {

case ’b’:
bflag = nflag = 1; /* -b implies -n */
break;
case ’e’:
eflag = vflag = 1; /* —e implies -v */
break;
case ’n’:
nflag = 1;
break;
case ’s’:
sflag = 1;
break;
case ’t’:
tflag = vflag = 1; /* -t implies -v */
break;
case ’u’:

setbuf (stdout, (char *)NULL);
break;

19

case ’v’:
vilag = 1;
break;
case ’7’:
(void) fprintf (stderr,
"usage: cat [-benstuv] [-] [file ...]J\n");
exit(1);
}

argv += optind;

if (bflag || eflag || nflag || sflag || tflag || vflag)
cook_args(argv) ;

else
raw_args (argv) ;

if (fclose(stdout))
err(1, "stdout: %s", strerror(errno));

exit(rval);

void
cook_args (argv)

char **argv;

register FILE *fp;

fp = stdin;
filename = "stdin";
do {
if (xargv) {
if (!strcmp(*argv, "-"))
fp = stdin;

else if (!(fp = fopen(xargv, "r"))) {
err(0, "%s: %s", *argv, strerror(errno));
++argv;
continue;
}
filename = *argv++;
}
cook_buf (£fp) ;
if (fp != stdin)
(void)fclose(fp);
} while (*argv);

20

void
cook_buf (fp)
register FILE *fp;

register int ch, gobble, line, prev;

line = gobble = O;
for (prev = ’\n’; (ch = getc(fp)) != EOF; prev = ch) {
if (prev == ’\n’) {
if (ch == ’\n’) {
if (sflag) {
if (!gobble && putchar(ch) == EOF)
break;
gobble = 1;
continue;
}
if (nflag && !'bflag) {
(void) fprintf (stdout, "%6d\t", ++line);
if (ferror(stdout))
break;
}
} else if (nflag) {
(void) fprintf (stdout, "%6d\t", ++line);
if (ferror(stdout))

break;
}
}
gobble = O;
if (ch == ’\n’) {
if (eflag)
if (putchar(’$’) == EOF)
break;

} else if (ch == ’\t’) {
if (tflag) {
if (putchar(’~?) == EOF || putchar(’I’) == EOF)
break;
continue;
}
} else if (vflag) {
if (lisascii(ch)) {

21

if (putchar(’M’) == EOF || putchar(’-’) == EOF)
break;
ch = toascii(ch);
}
if (iscntrl(ch)) {
if (putchar(’"’) == EOF ||

putchar(ch == ’\177° 7 °7?’
ch | 0100) == EOF)
break;
continue;
}
}
if (putchar(ch) == EOF)
break;

}

if (ferror(fp)) {
err(0, "%s: %s", strerror(errno));
clearerr (fp);

}

if (ferror(stdout))
err(1, "stdout: %s", strerror(errno));

void
raw_args (argv)

char **argv;
register int fd;

fd = fileno(stdin);
filename = "stdin";
do {
if (xargv) {
if (!strcmp(*argv, "-"))
fd = fileno(stdin);
else if ((fd = open(*argv, O_RDONLY, 0)) < 0) {
err(0, "Ys: %s", *argv, strerror(errno));
++argv;
continue;
}

filename = *argv++;

22

raw_cat (fd);
if (fd '= fileno(stdin))
(void)close(£fd);
} while (*argv);

void
raw_cat (rfd)

register int rfd;

register int nr, nw, off, wfd;
static int bsize;
static char *buf;
struct stat sbuf;

wfd = fileno(stdout);
if (tbuf) {
if (fstat(wfd, &sbuf))
err(1, "%s: %s", filename, strerror(errno));
bsize = MAX(sbuf.st_blksize, 1024);
if (! (buf = malloc((u_int)bsize)))
err(1, "%s", strerror(errno));
}
while ((nr = read(rfd, buf, bsize)) > 0)
for (off = 0; off < nr; nr -= nw, off += nw)
if ((nw = write(wfd, buf + off, nr)) < 0)
err(1, "stdout");
if (nr < 0)

err(0, "%s: %s", filename, strerror(errno));

#if __STDC__
#include <stdarg.h>
#else

#include <varargs.h>
#endif

void

#if __STDC__

err(int ex, const char *fmt, ...)
#else

err(ex, fmt, va_alist)

23

int ex;
char *fmt;
va_dcl
#endif
{
va_list ap;
#if __STDC__
va_start(ap, fmt);
#else
va_start(ap) ;
#endif
(void) fprintf (stderr, "cat: ");
(void)vfprintf (stderr, fmt, ap);
va_end (ap) ;
(void) fprintf (stderr, "\n");
if (ex)
exit(1);

rval = 1;

Question 18

Tell at least two ways to get a recursive directory listing.

Answer

This is very simple. One of the following may do what you want:

(:% 1s -R :)

Notice that not all versions of 1s have a option -R which has a meaning of recursively listing.
Or

(:% find . -print :j

This should should work everywhere. Or else,

(:% du -a . :)

shows you both the name and size of the current directory.

24

Question 19

Explain the reason that the command chmod is available only for the owner of the files and
superuser.

Answer

Of course it is for security in the filesystems. If chmod is available for any users in the system,
anyone can make your unreadable files readable, like

[% chmod a+r *)

so your security (or privacy) in the filesystems will be completely broken.

Question 20

Explain briefly the major differences between MS-DOS and UNIX, advantages and disadvan-
tages of them.

Answer

The answer is probably written on your textbooks, so we hardly mention here. For example,

e MS-DOS is a single tasking, single user operating system. On the other hand, UNIX is a
multitasking operating system and has a multitasking capability.

e MS-DOS can available mainly on the IBM compatible personal computers, but UNIX
can available on almost any kinds of computers from PCs, workstations, mainframes, and

even supercomputers.

Question 21

Explain briefly the advantages and the disadvantages of E-mail compared with the other com-
munication methods (such as telephone, facimilie, ...).

Answer

Probably you can find the answer in your textbooks, so we omit here.

25

Question 22

On UNIX editors like vi or emacs, function keys or arrow keys are not available. Why is that?

Answer

Probably you can find the answer in your textbooks, but one of the most important points
here is important here is

e Editors like vi or Emacs was originally designed to work on any UNIX systems and on
any hardwares. But there are keyboards on some machines which don’t have function
keys, arrow keys, and even escape keys, so vi or Emacs was produced not to use these
special keys.

Question 23

cal is a command to display a calendar for the specified year. According to the on-line manual
of cal, they say “Try September 1752”. So, try to do that, and explain briefly what the result
means. It is not joking (I think).

Answer

Actually, I don’t exactly know the reason. But someone in this class told me that it may due
to a historical and religious reason. For a more detailed part, please ask for someone who is
familiar with the western history.

26

