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Smoothed Particle Hydrodynamics (SPH)
Gold and Monaghan 1977, Lucy 1977

SPH is a full Lagrangian method and is suitable to the following problems.

Problems with a large dynamic range

Cosmological simulations, star formation simulations, . . .

Problems with large deformation of objects with boundaries

Collision of objects (star and star, protoplanet and protoplanet,. . . )
fluid, elastic bodies. . .

Advantage

No advection at the gas velocity.
In mesh codes, advection causes a large amount of errors.
In SPH, particles move at 𝒗. You do not need to care about

Easy to perform analyses based on the Lagrangian picture.

Disadvantage (Compared with mesh codes)

Large computational cost

For each particle, you need to calculate intercations among many particles.

not good at treating field quantities that are important in low density regions.

Iwasaki & Inutsuka (2011) applies SPH to MHD by using Godunov method
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Each Particle Has Density Profile

Each particle is not point mass but is a sphere with a size of the smoothing
length ℎ

The density profile of the 𝑖-particle is expressed in terms of the mass 𝑚𝑖 and
the kernel function 𝑊(𝒙 − 𝒙𝑖 , ℎ).

density distribution of the 𝑖-th
particle

𝜌𝑖(𝒙) = 𝑚𝑖𝑊(𝒙 − 𝒙𝑖 , ℎ)
Conditions that 𝑊 must meet

lim
ℎ→0

𝑊(𝒙 , ℎ) = 𝛿(𝒙)∫
𝑑3𝑥𝑊(𝒙 , ℎ) = 1

ℎ®𝑥𝑖
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Kernel Function

Kernel functions determine the numerical stability
and the amount of errors.

Gaussian kernel.
It produces accurate results.

Disadvantage: it extends to infinity.

We neglect the contribution from 𝑟 ≳ 3ℎ

𝑊(𝑟, ℎ) =
(

1√
𝜋ℎ

)𝐷
𝑒−(𝑟/ℎ)2

a serise of spline kernels
The cubic spline kernel is one of the most commonly used kernel functions.

It induces numerical instability in some situations and introduce a large amount of errors.

Wendland kernels (Wendland 1995, Dehnen & Aly 2012)
In SPH, pairing instability occurs when ℎ is too large. It induces numerical clumping of
SPH particles. Wendland kernels are stable for pairing instability. The Gaussian kernel is
stable for this instaiblity only when an infinite extent is considered.
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Expression of Density Profile by an Ensample of SPH Particles

Density profile is expressed by the summation of the density profiles of SPH particles.

𝜌(𝒙) =
∑
𝑖

𝜌𝑖(𝒙) =
∑
𝑖

𝑚𝑖𝑊(𝒙 − 𝒙𝑖 , ℎ)

Note that 𝜌(𝒙) is defined at any locations.

An Example of Density Profile

−1.0 −0.5 0.0 0.5 1.0

x

0.0

0.2

0.4

0.6

0.8

1.0

ρ

x0 x1 x2 x3 x4 x5 x6

5 / 36



Expression of Density Profile by an Ensample of SPH Particles

Density profile is expressed by the summation of the density profiles of SPH particles.

𝜌(𝒙) =
∑
𝑖

𝜌𝑖(𝒙) =
∑
𝑖

𝑚𝑖𝑊(𝒙 − 𝒙𝑖 , ℎ)

Note that 𝜌(𝒙) is defined at any locations.

An Example of Density Profile

−1.0 −0.5 0.0 0.5 1.0

x

0.0

0.2

0.4

0.6

0.8

1.0

ρ

x0 x1 x2 x3 x4 x5 x6

5 / 36



Expression of Density Profile by an Ensample of SPH Particles

Density profile is expressed by the summation of the density profiles of SPH particles.

𝜌(𝒙) =
∑
𝑖

𝜌𝑖(𝒙) =
∑
𝑖

𝑚𝑖𝑊(𝒙 − 𝒙𝑖 , ℎ)

Note that 𝜌(𝒙) is defined at any locations.

An Example of Density Profile

−1.0 −0.5 0.0 0.5 1.0

x

0.0

0.2

0.4

0.6

0.8

1.0

ρ

x0 x1 x2 x3 x4 x5 x6

5 / 36



Expression of Density Profile by an Ensample of SPH Particles

Density profile is expressed by the summation of the density profiles of SPH particles.

𝜌(𝒙) =
∑
𝑖

𝜌𝑖(𝒙) =
∑
𝑖

𝑚𝑖𝑊(𝒙 − 𝒙𝑖 , ℎ)

Note that 𝜌(𝒙) is defined at any locations.

