Preface

We are very glad to see you in this class of “Introduction to UNIX” at UITEC this year. UNIX
becomes one of the most popular and powerful operating systems which can work on many of the
engineering work stations or the personal computers. Since UNIX is originally not designed to be
user-friendly system, at first you may feel somewhat irritating to use. However, it is very useful
afterwards to learn and be accustomed to UNIX, because the chances that you encounter the
computers on which UNIX is running is rapidly increasing, in almost every sorts of computers
in every kinds of countries in the world. In this class, we will start from the introduction to
UNIX system, progress to the fundamental operations, basic commands and file systems, brief
explanation about the background jobs and other advanced commands, pipe and redirection.
Next we will learn about the text editor (vi) to write text files. One of the final object of
this class is to become familiar with the electric mail (E-mail) which has become one of the
de-facto-standard tools of the communication recently, as long as the telephone or the facimilie.
The schedules of the class are planned for the total beginner of UNIX, so someone who already
has some knowledge about UNIX may feel somewhat boring. If you feel so, please help yourself
play with the machines as you like, because in the learning process of the computers it is more
important for you to make your hands in motion and type many commands by yourself, than
to only read the books or listen the class passively. We prepared the two textbooks in aid of
the class; one is “Introduction to UNIX” (Que corporation 1994, hereafter we call it the black
textbook) which is rather formal and covers almost all the important things about UNIX. The
other is “UNIX for Dummies” (IDG books, the yellow paperback one, hereafter we call it the
yellow textbook) which is rather informal and easy to read with a lot of jokes and pans in it.
We will sometimes consult these texts in the class (mainly the black one).

As an exercise environment, we offer you a number of units of the disk-based SPARC Station
ELC installed in the computer room. A printer is available. These work stations support an
operating system called SunOS which is based on UNIX. Exercises hereafter are conducted in
the X window system environment.

Then let’s enjoy learning UNIX with us!

November 10, 1994
Takashi Ito and Yukiko Yokoyama

Contents

1 What is UNIX, and Why UNIX?

1.1 Before starting
1.2 What is UNIX? - « = « « v oo e e e e e e e e e e e
1.2.1 Characteristics of UNIX system - - -« -+« =+« oo v oo oo oo
1.2.2 UNIX and other operating systems - « - = - =« =+« o oo oo
1.2.3 Components of a UNIX system - -« « -+« - -« v v v oo oo e

2 Login & Logout

2.1 Starting up a SyStem « « « © o+ s s e e e
2.2 Entering your login information and password - - - - -« - - - oo oo
2.2.1 login information « « « =+ ¢ - o s e
2.2.2 Entering your password - - - - - - s oo s e
2.2.3 logout procedure - - - - - oo - e e e
2.3 Fundamental operations of X-Window System - - - - - - - -« -« oo
2.3.1 Starting up - - ;o s s s e e e
2.3.2 Start the window manager - = « + =« + - s s s oo
233 Start the KEETIIL + + ¢+ = = = =+ ¢ o e
2.3.4 Window Operations « « = =« =« = s s e e e e e
2.3.5 Closing the X-Window system - - - -+« « « « « v v
3 Files & Directories
31 Everything in UNIX iS a ﬁlel
32 DireCtOI'y s s T T T
33 DireCtOI'y referencing

4 Permissions

4.1 Concept of PEIIIISSIONS + « + « = =+« s e e e e
4.2 Using 1s =1 command - © - -+ - s e
4.3 Directory Permissions - - - - -+ - s s oo
4.4 Change PermiSSIONs - - = « « « « o e oo e
4.5 Some other tOpiCS

451 Options of IS« « « « « c oo

4.5.2 UID and GID bit Programs - - - - = = = = = = oo oo

4.5.3 Symbolic Hnks - - -« « o oo

5 Other topics on UNIX filesystems

51 Restrictions of file MAME - « « « « « = « o v e b e e e
5.9 Hidden fles - - - - « « « o e e e e e e e e

10
10
10
10
10
11
12
12
12
12
14
14

16
16
16
16

19
19
19
19
21
22
22
22
22

7

10

5 . 3 Wildcards ..

5.4 Important commands - -« -+ ¢ ¢+ e e e e
55 Redirection in UNIX - « « « « « o v o oo i i i i i i e e
5.5.1 Redirecting output (using >) - - - - - - - e
5.5.2 Redirecting input (using <) « =« © c 0 0 c e e
5.6 Piping in UNIX « « « « c v v oo oo
5.7 alias (csh command) « = =+ © ¢ ¢ s e
5.8 history (csh command)
59 flnger and talk
5.10 Background jobS -« -+ ¢ ¢ ¢ e
5.10.1 background jobs and foreground jobs - = = < ¢ oo oo
5.10.2 Job control: foreground, stopped, background - - - - - - - - oo
5.11 SHOWINE PLOCESSES - « o o oo oo e
E-mail
6.1 Sending mails - = = - ¢ ¢ s s oo
6.1.1 The Simplest Way - « - « « « « « « « o 0o
6.1.2 Recipient - -« -« c oo
6.1.3 Send & file - « -+ - ¢ ¢ e e e e e e e e e e
6.2 Reading mails -« = -« = -« o s oo
6.3 Structure of a E-mail message « « « « - e e e e e e e e
6.4 XDATFE - ¢ ¢ v r e e e e e e e e e e e e e

vi editor

7.1 Major modes of Vi =+ + ¢ s s e e e
7.2 At least you should know - -« -+« - - .o
721 ToSEArt Vi = = « = =« = o o e e e e e
7.2.2 To quit vi, saving the text - « - « « « = = o o oo
7.2.3 Most basic cursor movement - - ¢ oc s s s e e e e e
Environment files
81 LLOGIM:+ + v v vt e e
8.2 LCSATC « + + + ¢ ¢ e e e e e e e e e
8.2.1 Backquotes in C-shell - « « -« « « « v o
8.3 . logout ...
8.4 .XInitrc - -« « ¢+ ¢ v e

Using compilers
91 The name Of Output
9.2 Using mathematical functions - -« - + « « + « « + « o o o oo oo n o s oL

Emacs editor

10.1 At least you should know about emacs - - - - - - - - - oo
10.1.1 Start up = -« -« ¢ v s e
10.1.2 To quit emacs, saving the text - - - - - - -« - oo
10.1.3 Basic CUrSOT MOVEIMENt -« - « « « « « « ¢ e o v e e e e e e e e e e

10.2 On-line tutorial - - - -+ « = « « &« o o e e e e e e e e e e e e e e e e e e e

10.3 Important keybinds - « - - « « « c o o oo

10.4 Undo fUnCtion - = « « « « « « « « o o ot e e e e e e e e e e

43
43
43
44
44
44
46
48

50
50
50
50
51
51

53
53
53
54
55
55

57
o7
58

11 C shell

12 Miscelaneous commands
12.1 Compressing and uncompressing files - - - - - - -+ - oo
1211 Compressing
1212 uncompressing

12.1.3 zcat - -

12.2 Encoding/decoding files - « = = = - oo oo

12.2.1 encoding
12.2.2 decoding

Chapter 1

What is UNIX, and Why UNIX?

1.1 Before starting
Here we will briefly explain some points to notice for the preparation of this classes.

e Please don’t forget to take off your outer shoes and put on a mule in the room.
e Smoking, eating and drinking are prohibited in the room.

e Computers are very delicate, so don’t handle it violently. If you have hit some unknown
keys accidentally and the machine has stopped, don’t be in panic and call the instructor.

1.2 What is UNIX?

Reasons why we will learn UNIX system, and the answers to the question “what is UNIX?” is
explained in detail from p.11 of the black text and from p.17 of the yellow text. UNIX is one
of the operating systems (such like MS-DOS), which is developed from over 20 years ago and
licensed by the UNIX System Laboratories Inc, and the word “UNIX” is a registered trademark
of the AT&T. Twenty-year survival is fairly long as an operating system of the computers, which
means there are many good points in UNIX system than the other ones.

1.2.1 Characteristics of UNIX system
Multitasking

UNIX can perform more than one task at a time for each user, which is a capability called
multitasking. UNIX does this through a process known as time sharing system, or TSS. Although
the computer seems to be devoting its full time to each task, it spends only fractions of a second
with any job, switching its attention from one job to another. As one of the many tasks UNIX
performs, UNIX continuously decides which job to run next, and how long to spend on each
job. This process occurs so quickly (about an order of 10~¢ seconds) that it is usually not even
visible to the user. This is the biggest difference with a sigletasking operating system such like
MS-DOS.

Multiuser capability

Besides being able to run more than one task at a time, UNIX can serve more than one user at
the same time. UNIX does this through time sharing method, similar to case of the multitasking.

, job
] ob (user)

(user)

job

(user)

UNIX system

job
\ i]user)

Switching g J Ob

(user)

job

(user)

Figure 1.1. Multitasking of UNIX system vs. singletasking of MS-DOS

High portability

Portability of UNIX system is generally very high; that is, if you intend to make UNIX system
work on a computer on which none of UNIXs are working on ever, it is fairly easier to do that
(rewriting the source code of the UNIX system, compiling and implementation) than the other
operating systems. It is mostly because source code (source program) of UNIX is written in C
language which is independent of each computer hardware. Therefore UNIX has been ported
every kinds of hardwares from the small personal computers, workstations, mainframes, and to
the huge supercomputers. This is one of the biggest reason why we will learn UNIX here.

A B _C__ A:B _C_ﬁ A _C__ UNIX system
i Job A
IR e Job B
o o -~ JobC
= Time

Figure 1.2. Schematic illustration of the time sharing system (TSS) of UNIX

1.2.2 UNIX and other operating systems

Since MS-DOS is currently the most widely known operating systems, how does UNIX compare?
Why would you want to use UNIX as the operating system for your PC rather then MS-DOS
(or OS/2, Windows NT, etc...)?

Briefly, UNIX is the only operating system that offers multitasking, graphics, and cross-platform
compatibility (mentioned above). File sharing, network printer service, remote application ex-
ecution, mutiuser access, and a graphical user interface are available for the UNIX users, not
for MS-DOS users. If you need to work in a networked computer system! , UNIX is currently
the only operating system that combines all of these elements. In Table 1.1 we compares the
features of several operating systems.

1.2.3 Components of a UNIX system

This section describes some of the components of the UNIX system. It will give you the back-
ground you need when working with computer systems. Figure 1.3 illustrates the relationship
between the hardware, operating system (UNIX) and users schematically.

Hardware

The hardware is the computer itself. But the hardwares do not serve as anything without the
softwares, including the operating system. UNIX is of course one of these softwares, and its

!About the network systems we will mention in the later classes. However since network system is highly
complicated and huge, it will be impossible to explain the whole figure of it, but only the introductory operation
to it.

Table 1.1. UNIX compared with other operating systems.

Operating Different Hardware Primary
System Manufacturers? Required Multiuser? Multitasking? Market
MsS-DOS Yes 1BM PC or No No PCs
compatible
05/2 Yes IBM PC or No Yes PCs
compatible
Windows NT No Various No Yes PCs
PICK Yes Various Yes Yes Small
systems business
VMS Onty DEC DEC VAX Yes Yes Minis and
architecture superminis
MVS Yes, mostly IBM Yes Yes Mainframes
IBM mainframe
UNIX Yes Various Yes Yes PCs to

mainframes

foundation can be classified into two parts: kernel and shell.

Kernel

The kernel is the central core of UNIX and is named for the inner seed of a nut. The kernel
is where the computer’s activities are coordinated and controlled. After you boot? (start up)
a UNIX computer, its first major job is to load the kernel on the main memory. The kernel
remains in the machine’s main memory until you shutdown (turn off) the computer. The kernel
controls every facet of the hardware’s operation and acts as a protective layer surrounding the
hardware. User’s programs can communicate with the hardware only by using the kernel as
intermediary.

Shell

The shell is a program that acts as the user interface to the kernel. The shell is the part that you
actually see and use. Usually shells are command line interfaces which means you can execute
every commands only by typing its name from the command line.

There are many varieties in shells, but basically it consists of two kinds; sh (Bourne shell)
and csh (C shell). There is a comprehensible explanation about shells from p.21 in the yellow
textbook, so if you have more interest, please consult it. In the classes here, we utilized the
most commonly used shell, C shell. “C” is named because the grammar of the shell program is
quite similar to the C language.

24boot” is a technical term used in the computer industry which means to start up.

Mardware

Figure 1.3. Schematic illustration of the relationship between the hardware, operating system
(UNIX) and users.

Chapter 2

Login & Logout

2.1 Starting up a system

Unlike PCs, usual UNIX workstations such as SPARC Station are almost always working; 24
hours per day, 365 days per year. Of course sometimes they should be shutdown (turned off),
but basically you should be aware that you don’t have to turn on or off the machine
unless you are a system manager. Machines in the exercise room are also working every day and
night. Anytime you can come here and login the machines as long as the room is open.

2.2 Entering your login information and password

2.2.1 login information

Every UNIX user has a user name (or login name) and a password. Login name is the name of
you in the machines. System administrators has set up an account just for you on the UNIX
system, using your login name. UNIX keeps a record of each time you use your account.

Unless you are starting up (booting) the systems, the only thing you see on your display will be

(oo)

The cursor is now located where you type in your login name. After typing your login name,
press Return. For example

[1ogin: fkokus03]

Here symbol means that you pressed the Return key.

2.2.2 Entering your password

Then, the UNIX system responds by asking you for your password, as in this example,

login: fkokus03

Password:

Password is very important in using UNIX system. It is a only key for the machine to recognize
a user (who entered a login name) as you! If your password is known to someone with malice, he
poses as you, login, and might do some malicious things like deleting files, changing password.

10

All of your passwords is uitec94 with which you can login the machines. Essentially it is
necessary for you to change your initial password immediately, but because of the local reasons
in this university here, it is impossible to change it (sorry!). So you should use the password
“uitec94” during the whole term.

Then, type your password. Notice that as you type your password, the screen does not display
what you type. This prevents unauthorized access to your account by others who may be
watching your screen. If you make a mistake as you type in your password, press Control +
u and retype the password from the start. Backspace or delete key is no more available in this
case.

When you have typed your password correctly, press Return. Perhaps the following display will
appear;

Sun0S Release 4.1.2-JLE1.1.2 (SMO) #6: Fri Sep 17 19:42:52 JST 1993
h

The percent sign (%) is the shell prompt and indicates that UNIX has accepted your access
information and is ready for a command.
If, instead of the shell prompt, you are presented with this message:

CLogin incorrect)

You may have simply made a mistake typing in your login name or password. Try the access
procedure again. System administrator or instructor should be notified if repeated attempts
prove unsuccessful.

2.2.3 logout procedure

When you finished your work on the machines, you have to logout. It is especially important to
log off the UNIX system properly. Most systems require a single command at the shell prompt
to log off, such as

[% logout]
or
[% exit]

Another alternative is pressing Control 4+ d. Once you have successfully logged out the system,
again you see the UNIX login message on-screen:

£)

Don’t turn off the machines!

11

2.3 Fundamental operations of X-Window System

2.3.1 Starting up

To utilize the UNIX system more efficiently, window systems are necessary. We can use “X-
Window System” (made in MIT, USA) on the workstations in the exercise room. The ability of
multitasking is fully demonstrated when we use the window system. Anyway, please try;

[% xinit]

Here, xinit is an abbreviation of INITializing X-window system.

%

Figure 2.1. login window (1)

2.3.2 Start the window manager

When X-Window system starts, a small box will appear on the upper-left corner of the display
as in Figure 2.1. This is called the “login window”. Then, start the “window manager” twm to
ease the window operation. If you don’t start the window manager, you cannot move, resize, or
iconize the window (try later). To start the window manager, move the mouse pointer into the
login window and type as in Figure 2.2.

% twm &

Figure 2.2. login window (2)

Do not forget to input & after the command name twm. & means that the command twm works
as a background job (mentioned later). Then, a bar is displayed above the login window as in
Figure 2.3.

2.3.3 Start the xterm

Then, open a working window “xterm” which is the abbreviation of X-TERMinal. xterm is
one of the standard command which offers you the working environment on X-Window system
(Figure 2.4).

