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Gravitational waves from oscillating neutron stars in axial symmetry are studied performing numerical
simulations in full generat relativity. Neutron stars are modeled by a polytropic equation of state for simplicity,
A gauge-invariant wave extraction method as well as a guadrupole formula are adopted for computation of
gravitational waves. It is found that the gauge-invariant variables systematically contain namerical errors
generated near the outer boundaries in the present axisymmetric computation, We clarify their origin, and
illustrate that it is possible fo eliminate the dominant part of the systematic errors. The best corrected wave-
forms for oscillating and rotating stars currently congain errors of magnitude ~ 1077 in the focal wave zone.
Comparing the waveforms obtained by the gauge-invariant technique with those by the quadrupole formutla, it
is shown that the quadrupole formuia yields approximate gravitational waveforms in addition to a systematic
underestimation of the amplitude of Q(M/R) where M and R denote the mass and the radius of neutron stars.
However, the wave phase and modulation of the amplitude can be computed accurately. This indicates that the
quadrupole formuia is a usefui tool for studying gravitational waves {rom rotating stellar core collapse to a
neutron star in fully general relativistic simulations. The properties of the gravitational waveforms from the
oscillating and rigidly rotating neutron stars are also addressed paying attention to the oscillation associated

with fundamental modes.
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L. INTRODUCTION

One of the most important roles of numerical simulations
in general relativity is to predict gravitational waveforms
emitted by general relativistic and dynamical astrophysical
phenomena. Rotating stellar core collapse and nonspherical
oscillation of neutron stars are among the possible sources of
gravitational waves, Therefore, fully general relativistic nu-
merical simulation for them is an important subject in this
field [1}.

To date, there has been no systematic work for computa-
tion of gravitational waves from rotating stellar core collapse
to a neutron star in fully general relativistic simulation (but
see [2]). The gravitational waveforms have been computed
only in Newtonian gravity [3-9] or in an approximate gen-
eral relativistic gravity [ 1] using the so-called conformal flat-
ness approximation (or Isenberg-Wilson-Mathews approxi-
mation}, As demonstrated in [ 1], general relativistic effects
modify the evolution of the collapse and emitted gravita-
tional waveforms significantly. Thus, the simulation in full
general relativity appears Lo be the best approach for accurate
computation of gravitational waves,

In the case that the progenitor of the core collapse is not
very rapidly rotating, nonaxisymmetric instabilities do not
set in and, hence, the collapse will proceed in an axisymmet-
ric manner. In such a collapse, the amplitude of gravitational
waves measured in a focal wave zone at r=~Xx where A de-
notes the gravitational wavelength will be smaller, by two or
three orders of magnitude, than that in highly nonaxisymmet-
ric phenomena such as mergers of binary neutron stars and
black holes. The amplitade of gravitational waves from an
osciilating neutron star is also likely to be small due to its
small nonspherical deformation. Technically, it is not easy to
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extract gravitational waves of small amplitude from a metric
computed in numerical simulations, in which a numerical
noise is in general contained. The numerical noise is gener-
ated due to the following reasons.

Gravitational waves are usually extracted from the metric
in the wave zone in general relativistic simulations. Although
they should be extracted at the null infinity, the outer bound-
aries of computational domain are located at a finite radius
whenever the 3+ 1 formalisms are adopied. Thus, the outer
boundary conditions are imposed at finite radii and in general
they are approximate conditions, As a result, a small numeri-
cal error may be excited around the outer boundaries. Here,
the possible candidates of the numerical error are unphysical
nenwave modes, spurious gauge modes, back reflections at
the outer boundaries, and roundoff errors.

In this paper, we study gravitational waves from oscillat-
ing neutron stars in axial symmetry. Neutron stars in equilib-
rium are simply modeled by n =1 polytropes. Oscillations of
neutron stars are followed by axisymmetric numerical simu-
fations in full general relativity. Gravitational waves are ex-
tracted using a gauge-invariant wave extraction technique.
The gauge-invariant variables are not contaminated by gauge
modes and, hence, we can focus on other error sources using
these variables. We also adopt a quadrupole formula for ap-
proximately computing gravitational waveforms to clarify its
validity.

This work was planned from the following four motiva-
tions. The first one is to specify the error sources contained
in the gauge-invariant variables extracted in the local wave
zone. As mentioned above, they could be contaminated by
nonwave components and numerical errors. In particuiar, it is
important to specify systematic error components contained
in the gauge-invariant variables since as indicated in Sec. IV,
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the systematic errors may be eliminated at least partly if their
origin is clarified.

