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Basic Equation: Euler Equation
� �

𝜕𝜌

𝜕𝑡
+ 𝜕

𝜕𝑥𝑖
(𝜌𝑣𝑖) = 0

𝜕 (𝜌𝑣𝑖)
𝜕𝑡

+ 𝜕

𝜕𝑥 𝑗

(
𝑃𝛿𝑖 𝑗 + 𝜌𝑣𝑖𝑣 𝑗

)
= 0

𝜕𝐸
𝜕𝑡

+ 𝜕

𝜕𝑥𝑖
[(𝐸 + 𝑃) 𝑣𝑖] = 0� �

6 Unknown variables (𝜌, 𝑃, 𝐸, 𝑣𝑥 , 𝑣𝑦 , 𝑣𝑧)

5 equations (1 (continuity), 3 (momentum), 1 (energy))

−→ One more equation is needed
Use a relation between 𝜌, the internal energy 𝑒 = 𝐸 − 𝜌𝑣2/2, and 𝑃 (Equation of state)� �

𝑒 = 𝑒(𝜌, 𝑃)� �
For an adiabatic gas with a spacific ratio of heat 𝛾, 𝑒 = 𝑃/(𝛾 − 1)

3 / 38



A Most Simplified Model of Hydrodynamic Equations

Hydrodynamic equations are too complicated.
Many variables and many equations...

Let’s start from a simplified equation whose behavior is well known.

Roughly speaking, the hydrodynamic equations have a form of

𝜕𝑢
𝜕𝑡

+ ∇ · (𝑢𝒗) = 0

𝑢 can be 𝜌, 𝜌𝒗 , 𝜌𝑣2/2 + 𝑒

make further simplification

one dimension

velocity is constant 𝑣 = 𝑐. → becomes a linear equation for 𝑢.

Advection Equation (移流方程式)

𝜕𝑢
𝜕𝑡

+ 𝜕

𝜕𝑥
(𝑐𝑢) = 0
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General Solution of Advection Equation� �
𝜕𝑢
𝜕𝑡

+ 𝜕

𝜕𝑥
(𝑐𝑢) = 0

The general solution is 𝑢(𝑡 , 𝑥) = 𝑢(𝑥 − 𝑐𝑡).
→ The performance of numerical schemes can be easily tested.� �

𝑢 is propagated keeping its shape unchanged at a speed of 𝑐.

We will now consider how to solve this equation numerically!
The superiority of a numerical method can be determined by comparing
the numerical results with the exact solution.
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Finite-difference Methods (有限差分法)

Space and time are both descritized.

Descritization of Space
Discrete grid points are placed in the 𝑥-axis.

The coordinate of the 𝑖-th grid is denoted as 𝑥𝑖 .
In this lecture, equally-spaced grid points are considered. Δ𝑥 = 𝑥𝑖+1 − 𝑥𝑖 ∀𝑖

Descritization of Time
Discrete timesteps are considered.

The time at the 𝑛-th timestep is dentoed as 𝑡𝑛 .
The value of 𝑢 at 𝑥 = 𝑥𝑖 at 𝑡 = 𝑡𝑛 is denoted as 𝑢𝑛

𝑖 .
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Finite-difference Method (有限差分法)

Definition of Derivative

𝜕𝑢
𝜕𝑥

≡ lim
Δ𝑥→0

𝑢(𝑥 + Δ𝑥) − 𝑢(𝑥)
Δ𝑥

Derivative 𝜕𝑢/𝜕𝑥 is approximated by using 𝑢 defined at discrete grids.

An Example of Finite Difference (Forward Difference)(
𝜕𝑢
𝜕𝑥

)𝑛
𝑖
=

𝑢𝑛
𝑖+1 − 𝑢𝑛

𝑖

Δ𝑥
To compute 𝜕𝑢/𝜕𝑥 at 𝑥𝑖 , 𝑢 at 𝑥𝑖+1 is used.
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Accuracy of Finite Difference

How fast the differentiation error decreases as Δ𝑥 decreases?