An Example of Density Profile

−1.0 −0.5 0.0 0.5 1.0

x

0.0

0.2

0.4

0.6

0.8

1.0

ρ

x0 x1 x2 x3 x4 x5 x6

5 / 36



Expression of Density Profile by an Ensample of SPH Particles

Density profile is expressed by the summation of the density profiles of SPH particles.

𝜌(𝒙) =
∑
𝑖

𝜌𝑖(𝒙) =
∑
𝑖

𝑚𝑖𝑊(𝒙 − 𝒙𝑖 , ℎ)

Note that 𝜌(𝒙) is defined at any locations.

An Example of Density Profile

−1.0 −0.5 0.0 0.5 1.0

x

0.0

0.2

0.4

0.6

0.8

1.0

ρ

x0 x1 x2 x3 x4 x5 x6

5 / 36



Definitions of Spatial Distributions of Other Physical Quantities

Given a quantity 𝑓 (𝒙), the value of 𝑓 at 𝒙 is approximated by the convolution with 𝑊 as
follows:

〈 𝑓 〉(𝒙) ≡
∫

𝑑3𝑥′ 𝑓 (𝒙′)𝑊(𝒙 − 𝒙′, ℎ)
If 𝑊(𝒙 − 𝒙′, ℎ) is 𝛿(𝒙 − 𝒙′), 〈 𝑓 〉(𝒙) → 𝑓 (𝒙).

For SPH, the physical quantities are defined only at the positions of the SPH particles.
You cannot integrate the above equation directly.� �

The space integral is approximated as the summation with respect to particles.
A volume of SPH particles is

∫
𝑑3𝑥′ ∼ ∑

𝑗(𝑚𝑗/𝜌𝑗), 𝒙′→ 𝒙 𝑗、 𝑓 (𝒙′) → 𝑓𝑗 .

〈 𝑓 〉(𝒙) ≡
∫

𝑑3𝑥′︸   ︷︷   ︸
∼∑𝑗 (𝑚𝑗/𝜌𝑗 )

𝑓 (𝒙′)𝑊(𝒙 − 𝒙′, ℎ)︸                ︷︷                ︸
𝒙′→𝒙 𝑗

𝑓 (𝒙) ∼
∑
𝑗

𝑚𝑗

𝜌𝑗
𝑓𝑗𝑊(𝒙 − 𝒙 𝑗 , ℎ),

〈〉 is omitted.� �
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Gradient in SPH

Using the spatial distribution 𝑓 (𝒙) defined by the particle summation

𝑓 (𝒙) ∼
∑
𝑗

𝑚𝑗

𝜌𝑗
𝑓𝑗𝑊(𝒙 − 𝒙 𝑗 , ℎ),

the gradient of 𝑓 (𝒙) at the particle position is calculated as follows:

∇ 𝑓 (𝒙)
���
𝒙=𝒙𝑖
∼

∑
𝑗

𝑚𝑗

𝜌𝑗
𝑓𝑗
𝜕𝑊(𝒙 − 𝒙 𝑗 , ℎ)

𝜕𝒙

���
𝒙=𝒙𝑖

=
∑
𝑗

𝑚𝑗

𝜌𝑗
𝑓𝑗
𝜕𝑊(𝒙𝑖 − 𝒙 𝑗 , ℎ)

𝜕𝒙𝑖

There are other SPH expressions of the gradient.
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Anti-symmetric and Symmetric Expressions of Gradient

Anti-symmetric Form

∇ 𝑓 (𝒙)
���
𝒙=𝒙𝑖

=
1

𝜌
{∇(𝜌 𝑓 (𝒙)) − 𝑓 (𝒙)∇𝜌}

���
𝒙=𝒙𝑖

∇ 𝑓 (𝒙)
���
𝒙=𝒙𝑖

=
1

𝜌


∑
𝑗

𝑚𝑗

𝜌𝑗
(𝜌𝑗 𝑓𝑗)∇𝑊(𝒙 − 𝒙 𝑗 , ℎ) − 𝑓 (𝒙)

∑
𝑗

𝑚𝑗∇𝑊(𝒙 − 𝒙 𝑗 , ℎ)

���
𝒙=𝒙𝑖

∇ 𝑓 (𝒙)
���
𝒙=𝒙𝑖

=
1

𝜌𝑖

∑
𝑗

𝑚𝑗( 𝑓𝑗 − 𝑓𝑖)
𝜕𝑊(𝒙𝑖 − 𝒙 𝑗 , ℎ)

𝜕𝒙𝑖

When 𝑓 (𝒙) is constant, the gradient becomes exactly zero.

Often used to compute gradients.