The second motivation is to understand how large com-
putational domains are needed to extract gravitational wave-
forms within ~ 10% error. Since the gauge-invariant vari-
ables are extracted at finite radii, gravitational waveforms (in
particular the amplitude) are slightly different from the
asymptotic ones. It is important to clarify how the magnitude
of the error depends on the radius at which we impose the
outer boundary conditions and on the radius at which we
extract gravitational waves, A similar study was carried out
about 15 years ago by Abrahams and Evans [10]. However,
they were interested only in specific gauge conditions which
were often used in axisymmetric numerical simulations in
general relativity at that time. Moreover, the simulations
were carried out only for nonrotating stars. In this paper, we
adopt a different gauge condition often used nowadays in
three-dimensional simulations, and report numerical results
both for nonrotating and rotating stars.

The third motivation, in which we arc most interested in
the present study, is o investigate the validity of a quadru-
pole formula in [ully general relativistic simulations. For
computation of a gravitational waves generated by oscilla-
tions of a gravitational field such as quasinormal mode ring-
ings of black holes, quadrupole formulas cannot work. How-
ever, in rotating siellar core collapse to a neutron star and in
oscitlating neutron stars in which gravitational waves are
generated mainly by matter motions, quadrupole formulas
may be able to yield an accurate waveform. This method can
be applied much more easily than geometrical methods in
which gravitational waves are extracted from a metric in the
wave zone. Thus, a quadrupole formula which can yield
high-quality approximate waveforms will be a robust method
for computing gravitational waves of small amplitude from a
noisy numerical data set. Note that a similar work has been
already done by Siebel ¢¢ al. [11,2] in a null-cone formula-
tion. We carry out here the similar study for a 3+ 1 approach.

The last motivation is to understand the properties of os-
cillations of rotating neutron stars. During rotating stellar
core collapse, gravitational waves associated with oscilla-
tions of a formed protoneutron star are likely to be emitted
(see, e.g., [1]). From the study for oscillating and rotating
neutron stars, we will be able to understand what oscillation
modes are relevant for the emission of gravitational waves
during core collapses. Here we pay attention to fwo funda-
mental oscillation modes (quasiradial and quadrupole p
modes of no node for the density perturbation} which are
candidates for the dominant modes in the oscillating and
rotating stars formed after the collapse.

This paper is organized as follows: In Sec. IL, our numeri-
cal implementations for axisymmetric general relativistic
simulation are briefly reviewed. In Sec. III, the gauge-
invariant wave extraction technique and the quadrupole for-
mula adopted in the present work are described. Section IV
presents numerical results of gravitational waveforms emit-
ted from oscillating neutron stars. The simulations were per-
formed both for nonrotating and rotating neutron stars using
an axisymmetric code recently developed [12]. Section IV is
devoted to a summary. Throughout this paper, we adopt the
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geometrical units in which G=c¢=1 where G and ¢ are the
gravitational constant and the speed of light, respectively.
1L NUMERICAL IMPLEMENTATION

A. Summary of formulation

We performed fully general relativistic simulations in
axial symmetry using the same formulation as that in [12], to
which the readers may refer for details and basic equations.
The fundamental variables for hydrodynamics are

p: rest mass density,
&£: specific internal energy,
P: pressure,

u”. four velocity,

vi=— =y (1)

where subscripts i,j,k,--- denote x,y, and z, and u the
spacetime components. In addition, we define a weighted
density  p,(=pau’ e®®) and a weighted four-velocity
i,[=(1+e+ P/p)u,;]. From these variables, the total baryon
rest-mass and angular momentum of system, which are con-
served quantities in axisymmetric spacetimes, can be defined
as

M,= j d3xp*, (2)

J= j dS_rp*Q@. (3)

General relativistic hydrodynamic equations are solved using
a so-called high-resolution shock-capturing scheme
[14,15,12] in cylindrical coordinates (or on the y=0 plane in
Cartesian coordinates).
The fundamental variables for geometry arc
«: lapse function,
B"‘: shift vector,

¥;;+ metric in 3D spatial hypersurface,

y=e'*=det( Yiihs

S=pd

YiiTE€ ‘b%‘j,

K ;1 extrinsic curvature. (4)
We evolve ¥,;, b, A;;=e **(K;;— v;K,"), and the trace of
the extrinsic curvature K k" together with three auxiliary func-

tions ;= &3, %,; with an unconstrained free evolution code
as done in [16,17,19,20,121.

