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Basic Equation: Euler Equation

4 d d h
P2 ()=
at + axi (pvl) 0
200) | 9 (b5 poor) =
T +8—xj(P<5,]+pvlv])—0
JE 0
E"ra—xz‘[(E"rP)vi]—O
o /

m 6 Unknown variables (p, P, E, vy, vy, Uz)
m 5 equations (1 (continuity), 3 (momentum), 1 (energy))

— One more equation is needed
Use a relation between p, the internal energy e = E — pv?/2, and P (Equation of state)

[ e=ce(p,P) ]

For an adiabatic gas with a spacific ratio of heat y, e = P/(y — 1)
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ied Model of Hydrodynamic Equations

Hydrodynamic equations are too complicated.
Many variables and many equations...

Let’s start from a simplified equation whose behavior is well known.
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A Most Simplified Model of Hydrodynamic Equations

Hydrodynamic equations are too complicated.
Many variables and many equations...

Let’s start from a simplified equation whose behavior is well known.

Roughly speaking, the hydrodynamic equations have a form of

u

T +V.-(uv)=0

u can be p, pv, pv?/2 +e
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A Most Simplified Model of Hydrodynamic Equations

Hydrodynamic equations are too complicated.
Many variables and many equations...

Let’s start from a simplified equation whose behavior is well known.
Roughly speaking, the hydrodynamic equations have a form of

3—? +V.-(uv)=0
u can be p, pv, pv?/2 +e
make further simplification

= one dimension

m velocity is constant v = ¢c. — becomes a linear equation for u.

Advection Equation (#:7AE0)
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General Solution of Advection Equation

Ju d

= 4+ = =0
ot +ax Y
The general solution is u(t, x) = u(x — ct).

— The performance of numerical schemes can be easily tested.

u is propagated keeping its shape unchanged at a speed of c.

-t-_ * ° '6,‘ t \
(

cGt-ted

We will now consider how to solve this equation numerically!

The superiority of a numerical method can be determined by comparing
the numerical results with the exact solution.
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Finite-difference Methods (BFRZ%9%)

Space and time are both descritized.

Descritization of Space

Discrete grid points are placed in the x-axis.

m The coordinate of the i-th grid is denoted as X;.
m In this lecture, equally-spaced grid points are considered. Ax = Xivr1 — X Yi

g,q

o Py Py

- g Aoy A A N

Descritization of Time

Discrete timesteps are considered.

m The time at the n-th timestep is dentoed as .

m The value of u at x = x; at t = t" is denoted as M?.
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Finite-difference Method (BRZE%9%)

Definition of Derivative
ou o u(x + Ax) —u(x)

—_ = 1
Jx A;IBO Ax

Derivative du/dx is approximated by using u defined at discrete grids.

An Example of Finite Difference (Forward Difference)

n n _ ,.n
(8u) Ui Y

)~

To compute du/dx at x;, u at x;;1 is used.

Ax

7/38



Accuracy of Finite Difference

How fast the differentiation error decreases as Ax decreases?

From Taylor expansion,

ul o= u(x; +Ax, t")
du Ax? (9%u 3
= u(x;) +Ax (a)xﬂm + T (ﬁ)xhw + O(Ax?)

du " _ Uity —uf
dx | Ax
Ju Ax (d%u
= (= == (2= Ax?2
(ax)xi,t" ’ 2! (a‘x2 )x,',t" +O( * )

The difference betwegn the forward difference and exact drivative o Ax!
= 1st order spatial accuracy
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Higher Order Approximation

Finite difference methods with higher orders are obtained by using Taylor
expansion.

2 2 3 3
Wl = () + Ax (9_u) LA (3_u) LA (a_u) 4+ O(AxY)
x;, " X, " X, t"

ox 2! 8x2 3! 8x3

ou Ax? (%u Ax® (9*u
[ ) —A - - | 5= - T O(A !
Ml_l u(xl) * (aX)xi,t” ’ 2! (ax2)xi,i" 3! (axg)xi/tn ’ ( ' )

Central Difference
Ui — Uizl (8u) Ax? (83u
xi, t"

—) + O(Ax?)
xi, t"

2Ax Ix * EIREE

= 2nd order spatial accuracy

Finite differences with 3rd, 4th, ... orders are obtained.
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Finite-difference Equation of Advection Equation

Both spatial and temporal derivatives — forward difference
ou\ LM (ou) T ouf
ox ). Ax " \ot), At

Substituting them to the advection equation, one obtains the following finite
difference equation

u; is updated by only u; at the previous timestep.