Symmetric Form

∇ 𝑓 (𝒙)
���
𝒙=𝒙𝑖

= 𝜌

{
∇

(
𝑓 (𝒙)
𝜌

)
+ 𝑓 (𝒙)

𝜌2
∇𝜌

}���
𝒙=𝒙𝑖

∇ 𝑓 (𝒙)
���
𝒙=𝒙𝑖

= 𝜌𝑖
∑
𝑗

𝑚𝑗

(
𝑓𝑖
𝜌2𝑖
+ 𝑓𝑗

𝜌2𝑗

)
𝜕𝑊(𝒙𝑖 − 𝒙 𝑗 , ℎ)
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Accuracy of SPH Discretization

〈 𝑓 〉(𝒙) ≡
∫

𝑑3𝑥′ 𝑓 (𝒙′)𝑊(𝒙 − 𝒙′, ℎ)

〈 𝑓 〉(𝒙) =
∫

𝑑3𝑥′
{
𝑓 (𝒙) + ∇ 𝑓 (𝒙) · (𝒙 − 𝒙′) + 𝑂(|𝒙 − 𝒙′ |2)}𝑊(𝒙 − 𝒙′, ℎ)

〈 𝑓 〉(𝒙) = 𝑓 (𝒙)
∫

𝑑3𝑥′𝑊(𝒙 − 𝒙′, ℎ)︸                    ︷︷                    ︸
=1

+∇ 𝑓 (𝒙) ·
∫

𝑑3𝑥′(𝒙 − 𝒙′)𝑊(𝒙 − 𝒙′, ℎ)︸                              ︷︷                              ︸
=0

+𝑂(ℎ2)

= 𝑓 (𝒙) + 𝑂(ℎ2)� �
In reality,

〈 𝑓 〉(𝒙) ∼ 𝑓 (𝒙)
∑
𝑖

𝑚𝑖
𝜌𝑖

𝑊(𝒙 − 𝒙𝑖 , ℎ)︸              ︷︷              ︸
≠1

+∇ 𝑓 (𝒙) ·
∑
𝑖

𝑚𝑖
𝜌𝑖
(𝒙 − 𝒙𝑖)𝑊(𝒙 − 𝒙𝑖 , ℎ)︸                             ︷︷                             ︸

≠0

+𝑂(ℎ2)

if the spatial distribution of particles is irregular.� �
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Lagrangian Form of Hydrodynamic Equations

In Lagrangian picture, Hydrodynamic equations become� �
𝑑𝜌
𝑑𝑡
+ 𝜌∇ · 𝒗 = 0 or

𝑑 (1/𝜌)
𝑑𝑡

− 1

𝜌
∇ · 𝒗 = 0

𝑑𝒗
𝑑𝑡
+ 1

𝜌
∇𝑃 = 0

𝑑𝑒
𝑑𝑡
+ 𝑃

𝜌
∇ · 𝒗 = 0 or

𝑑
𝑑𝑡

[
𝑣2

2
+ 𝑒

]
+ 1

𝜌
∇ ·

[(
1

2
𝑣2 + 𝑒

)
𝒗

]
= 0� �

Most SPH methods do not solve the continuity equation explicitly.

The distribution of particles express the density

𝜌𝑖 =
∑
𝑗

𝑚𝑗𝑊(𝒙𝑖 − 𝒙 𝑗 , ℎ)

In some cases, such as problems with boundaries, a continuous equation may be
solved.
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Equation of Motion of an SPH Particle

𝑑®𝑣𝑖
𝑑𝑡

= − 1

𝜌𝑖

𝜕𝑃(x)
𝜕𝒙

���
𝒙=𝒙𝑖

If the anti-symmetric form is used,

𝜕𝑃(x)
𝜕𝒙

���
𝒙=𝒙𝑖

=
∑
𝑗

𝑚𝑗

𝜌𝑗
(𝑃𝑗 − 𝑃𝑖) 𝜕

𝜕𝒙𝑖
𝑊(𝒙𝑖 − 𝒙 𝑗 , ℎ)

Finally, we get� �
𝑑𝒗𝑖
𝑑𝑡

= −
∑
𝑗

𝑚𝑗

𝜌𝑖𝜌𝑗
(𝑃𝑗 − 𝑃𝑖) 𝜕

𝜕𝒙𝑖
𝑊(𝒙𝑖 − 𝒙 𝑗 , ℎ)

� �
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Conservation Law

For finite-volume methods, the density, momentum, and the total energy are
conserved within round-off errors.

For SPH, the mass conservation is clearly satisfied,

𝑀 =
∑
𝑖

𝑚𝑖

However, the momentum and energy conservations are not always satisfied.
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Let Us Check Momentum Conservation
A formal form of the equation of motion of the 𝑖-th particle can be written as
𝑚𝑖𝑑𝒗𝑖/𝑑𝑡 = ∑

𝑗 𝑭𝑖←𝑗 .

𝑭𝑖←𝑗 is the force exerted by particle 𝑗 on particle 𝑖.