12

login | | E
o
o
Figure 2.3. login window (3)
login | | BT

% xterm &

Figure 2.4. login window (4)

When a new window is displayed, only its frame is shown by the dotted lines as in Figure 2.5.
You should move it to a desired position using the mouse, and click the left button to fix the
window. The window, when fixed, will fully appear as shown below (Figure 2.6). You can then
perform various operations in such windows, To enter a command, for example, move the mouse
pointer into the window to use, and type the command from the keyboard. Notice that the
commands cannot be entered if the pointer is out of the window!

Click the left mouse button to fix the window location

...

Figure 2.5. When a new window is displayed, only its frame is shown by the dotted lines.

If you start xterm with the option -sb i.e.

[% xterm -sb[<—]]

a window with an scroll bar leftside is produced. Scroll bar is very useful in such a case when
you see long text files (mentioned later).

13

[@ xterm | | ET]

%

Figure 2.6. Whole figure of xterm

2.3.4 Window operations

Window operations, such as moving, resizing, iconizing, can be done mainly by using the mouse.
The operational procedures are outlined below. See also Figure 2.7.

Move a window

To move a window, move the mouse pointer into the bar in the upper part of the window, and
draw the mouse while holding down the left button. Release the left button when the window
is at the desired position.

Resize a window

To resize a window, move the mouse pointer into the symbol at the upper right corner of the
window and draw the mouse while holding down the left button. Release the left button when
the window has the desired size.

Iconize a window

To iconize a window, click on the symbol at the upper left corner of the window once. Then the
window is reduce to an icon. To restore the icon to the original window, click on the icon again.

2.3.5 Closing the X-Window system

To close a window, type exit on the windows. And to close the whole X-Window system, type
exit on the login window after you have closed all the windows you have opened.

[% exit]

Then you will logout from the UNIX system automatically, and the only thing you see on your
display again will be

(oo)

14

Draw the bar to move the window

Click here to iconize the window Draw here to resize the window
\\ — |AJ
o
(]

xterm This is the icon: Click on the icon to restore the window

Figure 2.7. Window operation. Moving, resizing and iconizing.

Today’s Check List

1. Login. Type your login name and password correctly.

Logout.

Login again, and start the X-window system with xinit.

Start up the terminal window manager twm.

Open a xterm window xterm (window (a)).

Open a xterm window from the window (a) with scroll bar xterm -sb (window (b)).
Iconize the window (b).

Restore the window (b).

© © N o g &~ w N

Move and superpose the window (b) over the window (a).

—_
©

Popup the window (a) on the window (b).

—
—

. Popup the window (b) on the window (a).

[y
N

. Enlarging the window (b).

[y
w

. Reducing the window (b) (This may be somewhat puzzling).

—
IS

. Close all the windows. Note the turn of closing.

15

Chapter 3

Files & Directories

3.1 Everything in UNIX is a file!

e Ordinary file
e Directory file

e Special file

3.2 Directory tree

The UNIX file system is organized in what is called an upside-down tree structure.
e Home directory
e Current directory

e Parent directory

3.3 Directory referencing

e Absolute referencing

e Relative referencing

16

Today’s Check List (1)

—_

. Login. Type your login name and password correctly.
Start the X-window system with xinit.

Start up the terminal window manager twm. Don’t forget to append & after twm.

= W N

Open a xterm window from the window with scroll bar xterm -sb. Don’t forget to
append & after twm.

ot

Confirm the name of your home directory by echo ~
6. Check the name of your current directory by pwd.

7. Check your current position in Figure 3.1, and fill the directory names expressed by
blank ovals.

8. While consulting Figure 3.1, and using absolute path,

(a) Change current directory to root (/).
(b) Change current directory to /usr.
(c) Change current directory to /usr/1ib.

(d) Change current directory to your home directory.
9. While consulting Figure 3.1, and using relative path,

(a) Change current directory to the parent (..) directory.
(b)
(c
(d)
(

Change current directory to the parent directory again.
) Confirm where you are now, and cd to /home.

Change current directory to /etc.
)

(

e) Change current directory to /root.

f) Change current directory to /usr.

(g) Change current directory to /usr/lib.
(h) Change current directory to root again.

(i) Be back to your home directory.

Then, explore in the directory tree as you like! Please don’t forget to check where you are now
by pwd command. If you would like to know the content of the directory, use the command 1s
(about 1s, we will study in detail later).

17

home

your home
directory (~)

Figure 3.1. Directory tree in this system. Check your current position in this figure, and fill
the directory names expressed by blank ovals.

18

Chapter 4

Permissions

In an office there are files which certain people don’t have to see or should not see. To protect
these from being seen by someone who should not, the drawers of the filing cabinet are locked.
UNIX must provide the same kind of security to the files on its file system. The locks in UNIX
are called permissions. Permissions are used to grant or refuse access privileges to files for
particular users.
4.1 Concept of permissions

e Read (r)

e Write (w)

e Execute (x)

4.2 Using 1ls -1 command

4.3 Directory permissions
e Read (r)
e Write (w)

e Execute (x)

19

Today’s Check List (2)
1. Change directory to “tito/Nov17.

2. Confirm the permissions of the files there by 1s -1.

3. Try to execute the executables.

Notice that “tito expresses the home directory of user tito. Similarly, “fkokusO1 expresses
the home directory of user fkokusO1.

Then, explore in the directory tree as you like, and confirm the permissions of the files there by
1s -1. Please don’t forget to check where you are now by pwd command.

20

4.4 Change permissions

Absolute (numeric) method

(ex.)

(chmod 644 filename)

Relative (symbolic) method
(ex.)

[chmod g+w filename)

Check List about Permissions

1. Change directory to your home directory.

2. Make a directory Nov17 by mkdir Nov17

w

Copy all files in “tito/Nov17 into the above directory Nov17 by
cp “tito/Nov17/* ~/Nov1l7

Change the permission of hello to 644.

Try to execute hello.

Add the execute permission of owner to hello.
Change the permission of hello.c to 000.

Try to read hello by using cat command (cat hello.c).

L ® N o e

What should we do to read hello.c again?

10. Read the online manual of chmod (man chmod).

Notice that cp is a command which corresponds to MS-DOS copy, which copies file. Similarly,
cat corresponds to MS-DOS type, which show the content of file. * (asterisk) is called wild-card,
which means “all matched files”, and this is also a same concept as in MS-DOS. So the command
“cp "tito/Novl7/* ~/Novl7” means “Copy all the files in "tito/Nov17 to ~/Nov17”.

21

4.5 Some other topics

4.5.1 Options of Is

o -1
Show in the long format.

o -lg
Show in the long format with group.

o -F
Make directory a trailing /, executable files with a trailing asterisk *, symbolic links with
a trailing at-sign @. This option is very much useful.

o -t
Sort by time modified, instead of by name.

e -a
List all entry; in the absence of this option, files whose names begin with dot (.; hidden
files) are not listed.

Several options can be executed at a time.

[% 1ls -1 -g -F)

is equal to below.

[% 1ls -1gF)

4.5.2 UID and GID bit programs

(This is an advanced concept and unimportant for now)
Some files have s instead of x in the permission column.

4.5.3 Symbolic links

Symbolic linking is to give another name, or another interface to the same file. The enigmatic
phenomena in the last week are all due to this symbolic links.

e To share the same file with another person.

e To save the disk space to do link instead of copying.

22

Check List about 1s and chmod

N o e W W

*®

10.
11.
12.

13.

Change directory to root (/).

Execute 1s to show the modes of the files there.
Execute 1s -1 to show the modes of the files there.
Execute 1s -1g to show the modes of the files there.
Execute 1s -F to show the modes of the files there.
Execute 1s -t to show the modes of the files there.

Execute 1s -1t to show the modes of the files there. What is the difference between
1s -1 and 1s -1t?

Execute 1s -a to show the modes of the files there.

Execute 1s -1gFta to show the modes of the files there.

Execute 1s -1 -1 -F -t -a to show the modes of the files there.
Try to change the permission of the file vmunix.

Try to find the UID or GID programs. Who is the owner of them, and what is the
group of them?

Read the online manual of 1n carefully (man 1s). What kinds of options of 1s are
there?

23

Check List about symbolic links

1. Change directory to you home (7).
2. Make a directory Nov24 by mkdir Nov24.

3. Copy the files "tito/Nov24/testfileA into the above directory Nov24 by
cp “tito/Nov24/testfileA ~/Nov24

4. Change directory to ./Nov24

5. Make a symbolic link of testfileA as the name of testfileA.link by
In -s testfileA testfileA.link

6. Execute 1s, 1s -1g and 1s -F to show the mode of the file.

7. Typeout the content of testfileA by
cat testfileA

8. Typeout the content of testfileA.link. What is the difference between testfileA
and testfileA.link?

9. How are the permissions of symbolic link file?

10. Then, explore in the directory tree as you like! Please don’t forget to check where
you are now by pwd command.

Notice that the permission column of a symbolic file is always lrwxrwxrwx. However, it does
not mean that the file is accessible (readable, writable or executable) by any user. The actual
permission of a symbolic link file is determined by the original one (real body), so the expression
of lrwxrwxrwx has no meaning in practice.

24

Chapter 5

Other topics on UNIX filesystems

5.1 Restrictions of file name

There are hardly any restrictions on UNIX file name!
e Maximum length: 255 characters (in SunOS)
e FExtensions: arbitrary
e Special characters: OK

Even a blank can be used in a file name.
Notice that the UNIX filenames are case-sensitive. On the other hand, MS-DOS file names are
case-insensitive.

5.2 Hidden files

Filenames of hidden files start with dot (.). These are used by applications to store user specific
setup information. For example,

e .cshrc (by csh)

e .xinitc (by xinit)

5.3 Wildcards

Wildcards in UNIX are almost the same as those of in MS-DOS.
e 7 matches any single character

e x matches anything at all

5.4 Important commands

(See also p.327 in Yellow textbook)
e cat (from “conCATenate”)

e cp (from “CoPy”)

25

mv (from “MoVe”)

rm (from “ReMove”)

we (from “Word Count”)
1pr (from “Line PRinter”)
echo

more

head

tail

date

26

Check List on various commands

1. Change to your home directory.

Try to execute 1s command

= W N

Confirm what kind of hidden files are there in your home directory by 1s -a.

with various options. Compare the results.

Copy all files in “"tito/Nov24 into the above directory Nov24 by

cp -r “tito/Nov24/*x ~/Nov24
This takes somewhat long time. The option -r means recursively (copy all the

subdirectories t00).

Consult the on-line manuals
Consult the on-line manuals
Consult the on-line manuals

Consult the on-line manuals

© 0w N = w

Consult the on-line manuals
10. Consult the on-line manuals
11. Consult the on-line manuals

12. Consult the on-line manuals

There are various kinds of junk files

of commands cat by man cat
of commands cp by man cp

of commands rm by man rm

of commands mv by man mv

of commands more by man more
of commands head by man head
of commands tail by man tail

of commands date by man date

and junk directories in “tito/Nov24. Try to execute each

of commands. Example of execution are follows:

cat testfileA

cp hello testfile

mv testfile testfile2

rm testfile2

cat inet.services.txt

sort inet.services.txt
more inet.services.txt
head -40 inet.services.txt
tail -40 inet.services.txt
date

lpr -p listserve.refcard
wc -1 listserve.refcard

N

~

/

Then, explore in the directory tree

as you like, and try to execute above commands in each

directories. Notice that in the directories in which you don’t have the write permission, writing

command such as cp or rm does not

work.

27

NOTICE | There are several Japanese text files in the directory “tito/Nov24 or in the system
directories. You cannot see the content of them because xterm cannot be designed to handle the
Japanese characters. If you would like to see them, use kterm (Kanji TERMinal) instead of
xterm as

[% kterm -sb]

and execute the commands such as cat or more.

28

5.5 Redirection in UNIX

The results of UNIX commands are usually displayed on-screen. This is called standard output.
Similarly, inputs of UNIX commands are usually typed in from keyboard. This is called standard
input. “Redirection” means, as long as in the case of MS-DOS, as if you say to UNIX

“Don’t display this output on-screen — instead, put it somewhere else.”
or

“The input for this command is not coming from the keyboard this time, so look for
it somewhere else.”

Of course, somewhere else means the files.

5.5.1 Redirecting output (using >)

In some directory, type

C% 1s -1 > file)

Then the output will not be displayed on-screen. To confirm the results, type

C% cat file)

You can see the results of the command 1s.

Overwriting and appending

If file already exists, > file overwrites the content of it completely. If you would like to append
to the end of file, use >> instead of >.

C% 1s -1 >> file)

5.5.2 Redirecting input (using <)

Redirecting input is often useful than redirecting output. One of the typical examples is the
case when you send E-mail to someone;

C% mail someone < file)

Then the content of the file is sent to someone by E-mail. About E-mail we will learn in the
later classes.

echo and redirect

The C-shell command echo is often used with the redirecting operation. echo writes its argu-
ments on the standard output, so we put the output into file using >. For instance,

[% echo ’This is the output of echo.’ > file)

29

5.6 Piping in UNIX

It can be really useful to redirect the output of one program (command) so that it becomes the
input of another program. This process is called piping as same as in the case of MS-DOS. The
syntax of piping is

commandA | commandB

Here, the output of commandA is used as the input of commandB. Piping is very useful when you
use several UNIX commands in combination.

C% ls -1 | more)
[% 1s -1 | sort)
[% echo ’How are you?’ | rev)

Combination of redirection and pipe

Piping and redirection are of course able to be used in combination.

C% 1ls -1 | cat -n > file)

30

Check List on redirecting and piping

1.

AR AR

10.
11.

Change to ~/Nov24

Try
ls -1g > 1ls.result

Confirm the content by cat ls.result
Append to the file by 1s -1g >> 1s.result
Confirm the content by cat ls.result

Overwrite to the file by 1s -1g > 1s.result
Then what will happen?

Try
echo ’How are you?’ | rev
Then, check the on-line manual for the information about command rev. What does

it work for?

. Try

1s -1 | cat -n > ls.cat.result
and then
cat ls.cat.result

Check the on-line manual of cat and consult the meaning of -n option.

Explore in the directory tree as you like, and try to execute above commands in
each directories. Notice that in the directories in which you don’t have the write
permission, writing command such as using > or >> does not work.

When you are in the directory which contain a lot of files, the output of 1s command can go
whizzing by too fast to read, which makes impossible to see the files at the begging of the list
before they disappear off the top of the screen. In such a case, the combination of 1s and more

can help you. Compare the two results following.

1.
2.

Change to /etc

List the content of the directory by
1s

. List the content of the directory in the long format by

1s -1g

. List the content of the directory by using more

1s -1g | more

The combination of 1s and more may be the most frequently used in the UNIX world.

31

5.7 alias (csh command)

Make an alias

You can invent a short name for a long name command by alias command. An operation

[% alias shortname originalname)

enables you to utilize shortname instead of originalname. For example,

% alias dir 1ls -a
% alias 11 1s -1gF

alias with no argument lists all the alias entries at present.

C% alias)

Remove an alias

To remove aliases, use unalias command.

% unalias dir
% unalias 1s

unalias * deletes all alias entries.

32

5.8 history (csh command)

History listing

A command history is utilized to list several commands you have typed before.

(:% history :)

Then the result may be following form:

4 N

Ire

refile cur +ymnet ; next
refile cur +ten ; next
refile cur +planet ; next
re

refile cur +ymnet ; next

~N O O W N

rmm ; next
(... omitting ...)

63 next

64 refile cur +1ls/ast ; next
65 vm

66 st +ls/ast
67 show 98

68 rmm

69 11

70 vm

71 st +panda
72 show 3186
73 show 2931
74 vm

75 11

76 11

77 11

78 which eriot
79 eriot m-vos

g 80 vm)

Re-execution of the previous command

o)

This command re-executes the previous command. For example, when you have done the
succession of commands as

33

% cp testfilel test3
% date
% 1ls -1gFt

and then enter !'!. Then, the previous command

(:% 1ls -1gFt :)

is re-executed.

Re-execution of the n-th command

History list which is shown by history has the sequence number for each command. You can
specify the old command by this number, for example,

i)

is completely equivalent to the command

C% which eriot)

in the list above.

Re-execution of the command containing string

The command

[% I string)

re-executes the latest command which contains string in it. For example,

C% Ishow)

matches the 73-th command

C% show 2931)

, not 72-th command show 3186 because the 73-th command is the latest one which contains
the string show.