From Taylor expansion,

𝑢𝑛𝑖+1 = 𝑢(𝑥𝑖 + Δ𝑥, 𝑡𝑛)

= 𝑢(𝑥𝑖) + Δ𝑥
(
𝜕𝑢
𝜕𝑥

)
𝑥𝑖 ,𝑡𝑛

+ Δ𝑥2

2!

(
𝜕2𝑢
𝜕𝑥2

)
𝑥𝑖 ,𝑡𝑛

+ 𝑂(Δ𝑥3)

Accuracy (
𝜕𝑢
𝜕𝑥

)𝑛
𝑖

=
𝑢𝑛𝑖+1 − 𝑢𝑛𝑖

Δ𝑥

=
(
𝜕𝑢
𝜕𝑥

)
𝑥𝑖 ,𝑡𝑛

+ Δ𝑥
2!

(
𝜕2𝑢
𝜕𝑥2

)
𝑥𝑖 ,𝑡𝑛

+ 𝑂(Δ𝑥2)

The difference between the forward difference and exact drivative ∝ Δ𝑥1

⇒ 1st order spatial accuracy
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Higher Order Approximation

Finite difference methods with higher orders are obtained by using Taylor
expansion.

𝑢𝑛
𝑖+1 = 𝑢(𝑥𝑖) + Δ𝑥

(
𝜕𝑢
𝜕𝑥

)
𝑥𝑖 ,𝑡𝑛

+ Δ𝑥2

2!

(
𝜕2𝑢
𝜕𝑥2

)
𝑥𝑖 ,𝑡𝑛

+ Δ𝑥3

3!

(
𝜕3𝑢
𝜕𝑥3

)
𝑥𝑖 ,𝑡𝑛

+𝑂(Δ𝑥4)

𝑢𝑛
𝑖−1 = 𝑢(𝑥𝑖) − Δ𝑥

(
𝜕𝑢
𝜕𝑥

)
𝑥𝑖 ,𝑡𝑛

+ Δ𝑥2

2!

(
𝜕2𝑢
𝜕𝑥2

)
𝑥𝑖 ,𝑡𝑛

− Δ𝑥3

3!

(
𝜕3𝑢
𝜕𝑥3

)
𝑥𝑖 ,𝑡𝑛

+𝑂(Δ𝑥4)

Central Difference

𝑢𝑖+1 − 𝑢𝑖−1
2Δ𝑥

=
(
𝜕𝑢
𝜕𝑥

)
𝑥𝑖 ,𝑡𝑛

+ Δ𝑥2

3!

(
𝜕3𝑢
𝜕𝑥3

)
𝑥𝑖 ,𝑡𝑛

+ 𝑂(Δ𝑥3)

⇒ 2nd order spatial accuracy

Finite differences with 3rd, 4th, ... orders are obtained.
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Finite-difference Equation of Advection Equation

Both spatial and temporal derivatives → forward difference(
𝜕𝑢
𝜕𝑥

)
𝑖
≃ 𝑢𝑛

𝑖+1 − 𝑢𝑛
𝑖

Δ𝑥
,

(
𝜕𝑢
𝜕𝑡

)
𝑖
≃ 𝑢𝑛+1

𝑖 − 𝑢𝑛
𝑖

Δ𝑡

Substituting them to the advection equation, one obtains the following finite
difference equation� �

𝑢𝑛+1
𝑖 = 𝑢𝑛

𝑖 − 𝑐Δ𝑡
Δ𝑥

(
𝑢𝑛
𝑖+1 − 𝑢𝑛

𝑖

)
� �
𝑢𝑖 is updated by only 𝑢𝑖 at the previous timestep.