— Explicit solver (FZEIfEE)
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Explicit Solver (RZEIfRIE)

m Given the initial condition u?,

10
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Numerical Experiments

n+l _ n _ cAt n n

Ui T Ax (”i+1 U )

Simulation Box 0 < x < L (L =1)
m Number of grids: N =64 — Ax = L/N = 0.015625
m Advection speed ¢ = 1 (> 0, propagate rightward)

Initial profile: Square wave

1 for|x—-1/2]<0.1
0 _
w(x) = { 0 otherwise

W
ab..o-.

' S
ol 0.5 ) ES
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Google Colaboratory

What is Google Colaboratory?

m a free cloud service provided by Google.

m make and run python scripts through a browser.

The sample python scripts provided in this lecture were written in a C-like grammar for
readability.

If you are interested, please modify the sample codes so that they run faster.
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Calculation Procedure

Use 1D array to save "u".

m uold[i] to store uln

m uli] to store ul.”“.

In python scripts, equal "="is not identical to mathematical "equal”.

"x = 1" shows that number "1"” is substituted to the variable "x" that is allocated in a
region of memory.

First, the initial profile of u; is substituted into the array u[i].
Then, the main loop starts.
‘ uold[i] = ul[i]

B The number stored in u[i] is substituted in wold[i].
B After this line is executed, uold[i] is equivalent to u;”.

[uli] = uold[i] - c*dt/dxx(uold[i+1] - uold[il)

m uli] is derived from uold[i].

After this line is executed, u[i] is u/*!

i .

back to 1.
)
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What do you think?
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Backward Difference

Another approximation of du/dx,

du\ _ui—uig
ox),  Ax

The corresponding finite-difference equation is

cAt
n+l _ . n _ n_ .n
i =W TR (' —uiy)

In the sample code,
[uli] = wold[i] - c*dt/dx*(uold[i+1] - wold[il) |

is changed to

(uli] = wold[i] - cxdt/dxx(uold[i] - uold[i-11) |

Then, run the simulation.
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What do you think?
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Central Difference

Next, the central difference is considered.

If\ i1 =iy
dx 2Ax

i

The finite difference equation for the advection equation is

n+1 u — cAt (un —u" )
i -7 2Ax i+1 i-1

Modify the sample code, and run the simulation.
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What do you think?
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Three Important Properties of Numerical Schemes:

Consistency (E&M), Stability (ZEM), and Convergence (UL3R1%)

A numerical scheme has consistency if it converges to the original
differential equation in the limit Ax, At — 0.

Stability

A scheme is stable if any errors (truncation errors and/or truncation
errors) do not grow.

\

Convergence

As Ax and At decreases, the numerical solutions derived by a numerical
scheme approaches the exact solutions of the original differential equation.
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Lax Equivalence Theorem (Lax D {liiEIE)

(Lax and Richtmeyer 1959)

Lax & Richtmeyer proved that

a consistent linear scheme is convergent if and only if the scheme is stable.

BEMZDORBEIF—LEIRELBRICOHNRT B

What we observed in the numerical experiments are
m Consistency: Forward O, Backward O, Central O
m Stability: Forward X, Backward O, Central X
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Lax Equivalence Theorem (Lax D {liiEIE)

(Lax and Richtmeyer 1959)

Lax & Richtmeyer proved that

a consistent linear scheme is convergent if and only if the scheme is stable.

BEMZDORBEIF—LEIRELBRICOHNRT B

What we observed in the numerical experiments are
m Consistency: Forward O, Backward O, Central O
m Stability: Forward X, Backward O, Central X

m Convergence (from Lax theorem): Forward X, Backward O, Central X
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Lax Equivalence Theorem (Lax D {liiEIE)

(Lax and Richtmeyer 1959)

Lax & Richtmeyer proved that

a consistent linear scheme is convergent if and only if the scheme is stable.