104020-2



GRAVITATIONAL WAVES FROM AXISYMMETRICALLY . ..

The Einstein equations are solved in the Cartesian coor-
dinates. To impose axisymmetric boundary conditions, the
Cartoon method is adopted [13]; Assuming a reflection sym-
metry with respect to the equatorial plane, we perform simu-
lations using a fixed uniform grid with the grid size N X3
XN for (x,y,z) which covers a computational domain as 0
=y=[, 0sz7=L, and —A<y=A. Here, N and L are con-
stants and A=L/N. For y =+ A, the axisymmetric boundary
conditions are imposed using data sets on the y=0 plane.

The slicing and spatial gauge conditions adopted in this
paper are basically the same as those in [16-19]; i.e., we
impose an “approximately” maximal slice condition (K ,f
=(}) and an “approximately’ minimal distortion gauge con-
dition [D,(3,7/)~0 where D, is the covariant derivative
with respect to y; ;1 [16,17,19]. In the approximately minimal
distortion gauge condition, F; is zero in the linear order in
hi{= ;,-j— &;;) il I/;=0 initially. Thus, in the wave zone, f;;
approximately satisfies a transverse condition h;; ;= 0.

We also performed a few simulations using a dynamical
gauge condition {21] in which we solve

6:Bk2;k[(F[+A“;:FI), (5

where At denotes a time step in a numerical computation.
We have found that the magnitude of the numerical error
depends weakly on the spatial gauge condition, bul gravita-
tional waveforms and the qualitative nature of the numerical
error do not. Thus, in this paper, we present the results oh-
tained in the approximately minimal disiortion gauge condi-
tiomn,

During numerical simulations, violations of the Hamil-
tonian constraint and conservation of mass and angular mo-
mentum are menitored as code checks. Numerical results for
several test calculations, including stability and collapse of
nonrotating and rotating neutron stars, have been described
in [12]. Several convergence tests have been also presented
m [12].

B. Outer boundary conditions

Outer boundary conditions for geometric variables have
been modified from previous ones [16—19]. We impose a
boundary condition for ¢ as

M
$=5-+0(r7), ©)

where M denotes the ADM mass of a systemn computed at ¢
==(). We note that M is an approximately conserved quantity
in axial symmetry, since only a small amount of gravitational
waves are emitted in axisyrmmetric oscillations.
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For h; (= V; ;— &), we first carry out a coordinate trans-
formation from the Cartesian coordinates to spherical polar
coordinates (7,8, ) with the flat metric, 7,; [the subscripts
a and b denote components of the spherical polar coordinates
{r,0,¢)], and then impose outgoing-wave outer boundary
conditions of the form

hizrt=fi(1-r),
hegr?=fa(1—7),
hgrt=falt—r),
hagr=F4(t—r),
higor=Fs(t—r),
hpor=rolt=1), 7

where h;; denotes a tetrad component and f;(i=1~6) de-
note functions: Since f;(r—ry=f[t—Ar—{r—A41)], the
value of fi{t—r) at the outer boundaries should be equal to
that at a time ¢— At and at a radius #—A¢ which is deter-
mined using the values of 8 nearby grid points at a previous
titne step [20]. These sets of the outer boundary conditions
are well-suited for a solution of the linearized Einstein equa-
tion in the transverse-traceless gauge condition for A, if
they are imposed in a distant wave zone [24]. In the local
wave zone, however, Egs. (7) are approximate boundary con-
ditions since higher order terms of #/r are neglected. There-
fore, numerical errors and unphysical solutions may be gen-
erated around the outer boundaries. In addition, A i should
physically contain nonwave modes (such as stationary mul-
{ipole modes) which do not obey the boundary conditions
{7). Since no attention is paid to such modes in imposing the
condition (7), additional numerical errors may be excited.

In the case of the approximately minimal distortion
gauge, we adopt the same boundary conditions for F;, K,
and A;; as thosc used in previous papers [16,17} iec., F;
=[K=0, and an outgoing-wave houndary condition is im-
posed for A ;j- In the dynamical gauge condition, an
outgoing-wave boundary condition is imposed for F;, be-
cause it obeys a hyperbolic-type equation.