If the force 𝐹𝑖←𝑗 satisfies what conditions, momentum is conserved?

𝑑
𝑑𝑡

∑
𝑖

𝑚𝑖𝒗𝑖 =
∑
𝑖

∑
𝑗

𝑭𝑖←𝑗

=
1

2

∑
𝑖

∑
𝑗

𝑭𝑖←𝑗 + 1

2

∑
𝑖

∑
𝑗

𝑭𝑖←𝑗

=
1

2

∑
𝑖

∑
𝑗

𝑭𝑖←𝑗 + 1

2

∑
𝑗

∑
𝑖

𝑭𝑗←𝑖

=
1

2

∑
𝑖

∑
𝑗

(𝑭𝑖←𝑗 + 𝑭𝑗←𝑖)

If the action-reaction between particle 𝑖 and particle 𝑗 is satisfied, the momentum

conservation is guaranteed.

𝑭𝑖←𝑗 = −𝑭𝑖←𝑗
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Let Us Check Momentum Conservation

� �
𝑚𝑖

𝑑𝒗𝑖

𝑑𝑡
= −

∑
𝑗

𝑚𝑖𝑚 𝑗

𝜌𝑖𝜌 𝑗
(𝑃𝑗 − 𝑃𝑖) 𝜕

𝜕𝒙𝑖
𝑊(𝒙𝑖 − 𝒙 𝑗 , ℎ)

� �
𝑭𝑖←𝑗 =

𝑚𝑖𝑚𝑗

𝜌𝑖𝜌𝑗
(𝑃𝑗 − 𝑃𝑖)

𝜕𝑊(𝒙𝑖 − 𝒙 𝑗 , ℎ)
𝜕𝒙𝑖

𝑭𝑗←𝑖 =
𝑚𝑗𝑚𝑖

𝜌𝑗𝜌𝑖
(𝑃𝑖 − 𝑃𝑗)

𝜕𝑊(𝒙𝑖 − 𝒙 𝑗 , ℎ)
𝜕𝒙 𝑗

=
𝑚𝑗𝑚𝑖

𝜌𝑗𝜌𝑖
(𝑃𝑗 − 𝑃𝑖)

𝜕𝑊(𝒙𝑖 − 𝒙 𝑗 , ℎ)
𝜕𝒙𝑖

= 𝑭𝑖←𝑗

Clearly, the derived equation of motion does not satisfy action-reaction 𝑭𝑖←𝑗 ≠ −𝑭𝑗←𝑖

=⇒ The total momentum is not conserved within round-off errors.
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Equation of Motion of SPH Particles

Use the symmetric form of 𝜕𝑃/𝜕𝒙.� �
𝑚𝑖

𝑑𝒗𝑖
𝑑𝑡

= −
∑
𝑗

𝑚𝑖𝑚𝑗

(
𝑃𝑖
𝜌2𝑖
+ 𝑃𝑗

𝜌2𝑗

)
𝜕𝑊(𝒙𝑖 − 𝒙 𝑗 , ℎ)

𝜕𝒙𝑖� �

This expression satisfies the momentum conservation.
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Internal Energy Equation

In SPH, instead of the total energy, the internal energy is updated.

𝑑𝑒𝑖
𝑑𝑡

= −𝑃
𝜌
∇ · 𝒗

���
𝒙=𝒙𝑖

There are several expressions of the internal energy equation for SPH.
Most commonly used one is� �

𝑑𝑒𝑖
𝑑𝑡

= − 𝑃𝑖
𝜌2𝑖

∑
𝑗

𝑚𝑗(𝒗 𝑗 − 𝒗𝑖) ·
𝜕𝑊(𝒙𝑖 − 𝒙 𝑗 , ℎ)

𝜕𝒙𝑖� �
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Energy Equation
Let us derive the total energy equation consistent with the internal energy equation
shown in the previous slide.

𝑑𝐸𝑖
𝑑𝑡

=
𝑑𝑒𝑖
𝑑𝑡
+ 1

2

𝑑𝒗2𝑖
𝑑𝑡

=
𝑑𝑒𝑖
𝑑𝑡
+ 𝒗𝑖 · 𝑑𝒗𝑖𝑑𝑡

𝑑𝐸𝑖
𝑑𝑡

= − 𝑃𝑖
𝜌2𝑖

∑
𝑗

𝑚𝑗(𝒗 𝑗 − 𝒗𝑖) · 𝜕𝑊𝜕𝒙𝑖 − 𝒗𝑖 ·
∑
𝑗

𝑚𝑗

(
𝑃𝑖
𝜌2𝑖
+ 𝑃𝑗

𝜌2𝑗

)
𝜕𝑊
𝜕𝒙𝑖� �

𝑑𝐸𝑖
𝑑𝑡

=
∑
𝑗

𝑚𝑗

(
𝑃𝑖
𝜌2𝑖

𝒗 𝑗 +
𝑃𝑗

𝜌2𝑗
𝒗𝑖

)
𝜕𝑊(𝒙𝑖 − 𝒙 𝑗 , ℎ)

𝜕𝒙𝑖︸                                   ︷︷                                   ︸
anti-symmetric against 𝑖 ↔ 𝑗� �

Note that using the internal energy equation does NOT guarantee the total energy
conservation within round-off errors.