BEMZ D IREIF—LRRELISZRICOHRY B

What we observed in the numerical experiments are
m Consistency: Forward O, Backward O, Central O
m Stability: Forward X, Backward O, Central X

Why are the forward-difference method unstable and backward-difference method
is stable, even though both have consistency?
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Direction of " Wind”

Propagation of waves is often expressed as ”"Wind”.
For ¢ > 0, "wind" blows left to right.

t

0 “
Coaet ot Lo |
! ho We We Ui W Ui
A . A A *—o ¢
N ¢ PN
A N AN
P : ! ‘ {
wowt ol Wh W ude
P ‘ C
oL (
do v Ka " K Ac A 2
n+l _ . ,n cAt n n
o= _E(”m_”i)

During t" < t < t"*!, u(x;) should be determined only by u(x) in x < x; because
"wind” blows left to right.

= the forward difference scheme uses u# in downwind (JE\'F, u;,1) to update u;.
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Upwind (L) Scheme

\ _-:j C

N2

]
" e R W
= H . t ? ~—"\‘;\ ";
: ¢ 4 ¢ /' (
A ./ " ;
" : N Y
o 4 0 —0—
N WY Sl )
A o
4 “— 4§ 4 >
do Kv K2 K4 Ae Kis 2

cAt
un+1 =y (un - )

i i Ax i i—-1
u; is updated using grids on the side from which wind blows (upwind).
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Accuracy of Finite Difference Methods

Truncation Error

Difference between finite difference equation and exact equation.

u " 1 3211 " u " 1 3214 "
n _ . n 2 n+l _ 2

i
Substituting them to the difference equation ui"Jr1 =ul' — (cAt/Ax)(ul' | —ul'),
ou\" ou\" 1(o%u\" c (*u\"
) pe (2} = o[ ZE) A S(ZE) A
(’%)i C(ax)i 2(9f2)i 2(39‘2)1' i
2

c %u\"

If the truncation error € < O(AtP) and O(AxP)
= p-th order accuracy in space and time.
= Forward difference scheme has 1st-order accuracy
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Behavior of Truncation Errors

ou\" ou\" c ?u\"
(E) +C (5)1 = —5 (CAt + AX) (W)l

i
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Behavior of Truncation Errors

ou\" ou\" c ?u\"
(E) +C(5)i ——§(CAt+AX) (W)l

i

The right-hand side representing the truncation error
that works as diffusion with diffusion coefficient —c(cAt + Ax)/2.
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Behavior of Truncation Errors

ou\" ou\" c ?u\"
(E) +C(a)i ——§(CAt+Ax) (ﬁ)l

i

The right-hand side representing the truncation error
that works as diffusion with diffusion coefficient —c(cAt + Ax)/2.

m Forc>0

m Anti-diffusion = infinitesimally small variations of u grow
— Always unstable

m Consistent with the fact that the forward difference scheme is
" downwind” scheme for ¢ > 0
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Behavior of Truncation Errors

ou\" ou\" c ?u\"
(E) +C($)i ——i(cAt+Ax) (ﬁ)l

i

The right-hand side representing the truncation error
that works as diffusion with diffusion coefficient —c(cAt + Ax)/2.

m Forc>0

m Anti-diffusion = infinitesimally small variations of u grow
— Always unstable

m Consistent with the fact that the forward difference scheme is
" downwind” scheme for ¢ > 0

m Forc<O

m Diffusion coefficient: D = |c| (=|c|At + Ax)
m When —|c|At + Ax > 0, D is positive. = conditionally stable
m Consistent with the fact that the forward difference scheme is
”upwind” scheme for ¢ < 0
m Note that —|c|At + Ax > 0 is called CFL condition.

see next slide
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Courant-Friedrichs-Lewy (CFL) Condition

To obtain stable results from u;" | and u}', cAt < AX |should be satisfied.

Otherwise, u(x;) is affected by the grids x < x;_; that are not taken into account in the
1st order upwind scheme.

CFL Condition

A
At = CCFLT’“

The distance traveled in At shold be smaller than Ax. Crpp < 1 is a free parameter.

An essentially same condition is used in numerical (magneto)hydrodynamics.
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Finite-volume Method (BIR{FFEE)

Hydrodynamic equations are often expressed as differential form (%3 7%).
= finite-difference methods (derivatives are approximated by finite difference)

They can be expressed as integral form (F&7)T¥)

For instance, mass conservation

d
— d3x=—y§ v-dS
o Vp Sp

The total mass in a volume fixed in the space varies with time by the mass flux
across the boundary surface.