HI. WAVE EXTRACTION METHODS

A. Gauge-invariant technigue

Gravitational waves are extracted in terms of a gauge-
invariant technique [22,23]. In this method, the fully nonlin-
ear 3-metric 7y,, in spherical polar coordinates is split as
Hapt Eap» wWhere €, 1s regarded as the perturbation on the
flat background. In axial symmeiry, &,, can be decomposed
as 3, ¢, where ¢, is given by

HZ:'YIO hljy,l{],ﬁ ) 0 0 CIaHYIO sin @
o= * ri(K Yot G W) 0 +1 % 0 —riDWysind |, (8)
¥ # f'zsiHEG(Kij*GJWH)) B 0
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Here, * denotes the symmetric components. The first term in
Eq. () corresponds to even parity (polar) perturbations and
the second one to odd parity (axial) perturbations. The quan-
tities H,;, by, K, G;, C,, and D; are functions of r and ¢,
and are calculated by performing integrations over a two-
sphere of a given radius, Y, is the spherical harmonic func-
tion, and Wy, is defined as

Wio=[(3,)—cotfd,]¥ . (9}

The gauge-invariant variables of even and odd paritics are
then defined as [22,23]

2(1-2)!

2(i+2
R?(r,r}E\/T%w:E%—( +rd D;) (11)

Ri(t,r)=

where

h
ko =K+ 11+ I)Gl+2r(?,.GI—27”, (12)

a
ky=Hy= 2L A{K U+ 1G], (13)

Luminosity of gravitational waves is computed from

dE

2

2 =35 2 ORI+, (14)
The time derivative of the gauge-invariant quantities in Eq.
(14) is taken by a finite-differencing. Hercafter, we focus
only on the even-parity mode with /=2 because for the os-
cillations considered in this paper, its amplitude is much
larger than that of other modes.

In an appropriate radiation gauge, a + mode of gravila-
tional waves is extracted from the asymptotic behavior of the
following quantity at r— o]

_ | Yoo
h+= ?( Yoo~ Sin29 . (!5)
For =2, h. can be wrilten as
t
., = 2: )sm 29, (16)

where A,(#) denotes a function of time. Using A., the
asymptotic behavior of R is written as

E 64TA;

B. Quadrupole formula

In quadrupole formulas, gravitational waves are computed
from
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hy=pP* P} (18)

"dr

2d fk,)

where £;; and P!-j= 5,-m,-~n,-nj(n,-:x"/r) denote a trace-free
guadrupole moment and a projection tensor. From this ex-
pression, the + mode of gravitational waves with {=2 in
axial symmetry is written as

ot =Tt
h‘f“":————*—“( "‘)r wlle) g, (19)

where /;; denotes an appropriately defined quadrupole mo-
its second time derivative. Equation (19) im-
plies that in Ay(y=1 (1)
=1, (te). e is a retarded time which is approximately de-
fined by

ment, and i; |

quadrupole  formulas,

=~ Feie— 2M In (2{:;; 1)! (20)

where r..=r(1+M/2r)*>M. Equation (20) is the valid
expression only for the Schwarzschild spacetime. In axisym-
metri¢c spacetimes, the retarded time should depend on the
direction of wave propagation. However, the magnitude of
the difference between Eq. (20} and the exact one would be
of O(M) and, hence, much smaller than the typical wave-
length.

In fully general relativistic and dynamical spacetimes,
there is no unique definition for the quadrupele moment and,

hence, for /;;. Here, we choose for simplicity

I= f p*.rix“"d‘;x‘ 2n
Then, using the continvity equation of the form
iyt alpyv)=0, (22)

we can compute the first time derivative as
I',-J-: j p*(v"xj+x"v‘i)d3x. (23)

To compute {;;, we carried out a finite differencing of the

numerical result for ;.

Since the quadrupole moment /;; is not defined uniquely
in the dynamical spacetime in general relativity, gravitational
waveforms computed by quadrupole formulas depend on the
form of [;;. In addition, they depend on the gauge condi-
tions, smce a physical point which coordinates x' and £ de-

note (and, as a result, the magnitude of {;; and I ;) 1s not
identical in two different gauge conditions. Even if an iden-
tical definition of the quadrupole formula is employed, wave-
forms do not in general agree when different gauge condi-
tions are adopted. Therefore, we should keep in mind that the
waveforms computed from Eq. (19) are special ones ob-
tained in specific choices of /;; and the gauge condition. All
these facts imply that to know the validity of the quadrupole
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formula which one chooses, comparison between the wave-
forms by the quadrupole formula with those extracted from a
metric should be made.

IV. NUMERICAL RESULTS
A. Setting

The simulations were carried cut along the following pro-
cedure: (i) neutron stars in equilibrium were prepared, (i) a
perturbation to the equilibria was added, (i) the constraint
conditions were reimposed by solving the constraini equa-
tions for the perturbed siate, and then (iv) we started the time
evolution.