1

Δ𝑡

{ (𝒗𝑛+1𝑖 )2
2

− (𝒗
𝑛
𝑖 )2
2

}
=

(
𝒗𝑛𝑖 +

Δ𝑡
2

𝑑𝒗𝑖
𝑑𝑡

)
· 𝑑𝒗𝑖
𝑑𝑡

≠ 𝒗𝑛𝑖 ·
𝑑𝒗𝑖
𝑑𝑡
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SPH Basic Equations

𝜌𝑖 =
∑
𝑗

𝑚 𝑗𝑊(𝒙𝑖 − 𝒙 𝑗 , ℎ)

𝑑𝒗𝑖

𝑑𝑡
= −

∑
𝑗

𝑚 𝑗

(
𝑃𝑖

𝜌2𝑖
+ 𝑃𝑗

𝜌2𝑗

)
𝜕𝑊(𝒙𝑖 − 𝒙 𝑗 , ℎ)

𝜕𝒙𝑖

𝑑𝑒𝑖
𝑑𝑡

= −𝑃𝑖

𝜌2𝑖

∑
𝑗

𝑚 𝑗
(
𝒗 𝑗 − 𝒗𝑖

) · 𝜕𝑊(𝒙𝑖 − 𝒙 𝑗 , ℎ)
𝜕𝒙𝑖

They are traditional SPH equations.
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Artificial Viscosity

To capture shock waves, dissipation is required also in SPH.

Unlike the mesh methods, artificial viscosity is often used in SPH.

Monaghan (1988) proposed the following artificial viscosity whose stress is a summation
of the terms ∝ ∇ · 𝒗 and ∝ (∇ · 𝒗)2� �

Π𝑖 𝑗 =


−𝛼𝑐𝑖 𝑗𝜇𝑖 𝑗 + 𝛽𝜇2𝑖 𝑗

𝜌𝑖 𝑗

(
𝒗𝑖 − 𝒗 𝑗

)
·
(
𝒙𝑖 − 𝒙 𝑗

)
< 0

0 otherwise

𝜇𝑖 𝑗 =
ℎ
(
𝒗𝑖 − 𝒗 𝑗

)
·
(
𝒙𝑖 − 𝒙 𝑗

)
|𝒙𝑖 − 𝒙 𝑗 |2 ∼ ℎ∇ · 𝒗

𝛼 and 𝛽 should be determined depending on problems that you are considering.
𝛼 = 1 and 𝛽 = 2 are often used.� �

Recent SPH uses an artificial viscosity based on Riemann problem (Monaghan 1997).
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SPH Basic Equations
with Artificial Viscosity

𝜌𝑖 =
∑
𝑗

𝑚 𝑗𝑊(𝒙𝑖 − 𝒙 𝑗 , ℎ)

𝑑𝒗𝑖

𝑑𝑡
= −

∑
𝑗

𝑚 𝑗

(
𝑃𝑖

𝜌2𝑖
+ 𝑃𝑗

𝜌2𝑗
+Π𝑖 𝑗

)
𝜕𝑊(𝒙𝑖 − 𝒙 𝑗 , ℎ)

𝜕𝒙𝑖

𝑑𝑒𝑖
𝑑𝑡

= −
∑
𝑗

𝑚 𝑗

(
𝑃𝑖

𝜌2𝑖
+ 1

2
Π𝑖 𝑗

) (
𝒗 𝑗 − 𝒗𝑖

) · 𝜕𝑊(𝒙𝑖 − 𝒙 𝑗 , ℎ)
𝜕𝒙𝑖
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Variable Smoothing Length
Constant smoothing length works well to simulate fluid and elastic bodies with small
density variations

However, in many astrophysical phenomena, the density changes significantly.
Constant smoothing length is never used.

The mass of SPH particles is constant with time.
→ the size ”ℎ” is decreased as the density increases.

Smoothing length consistent with density
It is reasonable that ℎ𝑖 is determined so that 𝑚𝑖 is equal to 𝜌𝑖 multiplied by
volume ℎ3𝑖 .