34

Check List on alias and history

1. Confirm what kind of aliases are defined now on your shell by alias

2. Try to define some aliases. Recommended ones are:
alias 1ls 1s -CF

cp cp -1
h history
home cd ~
rm rm -i

3. Confirm the present list of history by history
4. Try to execute the command !!.

5. Try to execute some kinds of !number or !string as you like.

35

5.9 finger and talk

finger

finger are one of the most major commands by which you can find out who is using the local
or remote machines. The simplest way is just to type

[% finger)

By default, finger displays information about each logged-in user, including his or her: login
name, full name, terminal name, idle time, login time, and location if known. You can get an

information such like below

4 N
Login Name TTY Idle When Where
ail T co Wed 16:21
ail 7?7 p0 13 Wed 16:21 :0.0
ail 7?7 pl Wed 16:22 :0.0
s2muraka T p3 1d Tue 14:55 ¢sx0:0.0
s2muraka T p4 23: Tue 14:56 <¢sx0:0.0
tito 777 pS 43 Wed 15:51 133.40.8.42
- /

Users who is now logging in the local (you are using now) are shown in the leftside column. If
your machine is on a network, following command will work.

[% finger Q@machine)

This command tells you who is logging in machine.

talk

talk is a visual communication program which copies lines from your terminal to that of another
user. If you wish to talk to someone on your own machine, then username is just the person’s
login name (which you have to search by finger). If you wish to talk to a user on another host,
then username must be following form:

C% talk user@machine)

When first called, talk sends the message such like:

Message from TalkDaemon@your_machine at time...
talk: connection requested by his_name@his_machine.
talk: respond with: talk his_name@his_machine

to the user you wish to talk to. At this point, the recipient of the message should reply by
typing:

C% talk his_name@his_machine)

Once communication is established, the two parties may type simultaneously, with their output
appearing in separate windows. Typing CTRL-L redraws the screen, while your erase, kill, and

36

word kill characters will work in talk as normal. To exit, just type your interrupt character
(CTRL-C); talk then moves the cursor to the bottom of the screen and restores the terminal.

Check List on finger and talk

1. Confirm who is logging in your local machine by
finger

2. Confirm who is logging in remote machines by

finger Qcsal

finger Q@csal

finger Qcsa2

finger Qcsa3

finger Qcsad

finger Qcsab

Or, at a sitting,

finger Q@cse0 Qcsel Q@cse2 Qcsel3 Q@cse4 Qcseb

3. Try to talk to one of the users who is logging in now. For example,
talk fkokus10Qcseb
talk tito@csal

37

5.10 Background jobs

5.10.1 background jobs and foreground jobs

Background execution means to run a UNIX program that doesn’t interact with the screen or
keyboard. You use background execution to perform tasks that require significant time but that
don’t interact with you, such as sorting a file or formatting a file for printing, or huge numerical
calculation for scientific purposes. Also, programs which should be always working when you are
logging in, such as window manager (twm) or window terminal emulator itself (xterm or kterm),
should be executed as background jobs.

On the other hand, foreground jobs are the characteristic of a program that can accept input
from the keyboard and display data on-screen. By default, UNIX programs are run in the
foreground. Programs that run in the foreground are also said to be interactive.

To run a job in background, put & at the end of command:

C% command &)

5.10.2 Job control: foreground, stopped, background

You may notice that, many times, you run a job, and realize that it is going to take longer than
you thought, and decide that you want to switch it to a background job. In such cases, you
can change the status of you job by following operations. Relation between the job status and
control commands are shown in Figure 5.1.

Foreground

fg CTRL+Z

Background

Figure 5.1. Schematic illustration of job status and controlling commands

38

To make foreground job stop: CTRL + Z

Suppose you run a program in foreground, and intend to bring it into background. In this case,
you have to first stop the foreground job by pressing control + Z.

To list the status of jobs: jobs

To list the status of jobs on your present shell, csh command jobs works. Following results will
appear.

% jobs
[1] + Stopped vi text.tex
[2] - Stopped xterm -sb
[3] - Running kterm -km euc

Here, [1] denotes the job number, +/- sign denotes the job priority (not important here),
Stopped/Running shows the job status. Name of the jobs are listed in the rightside column.
To make stopped job run in a background: bg

When you want to make a stopped job run in foreground, the csh command bg (abbreviation
of BackGround) can work. For example, when you would like to make job 2 run in background,
specify the job number by %job_number.

[% bg %2)

To stop a background job: stop

When you want to stop a background job, simple csh command stop will work. For example,

[% stop %3)

To make stopped job run in a foreground: fg

When you want to make a stopped job run in foreground, the csh command fg (abbreviation of
FackGround) can work. For example, when you would like to make job 3 run in background,

[% fg %3)

To kill (terminate) a background job: kill

When you want to kill (or terminate; not stop) a background job, csh command kill will work.
For example,

C% kill %2)

39

5.11 Showing processes

Process is a general term for all of users jobs (background and foreground) and system jobs. We
can see what processes are running on the machine by ps (ProcesseS) command. ps command
has a lot of options, but many of them are useless. Only we should know is —aux or -auxw.
About the results of ps and the meaning of option a, u, x or w, consult the on-line manual of
ps. A sample of typical results of ps is shown below.

% ps -aux

USER PID %CPU %MEM SZ RSS TT STAT START TIME COMMAND

root 0 0.0 0.0 0 07 D Nov 21 0:32 swapper

root 1 0.0 0.0 52 07? IW Nov 21 0:03 /sbin/init -

root 2 0.0 0.0 0 07 D Nov 21 0:01 pagedaemon

root 165 0.0 0.0 1584 07 IW Nov 21 44:33 /home/LOCAL/X11R5/bin/X
root 54 0.0 0.5 72 108 7 S Nov 21 1:44 portmap

root 107 0.0 0.0 52 07 IW Nov 21 0:00 rpc.bootparamd

root 59 0.0 0.0 40 07 IW Nov 21 0:00 keyserv

root 70 0.0 0.0 668 07 IW Nov 21 1:53 in.named

root 87 0.0 0.0 68 07 IW Nov 21 0:28 syslogd

root 73 0.0 0.0 16 07 I Nov 21 0:05 (biod)

root 95 0.0 0.0 136 07 IW Nov 21 0:05 -accepting connections (
root 113 0.0 0.0 28 07 I Nov 21 0:10 (nfsd)

root 101 0.0 0.0 60 07 IW DNov 21l 0:01 rpc.mountd -n

root 102 0.0 0.0 28 07 I Nov 21 0:10 (nfsd)

root 104 0.0 0.0 36 07? IW Nov 21 0:00 rarpd -a

root 1056 0.0 0.0 24 07 IW Nov 21 0:00 rarpd -a

root 109 0.0 0.0 52 07 IW Nov 21 0:00 rpc.statd

root 114 0.0 0.0 28 07 I Nov 21 0:11 (nfsd)

root 111 0.0 0.0 96 07? IW Nov 21 0:00 rpc.lockd

root 134 0.0 0.0 12 47 I Nov 21 19:01 update

tito 25690 0.0 1.5 60 344 p2 R 01:05 0:00 mail tito

root 129 0.0 0.0 80 0?7 IW Nov 2l 0:00 /usr/etc/snmpd -c /etc/s
root 137 0.0 0.0 176 0?7 IW Nov 21 1:09 cron

root 150 0.0 0.0 56 07 IW Nov 21 0:13 inetd

root 153 0.0 0.0 52 07 IW Nov 21l 0:00 /usr/lib/lpd

root 155 0.0 0.1 16 28 7 S Nov 21 0:11 screenblank -d 120
kajino 1068 0.0 0.0 80 0 p7 IW 17:03 0:00 -sh (csh)

root 163 0.0 0.2 228 56 7 S Nov 21 0:07 /usr/bin/X11/xdm

root 166 0.0 0.0 40 0 co IW Nov 21 0:00 - std.9600 console (gett
root 27831 0.0 0.0 248 07 IW Nov29 0:07 -pius:0 (xdm)

kajino 296 0.0 0.0 420 07 IW 10:33 1:14 kterm -sb -iconic -d ggt
greg 28206 0.0 0.0 72 0 p6 IW Nov 29 0:00 -csh (csh)

root 302 0.0 0.0 60 07 IW Nov 21 0:11 rpc.rquotad

tsuchi 7523 0.0 0.0 0 07 Z Nov 21 0:00 <defunct>

wnn 27895 0.0 0.0 2088 07 IW Nov 29 0:17 jserver

kajino 1067 0.0 0.0 420 07 IW 17:03 0:38 kterm -sb -iconic -d ggt
kajino 1062 0.0 0.0 56 07 IW 17:03 0:00 in.rshd

sano 2200 0.0 0.0 288 0 pl IW 22:09 0:02 -csh (tcsh)

40

tsuchi
root
root
kajino
tito
sano
tito
kajino
root
kajino
root
kajino
root

7519
26769
28205
1063
2564
2196
2589
292
2316
297
26763
291

2563

O O O O O OO O O O O O OO
O O O O O OO OO OO O o

P O O OO O K, O WwOoOOoOOoOOo
N OO OO O WO O OO O Oo

44
208
44
76
224
408
196
76
248
100
248
56
44

O O O O

672

o

436

O O O O O
R I I B o I Vi © EE At © REREEN REREV IRV BREEN]

268

N

N

Nov 23
Nov 29
Nov 29
17:
01:
22:
01:
10:
22:
10:
Nov 29
10:
01:

03
04
09
05
33
46
33

33
04

O O O OO OO OO oo oo

:00
:00
:00
:00
:00
:05
:00
:00
:00
:02
:00
:00
:00

rsh milano fvwm -display
xconsole -geometry 480x1
in.rlogind

csh -c kterm -sb -iconic
-usr/local/bin/tcsh (tcs
kterm -n ferio

ps —aux

csh -c kterm -sb -iconic
-isolde:0 (xdm)

-sh (csh)

-:0 (xdm)

in.rshd

in.rlogind

41

Check List on background/foreground jobs

1.

10.
11.

e T T e R

Open a kterm window as a foreground job (without &)
% kterm

Stop the job of kterm by pressing CTRL + z
See the job status by jobs

Make the job run in background. Use bg

See the job status by jobs

Stop the job of kterm again by stop command.
See the job status by jobs

Make the job run again in foreground. Use fg

Stop the foreground job of kterm again by pressing CTRL + z, and see the job status
by jobs .

Kill (terminate) the job of kterm. Use kill

Consult the on-line manuals of bg, fg, stop and kill. They are contained in the
manual of csh, so simply
% man csh

Check List on ps

1.

Execute the command ps with option -aux.
% ps —aux

. Execute the command ps with option —auxw. What is the difference?

. Execute the command ps with no option (simply ps). What is the difference?

List only your own processes by
% ps —aux | grep your_login_name
Then consult the on-line manual of grep to confirm its information.

. Consult the on-line manuals of ps and confirm the meaning of each option.

42

Chapter 6
E-mail

Electronic mail (E-mail) is very useful way to send and receive messages by computers, and now
widely used in science and business industry.

We use the UCB (University of California Berkeley) mail command in this class. UCB mail is
a simple, but comfortable, flexible, interactive program for composing, sending and receiving
electronic messages. While reading messages, mail provides you with commands to browse,
display, save, delete, and respond to messages. While sending mail, mail allows editing and
reviewing of messages being composed, and the inclusion of text from files or other messages.
Incoming mail is stored in the system mailbox for each user. This is a file named after the user
in /var/spool/mail. When you read a message, it is marked to be moved to a secondary file
for storage. This secondary file, called the mbox, is normally the file in your home directory
(~/mbox).

6.1 Sending mails

6.1.1 The simplest way

The simplest way to send a mail to someone is as follows. First, you enter a command

C% mail someone)

where someone of course means the loginname of recipient. Then, you will be urged to input

the subject of the mail.

[Subject; i j

Here, D means the location of the cursor. You should input the subject, and enter. For example,

Subject: TEST 1

]

Next you should type in the main body of your mail. For example here,

43

Subject: TEST 1

This is a test at Polytechnic University.
It was called ’uitec’ formerly.

Bye.

]

When finished typing the mail body, enter CTRL 4 D to mark the end of input.

(-)

That’s all for sending.

6.1.2 Recipient

There are two ways about the expression of the recipient name. First, when you intend to send
a mail to the local user, simple

% mail loginname
% mail fkokusO8
% mail yokoyama

can work. Second, when you intend to send a mail to the remote user, name of the machine is
also needed. For example,

% mail loginname@machine
% mail fkokus03Q@cse?2
% mail fkokus07@csal

6.1.3 Send a file

You can also send a text file by E-mail. In this case, you should use redirection of input we have
studied before. First, you have to make a file by some text editors such as vi or emacs. Then,
a simple way to use redirection of input

C% mail someone < file)

will work to deliver your messages (written in file) to recipient. In this case, subject is not added
by default. To add a subject to your mail, use -s option of mail command. For example,

% mail -s Hello someone < file
% mail -s ’This is a simple subject.’ someone < file

Don’t forget to put the subject in quotations ’> ’ if the subject contains some special
characters, such as space, tab, comma, or period.

6.2 Reading mails

If new mails are arriving, a message

44

(You have new mail.)

appears when you login the machine. In that case, you can read the messages by using mail
command. Only you have to do is

C% mail)

Then, the information about sender, date, subject, status of mails are listed. For example

% mail

Mail version SMI 4.0 Mon Dec 2 20:17:48 JST 1991 Type 7 for help.
¢¢/usr/spool/mail/tito’’: 5 messages 2 new 5 unread

U 1 satoh@clim Wed Dec 7 13:51 78/4403 Re: PC or WS sending

2 nakamoto Wed Dec 7 13:56 12/288 We’ll win the game!
N 3 panda@gpsun03 Wed Dec 7 14:08 19/933 request for help
>N 4 kino002 Wed Dec 7 14:20 16/392 Hard disk unit
U 5 jakky@lowtem Wed Dec 7 14:30 42/1858 ftp site of transport

&

About the detail of each message, consult the on-line manual of mail. Character (U, N or empty)
in the leftside column means

N - .. The message is a New one.

U - -- The message is not a new one, but still Unread.

(empty) - -- You already read the message.
and the sign > denotes that it is the current message

Here, the letter & denotes the command prompt in mail command. You can enter various
subcommands after this & All the subcommands are listed by typing ? after & For example,

& 7

cd [directory] chdir to directory or home if none given
d [message list] delete messages

e [message list] edit messages

f [message list] show from lines of messages

h print out active message headers

m [user list] mail to specific users

n goto and type next message

p [message list] print messages

pre [message list] make messages go back to system mailbox

q quit, saving unresolved messages in mbox

r [message list] reply to sender (only) of messages

R [message list] reply to sender and all recipients of messages
s [message list] file append messages to file

t [message list] type messages (same as print)

top [message list] show top lines of messages

u [message list] undelete messages

v [message list] edit messages with display editor

w [message list] file append messages to file, without from line

45

X quit, do not change system mailbox
z [-] display next [previous] page of headers
! shell escape

A [message list] consists of integers, ranges of same, or user names separated
by spaces. If omitted, Mail uses the current message.
&

Though there are many subcommands in mail command, only a few of them are important.
What you should remember are probably following 6 only.

& s --- Save the message in a file named ~/mbox .

& q --- Quit, saving unresolved messages in ~/mbox .

& x --- EXit, do not give any changes to your messages.

& d --- Delete the message.

& h --- Show the Headers again.

& (number) - - - Show the n-th message.

If you don’t have any messages, a simple message such as

% mail
No mail for your_name

will be shown.

6.3 Structure of a E-mail message

An E-mail messages is structured very much like a paper letter — there is addressing information
and salutatory material, like the return address and the date, and there is the actual message.
Messages are divided into two parts; the system header, and the mail body. The header, at the
top of the message, is the envelop. The body is the actual message. We show a very simple
example first.

Return-Path: hiroshi

Received: by pluto.mtk.nao.ac.jp (5.67+1.6W/TISN-1.3/R2)
id AAOO664; Wed, 7 Dec 94 17:47:12 JST

Date: Wed, 7 Dec 94 17:47:12 JST

From: Hiroshi Kinoshita <hiroshi>

Message-Id: <9412070847.AA00664@pluto.mtk.nao.ac. jp>

To: tito

Subject: Greetings

This is Hiroshi.
Bye!