To model neutron stars in equilibrium, we simply adopt
the polytropic equation of state as

P:Kpi‘f’(”lr), (24)

where K is the polytropic constant and n the polytropic in-
dex. For the evolution of the neutron stars, we adopt a ['-law
equation of state in the form

P=(I'-1)pe, {25}

where U'=1+1/n. We set n=1 (I'=2) as a reasonable
qualitative approximation to a cold, nuclear equation of state,
With these equations of state, realistic neutron stars may not
be modeled precisely. However, in the current situation in
which no one knows a real equation of state of neutron stars
exactly, modeling neutron stars with a simple equation of
state is an adequate and popular strategy.

In the present choice of the equation of state, physical
units enter the problem only through the polytropic constant
K, which can be chosen arbitrarily or else completely scaled
out of the problem. For n=1, k' has units of length, time,
and mass, and K~ units of density in the gcometrical units.
Using this property, we rescale all the quantities to be non-
dimensional and show only the nondimensional quantities,

One often prefers to use particufar dimensional units even
in the polytropic equation of state. For example, in [15], the
authors fix the value of K as 1.455X 10° cgs. For the sake of
comparison with the previous paper, we convert nondimen-
sional quantities to dimensional ones with the polytropic
constant K=1,455x 10° cgs. In this special value, the mass,
the density, and the time in the dimensional units are written
as

M 4= 1.80M K U-( i ) (26)
T PO 1.455% 105 cgs)  10.180)

-1
K
Paim=1.86X 10" g/cm? ———————)
1.455%10° cgs

P
X (m) , 27)
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TABLE 1. Central density p,., baryon rest-mass M., ADM
mass M, compactness M/R, angular momentum J in units of M2,
and numerical resuits for fundamensal radial oscillation period with
/=2 in units of 27R¥*/M? of neutron stars that we pick up in this
paper. Here, R denotes the circumference radius at the equatorial
surface. For the rotating stars, the compactness measured by the
polar radius is also listed in parentheses. All the quantities are
shown in units of e=G=K=1.

p. M, M MIR  JIM® P lQaR¥M ™
S 0.127 0.150 0.140  0.146 0 0.84
§2 0.190 0.170 0.156  0.178 0 0,84
S3 0.255 0.178 0.162  0.200 0 0.85
R1 0.103 0.169 0.158 0.111(0.181) 0.667 0.48
R2 0.118 0.178 0.165 0.120(0.194) 0.648 0.48
R3 0.136 0.186 0.172 0.129(0.207) 0.630 0.50

T yim=4.93 ( K )m( T) (28)
im=4.93 msec| ——————— — .
! 1.455%10° cgs/ 100

We adopted six models of neutron stars referred to as
S1-83 and RI-R3 in this numerical experiment. Models
S1-83 are spherical stars and R1-R3 are rigidly and rapidly
rotating stars whose angular velocities at the equatorial sur-
face are approximately equal to the Keplerian angular veloc-
ity (i.e., at mass-shedding limits). By exploring rotating stars
at the mass-shedding limits, the effects of rotation on rigidly
rotating neutron stars are clarified most efficiently.

The maximum gravitational masses of spherical stars and
rigidly rotating stars with n=1 (I'=2) are ~0).164K /* and
~0.188K "7, respectively [25]. Thus, the models adopted
here are sufficiently general relativistic in the sense that their
masses are close to the maximum values. In Table 1, charac-
teristic quantities for models S1-53 and R1-R3 are listed in
the nondimensional units (in the units with c=G=K=1).

To induce nonspherical stellar oscillations to nonrotating
stars, we superimposed a velocity perturbation as

S ,=~Vw and du,=Vz, (29)
where Sug, and Su, denote the four-velocity of cylindrical
(w= JxZ+y?) and z components. V is a constant and put as
V=0.1/w, where w, denotes the coordinate radius at the
equator, i.e., at the equatorial surface, the velocity is =~ 10%
of the light speed.

For the rotating stars, two types of the perturbations are
adopted. One is a velocity perturbation given by

Sug=——=—w and Ju,=Vz, (30)

2

with V=0.3/w,. The other is a pressure perturbation in
which we simply reduced the pressure uniformly by chang-
ing the polytropic constant from the equilibrium value to a
smaller one. In this case, a quasiradial oscillation is induced.
Since the rotating star is nonspherical, gravitational waves
are emitted even in this sefting.
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FIG. 1. (a) Gauge-invariant variables with /=2 in units of M for oscillation of a nonrotating neutron star S2 extracted at riM=50.2
(dotted-dashed curve), 57.4 (dashed curve), 64.6 (fong-dashed curve), and 71.8 {solid curve). (b} Gravitational waveforms after systematic

numerical errors are subtracted. In the simulation, N=720.