→ Explicit solver (陽的解法)
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Explicit Solver (陽的解法)

Given the initial condition 𝑢0
𝑖 ,

𝑢0
𝑖 −→ 𝑢1

𝑖 −→ 𝑢2
𝑖 , . . .−→ 𝑢𝑛

𝑖 −→ . . .
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Numerical Experiments� �
𝑢𝑛+1𝑖 = 𝑢𝑛𝑖 − 𝑐Δ𝑡

Δ𝑥

(
𝑢𝑛𝑖+1 − 𝑢𝑛𝑖

)
� �

Simulation Box 0 ≤ 𝑥 ≤ 𝐿 (𝐿 = 1)

Number of grids: 𝑁 = 64 → Δ𝑥 = 𝐿/𝑁 = 0.015625

Advection speed 𝑐 = 1 (> 0, propagate rightward)

Initial profile: Square wave

𝑢0(𝑥) =
{
1 for |𝑥 − 1/2| < 0.1
0 otherwise
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Google Colaboratory

What is Google Colaboratory?

a free cloud service provided by Google.

make and run python scripts through a browser.

The sample python scripts provided in this lecture were written in a C-like grammar for
readability.

If you are interested, please modify the sample codes so that they run faster.
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Calculation Procedure

Use 1D array to save ”𝑢”.

uold[i] to store 𝑢𝑛𝑖 .

u[i] to store 𝑢𝑛+1𝑖 .

In python scripts, equal ”=” is not identical to mathematical ”equal”.
"x = 1" shows that number ”1” is substituted to the variable ”x” that is allocated in a
region of memory.� �

First, the initial profile of 𝑢𝑖 is substituted into the array u[i].
Then, the main loop starts.

1 uold[i] = u[i]

The number stored in u[i] is substituted in uold[i].
After this line is executed, uold[i] is equivalent to 𝑢𝑛

𝑖 .

2 u[i] = uold[i] - c*dt/dx*(uold[i+1] - uold[i])

u[i] is derived from uold[i].
After this line is executed, u[i] is 𝑢𝑛+1

𝑖 .

back to 1.� �
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Results

What do you think?
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Backward Difference

Another approximation of 𝜕𝑢/𝜕𝑥,(
𝜕𝑢
𝜕𝑥

)
𝑖
≃ 𝑢𝑖 − 𝑢𝑖−1

Δ𝑥

The corresponding finite-difference equation is� �
𝑢𝑛+1
𝑖 = 𝑢𝑛

𝑖 − 𝑐Δ𝑡
Δ𝑥

(
𝑢𝑛
𝑖 − 𝑢𝑛

𝑖−1
)

� �
In the sample code,
u[i] = uold[i] - c*dt/dx*(uold[i+1] - uold[i])

is changed to

u[i] = uold[i] - c*dt/dx*(uold[i] - uold[i-1]) .

Then, run the simulation.
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Results

What do you think?
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Central Difference

Next, the central difference is considered.(
𝜕 𝑓
𝜕𝑥

)
𝑖
≃ 𝑢𝑖+1 − 𝑢𝑖−1

2Δ𝑥

The finite difference equation for the advection equation is� �
𝑢𝑛+1
𝑖 = 𝑢𝑛

𝑖 − 𝑐Δ𝑡
2Δ𝑥

(
𝑢𝑛
𝑖+1 − 𝑢𝑛

𝑖−1
)

� �
Modify the sample code, and run the simulation.
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Results

What do you think?
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Three Important Properties of Numerical Schemes:

Consistency (適合性), Stability (安定性), and Convergence (収束性)

Consistency

A numerical scheme has consistency if it converges to the original
differential equation in the limit Δ𝑥,Δ𝑡 → 0.

Stability

A scheme is stable if any errors (truncation errors and/or truncation
errors) do not grow.

Convergence

As Δ𝑥 and Δ𝑡 decreases, the numerical solutions derived by a numerical
scheme approaches the exact solutions of the original differential equation.
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Lax Equivalence Theorem (Laxの等価定理)

(Lax and Richtmeyer 1959)

Lax & Richtmeyer proved that� �
a consistent linear scheme is convergent if and only if the scheme is stable.