ℎ𝑖 = 𝐶ℎ

(
𝑚𝑖
𝜌𝑖

)1/𝐷
, 𝜌𝑖 =

∑
𝑗

𝑚𝑗𝑊
(
𝒙𝑖 − 𝒙 𝑗 , ℎ𝑖

)
𝐶ℎ is a free parameter ∼ 𝑂(1) and 𝐷 is the number of dimension.

Because 𝜌𝑖 depends on ℎ𝑖 , ℎ𝑖 and 𝜌𝑖 are determined consistently by using an
iterative method.

Fixed 𝑁nb

ℎ𝑖 is determined so that the number of neighbor particles is fixed.
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Estimation of Density with Variable ℎ:
Scatter versus Gather

𝜌𝑖 =
∑
𝑗

𝑚𝑗𝑊(𝒙𝑖 − 𝒙 𝑗 , ℎ 𝑗)︸                           ︷︷                           ︸
Scatter

or 𝜌𝑖 =
∑
𝑗

𝑚𝑗𝑊(𝒙𝑖 − 𝒙 𝑗 , ℎ𝑖)︸                           ︷︷                           ︸
Gather
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𝜌𝑖 =
∑
𝑗

𝑚𝑗𝑊(𝒙𝑖 − 𝒙 𝑗 , ℎ 𝑗)︸                           ︷︷                           ︸
Scatter

or 𝜌𝑖 =
∑
𝑗

𝑚𝑗𝑊(𝒙𝑖 − 𝒙 𝑗 , ℎ𝑖)︸                           ︷︷                           ︸
Gather

The particle separation in 𝑥 > 0 is twice larger than that in 𝑥 < 0.

Gather formula gives a monotonic profile.
⇒ Density is estimated by Gather formula
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SPH Equations
with Variable ℎ and Artificial Viscosity� �

𝜌𝑖 =
∑
𝑗

𝑚𝑗𝑊(𝒙𝑖 − 𝒙 𝑗 , ℎ𝑖)

𝑑𝒗𝑖
𝑑𝑡

= −
∑
𝑗

𝑚𝑗

{(
𝑃𝑖
𝜌2𝑖
+ Π𝑖 𝑗

2

)
𝜕𝑊(𝒙𝑖 − 𝒙 𝑗 , ℎ𝑖)

𝜕𝒙𝑖
+

(
𝑃𝑗

𝜌2𝑗
+ Π𝑖 𝑗

2

)
𝜕𝑊(𝒙𝑖 − 𝒙 𝑗 , ℎ 𝑗)

𝜕𝒙𝑖
,

}
𝑑𝑒𝑖
𝑑𝑡

=
∑
𝑗

𝑚𝑗

(
𝑃𝑖
𝜌2𝑖
+ Π𝑖 𝑗

2

) (
𝒗𝑖 − 𝒗 𝑗

)
· 𝜕𝑊(𝒙𝑖 − 𝒙 𝑗 , ℎ𝑖)

𝜕𝒙𝑖
,

� �
The corresponding total energy equation

𝑑𝐸𝑖
𝑑𝑡

= −
∑
𝑗

𝑚𝑗

{(
𝑃𝑖
𝜌2𝑖
+ Π𝑖 𝑗

2

)
𝒗 𝑗 ·

𝜕𝑊(𝒙𝑖 − 𝒙 𝑗 , ℎ𝑖)
𝜕𝒙𝑖

+
(
𝑃𝑗

𝜌2𝑗
+ Π𝑖 𝑗

2

)
𝒗𝑖 ·

𝜕𝑊(𝒙𝑖 − 𝒙 𝑗 , ℎ 𝑗)
𝜕𝒙𝑖

,

}
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CFL Condition

� �
Δ𝑡 = 𝐶CFLmin

𝑖 , 𝑗

( |𝒙𝑖 − 𝒙 𝑗 |
𝑐𝑖 + |𝒗𝑖 − 𝒗 𝑗 |

)
,

� �
where 𝑐𝑖 =

√
𝛾𝑃𝑖/𝜌𝑖 is the sound speed of the 𝑖-th particle. |𝒙𝑖 − 𝒙 𝑗 | can

be replaced by min(ℎ𝑖 , ℎ 𝑗).
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Numerical Procedure

Initial condition: 𝒙0𝑖 , 𝜌
0
𝑖 , 𝑣

0
𝑖 , 𝑃

0
𝑖 , 𝑒

0
𝑖 (𝒙0𝑖 and 𝜌0𝑖 are determined consistently)

1 (𝑑𝒗𝑖/𝑑𝑡)𝑛 is computed

2 (𝑑𝑒𝑖/𝑑𝑡)𝑛 is computed

3 update the velocity

𝒗𝑛+1
𝑖 = 𝒗𝑛

𝑖 +
(
𝑑𝒗𝑖
𝑑𝑡

)𝑛
Δ𝑡

4 update the internal energy

𝑒𝑛+1𝑖 = 𝑒𝑛𝑖 +
(
𝑑𝑒𝑖
𝑑𝑡

)𝑛
Δ𝑡

5 update the particle position

𝑥𝑛+1𝑖 = 𝑥𝑛𝑖 +
𝑣𝑛𝑖 + 𝑣𝑛+1𝑖

2
Δ𝑡

6 update the density from the updated 𝒙𝑖 .