The simulations were performed changing grid spacing
and location of outer boundaries. As found in [12], the nu-
merical results are sufficiently convergent if the stellar radius
is covered by more than 30 grid points. Taking into account
this fact, the grid spacing is fixed in the simulations of this
paper as follows: For nonrotating stars, we chose it as
/40, and for rotating stars, w,/60: Since the axial ratio of
the rotating stars at the mass-shedding limit is ~0.59, the
polar axis is initially covered by about 36 grid points with
this setting.

On the other hand, the location of the outer boundaries
was changed varying N from 480 to 720. We typically
choose N=720, since with this number, L is larger than a
characteristic gravitational wavelength A and, thus, the outer
boundaries are located in a local wave zone. Since L> A, we
expect that the amplitude of gravitational waves could be
calculated within ~ 10% error.

Table II describes the values of L and the location L, at

L

ifll

0.0015!1;\;E\1\Tsr;

0
[
—~0.001
~0.002 |-
cloeov i v b e b b 13
0 200 400 600 B00 1000
(&) (t—r) /M

which the gauge-invariant variables are extracted. Typically,
L, is chosen to be ~0.9L. Note that varying L, from L/2 to
0.95L, it is found that the amplitude of gravitational waves
depends very weakly on the location of L, [sce Figs. 1(b)
and 2(b)] for a fixed value of L.

B. Systematic numerical errors

Since the outer boundaries are located in the local wave
zone and, hence, the boundary conditions which are appro-
priate only for the distant wave zone are not precise ones,
systematic numerical errors are generated around the outer
boundaries. As a consequence, gravitational waveforms
(gauge-invariant variables} are contaminated by numerical
errors. To accurately extract gravitational waves, we need 1o
eliminate the errors from raw data sets of the gauge-invariant
variables.

First, we summarize the behavior of the numerical errors.
In Figs. 1(a} and 2(a), we display time evolution of raw data

I T 1 T T I LI E T E 1T I,,,
0.01 I -
j ]
£ A | -
= ]
~ J
+ : 7
£~ -0.01 —_
19 i
~0.02 -
"| 11 l 1.1 1 | | 1 dl L \ [ l‘
200 400 600 800 1000

1) (t-r) /M

FIG. 2. (a) Gauge-invariant variables with /=2 in units of M for oscillation of a rotating neutron star R2 extracted at »/M =50.7
fdotted-dashed curve}, 57.9 (long-dashed curve), 65.2 (dashed curve), 72.4 {(dotted curve), and 79.6 {solid curve). {(b) Gravitational wave-
forms after systematic numerical errors are subtracted at /M =652 {dashed curve), 72.4 (dotted curve), and 79.6 (solid curve). The

simulation was performed with N ="720.
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sets of the gauge-invariant variables extracted at several radii
for models S2 and R2 with N=720, The gauge-invariant
variables are composed mainly of three compenents: {i) a
pure wave component which denotes gravitational waves,
(i1) a constant component, and (iii) a secular drift component
whose magnitude increases with time and is larger for the
larger value of radius. To obtain clear gravitational wave-
forms, it is necessary to eliminate the components (ii) and
(iii).

The presence of the component {ii} is in part due to the
fact that the gauge-invariant variables are computed at finite
radii. They are composed not only of gravitational waves but
also of a quasistationary component which falls off as r™"
for n=2. In particular, rapidly rotating stars are of spheroi-
dal shape and, hence, they yicld quasistationary quadrupole
and higher multipole moments which slowly vary throughout
the simulation. As Fig. 2(a) shows {see for r—r,<<0), this
component is smaller for the larger value of extracted radius
because it falls off as r™" with n=2.

A part of the component (ii} and the component (iii) are
numerical errors associated with an approximate treatment of
the outer boundary conditions. In the following, we explain
the origin of it in detail.