Here, two lines at the bottom are the body, and the remaining part are headers. The header
describes information about the sender, the messages, the route, and the recipient. Header ends
with a blank line. For example, some common headers include:

46

Return-Path: ... The address where the reply should be sent.
Received: --- The machine where the message went through or arrived at.
Date: --- The date when the messages was sent.
From: --- The name of sender.
Message-Id: --- The ID number of the mail on the machine.
To: --- The recipient(s) of the message.
Subject: --- The subject of the message.
There are numerous kinds of headers in UNIX world, and it is permitted for us to invent new

headers and put them on the mail message. For example, below is a mail I received recently. 1
myself can not understand the meaning of some headers in it.

Replied: Wed, 07 Dec 1994 10:38:17 +0900

Replied: nao-seminar@athena.mtk.nao.ac.jp

Return-Path: panda-admin@gpsunO3.geoph.s.u-tokyo.ac.jp

Received: from geoph.geoph.s.u-tokyo.ac.jp by pluto.mtk.nao.ac.jp
(6.67+1.6W/TISN-1.3/R2) id AA09754; Tue, 6 Dec 94 17:02:15 JST

Received: from gpsun03.geoph.s.u-tokyo.ac.jp by geoph.geoph.s.u-tokyo.ac.jp
(8.6.8+2.4Wb/TISN-1.3M/R2) id QAA04783; Tue, 6 Dec 1994 16:58:35 +0900

Resent-From: panda-admin@gpsunO3.geoph.s.u-tokyo.ac.jp

Received: from (localhost) by gpsun03.geoph.s.u-tokyo.ac.jp (4.1/TISN-1.2L/R1)
id AA10076; Tue, 6 Dec 94 17:00:25 JST

Resent-Date: Tue, 6 Dec 94 17:00:21 +0900

Resent-Message-Id: <9412060800.AA10076Q@gpsun03.geoph.s.u-tokyo.ac.jp>

Resent-Sender: panda@gpsun03.geoph.s.u-tokyo.ac.jp (Panda-Net mailing list)

Errors-To: panda-admin@gpsunO3.geoph.s.u-tokyo.ac.jp

0ld-Return-Path: <k2@jiro.eri.u-tokyo.ac.jp>

Received: from jiro.eri.u-tokyo.ac.jp by gpsun03.geoph.s.u-tokyo.ac.jp
(4.1/TISN-1.2L/R1) id AA10069; Tue, 6 Dec 94 16:57:55 JST

Received: from localhost (localhost [127.0.0.1]) by jiro.eri.u-tokyo.ac.jp
(8.6.5/3.3Wb) with SMTP id QAA20127; Tue, 6 Dec 1994 16:56:13 +0900

Message-Id: <199412060756.QAA20127@jiro.eri.u-tokyo.ac.jp>

X-Authentication-Warning: jiro.eri.u-tokyo.ac.jp:
Host localhost didn’t use HELO protocol

X-Ecom-Version: 3.00.15 (PC98/PCTCP)

Mime-Version: 1.0

Content-Type: text/plain; charset=iso-2022-jp

Procedure: bulk

Newsgroup: page.general,page.misc

Posted: Tue, 06 Dec 1994 16:56:12 +0900

Reply-To: panda@gpsun03.geoph.s.u-tokyo.ac.jp

X-Ml-Server: nml.pl 1.2 (specially modified for Panda)

X-M1-Name: Panda-Net mailing list

Lines: 126

To: panda@gpsun03.geoph.s.u-tokyo.ac.jp

Cc: page-general@eri.u-tokyo.ac.jp, eri_folks@eri.u-tokyo.ac.jp

From: Kazuki Koketsu <k2@jiro.eri.u-tokyo.ac.jp>

47

Date: Tue, 6 Dec 94 17:00:21 +0900
Subject: [Panda 3058] Workshop on Seismic Numerical Simulation

Workshop ‘Numerical Simulation of Seismic Ground Motion’

Date : December 15, 1994 (Thu)
Time : 10:00am -- 4:30pm
Place : 2nd meeting room (2F, No.202),

Earthquake Research Institute, University of Tokyo

6.4 xbiff

There are a useful command on X-Window System which can give notice of incoming mail
messages, named xbiff. The xbiff program displays a little image of a mailbox. When there
is no mail, the flag on the mailbox is down. When mail arrives, the flag goes up and the mailbox
beeps. By default, pressing any mouse button in the image forces xbiff to remember the current
size of the mail file as being the “empty” size and to lower the flag.

The usage is simple enough.

[% xbiff &]

Don’t forget to run it as a background job because the window of xbiff should be always

working on the screen.

48

Check List on E-mail

1.

At first, send an E-mail to yourself.
% mail your_login_name

. Read it by

% mail

. Then, stand the flag by

% xbiff &

Again, send an E-mail to yourself, and wait a little while.

. Consult on-line manual of xbiff by

% man xbiff

. Next, try to send E-mails to someone by direct method such as

% mail someone
or, through a textfile using redirection of input
% mail -s ’This is subject.’ someone < file

Consult on-line manual of mail by
% man mail

49

Chapter 7

vl editor

vi is a standard editor on UNIX. vi is available everywhere UNIX is working. vi seems rather
incapable and complicated than other editors in MS-DOS, but it is because vi was originally
designed to work on many kinds of environment — some types of keyboard don’t have function
key or even ten keys. However, once you have accustomed to vi, you will find it is very fast
and easy to use. The only way to be accustomed to editors such as vi is to repeat practices. So
don’t hesitate to use vi.

7.1 Major modes of vi

vi editor operates in two modes: command mode and input mode. In command mode, vi
interprets your keystrokes as commands; there are many vi commands. You can use commands
to save a file, exit vi, move the cursor to various positions in a file, or modify, rearrange, delete,
substitute, or search for text. If you enter a character as a command but the character is not
a command, vi beeps. The beep is an audible indication for you to check what you are doing
and correct any errors.

You can enter text in input mode (also called text-entry mode) by either appending after the
cursor or inserting before the cursor. At the beginning of the line, this doesn’t make much
difference. To go from command mode to input mode, press a to append text after the cursor,
or press i to insert text in front of the cursor.

Use input mode only for entering text. Most word processing programs start in input mode,
but vi doesn’t. When you use a word processing program, you can type away, entering text;
to issue a command, you have to use function keys or keys different than you use when typing
normal text. vi doesn’t work that way; you must go into input mode by pressing a or i before
you start entering text and then explicitly press Esc to return command mode.

7.2 At least you should know

7.2.1 To start vi

When you edit a new file with vi, simply

[% vi filename]

Notice that you are in command mode just after the screen of vi opened. Press a or
i to change the mode to input mode to enter characters.

50

7.2.2 To quit vi, saving the text

To save text and quit, you have to first enter into command mode by pressing Esc. Then press
ZZ. vi will save your text and quit.

7.2.3 Most basic cursor movement

You must be in command mode to move cursor. You cannot move cursor in input
mode. Functions to move cursor are

e Cursor Up: k
e Cursor Down: j
e Cursor Left: h
e Cursor right: 1

These are illustrated in Figure 7.1.

Up

o7
-y
(S

Right

J

Down

Figure 7.1. Schematic illustration of cursor movement in vi

51

Check List on vi

1. Read the description about vi in “Workstation Users Guide 1993" (Polytechnic
University) p.25~, and try to check each sample.

2. Consult on-line manual of vi by
% man vi

3. Choose some of the proverbs listed in the accompanying papers, and type them in
the file by vi. Then, save and send it to tito@csa0 by E-mail. For example, suppose
your filename is samples
% mail -s ’Proverbs’ tito@csal < samples

52

Chapter 8

Environment files

Most users find that, every time they login, they type the same commands to set up the computer
the way they like it. You may typically change your favorite directory, for example, change your
terminal settings, check your mail, or any of a dozen other things.

Environment files (usually their name start with dot .) are used to set up your terminal settings
automatically whenever you login, start shells, or start applications. Most environment files are
some sorts of shell script (which corresponds to batch file in MS-DOS). Below we will explain
four typical environment files: .login, .cshrc, .logout, and .xinitrc.

8.1 .login

.login is automatically loaded when you login the UNIX system. A sample of .login is listed
below.

setenv PATH ~/bin:"tito/bin:/usr/local/bin:/bin:/usr/bin/X11:/usr/ucb:/usr/bin
setenv MANPATH /usr/man:/usr/lang/man:/usr/newsprint/man:/usr/openwin/man
setenv LD_LIBRARY_PATH /usr/lib/X11:/usr/lib

Here, setenv is a command for setting an environment variable which also exists in MS-DOS
world. The formal syntax of setenv command is

C% setenv variable value ...)

Traditionally, environment variables are expressed by upper cases such as PATH or TERM. To list
all the environment variables, you simply enter

[% printenv)

8.2 .cshrc

.cshrc is automatically executed when you start up csh (or when you login). A sample of
.cshrc is listed below.

set history = 100
set prompt = "‘whoami‘@‘hostname‘[\!']%"

53

alias c clear

alias h history

alias key man -k

alias la 1s -aF

alias 11 ls -1gF

alias 1lla ls -1gFa

alias 11m 1ls -lagF | more

alias 11t ls -1tgF

alias 1s 1s -CF

alias md mkdir

alias ps /bin/ps -aux | sort -n +1 | more
alias s source

alias cd ’cd \'!'*;echo $cwd’

alias cp cp -1

alias k14 kterm -fk k14 -fn al4 -km euc
alias k16 kterm -fk rom-k16 -fn rom-al6 -km euc
alias kterm kterm -fk kanjil6é -fn 8x16 —-fr 8xl6kana -km euc
alias mv mv -1

alias pwd echo $cwd

alias m more

alias rm rm -i

alias xinit ’/usr/bin/X11/xinit; logout’
alias xterm xterm -fn 8x16 -sb

alias xterml4d xterm -fn 7x14 -sb

alias xtermil8 xterm -fn al8 -sb

alias xterm24 xterm —-fn 12x24 -sb

Here, set is a command for setting an csh variable. It is rather difficult to explain accurately
between the csh variables and environment variables, but if we dare to say,

e environment variables - - - could be consulted by any commands.
e csh variables - - - mainly consulted by csh commands.

and some of csh variables are common with environment variables (e.g. term and TERM, path
and PATH). The formal syntax of set command is

C% set variable = value ...)

Traditionally, csh variables are expressed by lower cases such as history or tty. To show all
the csh variables, you should enter the set command with no argument;

C% set)

8.2.1 Backquotes in C-shell

Backquotes in C-shell (¢ ¢) have a special meaning. Backquotes express the output of command
which is bracketed between them; we show a simple example. hostname is a command to display
your machine name, for example

54

% hostname
csa2

Then, try to perform below two commands. One is simply

(:% echo hostname :)

The other is using backquotes

(:% echo ‘hostname‘ :)

The result will strikingly differ.

8.3 .logout

.logout is easy to understand, and it is executed when you logout from the system. For example,
a sample .logout

clear
black
/usr/games/fortune -1

works as
1. Clear the text screen
2. Black the screen
3. Show some proverbs on the screen

when you logout. As you can see, .logout is not necessary needed.

8.4 .xinitrc

.xinitrc preserves the geometries, locations, sizes, and other information about the windows
when you start X-Window system by xinit. A sample of .xinitrc is listed below.

twm &

xbiff -geometry 62x62+0-0 &

oclock -geometry 300x300+4-0 -trans &

xterm -sb -fn 12x24 -geometry 80x36-4+4 &
xterm -sb -fn 8x16 -geometry 80x27+4+120 &
xrefresh

exec xterm -C -sb -geometry 78x8+0+0 -n login

In the above script,
1. Start up terminal window manager (twm)

2. Start up xbiff

55

w

. Start up oclock

W

. Start up two xterms
5. Refresh the screen by xrefresh
6. Start up login window

Command exec in the final line is rather difficult, but for now it is enough to understand that
the purpose of exec ... -n login is to finish the window system by exiting the login window
(the window system will be finished together with the login window at the same time). Try to
search the meaning of each option of each command by on-line manuals.

Check List on environment files

1. We prepared a typical example of useful environment files. Use this instead of present
version. To do so, at first you should copy them from “tito/Dec15 by
cp “tito/Dec15/.login.sample ~/.login
cp “tito/Dec15/.cshrc.sample ~/.cshrc
cp “tito/Decl5/.logout.sample ~/.logout
cp “tito/Dec15/.xinitrc.sample ~/.xinitrc

When you are asked to “Overwrite?”, enter “y”. Then, logout once, and login
again. What will happen?

2. Consult on-line manuals of each command for each option.

3. Verify the characteristics of backquotes in C-shell. Try to set two environment
variables in different way. First, simply
% setenv TMP1 hostname
and second, using backquotes
% setenv TMP2 ‘hostname’
Confirm the result by
% printenv

4. Try to revise these environment files as you like. If you fail to rewrite them, some
kind of troubles may occur on your terminal. In such cases, copy the original files
again from “tito/Decl15 .

56

Chapter 9
[] []
Using compilers
Three language compilers (cc, £77, pc) are available. Each of them corresponds to C, Fortran77,

and Pascal language.

cc for C

To compile a C source code, we use cc (C Compiler) as

[% cc source.c]

£f77 for Fortran77

To compile a Fortran (Fortran77) source code, we use £77.

[% £77 source.f[]]

pc for Pascal

To compile a Pascal source code, we use pc (Pascal Compiler).

[% pc source.p]

9.1 The name of output

It should be noted that the name of output executable from these compiler is by default fixed to
a.out (it is of course due to the traditional reason). So when you intend to run the executable,

[% a.out]

is needed. If you want to change the name of output executable, you should use -o option of
the compiler, such as

o7

[% cc -o testexec source.c|[<]]

Then, an executable file named testexec will be produced instead of a.out. You can run it by

[% testexec]

9.2 Using mathematical functions

You may notice that when you use mathematical functions (sin, cos,exp,In,...) in the source
program, it is necessary for you to put -1m option after the name of source program when
compiling. For example,

[% cc -o testexec source.c —lm]

The option -1m means that the code is Linked with the Mathematical libraries when compiling.
It is a common regulation for the compilers on UNIX. However, since it is a OS/compiler
dependent specification, you may not need to put -1m option when compiling. Try to check it.

58

Check List on compilers

1. Type the list 1, 2, 3 below in some files, save them as proper names, and compile
them. Then, execute each of them.

2. Compilers cc, £77, pc have many options. Consult the each meaning of the options
by on-line manuals.
man cc f77 pc

List 1

/*
Sample code of C
*/
#include <stdio.h>
main(){
printf ("Hello, C world!\n");
}

List 2

Sample code of Fortran

Program Hello
write (*,*) ’Hello, Fortran world!’

Stop
End
List 3
{
Sample code of Pascal
b
program hello;
begin
writeln(’Hello, Pascal world!’);
end.

59

Chapter 10

Emacs editor

Emacs is an editor which is much more powerful and strong than vi. One of the reasons is that
it doesn’t have the mysterious modes that require you to remember at every moment whether
the program is expecting a command or text.

Although emacs doesn’t come with standard UNIX, a popular version called GNU Emacs is
distributed free, so most systems have it or can get it. Also some commercial versions such as
Epsilon, Unipress Emacs are available. Here we use GNU Emacs in this class.

10.1 At least you should know about emacs

Like vi, there are only a few things to remember when you intend to use emacs within minimum
functions.

10.1.1 Start up

When you edit a new file with emacs, simply

[% emacs filename &]

Don’t forget to run emacs as a background job with &, because emacs creates a new window for
himself (on X-Window only). If you feel the font in emacs is too small, use —-fn option to specify
font. For example,

[% emacs -fn 8x16 filename &]

will use the eight times sixteen dot fonts, and

[% emacs -fn 12x24 filename &]

will use the twelve times twenty-four dot fonts in the emacs window.

10.1.2 To quit emacs, saving the text

To save your text and quit emacs, type

control+x control+c

60

[l W

in a row. If you are asked to save the file or not, you should reply to it by “y” or “n” (if you
answered “n”, you may be asked again for confirmation). Then, emacs will quit automatically.