適合性をもつ線型スキームは安定な場合にのみ収束する� �
What we observed in the numerical experiments are

Consistency: Forward ⃝, Backward ⃝, Central ⃝
Stability: Forward ×, Backward ⃝, Central ×

Convergence (from Lax theorem): Forward ×, Backward ⃝, Central ×
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Why are the forward-difference method unstable and backward-difference method
is stable, even though both have consistency?
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Direction of ”Wind”
Propagation of waves is often expressed as ”Wind”.
For 𝑐 > 0, ”wind” blows left to right.

𝑢𝑛+1𝑖 = 𝑢𝑛𝑖 − 𝑐Δ𝑡
Δ𝑥

(
𝑢𝑛𝑖+1 − 𝑢𝑛𝑖

)
During 𝑡𝑛 ≤ 𝑡 ≤ 𝑡𝑛+1, 𝑢(𝑥𝑖) should be determined only by 𝑢(𝑥) in 𝑥 ≤ 𝑥𝑖 because
”wind” blows left to right.

⇒ the forward difference scheme uses 𝑢 in downwind (風下, 𝑢𝑖+1) to update 𝑢𝑖 .
22 / 38



Upwind (風上) Scheme

𝑢𝑛+1𝑖 = 𝑢𝑛𝑖 − 𝑐Δ𝑡
Δ𝑥

(
𝑢𝑛𝑖 − 𝑢𝑛𝑖−1

)
𝑢𝑖 is updated using grids on the side from which wind blows (upwind).
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Accuracy of Finite Difference Methods

Truncation Error
Difference between finite difference equation and exact equation.

𝑢𝑛𝑖+1 = 𝑢𝑛𝑖 +
(
𝜕𝑢
𝜕𝑥

)𝑛
𝑖
Δ𝑥 + 1

2

(
𝜕2𝑢
𝜕𝑥2

)𝑛
𝑖
Δ𝑥2 and 𝑢𝑛+1𝑖 = 𝑢𝑛𝑖 +

(
𝜕𝑢
𝜕𝑡

)𝑛
𝑖
Δ𝑡 + 1

2

(
𝜕2𝑢
𝜕𝑡2

)𝑛
𝑖
Δ𝑡2

Substituting them to the difference equation 𝑢𝑛+1𝑖 = 𝑢𝑛𝑖 − (𝑐Δ𝑡/Δ𝑥)(𝑢𝑛𝑖+1 − 𝑢𝑛𝑖 ),� �(
𝜕𝑢
𝜕𝑡

)𝑛
𝑖
+ 𝑐

(
𝜕𝑢
𝜕𝑥

)𝑛
𝑖

= −1

2

(
𝜕2𝑢
𝜕𝑡2

)𝑛
𝑖
Δ𝑡 − 𝑐

2

(
𝜕2𝑢
𝜕𝑥2

)𝑛
𝑖
Δ𝑥

= − 𝑐
2
(𝑐Δ𝑡 + Δ𝑥)

(
𝜕2𝑢
𝜕𝑥2

)𝑛
𝑖� �

If the truncation error 𝜖 ∝ 𝑂(Δ𝑡𝑝) and 𝑂(Δ𝑥𝑝)
⇒ 𝑝-th order accuracy in space and time.
⇒ Forward difference scheme has 1st-order accuracy
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Behavior of Truncation Errors� �(
𝜕𝑢
𝜕𝑡

)𝑛
𝑖
+ 𝑐

(
𝜕𝑢
𝜕𝑥

)𝑛
𝑖
= − 𝑐

2
(𝑐Δ𝑡 + Δ𝑥)

(
𝜕2𝑢
𝜕𝑥2

)𝑛
𝑖� �

The right-hand side representing the truncation error
that works as diffusion with diffusion coefficient −𝑐(𝑐Δ𝑡 + Δ𝑥)/2.