Finite-volume methods are based on the integral forms of equations

m Widely used in most astrophysical simulations because it has important
properties.

m Conservative quantities (such as mass, momentum, total energy) are
constant during simulations within round-off errors.
(no outflow and no inflow across the simulation box boundary)

m It has an affinity with Godunov method (will be explained in the next

lecture). 27/38



Finite-volume Method (BRIZTRZE)

Conservation form

d d
_Ll + _f e 0,
Jt  dx
In FV method, the space is divided not by grid points but by cells (small rooms)
separated by walls.

x;: The central coordinate of the i-th cell
Xit1/2: the cell boundary between the i-th and (i + 1)-th cells.

ul
1

i-1 i+1

X-axis

® ® ®
Xi—1/2 Xi-1 Xi-1/2  Xi  Xjt1/2 Xi+1 Xit+3/2
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Finite-volume Method

4 . 4 4 X-axis
Xi—1/2 Xi-1 Xi-1/2  Xi  Xiy1/2 Xi+1 Xi4+3/2

Integrating du/dt + df /dx =0 over x;_;/5 < X < Xj;1/2, One obtains
aJ /‘xi+1/2 )
37 udx | = =\ fiy1/2(t) = fica/2(t)
ot ( Xi1/s ( = ! )
u; 1 1 [z
a_tl =i (fi+1/2(t) —fi_l/Q(t)) , where u;(t) = E/x‘ u(x, t)dx

i-1/2
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Finite-volume Method (BRIZTRZE)

i-1 i+1

f'—1/2 fz‘+1/2
— —

® ® ®
Xi—1/2 Xi-1 Xi-1/2  Xi  Xjt1/2 Xi+1 Xit+3/2

Xx-axis

Integrating the equation over t" < t < t"*1 gives

4 N

tn+1

At 1
utth =yl - e (fi+1/2 _fi—1/2) , where fipyp = = -/t” fiv172()dt

The time evolution of u in the i-th cell is determined by
the difference between the fluxes across the surfaces of the i-th cell.
&= conservation law
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Finite-volume Method of Advection Equation

Various methods have been proposed to evaluate numerical fluxes fi 1/s.

Of course, fii1/2 = (cul' +cul,,)/2 gives unstable results because the resultant

difference equation is equivalent to the central difference equation.
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Finite-volume Method of Advection Equation

Various methods have been proposed to evaluate numerical fluxes fi 1/s.

Of course, fii1/2 = (cul' +cul,,)/2 gives unstable results because the resultant

difference equation is equivalent to the central difference equation.

1st order upwind numerical flux.

fn+1/2 _ ) oeu forc>0
i+1/2. | cul' | forc<0

The numerical flux is evaluated by using u in the upwind side.
The following expression can be used for any c,

n+1/2  _ C—|C| n C+|C| n
fi+1/2 - 5 i T T

1
= 5 lew v cutl, —lelGat, )]
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Calculation Procedure

n_n

Use 1D array to save "u".

= uli] to store ul', ”?H'

m £[i] to store fii/o

First, the initial profile of u; is substituted into the array u[i].
Then, the main loop starts.

\ £[i]l = 0.5%( c*ulil + c*uli+1] - abs(c)*(uli+1] - ul[il) ) ‘

® Calculate the numerical flux at x;11/2

[ulil = uli] - dt/dxx(£[3] - £[i-1])

m uli] is derived from f£[i].
After this line is executed, uli] is u

back to 1.

n+1
F
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Physical Interpretation of Upwind difference Scheme

in Finite volume Method

w
X
: . C et m At £ =1t", u(x)" is supposed to be
¢ ' T8 . expressed by the step functions.
«
\ . ' (u is constant inside each cell.)
Pt
4 t (
. ! ( [
« : [ (
( ¢ “ 1
———+—e—+ o |
£ % e
£
‘ X :
‘ ' '
¢ |
\ " u'!‘ < (
. 15 . cat .
. S '
: ¢ cat a%- Cﬁ: (
¢
S Ai e &1
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Physical Interpretation of Upwind difference Scheme

in Finite volume Method

w
X
: . C et m At £ =1t", u(x)" is supposed to be
¢ ' T8 . expressed by the step functions.
«
\ . ' (u is constant inside each cell.)
Pt
; . ' ¢ m At t =t"*1 the exact solution is
‘ t ‘ ( shown by the red line.
( <
(
et o
£ % e
£
‘ . i ;
‘ ' '
¢ [
\ " u'!‘ < (
. 1551 . cat .
. i ] '
: ¢ cat a%- Cﬁ: (
¢
S Ai e &1