10.1.3 Basic cursor movement

Keybinds of Emacs is based on the pattern of “control + key”. For example, functions to move
cursor are binded as

e To Previous line:

e To Next line:

e To Forward one character:
e To Backward one character:

These are illustrated in Figure 10.1.

10.2 On-line tutorial

GNU Emacs has a detailed on-line tutorial. You should at least once read through this tutorial.
It is very helpful for you to study and learn about emacs by yourself. Procedures to read the
tutorial for emacs is very simple. First, you type

control+h

and you will see a message like

[C—h (Type 7 for further options))

Expression C-h means that you have typed “control+h” now. Then, enter t (lower case). Then
you can get into the tutorial mode.

10.3 Important keybinds

In Table 10.1 we listed other important keybinds in emacs. In the table, the expression C- is
equivalent to “control+”.

10.4 Undo function

Undo function is one of the strongest functions in emacs. Any time you make a change to the text
and wish you had not done so, you can undo the change (return the text to its previous state)
with the undo command, C-x u. Normally, C-x u undoes one command’s worth of changes;
if you repeat the C-x u several times in a row, each time undoes one more command. There
are two exceptions: commands that made no change (just moved the cursor) do not count, and
self-inserting characters are often lumped together in groups of up to 20. This is to reduce the
number of C-x u’s you have to type.

C-_ is another command for undoing; it is just the same as C-x u but easier to type several
times in a row. The problem with C-_ is that on some keyboards it is not obvious how to type
it. That is why C-x u is provided as well. On some DEC terminals, you can type C-_ by typing
/ while holding down Control.

61

(Previous line)

Control + p

(1eyo piemyoeyqg)
J + [0JU0))

Control + n
(Next line)

62

Figure 10.1. Schematic illustration of cursor movement in emacs

Control + £

(Forward char)

Table 10.1. Important keybindings in GNU Emacs.

Moving cursor

Move over a char forward Cc-f
Move over a char backward C-b
Move over a word forward ESC-f
Move over a word backward ESC-b
Move to the top of line C-a
Move to the end of line C-e
Move to the top of file ESC-<
Move to the end of file ESC—>
Deletion
Delete a char on the cursor Cc-d
Delete a char backward DEL
Delete a word forward ESC-d
Delete a word backward ESC-DEL
Delete a line forward C-k
Delete a line backward ESC-0 DEL
Window operation
Split into two C-x 2
Move to other window C-x o
Close all the other windows Cx 1
Close the window you are in now C-x 0
Buffer list
Show the buffer list C-x C-b
Choose the other buffer C-x b
File handling
Read in a file C-x C-f
Save the current file C-x C-s
Insert another file at the cursor C-x i
Save as a new file C-x C-w
Save and quit emacs C-x C-c

Check List on emacs

1. Start up emacs with various fonts. For example,
emacs &
emacs —-fn 8x16 &
emacs -fn 12x24 &

2. Try to read and check by yourself the tutorial for emacs. Procedures are:
1. Start up emacs,
2. Call the tutorial by “C-h t” |
3. Quit emacs by “C-x C-c” .

63

Subjects today

Choose each of the source codes listed below (C and Fortran, both perform the same work).
Type it in file by using editor (vi or emacs). Then compile them, and send the output of
executed result to tito@csal by E-mail. (If you are familiar with Pascal, try to translate them
into Pascal, and compile. Send the source code of Pascal to yokoyama@csa0)
The source programs will plot a cycloid on the terminal. The exact numerical expression of the
figure is

x = Cacos26cosf

y = a cos 26 sin 0

where radius a = 18 and a parameter 0 < 8 < 27 here. Aspect rate between the horizontal and
vertical axis on the display C' equals 2.0 because the font used by xterm is designed to have this
ratio (7x14, 8x16, ...).

List 1 (C version)

#include <stdio.h>
#include <math.h>
#tdefine PI 3.141592

main(){

char areal[73][73];
int i, j, 1, ix, iy;
float a, cvalue, r, t;

/* Fill areal[][] with blank */
for (i=0; i<73; i++){
for (j=0; j<73; j++){
arealil [j] = > ’;

}

/* Make x/y axe */
for (1=0; 1<73; 1++){
areal[36][1] = ’|’;
area[l1][36] = ’-’;

/* Specify the radius of the cycloid */
a = 18.0;

/* Specify the aspect rate on the screen */
cvalue = 2.0;

for (£t=0.0; t<2*%PI; t+=0.01){

r = axcos(2xt);
ix = r*cos(t)*cvalue;
iy = r*sin(t);

64

areal[ix+36] [iy+36] = ’x’;

/* Output on the screen */
for (j=18; j<55; j++){
for (i=1; i<72; i++){
fprintf (stdout, "Y%c", arealil[jl);
}
fprintf (stdout, "\n");

List 2 (Fortran version)

Program cycloid
character*1 area
dimension area(-36:36, -36:36)

Do 10 i=-36,36
Do 11 j=-36,36
area(i,j)=’ "
11 Continue
10 Continue
Do 12 1=-36,36
area(0,1)="]"
area(1l,0)="-’
12 Continue

a = 18.0

cvalue = 2

Do 20 t=0.0, 2.0%3.141592, 0.01
r = axcos(2x*t)
ix = rxcos(t)*cvalue
iy = r*xsin(t)
area(ix,iy) = ’%’

20 Continue

Do 30 j=-18,18
write(6,100) (area(i,-j), i=-34,34)
100 format(1h ,121al)
30 Continue

Stop
End

65

Chapter 11

C shell

From the next page, we list a sample of on-line manual of csh from NEWS-OS 4.1 (Sony inc.).
Though there are a lot of textbooks about C shell in the world, the original on-line manual is
the most understandable, detailed, and helpful.

66

NAME

csh — a shell (command interpreter) with C-like syntax

SYNOPSIS

csh [—bcefinstvVxX | [arg ...]

DESCRIPTION

Csh is a first implementation of a command language interpreter incorporating a history
mechanism (see History Substitutions), job control facilities (see Jobs), interactive
file name and user name completion (see File Name Completion), and a C-like syntax.
So as to be able to use its job control facilities, users of c¢sh must (and automatically)
use the new tty driver fully described in tty(4). This new tty driver allows generation
of interrupt characters from the keyboard to tell jobs to stop. See stty(1) for details on
setting options in the new tty driver.

An instance of csh begins by executing commands from the file ‘.cshrc’ in the home
directory of the invoker. If this is a login shell then it also executes commands from the
file “.login’ there. It is typical for users on crt’s to put the command “stty crt” in their
.login file, and to also invoke tset(1) there.

In the normal case, the shell will then begin reading commands from the terminal,
prompting with ‘% ’. Processing of arguments and the use of the shell to process files
containing command scripts will be described later.

The shell then repeatedly performs the following actions: a line of command input is
read and broken into words. This sequence of words is placed on the command history
list and then parsed. Finally each command in the current line is executed.

When a login shell terminates it executes commands from the file ‘.logout’ in the users
home directory.

Lexical structure

The shell splits input lines into words at blanks and tabs with the following exceptions.
The characters ‘&’ ‘|” ¢} ‘<’ > ‘(")’ form separate words. If doubled in ‘&&’, ‘| |,
‘<<’ or ‘>>’ these pairs form single words. These parser metacharacters may be made
part of other words, or prevented their special meaning, by preceding them with ‘\’. A
newline preceded by a ‘\’ is equivalent to a blank.

In addition strings enclosed in matched pairs of quotations, ¢’, > or ”’, form parts of a
word; metacharacters in these strings, including blanks and tabs, do not form separate
words. These quotations have semantics to be described subsequently. Within pairs of
? or 77 characters a newline preceded by a ‘\’ gives a true newline character.

When the shell’s input is not a terminal, the character ‘#’ introduces a comment which
continues to the end of the input line. It is prevented this special meaning when preceded
by ‘\’ and in quotations using “’, ”, and .

Commands
A simple command is a sequence of words, the first of which specifies the command to
be executed. A simple command or a sequence of simple commands separated by ‘|’

67

characters forms a pipeline. The output of each command in a pipeline is connected
to the input of the next. Sequences of pipelines may be separated by ‘;’, and are then
executed sequentially. A sequence of pipelines may be executed without immediately
waiting for it to terminate by following it with an ‘&’.

Any of the above may be placed in ‘(’ ‘)’ to form a simple command (which may be a
component of a pipeline, etc.) It is also possible to separate pipelines with ‘| |” or ‘&&’
indicating, as in the C language, that the second is to be executed only if the first fails

or succeeds respectively. (See Expressions.)

Jobs

The shell associates a job with each pipeline. It keeps a table of current jobs, printed
by the jobs command, and assigns them small integer numbers. When a job is started
asynchronously with ‘&’, the shell prints a line which looks like:

[1] 1234

indicating that the job which was started asynchronously was job number 1 and had
one (top-level) process, whose process id was 1234.

If you are running a job and wish to do something else you may hit the key “Z (control-
Z) which sends a STOP signal to the current job. The shell will then normally indicate
that the job has been ‘Stopped’, and print another prompt. You can then manipulate
the state of this job, putting it in the background with the bg command, or run some
other commands and then eventually bring the job back into the foreground with the
foreground command fg. A ~Z takes effect immediately and is like an interrupt in that
pending output and unread input are discarded when it is typed. There is another
special key Y which does not generate a STOP signal until a program attempts to
read(2) it. This can usefully be typed ahead when you have prepared some commands
for a job which you wish to stop after it has read them.

A job being run in the background will stop if it tries to read from the terminal. Back-
ground jobs are normally allowed to produce output, but this can be disabled by giving
the command “stty tostop”. If you set this tty option, then background jobs will stop
when they try to produce output like they do when they try to read input.

There are several ways to refer to jobs in the shell. The character ‘%’ introduces a job
name. If you wish to refer to job number 1, you can name it as ‘%1’. Just naming a
job brings it to the foreground; thus ‘%1’ is a synonym for ‘fg %1’, bringing job 1 back
into the foreground. Similarly saying ‘%1 &’ resumes job 1 in the background. Jobs
can also be named by prefixes of the string typed in to start them, if these prefixes are
unambiguous, thus ‘%ex’ would normally restart a suspended ex(1) job, if there were
only one suspended job whose name began with the string ‘ex’. It is also possible to
say ‘Y%7string’ which specifies a job whose text contains string, if there is only one such
job.

The shell maintains a notion of the current and previous jobs. In output pertaining
to jobs, the current job is marked with a ‘+’ and the previous job with a ‘~’. The
abbreviation ‘%+’ refers to the current job and ‘%’ refers to the previous job. For
close analogy with the syntax of the history mechanism (described below), ‘%%’ is also
a synonym for the current job.

Status reporting

68

This shell learns immediately whenever a process changes state. It normally informs
you whenever a job becomes blocked so that no further progress is possible, but only
just before it prints a prompt. This is done so that it does not otherwise disturb your
work. If, however, you set the shell variable notify, the shell will notify you immediately
of changes of status in background jobs. There is also a shell command notify which
marks a single process so that its status changes will be immediately reported. By
default notify marks the current process; simply say ‘notify’ after starting a background
job to mark it.

When you try to leave the shell while jobs are stopped, you will be warned that ‘There
are stopped jobs.” You may use the jobs command to see what they are. If you do this
or immediately try to exit again, the shell will not warn you a second time, and the
suspended jobs will be terminated.

File Name Completion

When the file name completion feature is enabled by setting the shell variable filec (see
set), csh will interactively complete file names and user names from unique prefixes,
when they are input from the terminal followed by the escape character (the escape key,
or control-[). For example, if the current directory looks like

DSC.OLD bin cmd lib xmpl.c

DSC.NEW chaosnet cmtest mail xmpl.o

bench class dev mbox xmpl.out

and the input is

% vi ch<escape>

csh will complete the prefix “ch” to the only matching file name “chaosnet”, changing
the input line to

% vi chaosnet

However, given

% vi D<escape>

csh will only expand the input to

% vi DSC.

and will sound the terminal bell to indicate that the expansion is incomplete, since there
are two file names matching the prefix “D”.

If a partial file name is followed by the end-of-file character (usually control-D), then,
instead of completing the name, csh will list all file names matching the prefix. For
example, the input

% vi D<control-D>

causes all files beginning with “D” to be listed:

DSC.NEW DSC.OLD

while the input line remains unchanged.

The same system of escape and end-of-file can also be used to expand partial user
names, if the word to be completed (or listed) begins with the character “7”. For
example, typing

cd "ro<control-D>

may produce the expansion

cd “root

The use of the terminal bell to signal errors or multiple matches can be inhibited by

69

setting the variable nobeep.

Normally, all files in the particular directory are candidates for name completion. Files
with certain suffixes can be excluded from consideration by setting the variable fignore
to the list of suffixes to be ignored. Thus, if fignore is set by the command

% set fignore = (.0 .out)

then typing

% vi x<escape>

would result in the completion to

% vi xmpl.c

ignoring the files ”xmpl.0” and ”xmpl.out”. However, if the only completion possible
requires not ignoring these suffixes, then they are not ignored. In addition, fignore does
not affect the listing of file names by control-D. All files are listed regardless of their
suffixes.

Substitutions
We now describe the various transformations the shell performs on the input in the
order in which they occur.

History substitutions

History substitutions place words from previous command input as portions of new com-
mands, making it easy to repeat commands, repeat arguments of a previous command
in the current command, or fix spelling mistakes in the previous command with little
typing and a high degree of confidence. History substitutions begin with the character
‘I’ and may begin anywhere in the input stream (with the proviso that they do not
nest.) This ‘" may be preceded by an ‘\’ to prevent its special meaning; for convenience,
a ‘I’ is passed unchanged when it is followed by a blank, tab, newline, ‘=" or ‘(’. (History
substitutions also occur when an input line begins with “’. This special abbreviation will
be described later.) Any input line which contains history substitution is echoed on the
terminal before it is executed as it could have been typed without history substitution.
Commands input from the terminal which consist of one or more words are saved on
the history list. The history substitutions reintroduce sequences of words from these
saved commands into the input stream. The size of which is controlled by the history
variable; the previous command is always retained, regardless of its value. Commands
are numbered sequentially from 1.

For definiteness, consider the following output from the history command:

9 write michael

10 ex write.c

11 cat oldwrite.c

12 diff *write.c

The commands are shown with their event numbers. It is not usually necessary to use
event numbers, but the current event number can be made part of the prompt by placing
an ‘I’ in the prompt string.

With the current event 13 we can refer to previous events by event number ‘!111°, rela-
tively as in ‘-2’ (referring to the same event), by a prefix of a command word as in ‘!d’
for event 12 or ‘lwri’ for event 9, or by a string contained in a word in the command as

70

in ‘1?7mic?’ also referring to event 9. These forms, without further modification, simply
reintroduce the words of the specified events, each separated by a single blank. As a
special case ‘!’ refers to the previous command; thus ‘!!” alone is essentially a redo.

To select words from an event we can follow the event specification by a “:’ and a
designator for the desired words. The words of an input line are numbered from 0, the
first (usually command) word being 0, the second word (first argument) being 1, etc.
The basic word designators are:

0 first (command) word

n n 'th argument

first argument, i.e. ‘1’

$ last argument

% word matched by (immediately preceding) ? s 7 search
z — y range of words

— y abbreviates ‘0—y ’

* abbreviates ‘-$’, or nothing if only 1 word in event

x * abbreviates ¢ 7 —%’

x — like ¢ *” but omitting word ‘$’

The ‘> separating the event specification from the word designator can be omitted if the

argument selector begins with a *, *$’, ¥’ - or ‘%’. After the optional word designator
can be placed a sequence of modifiers, each preceded by a ‘:’. The following modifiers
are defined:

h Remove a trailing pathname component, leaving the head.

r Remove a trailing ‘.xxx’ component, leaving the root name.

e Remove all but the extension ‘.xxx’ part.

s/ 1 / r / Substitute [for r t Remove all leading pathname components, leaving the
tail.

& Repeat the previous substitution.

g Apply the change globally, prefixing the above, e.g. ‘g&’.

p Print the new command but do not execute it.

q Quote the substituted words, preventing further substitutions.

x Like q, but break into words at blanks, tabs and newlines.