In the wave zone, the magnitude of h;; is small and,
hence, it approximately obeys a linearized Emstem equation.
In the formalism which we currently use [19], the linearized
equation for & is of the form

=Ah,+ ST, (31)

where A, denotes the flat Laplacian and Sf-fj- is composed of
spatial derivatives of a=a— 1, &', p=¢®—1, and F, as

1
Sh "'(4])+2a)|lj 77[1 f(4p+2a)+ ﬂxkﬂ E;m%‘" 77;&-8 i

2 Sk 2 !
3 0B | Fiy+ Fii— 3 77 Fyrl. (32)
Here, |i denotes the covariant derivative with respect to the
flat metric 7.

Because of the functional form of S%

;j» the solution of A;
may be written as

2,
by =R+ £t £y 3 1 (33)

-U

where hﬁw and &, obey the following equations:

A=A h0Y (34)

Ey=ApE Bt (2pta),— Fy. (35}

Since the inhomogeneous solution of &;;, which is associ-
ated with § f;, is written by a gauge variable &, , S does not
contribuie the gauge-invariant variable [26].

Gravitational waves may be extracted from G,, which is

calculated by

PHYSICAL REVIEW D 68, 104020 (2003}

i
Gzﬁ@ ff; (hag—hee)WaedS. (36)

This variable can be regarded as gravitational waves in
gauge conditions in which &,=0 (e.g., in the harmonic gauge
condition). However, in the present case, £, is not guaranteed
to be vanishing and the effects of & are contained in G,
Consequently, the waveforms may be deformed by unphysp
cal modulations and secular drifts due to the presence of £
This illustrates that the gauge-invariant technique plays an
important role for extraction of gravitational waves in gen-
eral pauge conditions.

General forms of outgoing-wave solutions of Eq. (34) for
h(’w have been derived by Teukolsky [24] and Nakamura
[29] However, numerically, such solutions can be exactly
computed only when (a) a strict outgoing-wave boundary
condition well-suited in a local wave zone is imposed and (b)
the transverse condition is guaranteed. In the present numeri-
cal simulations, these conditions are not satisfied strictly.
Therefore, unphysical modes as well as numerical errors
contaminate numerical sofutions of S .

One of the candidates for the dominant unphysical modes

is a solution for the equations A 2" =0 and k3 =0. From

the relation hG =0, hGW is written as HO (x)+H,J,(x)t
where HO and H ! satisfy the Laplace equation. Note that
Hj; (n= 0 and 1) do not satisfy the transverse-traceless con-
dition in gencral. By performing a spherical harmonic de-
composition of h;; in the spherical polar coordinates (see
Appendix A), we find the asymptotic behavior of the solu-
tions of the fth moment for »& M as

H}}wr”iz, Aorm N and p3 (37)

The solutions of /"2 and » /" can be written in the form
Vi;+ Vi where V, denotes a vector. These components are
eliminated from the gauge-invariant variables. However,
other solutions cannot be written in terms of V;. Thus, four
of six solutions may be contained in the gauge-invariant vari-
ables as unphysical modes. Properties of the unphysical so-
lutions are summarized as follows: (a) they may increase
linearly with time and (b} they may be larger for larger ex-
tracted radit because of the presence of the modes propor-
tional to »'*? and r'. These properties agree with the numeri-
cal results shown in Figs., 1{a) and 2(a).

Besides the global numerical errors described above, un-
physical local waves of the form f{t=*r) may be contained
in hgw. However, this is not a systematic error and, hence, it
is not possible to eliminate systematically. Fortunately, the
magnitude of such components is not as large as that of the
systematic errors (see below).

The systematic nonwave components may be fitted using
a function of the form C=Cy(r}+ C (r)t. Thus, we deter-
mine Cp and C; and then subtract C from the gauge-
invariant variables. As mentioned above, Co{r) arises both
from a nonwave component associated with the stationary
quadrupole moment and from the unphysical modes associ-
ated with H};. C(r)t arises from the unphysical modes as-
sociated with HY;.
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For the nonrotating stars, Cy and C; appear to be un-
changed throughout the simulations. Thus, to determine
Co(r) and C,(r) at each radius, a least-square fitting against
the gauge-invariant variables is carried out in the time do-
main. For the fitting, all the data sets with r—r, =0 are used.