33/38



Physical Interpretation of Upwind difference Scheme

in Finite volume Method

w
X
: . Wiet m At t =1t", u(x)" is supposed to be
‘ ' T8 . expressed by the step functions.
«
\ . : (u is constant inside each cell.)
Pt Lo
. . : : m At t =" the exact solution is
¢ ! ‘ { shown by the red line.
( <
¢
S S A P = u!""1Ax should be equal to
i R b ul cAt +ul (Ax — cAt).
sl
4 Then, we obtain
‘ , ' ' At At
' X ' LA e LY s
! — . : =LAy Ax
\ g ul- I ]
ol & . . .
f*—-‘lu [ ( This equation is the same as the
p e ; 1st-order upwind scheme for ¢ > 0.
( Lot em g C
S S SN SN
Lit P\ E &Y
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Physical Interpretation of Upwind difference Scheme

in Finite volume Method

w
X
: . Wit m At t =1t", u(x)" is supposed to be
‘ ' T8 . expressed by the step functions.
(‘ . ' (u is constant inside each cell.)
Pt
; . ' ¢ m At t =t"*1 the exact solution is
¢ ! ‘ { shown by the red line.
( <
v ; o HEN ; n uz.”HAx should be equal to
i R b ul cAt +ul (Ax — cAt).
sl
4 Then, we obtain
‘ . nil _on CAE cAt
: ' _ Mi —ui_1E+ui (1—E
Ui <
: (A1 vt Ca

This equation is the same as the
1st-order upwind scheme for ¢ > 0.

This argument is essentially the

~ same as that of Godunov method.
L 33/38
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Report (Exercise 1)

Copy the sample code of the finite difference method in your google drive. Rename
and edit the new code.

m Change the initial profile to

2
u(x,t =0) = exp {— (x 8?5) }

Edit InitialProfile(x).
use np.exp(x) to use exponential function where "np” stands for the numpy
module.
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Report (Exercise 1)

Performs convergence test for the backward-difference method with ¢ > 0 by
changing the grid number N.

m Use a table and/or plot to explain how fast the error decreases as N increases.
m Edit function AnalysisAfterSimulation(time,u) that is called after the main

loop finishes. In this function, calculate an error that is a measure of the difference
between the simulation results and the exact solution.

Any error expression is acceptable, as long as it is reasonable.
For instance, the following expressions are often used.

1
€1 = N Z |u;1 — tlexact(Xi, t")]

1
€9 = \/N Z {ul” - Hexact(xirtn)}Q
i

€a = max [u" = tiexact (xi, t")]
Uexact (X, t) shows the exact solution.
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Report (Exercise 2)

A numerical scheme is derived by the following procedure. Equally-spaced grid is
assumed.

Construct the Lagrangian interpolation polynomial u.g(x) using the values at

three grid points (x = xj_1, x = x;, and x;11) at the time step n. (1", u, and
n
i+1

Consider that ur,,4(x) evolves according to the exact solution. From the timestep
n to n + 1, the up,ag(x) profile moves at the speed c.

If the value of the advected profile uy,,g at x = x; and i+l s ul."“,

show u"*1 using At, Ax, c, u |, u?, and u” .
1 -1 1 i+1
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Report (Exercise 2)

Implement the constructed method in the sample code, and solve the advection
equation numerically.

B copy the sample code of the finite-difference method in your google drive and
rename it. The implementation is done in the new code.
It is not necessary to show your sample code in this report.

Run the simulation with the square-wave initial condition.

Describe how the wave profile evolves (using hand-drawn figures or attaching
image files are fine).

Run the simulation with the Gaussian initial condition (see Exercise 1).
Describe how the wave profile evolves (using hand-drawn figures or attaching
image files are fine).

In a similar way as in Exercise 1, perform convergence test of the constructed
method by changing the grid number. The Gaussian function shown in Exercise 1
is used.
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m Write your report on papers and put it in lwasaki's mailbox in the
secretary’s office of Division of Science,
or scan it and email the data to me.

Any format is fine. Handwritten in HZSEE or in English, IATEX, or
Microsoft Word....

m Deadline: 28th November 2024, 5:00 pm
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