For 𝑐 > 0

Anti-diffusion ⇒ infinitesimally small variations of 𝑢 grow
=⇒ Always unstable
Consistent with the fact that the forward difference scheme is
”downwind” scheme for 𝑐 > 0

For 𝑐 < 0

Diffusion coefficient: 𝐷 = |𝑐 | (−|𝑐 |Δ𝑡 + Δ𝑥)
When −|𝑐 |Δ𝑡 + Δ𝑥 > 0, 𝐷 is positive. =⇒ conditionally stable
Consistent with the fact that the forward difference scheme is
”upwind” scheme for 𝑐 < 0

Note that −|𝑐 |Δ𝑡 + Δ𝑥 > 0 is called CFL condition.
see next slide
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Courant-Friedrichs-Lewy (CFL) Condition

To obtain stable results from 𝑢𝑛𝑖−1 and 𝑢𝑛𝑖 , 𝑐Δ𝑡 < Δ𝑥 should be satisfied.

Otherwise, 𝑢(𝑥𝑖) is affected by the grids 𝑥 < 𝑥𝑖−1 that are not taken into account in the
1st order upwind scheme.

CFL Condition

Δ𝑡 = 𝐶CFL
Δ𝑥
𝑐

The distance traveled in Δ𝑡 shold be smaller than Δ𝑥. 𝐶FLD ≤ 1 is a free parameter.

An essentially same condition is used in numerical (magneto)hydrodynamics.
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Finite-volume Method (有限体積法)
Hydrodynamic equations are often expressed as differential form (微分形).
=⇒ finite-difference methods (derivatives are approximated by finite difference)

They can be expressed as integral form (積分形)

For instance, mass conservation

𝜕

𝜕𝑡

∫
𝑉
𝜌𝑑3𝑥 = −

∮
𝑆
𝜌𝒗 · 𝑑𝑺

The total mass in a volume fixed in the space varies with time by the mass flux
across the boundary surface.

Finite-volume methods are based on the integral forms of equations

Widely used in most astrophysical simulations because it has important
properties.

Conservative quantities (such as mass, momentum, total energy) are
constant during simulations within round-off errors.
(no outflow and no inflow across the simulation box boundary)
It has an affinity with Godunov method (will be explained in the next
lecture).
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Finite-volume Method (有限体積法)

Conservation form
𝜕𝑢
𝜕𝑡

+ 𝜕 𝑓
𝜕𝑥

= 0,

In FV method, the space is divided not by grid points but by cells (small rooms)
separated by walls.

𝑥𝑖 : The central coordinate of the 𝑖-th cell
𝑥𝑖+1/2: the cell boundary between the 𝑖-th and (𝑖 + 1)-th cells.

𝑥-axis𝑥𝑖−1/2 𝑥𝑖+1/2𝑥𝑖

𝑢𝑛𝑖
𝑢𝑛𝑖+1

𝑥𝑖+3/2𝑥𝑖+1

𝑢𝑛𝑖−1

𝑥𝑖−1/2 𝑥𝑖−1
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Finite-volume Method

𝑥-axis𝑥𝑖−1/2 𝑥𝑖+1/2𝑥𝑖

𝑢𝑛𝑖
𝑢𝑛𝑖+1

𝑥𝑖+3/2𝑥𝑖+1

𝑢𝑛𝑖−1

𝑥𝑖−1/2 𝑥𝑖−1

Integrating 𝜕𝑢/𝜕𝑡 + 𝜕 𝑓 /𝜕𝑥 = 0 over 𝑥𝑖−1/2 ≤ 𝑥 ≤ 𝑥𝑖+1/2, one obtains

𝜕

𝜕𝑡

(∫ 𝑥𝑖+1/2

𝑥𝑖−1/2
𝑢𝑑𝑥

)
= −

(
𝑓𝑖+1/2(𝑡) − 𝑓𝑖−1/2(𝑡)

)
𝜕𝑢𝑖
𝜕𝑡

= − 1

Δ𝑥

(
𝑓𝑖+1/2(𝑡) − 𝑓𝑖−1/2(𝑡)