7 Pressure is updated 𝑃𝑛+1
𝑖 = 𝑃(𝜌𝑛+1𝑖 , 𝑒𝑛+1𝑖 )

8 Δ𝑡 is determined. return to 1.
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Sod Solution
the sample cod:
https://colab.research.google.com/drive/1pQtfqVeqU72E7K3Pnfpw1xlxkJ3mYj_6?usp=sharing

Problems
The pressure has a numerical error around the CD (explained later).
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Blast Wave
A more severe test problem (𝑃L = 103 , 𝑃R = 0.01, 𝜌 = 1, 𝑣 = 0).
the sample cod: https://colab.research.google.com/drive/1AiN4yOByYM2t80Ss6zOQo5Sk0kWViTuJ?usp=sharing

Problems
The pressure has a numerical error around the CD (explained later).

Wrong shock jump condition and propagation speed of the shock front
because the total energy does not conserve within round-off errors.
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Godunov SPH (Inutsuka 2002)

Inutsuka (2002) reformulated SPH and applied Godunov method into the reformulated
SPH (Godunov SPH, GSPH).

Reformulate → keeps an integral form as much as possible.

𝑑𝒗𝑖
𝑑𝑡

= −
∑
𝑗

𝑚𝑗

∫
𝑑𝐷𝑥

𝑃(𝒙)
𝜌(𝒙)2

(
𝜕𝑊(𝒙 − 𝒙𝑖 , ℎ)

𝜕𝒙𝑖
𝑊(𝒙 − 𝒙 𝑗 , ℎ) −𝑊(𝒙 − 𝒙𝑖 , ℎ)

𝜕𝑊(𝒙 − 𝒙 𝑗 , ℎ)
𝜕𝒙 𝑗

)

Godunov method is applied into the interaction between the particles 𝑖 and 𝑗.

𝑑𝒗𝑖
𝑑𝑡

= −
∑
𝑗

𝑚𝑗𝑃
∗
𝑖 𝑗

∫
𝑑𝐷𝑥

1

𝜌(𝒙)2
(
𝜕𝑊(𝒙 − 𝒙𝑖 , ℎ)

𝜕𝒙𝑖
𝑊(𝒙 − 𝒙 𝑗 , ℎ) −𝑊(𝒙 − 𝒙𝑖 , ℎ)

𝜕𝑊(𝒙 − 𝒙 𝑗 , ℎ)
𝜕𝒙 𝑗

)
𝑃∗𝑖 𝑗 is the gas pressure evaluated from the result of the exact Riemann solver where the

left state is the particle 𝑗 and right state is the particle 𝑖.
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Godunov SPH (Inutsuka 2002)

The simplest implementation is to approximate the kernel function as the delta function.

𝑑𝒗𝑖
𝑑𝑡

= −
∑
𝑗

𝑚𝑗𝑃
∗
𝑖 𝑗

∫
𝑑𝐷𝑥

1

𝜌(𝒙)2
©­­­­«
𝜕𝑊(𝒙 − 𝒙𝑖)

𝜕𝒙𝑖
𝑊(𝒙 − 𝒙 𝑗 , ℎ)︸         ︷︷         ︸
→𝛿(𝒙−𝒙 𝑗 )

−𝑊(𝒙 − 𝒙𝑖 , ℎ)︸         ︷︷         ︸
→𝛿(𝒙−𝒙𝑖 )

𝜕𝑊(𝒙 − 𝒙 𝑗 , ℎ)
𝜕𝒙 𝑗

ª®®®®¬� �
𝑑𝒗𝑖
𝑑𝑡

= −
∑
𝑗

𝑚𝑗𝑃
∗
𝑖 𝑗

(
1

𝜌2𝑖
+ 1

𝜌2𝑗

)
𝜕𝑊(𝒙 − 𝒙𝑖 , ℎ)

𝜕𝒙𝑖� �
Inutsuka (2002) approximates the integral part by using polynomial interpolation of
1/𝜌(𝒙) between the particles 𝑖 and 𝑗.
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Godunov SPH (Inutsuka 2002)

The simplest implementation of 𝑑𝑒𝑖/𝑑𝑡 is as follows:� �
𝑑𝑒𝑖
𝑑𝑡

= −
∑
𝑗

𝑚𝑗𝑃
∗
𝑖 𝑗

(
𝒗∗𝑖 𝑗 − 𝒗𝑖 − 1

2

𝑑𝒗𝑖
𝑑𝑡

Δ𝑡
) (

1

𝜌2𝑖
+ 1

𝜌2𝑗

)
𝜕𝑊(𝒙 − 𝒙𝑖 , ℎ)

𝜕𝒙𝑖� �
More sophisticated implementations are found in Inutsuka (2002).