Unless preceded by a ‘g’ the modification is applied only to the first modifiable word.
With substitutions, it is an error for no word to be applicable.

The left hand side of substitutions are not regular expressions in the sense of the editors,
but rather strings. Any character may be used as the delimiter in place of ‘/’; a *\’
quotes the delimiter into the [and r strings. The character ‘&’ in the right hand side
is replaced by the text from the left. A ‘\” quotes ‘&’ also. A null [uses the previous
string either from a [or from a contextual scan string s in ‘!7s?’. The trailing delimiter
in the substitution may be omitted if a newline follows immediately as may the trailing
“?” in a contextual scan.

A history reference may be given without an event specification, e.g. ‘!$’. In this case
the reference is to the previous command unless a previous history reference occurred
on the same line in which case this form repeats the previous reference. Thus ‘!?foo?
'$’ gives the first and last arguments from the command matching ‘?foo?’.

A special abbreviation of a history reference occurs when the first non-blank character
of an input line is a “’. This is equivalent to ‘!:s’ providing a convenient shorthand for

71

substitutions on the text of the previous line. Thus ‘lblib’ fixes the spelling of ‘lib” in
the previous command. Finally, a history substitution may be surrounded with ‘{’ and
‘}’ if necessary to insulate it from the characters which follow. Thus, after ‘Is -1d “paul’
we might do ‘!{1}a’ to do ‘Is -1d “paula’, while ‘lla’ would look for a command starting
‘la’.

Quotations with ’> and ”

The quotation of strings by ‘” and *”’ can be used to prevent all or some of the remaining
substitutions. Strings enclosed in 7 are prevented any further interpretation. Strings
enclosed in 7’ may be expanded as described below.

In both cases the resulting text becomes (all or part of) a single word; only in one
special case (see Command Substitition below) does a ”’ quoted string yield parts of
more than one word; ” quoted strings never do.

Alias substitution

The shell maintains a list of aliases which can be established, displayed and modified
by the alias and unalias commands. After a command line is scanned, it is parsed into
distinct commands and the first word of each command, left-to-right, is checked to see
if it has an alias. If it does, then the text which is the alias for that command is reread
with the history mechanism available as though that command were the previous input
line. The resulting words replace the command and argument list. If no reference is
made to the history list, then the argument list is left unchanged.

Thus if the alias for ‘Is’ is ‘Is -1’ the command ‘ls /usr’ would map to ‘Is -1 /usr’, the
argument list here being undisturbed. Similarly if the alias for ‘lookup’ was ‘grep !
/etc/passwd’ then ‘lookup bill” would map to ‘grep bill /etc/passwd’.

If an alias is found, the word transformation of the input text is performed and the
aliasing process begins again on the reformed input line. Looping is prevented if the
first word of the new text is the same as the old by flagging it to prevent further aliasing.
Other loops are detected and cause an error.

Note that the mechanism allows aliases to introduce parser metasyntax. Thus we can
‘alias print 'pr \!* | lpr” to make a command which pr’s its arguments to the line
printer.

Variable substitution

The shell maintains a set of variables, each of which has as value a list of zero or more
words. Some of these variables are set by the shell or referred to by it. For instance,
the argv variable is an image of the shell’s argument list, and words of this variable’s
value are referred to in special ways.

The values of variables may be displayed and changed by using the set and unset com-
mands. Of the variables referred to by the shell a number are toggles; the shell does
not care what their value is, only whether they are set or not. For instance, the verbose
variable is a toggle which causes command input to be echoed. The setting of this
variable results from the —v command line option.

Other operations treat variables numerically. The ‘@Q’ command permits numeric cal-
culations to be performed and the result assigned to a variable. Variable values are,
however, always represented as (zero or more) strings. For the purposes of numeric op-
erations, the null string is considered to be zero, and the second and subsequent words

72

of multiword values are ignored.

After the input line is aliased and parsed, and before each command is executed, variable
substitution is performed keyed by ‘$’ characters. This expansion can be prevented by
preceding the ‘§” with a ‘\’ except within “’’s where it always occurs, and within
s where it never occurs. Strings quoted by ' are interpreted later (see Command
substitution below) so ‘$’ substitution does not occur there until later, if at all. A ‘§ is
passed unchanged if followed by a blank, tab, or end-of-line.

Input/output redirections are recognized before variable expansion, and are variable
expanded separately. Otherwise, the command name and entire argument list are ex-
panded together. It is thus possible for the first (command) word to this point to
generate more than one word, the first of which becomes the command name, and the
rest of which become arguments.

Unless enclosed in ”’ or given the ‘:q’ modifier the results of variable substitution may
eventually be command and filename substituted. Within ’’, a variable whose value
consists of multiple words expands to a (portion of) a single word, with the words of the
variables value separated by blanks. When the ‘:q’ modifier is applied to a substitution
the variable will expand to multiple words with each word separated by a blank and
quoted to prevent later command or filename substitution.

The following metasequences are provided for introducing variable values into the shell
input. Except as noted, it is an error to reference a variable which is not set.

$name

${name}

Are replaced by the words of the value of variable name, each separated by a
blank. Braces insulate name from following characters which would otherwise
be part of it. Shell variables have names consisting of up to 20 letters and
digits starting with a letter. The underscore character is considered a letter.
If nmame is not a shell variable, but is set in the environment, then that value
is returned (but : modifiers and the other forms given below are not available
in this case).

$name[selector]

${name[selector|}

May be used to select only some of the words from the value of name. The
selector is subjected to ‘$’ substitution and may consist of a single number
or two numbers separated by a . The first word of a variables value is
numbered ‘1. If the first number of a range is omitted it defaults to ‘1°. If
the last member of a range is omitted it defaults to ‘$#name’. The selector
“* gelects all words. It is not an error for a range to be empty if the second
argument is omitted or in range.

$#name

${#name}
Gives the number of words in the variable. This is useful for later use in a
‘[selector]’.

73

Substitutes the name of the file from which command input is being read. An
error occurs if the name is not known.

$number

${number}
Equivalent to ‘$argv[number]’.

$*

Equivalent to ‘Sargv[*] .

The modifiers “:h’, “:t’, “r’, ©:q” and :x’ may be applied to the substitutions above as
may ‘:gh’, “:gt’ and “:gr’. If braces ‘{’ ’}” appear in the command form then the modifiers
must appear within the braces. The current implementation allows only one ¢’
modifier on each ‘$’ expansion.

The following substitutions may not be modified with ‘:’ modifiers.

$7name
${name}
Substitutes the string ‘1’ if name is set, ‘0’ if it is not.
$70
Substitutes ‘1’ if the current input filename is known, ‘0’ if it is not.
$$
Substitute the (decimal) process number of the (parent) shell.
$<

Substitutes a line from the standard input, with no further interpretation
thereafter. It can be used to read from the keyboard in a shell script.

Command and filename substitution

The remaining substitutions, command and filename substitution, are applied selectively
to the arguments of builtin commands. This means that portions of expressions which
are not evaluated are not subjected to these expansions. For example, the builtin
command like ‘Q’ does not substitute its argument ‘*’ as follows.

% @ a=2 *3

% echo $a

6

For commands which are not internal to the shell, the command name is substituted
separately from the argument list. This occurs very late, after input-output redirection
is performed, and in a child of the main shell.

Command substitution

74

Command substitution is indicated by a command enclosed in *’. The output from such
a command is normally broken into separate words at blanks, tabs and newlines, with
null words being discarded, this text then replacing the original string. Within “’s,
only newlines force new words; blanks and tabs are preserved.

In any case, the single final newline does not force a new word. Note that it is thus
possible for a command substitution to yield only part of a word, even if the command
outputs a complete line.

Filename substitution

If a word contains any of the characters ‘*’, ‘7’ ‘[’ or ‘{’ or begins with the character ‘7,
then that word is a candidate for filename substitution, also known as ‘globbing’. This
word is then regarded as a pattern, and replaced with an alphabetically sorted list of
file names which match the pattern. In a list of words specifying filename substitution
it is an error for no pattern to match an existing file name, but it is not required for
each pattern to match. Only the metacharacters “*’, ‘?” and ‘[” imply pattern matching,
the characters ‘~” and ‘{’ being more akin to abbreviations.

In matching filenames, the character ‘.” at the beginning of a filename or immediately
following a ¢/’, as well as the character ‘/’ must be matched explicitly. The charac-
ter “*’ matches any string of characters, including the null string. The character ‘7’
matches any single character. The sequence ‘[...]" matches any one of the characters
enclosed. Within ‘[...]", a pair of characters separated by ‘-’ matches any character
lexically between the two.

The character *~’ at the beginning of a filename is used to refer to home directories.
Standing alone, i.e. ‘7’ it expands to the invokers home directory as reflected in the
value of the variable home. When followed by a name consisting of letters, digits and ‘-’
characters the shell searches for a user with that name and substitutes their home direc-
tory; thus ‘“ken’ might expand to ‘/usr/ken’ and ‘“ken/chmach’ to ‘/usr/ken/chmach’.
If the character ‘7’ is followed by a character other than a letter or ¢/’ or appears not
at the beginning of a word, it is left undisturbed.

The metanotation ‘a{b,c,d}e’ is a shorthand for ‘abe ace ade’. Left to right order
is preserved, with results of matches being sorted separately at a low level to pre-
serve this order. This construct may be nested. Thus ‘“source/s1/{oldls,ls}.c’ expands
to ‘/usr/source/sl/oldls.c /usr/source/sl/ls.c’” whether or not these files exist with-
out any chance of error if the home directory for ‘source’ is ‘/usr/source’. Similarly
‘../{memo,*box}’ might expand to ‘../memo ../box ../mbox’. (Note that ‘memo’ was
not sorted with the results of matching “*box’.) As a special case ‘{’, ‘}’ and ‘{}’ are
passed undisturbed.

Input/output
The standard input and standard output of a command may be redirected with the
following syntax:

< name
Open file name (which is first variable, command and filename expanded)
as the standard input.

<< word

75

Read the shell input up to a line which is identical to word. Word is not
subjected to variable, filename or command substitution, and each input
line is compared to word before any substitutions are done on this input
line. Unless a quoting ‘\’, ”’, ¢’ or *” appears in word variable and command
substitution is performed on the intervening lines, allowing ¢\’ to quote ‘$’,
‘\’ and . Commands which are substituted have all blanks, tabs, and
newlines preserved, except for the final newline which is dropped. The
resultant text is placed in an anonymous temporary file which is given to

the command as standard input.

> name
>! name
>& name
>&! name
The file name is used as standard output. If the file does not exist then it
is created; if the file exists, its is truncated, its previous contents being lost.
If the variable noclobber is set, then the file must not exist or be a
character special file (e.g. a terminal or ‘/dev/null’) or an error results.
This helps prevent accidental destruction of files. In this case the ‘I’
forms can be used and suppress this check.
The forms involving ‘&’ route the diagnostic output into the specified
file as well as the standard output. Name is expanded in the same way
as ‘<’ input filenames are.
>> name
>>& name
>>! name
>>&! name

Uses file name as standard output like ‘>’ but places output at the end of
the file. If the variable noclobber is set, then it is an error for the file not to
exist unless one of the ‘I’ forms is given. Otherwise similar to ‘>’.

A command receives the environment in which the shell was invoked as modified by the
input-output parameters and the presence of the command in a pipeline. Thus, unlike
some previous shells, commands run from a file of shell commands have no access to the
text of the commands by default; rather they receive the original standard input of the
shell. The ‘<<’ mechanism should be used to present inline data. This permits shell
command scripts to function as components of pipelines and allows the shell to block

76

read its input. Note that the default standard input for a command run detached is
not modified to be the empty file ‘/dev/null’; rather the standard input remains as the
original standard input of the shell. If this is a terminal and if the process attempts to
read from the terminal, then the process will block and the user will be notified (see
Jobs above).

Diagnostic output may be directed through a pipe with the standard output. Simply
use the form ‘| &’ rather than just |’.

Expressions

A number of the builtin commands (to be described subsequently) take expressions,
in which the operators are similar to those of C, with the same precedence. These
expressions appear in the @, exit, if, and while commands. The following operators are
available:

[&& | & ==!l=="1"<=>=<><<>>+-F%/%! ()

Here the precedence increases to the right, ‘==’ ‘=" ‘=""and ‘|7, ‘<=’ ‘>=" ‘<’ and
>’ ‘<<’ and ‘>>7, ‘47 and ‘', ¥’ /7 and ‘%’ being, in groups, at the same level. The

‘==""‘1="‘=""and ‘!”’ operators compare their arguments as strings; all others operate
on numbers. The operators ‘="" and ‘!’ are like ‘/=" and ‘==" except that the right
hand side is a pattern (containing, e.g. “*’s, ‘?’s and instances of ‘[...]") against which

the left hand operand is matched. This reduces the need for use of the switch statement
in shell scripts when all that is really needed is pattern matching.

Strings which begin with ‘0’ are considered octal numbers. Null or missing arguments
are considered ‘0’. The result of all expressions are strings, which represent decimal
numbers. It is important to note that no two components of an expression can appear
in the same word; except when adjacent to components of expressions which are syn-
tactically significant to the parser (‘& ‘|’ ‘<’ ‘> (’ ¢)’) they should be surrounded by
spaces.

Also available in expressions as primitive operands are command executions enclosed in
‘{” and ‘}” and file enquiries of the form ‘~/ name’ where [is one of:

r read access

w write access

X execute access

e existence

o ownership

7 Z€ro size

f plain file

d directory

The specified name is command and filename expanded and then tested to see if it has
the specified relationship to the real user. If the file does not exist or is inaccessible
then all enquiries return false, i.e. ‘0’. Command executions succeed, returning true,
i.e. ‘1’, if the command exits with status 0, otherwise they fail, returning false, i.e. ‘0’.
If more detailed status information is required then the command should be executed
outside of an expression and the variable status examined.

Control flow

7

The shell contains a number of commands which can be used to regulate the flow of
control in command files (shell scripts) and (in limited but useful ways) from terminal
input. These commands all operate by forcing the shell to reread or skip in its input
and, due to the implementation, restrict the placement of some of the commands.

The foreach, switch, and while statements, as well as the if-then—else form of the if
statement require that the major keywords appear in a single simple command on an
input line as shown below.

If the shell’s input is not seekable, the shell buffers up input whenever a loop is being
read and performs seeks in this internal buffer to accomplish the rereading implied by
the loop. (To the extent that this allows, backward goto’s will succeed on non-seekable
inputs.)

Builtin commands
Builtin commands are executed within the shell. If a builtin command occurs as any
component of a pipeline except the last then it is executed in a subshell.

alias

alias name

alias name wordlist
The first form prints all aliases. The second form prints the alias for name.
The final form assigns the specified wordlist as the alias of name; wordlist is
command and filename substituted. Name is not allowed to be alias or unalias.

alloc
Shows the amount of dynamic memory acquired, broken down into used and
free memory. With an argument shows the number of free and used blocks in
each size category. The categories start at size 8 and double at each step.

bg

bg %job ...
Puts the current or specified jobs into the background, continuing them if they
were stopped.

break
Causes execution to resume after the end of the nearest enclosing foreach or
while. The remaining commands on the current line are executed. Multi-level
breaks are thus possible by writing them all on one line.

breaksw
Causes a break from a switch, resuming after the endsw.

case label:

A label in a switch statement as discussed below.

78

cd

cd name

chdir

chdir name

continue

default:

dirs

Change the shell’s working directory to directory mame. If no argument is
given then change to the home directory of the user.

If name is not found as a subdirectory of the current directory (and does not
begin with ¢/, “./” or ‘../7), then each component of the variable cdpath is
checked to see if it has a subdirectory name. Finally, if all else fails but name
is a shell variable whose value begins with ‘/’, then this is tried to see if it is a
directory.

Continue execution of the nearest enclosing while or foreach. The rest of the
commands on the current line are executed.

Labels the default case in a switch statement. The default should come after
all case labels.

Prints the directory stack; the top of the stack is at the left, the first directory
in the stack being the current directory.

echo wordlist

echo —n wordlist

else

end

endif

endsw

eval arg

The specified words are written to the shells standard output, separated by
spaces, and terminated with a newline unless the —n option is specified.

See the description of the foreach, if, switch, and while statements below.