)
, where 𝑢𝑖(𝑡) ≡ 1

Δ𝑥

∫ 𝑥𝑖+1/2

𝑥𝑖−1/2
𝑢(𝑥, 𝑡)𝑑𝑥
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Finite-volume Method (有限体積法)

𝑥-axis𝑥𝑖−1/2 𝑥𝑖+1/2𝑥𝑖

𝑢𝑛𝑖
𝑢𝑛𝑖+1

𝑥𝑖+3/2𝑥𝑖+1

𝑢𝑛𝑖−1

𝑥𝑖−1/2 𝑥𝑖−1

𝑓𝑖−1/2 𝑓𝑖+1/2

Integrating the equation over 𝑡𝑛 ≤ 𝑡 ≤ 𝑡𝑛+1 gives� �
𝑢𝑛+1𝑖 = 𝑢𝑛𝑖 − Δ𝑡

Δ𝑥

(
𝑓𝑖+1/2 − 𝑓𝑖−1/2

)
, where 𝑓𝑖+1/2 ≡ 1

Δ𝑡

∫ 𝑡𝑛+1

𝑡𝑛
𝑓𝑖+1/2(𝑡)𝑑𝑡

The time evolution of 𝑢 in the 𝑖-th cell is determined by
the difference between the fluxes across the surfaces of the 𝑖-th cell.
⇐= conservation law� �
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Finite-volume Method of Advection Equation

Various methods have been proposed to evaluate numerical fluxes 𝑓𝑖+1/2.

Of course, 𝑓𝑖+1/2 = (𝑐𝑢𝑛
𝑖 + 𝑐𝑢𝑛

𝑖+1)/2 gives unstable results because the resultant
difference equation is equivalent to the central difference equation.

1st order upwind numerical flux.

𝑓 𝑛+1/2𝑖+1/2 =
{

𝑐𝑢𝑛
𝑖 for 𝑐 > 0

𝑐𝑢𝑛
𝑖+1 for 𝑐 < 0

The numerical flux is evaluated by using 𝑢 in the upwind side.

The following expression can be used for any 𝑐,

𝑓 𝑛+1/2𝑖+1/2 =
𝑐 − |𝑐 |

2
𝑢𝑛
𝑖+1 +

𝑐 + |𝑐 |
2

𝑢𝑛
𝑖

=
1

2

[
𝑐𝑢𝑛

𝑖 + 𝑐𝑢𝑛
𝑖+1 − |𝑐 |(𝑢𝑛

𝑖+1 − 𝑢𝑛
𝑖 )

]
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Calculation Procedure

Use 1D array to save ”𝑢”.

u[i] to store 𝑢𝑛𝑖 , 𝑢
𝑛+1
𝑖 .

f[i] to store 𝑓𝑖+1/2

� �
First, the initial profile of 𝑢𝑖 is substituted into the array u[i].
Then, the main loop starts.

1 f[i] = 0.5*( c*u[i] + c*u[i+1] - abs(c)*(u[i+1] - u[i]) )

Calculate the numerical flux at 𝑥𝑖+1/2

2 u[i] = u[i] - dt/dx*(f[i] - f[i-1])

u[i] is derived from f[i].
After this line is executed, u[i] is 𝑢𝑛+1

𝑖 .

back to 1.� �
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Physical Interpretation of Upwind difference Scheme

in Finite volume Method

At 𝑡 = 𝑡𝑛 , 𝑢(𝑥)𝑛 is supposed to be
expressed by the step functions.

(𝑢 is constant inside each cell.)

At 𝑡 = 𝑡𝑛+1, the exact solution is
shown by the red line.

𝑢𝑛+1𝑖 Δ𝑥 should be equal to
𝑢𝑛𝑖−1𝑐Δ𝑡 + 𝑢𝑛𝑖 (Δ𝑥 − 𝑐Δ𝑡).