Unlike the standard SPH, GSPH conserves the total energy within round-off errors.∑
𝑗

𝑚𝑗

{
𝑒𝑛+1𝑗 + 1

2

(
𝒗𝑛+1𝑗

)2}
=

∑
𝑗

𝑚𝑗

{
𝑒𝑛𝑗 +

1

2

(
𝒗𝑛𝑗

)2}
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Blast Wave in GSPH

The simple implementation of GSPH is used.

The MUSCL method is to derive the initial condition of the Riemann problem
(Inutsuka 2002, Iwasaki & Inutsuka 2011).
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Blast Wave in GSPH
the sample cod: https://colab.research.google.com/drive/1EI6hYGglWVHNs3j5KBzPhGUfQ12cLVOS?usp=sharing

SPH GSPH

GSPH gives the correct shock jump condition and correct propagation speed of the
shock wave.

Numerical oscillations seen in SPH disappears in GSPH.

Pressure wiggles around the CD are decreased even in the simple implementation
of GSPH.
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Behaviors Around Contact Discontinuities (CDs)

𝑑𝒗𝑖
𝑑𝑡

= −
∑
𝑗

𝑚𝑗

(
𝑃𝑖
𝜌2𝑖
+ 𝑃𝑗

𝜌2𝑗

)
𝜕

𝜕𝒙𝑖
𝑊

The pressure is constant 𝑃 = 𝑃0 across the CD. The acceleration of the 𝑖-th particle
should be zero.∑

𝑗

𝑚𝑗𝑃0

(
1

𝜌2𝑖
+ 1

𝜌2𝑗

)
𝜕𝑊
𝜕𝒙𝑖

= 0 =⇒ 𝐴𝑖 =
∑
𝑗

𝑚𝑗

(
1

𝜌2𝑖
+ 1

𝜌2𝑗

)
𝜕𝑊
𝜕𝒙𝑖

= 0

𝐴𝑖 is not equal to zero around the CD.
In simulations, 𝑃 changes so that the acceleration around CDs becomes zero. 33 / 36



Artificial Tension Acting on Contact Discontinuities

(Agertz et al. 2007)

Artificial tension acts around contact discontinuities.
→ suppresses Kelvin-Helmholtz instability.

This is a serious problem because the KH instability is an essential process in the
generation of turbulence and mixing of different components.
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One Possible Solution:

EOM Derived form Anti-symmetric Formula

𝑑𝒗𝑖
𝑑𝑡

= −
∑
𝑗

𝑚𝑗

𝜌𝑖𝜌𝑗
(𝑃𝑗 −𝑃𝑖) 𝜕

𝜕𝒙𝑖
𝑊(𝒙𝑖 − 𝒙 𝑗 , ℎ𝑖)−

∑
𝑗

𝑚𝑗Π𝑖 𝑗
1

2

{
𝜕

𝜕𝒙𝑖
𝑊(𝒙𝑖 − 𝒙 𝑗 , ℎ𝑖) + 𝜕

𝜕𝒙𝑖
𝑊(𝒙𝑖 − 𝒙 𝑗 , ℎ 𝑗)

}

If the momentum conservation is allowed to be violated, pressure wiggles around CD
disappear.

BUT, the violation of the momentum conservation can cause another problems.
⇒ different approaches have been proposed
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Methods to Reduce Artificial Surface Tension

Keep using the symmetric form of EOM.� �
Artificial Thermal Conduction (Price 2007)

It makes the internal energy smooth around CDs

Godunov SPH (Inutsuka 2002, Cha et al. 2010)

The numerical error in 𝐴𝑖 is decreased by appropriately approximating an
integral form of 𝐴𝑖 .
Riemann solver introduces thermal conduction.

Density-Independent SPH (Saitoh & Makino 2012)

As the volme of particles, DISPH adopts (𝛾 − 1)𝑚𝑖 𝑒𝑖/𝑃𝑖 (also see Ritchie &
Thomas 2001) instead of 𝑚𝑖/𝜌𝑖 .
it does not use the gas density explicitly.� �

All methods can solve the development of the KH instability.

BUT, most authors discuss only appearance of vortices, but neither method is

completely error-free. Convergence to an exact solution for the growth rate is very

slow (McNally et al. 2012,Tricco 2018)。
For SPH with artificial heat conduction, the kernel must be a higher order spline to
obtained converged results (Tricco 2018).
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