(As in sh(1).) The arguments are read as input to the shell and the resulting
command(s) executed in the context of the current shell. This is usually used to
execute commands generated as the result of command or variable substitution,

79

since parsing occurs before these substitutions. See tset(1) for an example of
using ewval.

exec command
The specified command is executed in place of the current shell.

exit

exit(expr)
The shell exits either with the value of the status variable (first form) or with
the value of the specified ezpr (second form).

fg

fg %job ...
Brings the current or specified jobs into the foreground, continuing them if
they were stopped.

foreach name (wordlist)

end
The variable name is successively set to each member of wordlist and the se-
quence of commands between this command and the matching end are execut-
ed. (Both foreach and end must appear alone on separate lines.)

The builtin command continue may be used to continue the loop prema-
turely and the builtin command break to terminate it prematurely. When
this command is read from the terminal, the loop is read up once prompt-
ing with ‘?” before any statements in the loop are executed. If you make
a mistake typing in a loop at the terminal you can rub it out.

glob wordlist
Like echo but no ‘\’ escapes are recognized and words are delimited by null
characters in the output. Useful for programs which wish to use the shell to
filename expand a list of words.

goto word
The specified word is filename and command expanded to yield a string of
the form ‘label’. The shell rewinds its input as much as possible and searches
for a line of the form ‘label:” possibly preceded by blanks or tabs. Execution
continues after the specified line.

hashstat
Print a statistics line indicating how effective the internal hash table has been
at locating commands (and avoiding ezec’s). An ezec is attempted for each
component of the path where the hash function indicates a possible hit, and in
each component which does not begin with a ¢/’.

80

history

history n

history —r n

history —h n

Displays the history event list; if n is given only the n most recent events are
printed. The —r option reverses the order of printout to be most recent first
rather than oldest first. The —h option causes the history list to be printed
without leading numbers. This is used to produce files suitable for sourceing
using the —h option to source.

if (expr) command

If the specified expression evaluates true, then the single command with argu-
ments is executed. Variable substitution on command happens early, at the
same time it does for the rest of the if command. Command must be a simple
command, not a pipeline, a command list, or a parenthesized command list.
Input/output redirection occurs even if expr is false, when command is not
executed (this is a bug).

if (expr) then

else if (expr2) then

else

endif

jobs

If the specified expr is true then the commands to the first else are executed;
otherwise if expr2 is true then the commands to the second else are executed,
etc. Any number of else-if pairs are possible; only one endif is needed. The
else part is likewise optional. (The words else and endif must appear at the
beginning of input lines; the if must appear alone on its input line or after an
else.)

81

jobs -1

kill %job

Lists the active jobs; given the —1 options lists process id’s in addition to the
normal information.

kill —sig %job ...

kill pid

kill —sig pid ...

kill -1

limit

Sends either the TERM (terminate) signal or the specified signal to the speci-
fied jobs or processes. Signals are either given by number or by names (as given
in /usr/include/signal.h, stripped of the prefix “SIG”). The signal names are
listed by “kill -1”. There is no default, saying just ‘kill’ does not send a sig-
nal to the current job. If the signal being sent is TERM (terminate) or HUP
(hangup), then the job or process will be sent a CONT (continue) signal as
well.

limit resource

limit resource maximum-use

limit —h
limit —h
limit —h

resource

resource Mmarimum-use

Limits the consumption by the current process and each process it creates to not
individually exceed mazimum-use on the specified resource. If no mazimum-
use is given, then the current limit is printed; if no resource is given, then all
limitations are given. If the —h flag is given, the hard limits are used instead
of the current limits. The hard limits impose a ceiling on the values of the
current limits. Only the super-user may raise the hard limits, but a user may
lower or raise the current limits within the legal range.

Resources controllable currently include cputime (the maximum number
of cpu-seconds to be used by each process), filesize (the largest single file
which can be created), datasize (the maximum growth of the data+stack

82

region via sbrk(2) beyond the end of the program text), stacksize (the max-
imum size of the automatically-extended stack region), and coredumpsize
(the size of the largest core dump that will be created).

The mazimum-use may be given as a (floating point or integer) number
followed by a scale factor. For all limits other than cputime the default
scale is ‘’k’ or ‘kilobytes’ (1024 bytes); a scale factor of ‘m’ or ‘megabytes’
may also be used. For cputime the default scaling is ‘seconds’, while ‘m’
for minutes or ‘h’ for hours, or a time of the form ‘mm:ss’ giving minutes
and seconds may be used.

For both resource names and scale factors, unambiguous prefixes of the
names suffice.

login
Terminate a login shell, replacing it with an instance of /bin/login. This is
one way to log off, included for compatibility with sh(1).

logout
Terminate a login shell. Especially useful if ignoreeof is set.

nice

nice +number

nice command

nice +number command
The first form sets the scheduling priority for this shell to 4. The second form
sets the priority to the given number. The final two forms run command at
priority 4 and number respectively. The greater the number, the less cpu the
process will get. The super-user may specify negative priority by using ‘nice
—number ...". Command is always executed in a sub-shell, and the restrictions
placed on commands in simple if statements apply.

nohup

nohup command
The first form can be used in shell scripts to cause hangups to be ignored for
the remainder of the script. The second form causes the specified command to
be run with hangups ignored. All processes detached with ‘&’ are effectively
nohup’ed.

notify

notify %job ...
Causes the shell to notify the user asynchronously when the status of the
current or specified jobs changes; normally notification is presented before a
prompt. This is automatic if the shell variable notify is set.

83

onintr

onintr —

onintr label

popd

popd +n

pushd

Control the action of the shell on interrupts. The first form restores the default
action of the shell on interrupts which is to terminate shell scripts or to return
to the terminal command input level. The second form ‘onintr — causes all
interrupts to be ignored. The final form causes the shell to execute a ‘goto
label’ when an interrupt is received or a child process terminates because it
was interrupted.

In any case, if the shell is running detached and interrupts are being
ignored, all forms of onintr have no meaning and interrupts continue to
be ignored by the shell and all invoked commands.

Pops the directory stack, returning to the new top directory. With an argument
‘+n’ discards the nth entry in the stack. The elements of the directory stack
are numbered from 0 starting at the top.

pushd name

pushd +n

rehash

With no arguments, pushd exchanges the top two elements of the directory
stack. Given a name argument, pushd changes to the new directory (ala cd)
and pushes the old current working directory (as in csw) onto the directory
stack. With a numeric argument, rotates the nth argument of the directory
stack around to be the top element and changes to it. The members of the
directory stack are numbered from the top starting at 0.

Causes the internal hash table of the contents of the directories in the path
variable to be recomputed. This is needed if new commands are added to
directories in the path while you are logged in. This should only be necessary if
you add commands to one of your own directories, or if a systems programmer
changes the contents of one of the system directories.

repeat count command

The specified command which is subject to the same restrictions as the com-
mand in the one line if statement above, is executed count times. 1/O redirec-
tions occur exactly once, even if count is 0.

84

set

set name

set name=word

set name|index|=word

set name=(wordlist)
The first form of the command shows the value of all shell variables. Variables
which have other than a single word as value print as a parenthesized word
list. The second form sets name to the null string. The third form sets name
to the single word. The fourth form sets the index’th component of name to
word; this component must already exist. The final form sets name to the list
of words in wordlist. In all cases the value is command and filename expanded.

These arguments may be repeated to set multiple values in a single set
command. Note however, that variable expansion happens for all argu-
ments before any setting occurs.

setenv

setenv name value

setenv name
The first form lists all current environment variables. The last form sets the
value of environment variable name to be wvalue, a single string. The second
form sets mame to an empty string. The most commonly used environment
variable USER, TERM, and PATH are automatically imported to and exported
from the csh variables user, term, and path; there is no need to use setenv for
these.

shift

shift variable
The members of arguv are shifted to the left, discarding argv/1]. It is an error
for argv not to be set or to have less than one word as value. The second form
performs the same function on the specified variable.

source name

source —h name
The shell reads commands from name. Source commands may be nested; if
they are nested too deeply the shell may run out of file descriptors. An error in

85

a source at any level terminates all nested source commands. Normally input
during source commands is not placed on the history list; the —h option causes
the commands to be placed in the history list without being executed.

stop

stop %job ...
Stops the current or specified job which is executing in the background.

suspend
Causes the shell to stop in its tracks, much as if it had been sent a stop signal
with “Z. This is most often used to stop shells started by su(1).

switch (string)

case strl:
breaksw
default:
breaksw
endsw

Each case label is successively matched, against the specified string which is
first command and filename expanded. The file metacharacters ‘*’, ‘2’ and
‘[...]” may be used in the case labels, which are variable expanded. If none of
the labels match before a ‘default’ label is found, then the execution begins
after the default label. Each case label and the default label must appear at
the beginning of a line. The command breaksw causes execution to continue
after the endsw. Otherwise control may fall through case labels and default
labels as in C. If no label matches and there is no default, execution continues
after the endsw.

time

86

time command
With no argument, a summary of time used by this shell and its children is
printed. If arguments are given the specified simple command is timed and a
time summary as described under the time variable is printed. If necessary, an
extra shell is created to print the time statistic when the command completes.

umask

umask value
The file creation mask is displayed (first form) or set to the specified value
(second form). The mask is given in octal. Common values for the mask are
002 giving all access to the group and read and execute access to others or 022
giving all access except no write access for users in the group or others.

unalias pattern
All aliases whose names match the specified pattern are discarded. Thus all
aliases are removed by ‘unalias *’. It is not an error for nothing to be unaliased.

unhash
Use of the internal hash table to speed location of executed programs is dis-
abled.

unlimit

unlimit resource

unlimit —h

unlimit —h resource
Removes the limitation on resource. If no resource is specified, then all resource
limitations are removed. If —h is given, the corresponding hard limits are
removed. Only the super-user may do this.

unset pattern
All variables whose names match the specified pattern are removed. Thus all
variables are removed by ‘unset *’; this has noticeably distasteful side-effects.
It is not an error for nothing to be unsetenv.

unsetenv pattern
Removes all variables whose name match the specified pattern from the envi-
ronment. See also the setenv command above and printenuv(1).

wait
All background jobs are waited for. It the shell is interactive, then an interrupt
can disrupt the wait, at which time the shell prints names and job numbers of
all jobs known to be outstanding.

while (expr)

87

end
While the specified expression evaluates non-zero, the commands between the
while and the matching end are evaluated. Break and continue may be used to
terminate or continue the loop prematurely. (The while and end must appear
alone on their input lines.) Prompting occurs here the first time through the
loop as for the foreach statement if the input is a terminal.

%job

Brings the specified job into the foreground.
%job &

Continues the specified job in the background.
@

@ name = expr

@ name[index| = expr
The first form prints the values of all the shell variables. The second form sets
the specified name to the value of expr. If the expression contains ‘<’, ‘>’, ‘&’
or ‘|” then at least this part of the expression must be placed within ‘(” ¢)’. The
third form assigns the value of expr to the index’th argument of name. Both
name and its indexz’th component must already exist.

The operators “*=’, ‘4=’ etc are available as in C. The space separating
the name from the assignment operator is optional. Spaces are, however,
mandatory in separating components of expr which would otherwise be
single words.

Special postfix ‘++’ and ‘——’ operators increment and decrement name
respectively, i.e. ‘@ i+4".

Pre-defined and environment variables

The following variables have special meaning to the shell. Of these, argv, cwd, home,
path, prompt, shell and status are always set by the shell. Except for cwd and status
this setting occurs only at initialization; these variables will not then be modified unless
this is done explicitly by the user.

This shell copies the environment variable USER into the variable user, TERM into
term, and HOME into home, and copies these back into the environment whenever the
normal shell variables are reset. The environment variable PATH is likewise handled;
it is not necessary to worry about its setting other than in the file .cshre as inferior csh
processes will import the definition of path from the environment, and re-export it if
you then change it.

argv Set to the arguments to the shell, it is from this variable that positional pa-
rameters are substituted, i.e. ‘$1’ is replaced by ‘$argv[1]’, etc.

88

cdpath

cwd

echo

filec

Gives a list of alternate directories searched to find subdirectories in chdir
commands.

The full pathname of the current directory.

Set when the —x command line option is given. Causes each command and its
arguments to be echoed just before it is executed. For non-builtin command-
s all expansions occur before echoing. Builtin commands are echoed before
command and filename substitution, since these substitutions are then done
selectively.

Enable file name completion.

histchars Can be given a string value to change the characters used in history sub-

history

home

stitution. The first character of its value is used as the history substitution
character, replacing the default character !. The second character of its value
replaces the character in quick substitutions.

Can be given a numeric value to control the size of the history list. Any
command which has been referenced in this many events will not be discarded.
Too large values of history may run the shell out of memory. The last executed
command is always saved on the history list.

The home directory of the invoker, initialized from the environment. The
filename expansion of ‘7’ refers to this variable.

ignoreeof If set the shell ignores end-of-file from input devices which are terminals. This

mail

prevents shells from accidentally being killed by control-D’s.

The files where the shell checks for mail. This is done after each command
completion which will result in a prompt, if a specified interval has elapsed.
The shell says ‘You have new mail.” if the file exists with an access time not
greater than its modify time.

If the first word of the value of mail is numeric it specifies a different mail
checking interval, in seconds, than the default, which is 10 minutes.

If multiple mail files are specified, then the shell says ‘New mail in name’
when there is mail in the file name.

noclobber As described in the section on Input/output, restrictions are placed on output

noglob

redirection to insure that files are not accidentally destroyed, and that ‘>>’
redirections refer to existing files.

If set, filename expansion is inhibited. This is most useful in shell scripts which
are not dealing with filenames, or after a list of filenames has been obtained
and further expansions are not desirable.

nonomatch If set, it is not an error for a filename expansion to not match any existing

notify

files; rather the primitive pattern is returned. It is still an error for the primitive
pattern to be malformed, i.e. ‘echo [still gives an error.

If set, the shell notifies asynchronously of job completions. The default is to
rather present job completions just before printing a prompt.

89

path

prompt

savehist

shell

status

time

verbose

Each word of the path variable specifies a directory in which commands are to
be sought for execution. A null word specifies the current directory. If there
is no path variable then only full path names will execute. The usual search
path is ¢, ¢/bin’ and ¢/usr/bin’, but this may vary from system to system. For
the super-user the default search path is ‘/etc’, ‘/bin’ and ‘/usr/bin’. A shell
which is given neither the —c nor the —t option will normally hash the contents
of the directories in the path variable after reading .cshre, and each time the
path variable is reset. If new commands are added to these directories while
the shell is active, it may be necessary to give the rehash or the commands

may not be found.

The string which is printed before each command is read from an interactive
terminal input. If a ‘!” appears in the string it will be replaced by the current
event number unless a preceding ¢\’ is given. Default is ‘% 7, or ‘# ’ for the
super-user.

is given a numeric value to control the number of entries of the history list that
are saved in ~/.history when the user logs out. Any command which has been
referenced in this many events will be saved. During start up the shell sources
" /.history into the history list enabling history to be saved across logins. Too
large values of savehist will slow down the shell during start up.

The file in which the shell resides. This is used in forking shells to interpret
files which have execute bits set, but which are not executable by the system.
(See the description of Non-builtin Command Execution below.) Initialized to
the (system-dependent) home of the shell.

The status returned by the last command. If it terminated abnormally, then
0200 is added to the status. Builtin commands which fail return exit status
‘1’, all other builtin commands set status ‘0’.

Controls automatic timing of commands. If set, then any command which takes
more than this many cpu seconds will cause a line giving user, system, and real
times and a utilization percentage which is the ratio of user plus system times
to real time to be printed when it terminates.

Set by the —v command line option, causes the words of each command to be
printed after history substitution.

Non-builtin command execution

When a command to be executed is found to not be a builtin command the shell attempts
to execute the command via ezecve(2). Each word in the variable path names a directory
from which the shell will attempt to execute the command. If it is given neither a —c
nor a —t option, the shell will hash the names in these directories into an internal table
so that it will only try an ezec in a directory if there is a possibility that the command
resides there. This greatly speeds command location when a large number of directories
are present in the search path. If this mechanism has been turned off (via unhash), or if
the shell was given a —c or —t argument, and in any case for each directory component

90

of path which does not begin with a ¢/’ the shell concatenates with the given command
name to form a path name of a file which it then attempts to execute.