Then, we obtain

𝑢𝑛+1𝑖 = 𝑢𝑛𝑖−1
𝑐Δ𝑡
Δ𝑥

+ 𝑢𝑛𝑖

(
1 − 𝑐Δ𝑡

Δ𝑥

)
This equation is the same as the
1st-order upwind scheme for 𝑐 > 0.

This argument is essentially the
same as that of Godunov method.
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Report (Exercise 1)

1 Copy the sample code of the finite difference method in your google drive. Rename

and edit the new code.

Change the initial profile to

𝑢(𝑥, 𝑡 = 0) = exp

{
−

(
𝑥 − 0.5
0.1

)2}
Edit InitialProfile(x).
use np.exp(x) to use exponential function where ”np” stands for the numpy

module.
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Report (Exercise 1)

2 Performs convergence test for the backward-difference method with 𝑐 > 0 by
changing the grid number 𝑁 .

Use a table and/or plot to explain how fast the error decreases as 𝑁 increases.

Edit function AnalysisAfterSimulation(time,u) that is called after the main
loop finishes. In this function, calculate an error that is a measure of the difference
between the simulation results and the exact solution.

Any error expression is acceptable, as long as it is reasonable.
For instance, the following expressions are often used.

𝜖1 =
1

𝑁

∑
𝑖

|𝑢𝑛
𝑖 − 𝑢exact(𝑥𝑖 , 𝑡𝑛)|

𝜖2 =

√
1

𝑁

∑
𝑖

{
𝑢𝑛
𝑖 − 𝑢exact(𝑥𝑖 , 𝑡𝑛)

}2
𝜖∞ = max

𝑖
|𝑢𝑛

𝑖 − 𝑢exact(𝑥𝑖 , 𝑡𝑛)|

𝑢exact(𝑥, 𝑡) shows the exact solution.
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Report (Exercise 2)

A numerical scheme is derived by the following procedure. Equally-spaced grid is
assumed.

1 Construct the Lagrangian interpolation polynomial 𝑢Lag(𝑥) using the values at
three grid points (𝑥 = 𝑥𝑖−1, 𝑥 = 𝑥𝑖 , and 𝑥𝑖+1) at the time step 𝑛. (𝑢𝑛𝑖−1, 𝑢

𝑛
𝑖 , and

𝑢𝑛𝑖+1).
2 Consider that 𝑢Lag(𝑥) evolves according to the exact solution. From the timestep

𝑛 to 𝑛 + 1, the 𝑢Lag(𝑥) profile moves at the speed 𝑐.

If the value of the advected profile 𝑢Lag at 𝑥 = 𝑥𝑖 and 𝑡𝑛+1 is 𝑢𝑛+1𝑖 ,

show 𝑢𝑛+1𝑖 using Δ𝑡, Δ𝑥, 𝑐, 𝑢𝑛𝑖−1, 𝑢
𝑛
𝑖 , and 𝑢𝑛𝑖+1.
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Report (Exercise 2)

3 Implement the constructed method in the sample code, and solve the advection
equation numerically.

copy the sample code of the finite-difference method in your google drive and
rename it. The implementation is done in the new code.

It is not necessary to show your sample code in this report.

4 Run the simulation with the square-wave initial condition.

Describe how the wave profile evolves (using hand-drawn figures or attaching
image files are fine).

5 Run the simulation with the Gaussian initial condition (see Exercise 1).

Describe how the wave profile evolves (using hand-drawn figures or attaching
image files are fine).

6 In a similar way as in Exercise 1, perform convergence test of the constructed
method by changing the grid number. The Gaussian function shown in Exercise 1
is used.
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Submission

Write your report on papers and put it in Iwasaki’s mailbox in the
secretary’s office of Division of Science,
or scan it and email the data to me.

Any format is fine. Handwritten in 日本語 or in English, LATEX, or
Microsoft Word....

Deadline: 28th November 2024, 5:00 pm
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