Parenthesized commands are always executed in a subshell. Thus ‘(cd ; pwd) ; pwd’
prints the home directory; leaving you where you were (printing this after the home
directory), while ‘cd ; pwd’ leaves you in the home directory. Parenthesized commands
are most often used to prevent chdir from affecting the current shell.

If the file has execute permissions but is not an executable binary to the system, then
it is assumed to be a file containing shell commands and a new shell is spawned to read
it.

If there is an alias for shell then the words of the alias will be prepended to the argument
list to form the shell command. The first word of the alias should be the full path
name of the shell (e.g. ‘$shell’). Note that this is a special, late occurring, case of
alias substitution, and only allows words to be prepended to the argument list without
modification.

Argument list processing
If argument 0 to the shell is
interpreted as follows:

‘~’ then this is a login shell. The flag arguments are

-b This flag forces a “break” from option processing, causing any further shell ar-
guments to be treated as non-option arguments. The remaining arguments will
not be interpreted as shell options. This may be used to pass options to a shell
script without confusion or possible subterfuge. The shell will not run a set-user
ID script without this option.

—C Commands are read from the (single) following argument which must be present.
Any remaining arguments are placed in argv.

—e The shell exits if any invoked command terminates abnormally or yields a non-
zero exit status.

—f The shell will start faster, because it will neither search for nor execute commands
from the file ‘.cshre’ in the invoker’s home directory.

—i The shell is interactive and prompts for its top-level input, even if it appears to
not be a terminal. Shells are interactive without this option if their inputs and
outputs are terminals.

-n Commands are parsed, but not executed. This aids in syntactic checking of shell
scripts.

—s Command input is taken from the standard input.

—t A single line of input is read and executed. A ‘\’ may be used to escape the

newline at the end of this line and continue onto another line.

-V Causes the wverbose variable to be set, with the effect that command input is
echoed after history substitution.

—x Causes the echo variable to be set, so that commands are echoed immediately
before execution.

91

-V Causes the verbose variable to be set even before ‘.cshre’ is executed.
—X Is to —x as —V is to —v.

After processing of flag arguments, if arguments remain but none of the —c, —i, —s, or
—t options was given, the first argument is taken as the name of a file of commands to
be executed. The shell opens this file, and saves its name for possible resubstitution by
‘$0’. Since many systems use either the standard version 6 or version 7 shells whose
shell scripts are not compatible with this shell, the shell will execute such a ‘standard’
shell if the first character of a script is not a ‘#’, i.e. if the script does not start with a
comment. Remaining arguments initialize the variable argv.

Signal handling

The shell normally ignores quit signals. Jobs running detached (either by ‘&’ or the bg
or %... & commands) are immune to signals generated from the keyboard, including
hangups. Other signals have the values which the shell inherited from its parent. The
shells handling of interrupts and terminate signals in shell scripts can be controlled by
onintr. Login shells catch the terminate signal; otherwise this signal is passed on to
children from the state in the shell’s parent. In no case are interrupts allowed when a
login shell is reading the file ‘.logout’.

MULTI LANGUAGE SUPPORT

Csh processes the multiple languages of input text containing the Kanji character-set
for Japanese.

You can enter Kanji as you enter ASCII characters by setting the tty mode to sjis,
euc, jis, or tca(Taiwan code) mode. Metacharacters such as the double quotes (”), am-
persand (&), vertical bar (|), semicolon (;), less than sign (<), greater than sign (>),
open parenthesis ((), and close parenthesis ()) must be ASCII characters. The Zenkaku
characters such as double quotes and ampersand are treated as regular characters. Con-
sequently, a full size space (the shift JIS code 0x8140 and EUC code Oxalal) cannot be
used as the separator for arguments.

A two-byte code is treated as one character for the metacharacters in filenames, asterisk
character (*), question-mark character (?), and brackets ([and]).

Kanji can be used for the history function, Shell variables, and environmental variables.

AUTHOR

William Joy. Job control and directory stack features first implemented by J.E. Kulp
of .I.A.S.A, Laxenburg, Austria, with different syntax than that used now. File name
completion code written by Ken Greer, HP Labs.

FILES

" /.cshre Read at beginning of execution by each shell.

~/.login Read by login shell, after ‘.cshrc’ at login.

~/.logout Read by login shell, at logout.

/bin/sh Standard shell, for shell scripts not starting with a ‘#’.

92

/tmp/sh* Temporary file for ‘<<’.
/etc/passwd Source of home directories for ‘ name’.

LIMITATIONS

Words can be no longer than 1024 characters. The system limits argument lists to 10240
characters. The number of arguments to a command which involves filename expansion
is limited to 1/6’th the number of characters allowed in an argument list. Command
substitutions may substitute no more characters than are allowed in an argument list.
To detect looping, the shell restricts the number of alias substitutions on a single line
to 20.

SEE ALSO

sh(1), access(2), execve(2), fork(2), killpg(2), pipe(2), sigvec(2), umask(2), setrlimit(2),
wait(2), tty(4), a.out(5), environ(7), ‘An introduction to the C shell’

BUGS

When a command is restarted from a stop, the shell prints the directory it started in if
this is different from the current directory; this can be misleading (i.e. wrong) as the
job may have changed directories internally.

Shell builtin functions are not stoppable/restartable. Command sequences of the form
‘a; b; ¢’ are also not handled gracefully when stopping is attempted. If you suspend ‘b’,
the shell will then immediately execute ‘c’. This is especially noticeable if this expansion
results from an alias. It suffices to place the sequence of commands in ()’s to force it to
a subshell, i.e. ‘(a;b;c)’.

Control over tty output after processes are started is primitive; perhaps this will inspire
someone to work on a good virtual terminal interface. In a virtual terminal interface
much more interesting things could be done with output control.

Alias substitution is most often used to clumsily simulate shell procedures; shell proce-
dures should be provided rather than aliases.

Commands within loops, prompted for by ‘?’, are not placed in the history list. Control
structure should be parsed rather than being recognized as built-in commands. This
would allow control commands to be placed anywhere, to be combined with ‘|, and to
be used with ‘&’ and ‘;” metasyntax.

It should be possible to use the ‘> modifiers on the output of command substitutions.
All and more than one ‘:" modifier should be allowed on ‘$’ substitutions.

The way the filec facility is implemented is ugly and expensive.

REMARKS

setuid / setgid Shell Script
Due to security problems, command search paths have changed when executing setu-
idorsetgid shell scripts in NEWS-OS Release 4.0 and later releases as follows:

Shell Search Paths Being Set /bin/csh (/usr/ucb /bin /usr/bin /usr/sony/bin)
/bin/sh /bin:/usr/bin: /usr/sony /bin

93

Reset search paths in shell scripts as required.
The above description also applies when using the system() or popen() function from
the setuid application program. In this case, specify commands by full path.

94

Exercises on C shell basics (1)

. Try to execute several commands in succession. For example,
% ls; who; man whoami; echo $path
% (echo ’1st line’; echo ’2nd line’) > file

. Try to control command execution and compare the results. For example,
% 1ls -CF || 1s -1

% lss -CF || 1s -1

% 1s -CF && 1s -1

% lss -CF && 1s -1

Notice that the command 1ss does not exist actually.

. Confirm the substitution of variables. For example,
% echo $path

% echo path

and what is the difference?

. Let a variable have several values at a time. For example,
% set list = (abc def ghi jkl mno)

% echo $list

% echo $list[1]

% echo $list[4]

. Confirm the command substitution. For example, try
% ls ‘which echof

and

% ls ’which echo’

and check the difference.

. Try to set the toggle variable ignoreeof.

(a) Open a xterm. Then, exit by "D.
(b) Again open a xterm and set ignoreeof. Then, exit by “D. What will happen?

. Try to set the toggle variable noclobber.
(a) Create a new file such as

% echo NEWFILE > testfile

(b) Set noclobber by
% set noclobber

(c¢) Overwrite a file such as
% echo AGAIN > testfile
Then, what will happen?

(d) Next, unset noclobber by
% unset noclobber

(e) Overwrite a file such as
% echo AGAIN > testfile

95

10.

11.

. Similarly, confirm the working of noglob, notify, filec, and nonomatch. As a

detail, read the manual of csh.

. Check the values of value variables. For example,

% echo $cwd
% echo $home
% echo $path
% echo $history

Check the working of single quotations. Try next examples
% echo ’a+b >= cxd’ > file

and with no quotations

% echo a+b >= cxd > file

What is the difference?

Check the difference of quotations. For example,
% echo "My cwd is $cwd"

% echo ’My cwd is $cwd’

and

% echo "Now it is ‘date‘"

% echo ’Now it is ‘date‘’

96

Exercises on C shell basics (2)

1. Check the difference of standard output and standard error output. For example,
try a non-existent command 111
% 111 > file.std
The outputs (error message from shell) are displayed onto the standard error output,
so they can not be redirected by simple >. Confirm it by using cat as
% cat file.std
% 1s -1 file.std
Next, try
% 111 >& file.err
Then the standard error outputs are successfully redirected to a file. Confirm it by
using cat as
% cat file.err

2. Try to confirm the working of << on C shell. For example,
% cat << ETD > testfile
ABC
12345
ETD
% cat testfile
ABC
12345

3. Try to confirm the two different manual pages of man.
% man man
% man 7 man
% man 1 man
By the way, if you put such as
% man 3 man
what will happen?

4. Read the introductory pages on each manual section.
%» man 1 intro

% man 2 intro
% man 3 intro
% man 4 intro
% man 5 intro
% man 6 intro
% man 7 intro
% man 8 intro

97

Exercises on C shell scripts

1. Check the performance of foreach by writing and executing the following script.

#! /bin/csh

foreach fname (*)
echo "### $fname is my file ###"
file $fname

end

About the meaning of file command, consult the on-line manuals.

2. Check the performance of shift by writing and executing the script of List 1 on
the attached sheets (p.3).

3. Write the script of List 2 and List 3 on the attached sheets (p.4, p.5). Let them
run, and think how they work.

98

Chapter 12

Miscelaneous commands

12.1 Compressing and uncompressing files

12.1.1 compressing

One problem that is common to all UNIX systems — indeed, to nearly all computer
systems of any kind — is that there is never enough disk space. UNIX comes with a
programs that can alleviate this program, compress. They change the data in a file into
a more compact form. Although you can’t do anything with the file in this compact
format from except expand it back to the original format, for files you don’t need to
refer to very often, it can be a big space saver.

compress reduces the size of the named files using adaptive Lempel-Ziv coding. When-
ever possible, each file is replaced by one with the extension .Z, while keeping the same
ownership modes, as well as access and modification times. The usage is simple like

% compress somefile
% 1s
somefile.Z

Verbose option (-v) displays the percentage reduction for each file compressed. For
example,

% compress -v somefile
somefile: Compression: 39.15) -- replaced with somefile.Z

The amount of compression obtained depends on the size of the input, the number
of bits per code, and the distribution of common substrings. Typically, text such as
source code or English is reduced by 50-60%. Compression is generally much better
than that achieved by Huffman coding, or adaptive Huffman coding, and takes less time
to compute. The bits parameter specified during compression is encoded within the
compressed file, along with a magic number to ensure that neither decompression of
random data nor recompression of compressed data is subsequently allowed.

NOTICE | An compressed file is not a textfile, but a binary file, so you cannot see it
by cat or some text editors!

99

12.1.2 uncompressing

To get the compressed file back to its original format, use uncompress command.

[% uncompress somefile.Z

12.1.3 zcat

zcat is a compressed version of cat program, which sends an uncompressed version
of a compressed file to the standard output, without changing the compressed files or
storing the uncompressed version in a file. It is rarely useful by itself but can be quite
handy with programs such as more or lpr. For example, you can read the contents of
a compressed file without uncompressing it by

[% zcat sometextfile.Z | more

12.2 Encoding/decoding files

12.2.1 encoding

Most mail programs are designed only for printable characters (textfiles). Unfortunately,
many programs you would like to mail contain non-printable characters that may crash
or confuse the file transfer program that actually send the mail. UNIX provides two
utilities to turn binary files into printable textfiles and back again. uuencode and
uudecode. Typical usage of uuencode is

[% uuencode sourcefile filelabel > outfile.uu

uuencode converts a binary file into an ASCII-encoded representation that can be sent
using mail(1). It encodes the contents of sourcefile, or the standard input if no
sourcefile argument is given. The filelabel argument is required. It is included
in the encoded file’s header, and becomes the filename of the binary (decoded) data.
uuencode also includes the ownership and permission modes of sourcefile, so that
filelabel is recreated with those same ownership and permission modes.

Contents of an uuencoded file is for example as follows:

begin 644 filelabel

MDVENDW1H:7.38VQA<W.3;V:37$ENF’ 1R; Y! -WF1USW1I ;VZ3=&"~354Y) 6" *;
M WO!872354E414.8=4(AI<Y-YD+(A96%R+HZD#9F :C9$)] 5US3DESDO3#: 6% :
M3=YE8VIM97.6!,.S;VYEDV]FDW1H99-M;W-TDW"8;W!U; &%RDV}N9) -PF&~5
MOVYEQ) 8#0.%T; Y-BD$W>99-U<V5R+69R : 65NO&QYDW-Y<W1E;2R1 * 8723

MF%5.25B1! Z7:7.8<G5N;FEN9YAI<YAR87!I9&QYF&ENSW)E87-I;F<LDOOH
MSVENF&%L ;6] S=) AE=I-E<GF .H8V1"75=<V]R=’.6 Z*Y;V:38V]M<’5T97)S
MIO"Z1!-RC26Z3=&AI<Y-C;&%S<RR1 Z-V=YAEDW=I;&R3<W1A<G239G)0;9-T
MDVENDV5VFK (A97) YDVMI ; F1SDV] FDV-0=6Z8=)197.3:6Z3=&AEDW>8; W)L
#W]_7

100

end

The encoded file is an ordinary ASCII text file; it can be edited by any text editor. But
it is best only to change the mode or filelabel in the header to avoid corrupting the
decoded binary. The encoded file’s size is expanded by 35%, causing it to take longer
to transmit than the equivalent binary.

Now you can send it by some mailer commands.

12.2.2 decoding

To undecode an uuencoded file, use uudecode. uudecode reads an encoded file, strips
off any leading and trailing lines added by other programs (e.g. mailer), and recreates
the original binary data with the filelabel and the mode and owner specified in the
header. For example, when someone sent you a binary file in the form of an uuencoded
file by E-mail, at first you should save it in a textfile. Then, uudecode it by

[% uudecode mailfile

And, a file named filelabel (which is described in the encoded file) is newly created.
Since both uuencode and uudecode run with user ID set to uucp, uudecode can fail
with “Permission denied” when attempted in a directory that does not have write
permission allowed for other.

101

Exercises on file compressing

. Try to compress any binary files by compress command. Check the degree of com-
pression by -v option. For example,

% cp /usr/ucb/vi

% ls -1 vi

% compress -v vi

% ls -1 vi.Z

. Try to uncompress files which you had compressed now.

. Try to compress some textfiles, and see the content by zcat command. For example,
%y compress -v textfile
% zcat textfile.Z | more

Exercises on file encoding

. Try to encode any file you like by uuencode command. For example,
% uuencode filename filelabel > file.uu
% more file.uu

. Try to decode the file which you had encoded now.

. Send someone an encoded binary file.
% mail someone < file.uu

102

Additional documents

Now we prepared three kinds of additional documents:

1. A useful list of UNIX and C books, with descriptions and some mini reviews. There
are currently 167 titles on the list.

2. “The UNIX Acronym List” compiled by Wolfram Roesler (wr@bara.oche.de) which
explains in detail what are the origins of the acronym form of major UNIX command
namnes.

3. A list of services available on Internet.

Our mail addresses

Our mail addresses are as follow. If you find any question or comment when you
go back to your country, please send an E-mail to us if possible. We are very
willing to answer you as soon as possible.

Takashi Ito

tito@pluto.mtk.nao.ac. jp
National Astronomical Observatory, Mitaka, Tokyo 181, Japan.

Yukiko Yokoyama
yokoyama@uitec.ac. jp
The Polytechnic University, Sagamihara, Kanagawa 229, Japan.