For the rotating stars, on the other hand, C, and, in par-
ticular, C; suddenly change at t — r,~300M. (The reason is
not very clear.} Thus, these coefficients are separately deter-
mined for t—r = 300M and ¢ r,=300M, carrying out the
least-square fitting with two different data sets. Namely, we
subtract a function of the form

Co(r)+Cy(r)t
Cr)+Ci{r)

for t=<t,,(r),

for 122 1,(r), (38)

where ¢,(r) is a time ~300M and satisfies the relation
Co(#)+ C (Mt (ry=Cy(ry+ ()t (r) at each radius.
To validate that modified waveforms depend weakly on
the subtraction method, the following alternative method is
also adopted: According to Eq. (37), Cy and C, for R are
expressed by linear combinations of the functicns
A, r%, ¢! and £}, For a large value of the extraction
radius L,, we may expect that Cy=~0 and Coxrt at the
leading order. In this assumption, C may be computed as

E E
raRy(ra) = riRy(r )
e R L, (39)
=

where r| and r, denote two different radii, which is close to
L,. After the subtraction of the dominant part, it is found
that a component of small magnitude associated with C; still
remains, To eliminate this remaining nonwave part, we sim-
ply subtract a constant {rom the resulting waveform.

In addition to the least-square ftting method, we have
also adopted this method and confirmed that the subtracted
waveforms by this alternative method agrec approximately
with those in the least-square fitting (the wave phases agree
well, and the relative difference of the amplitude is within
10%). Thus, in the following, numerical results based on the
subtraction using the least-square fitting are presented.

In Figs. 1{b) and 2(b), we display improved gravitational
waveforms rh, /sin*6 obtained after the nonwave compo-
nents and the numerical errors are subtracted. It is found that
the resulting wave amplitude and phase depend very weakly
on the extracted radii for t—r,>0. This confirms that the
extracted components are certainly gravitational waves.

For the rotating star, the amplitudes of the gravitational
waveforms extracted at different radii are in slight disagree-
ment with each other. Figure 2(b} shows that the magnitude
of the difference is ~ 10~ *, This indicates that even in the
improved waveforms, numerical errors of magnitude ~ 1074
still remain. The origin is likely to be a nonsystematic crror
such as spurious wave COmponents.

Besides quasiperiodic waves, a spike is visible at the be-
ginning of the simulation (at 1~ 10M) in Figs. 1 and 2. We
do not understand the origin of it exactly. The following is an
inference for the possible origin: At t=0, we rather crudely
add a weakly nonlinear vetocity perturbation o equilibrium

PHYSICAL REVIEW D 68, 104020 (2003)

states. Because of the weak nonlinearity, impulsive gravita-
tional waves may be excited besides eigenoscillation modes
of the equilibrium stars. Such impulsive gravitational waves
seem 1o propagate at t—r~10,

Before closing this subsection, we note the following: The
magnitude of the numerical error associated with H7; is not
very large in three-dimensional simulations for a binary neu-
tron star merger [19] and oscillation of neutron stars [17],
although it might be contained. We suspect that the excita-
tion of such unphysical modes may be associated with the
interpolation used in the Cartoon methed. (In this paper, we
simply adopt a second-order interpolation.) This suggests
that there should still be room to improve the mmterpolation
scheme in our numerical implementation.

C. Gravitational waveforms
1. Nonrotating stars

Improved gravitational waveforms with /=2 from axi-
symmetrically oscillating and nonrotating neutron stars for
models 82 and 83 are displayed in Fig. 3. For both models,
the simulations were performed with N =480 (dotted-dashed
curves), 600 (long-dashed curves), and 720 (solid curves).
Gravitational waveforms evaluated by the quadrupoele for-
mula (dashed curves) are displayed together to illustrate its
validity. The quadrupole formula was used in all the simula-
tions and it is found that the gravitational waveforms depend
very weakly on the value of N. Here, the numerical results
for N=720 are plotted.

Figure 3 indicates that one oscillation mode is dominantly
excited. As a result, the wavelorms are well-approximated by
a simple sine curve. Indeed, the Fourier spectra of
rR4% 5in@ possess one sharp peak, and the oscillation pe-
riods are =~0.84, 0.84, and 0.85 in units of 27 JR*/M for
models S1, 82, and 83, respectively [27]. Thus, irrespective
of compaciness of the neutron stars, the oscillation period is
=~(0,85X 27 R’IM. This implies that the oscillation is asso-
ciated with the fundamental quadrupole mode, since the co-
efficient (=0.85) depends very weakly on the compactness
of the neutron stars for a given equation of state [28].

From Eq. {14), the luminosity of gravitational radiation as
a function of time is computed. Since the luminosity also
varics in a periodic manner, we define an averaged encrgy
Alux according to

dE 1 10+ Pos dE
= f d (40)
1

JEE— e t,
dt Pose Jiy dt

where tg is a constant, For models S1-83, the averaged lu-
minosity is ~6X 1078 (in units of G~ '¢”). Therefore, the
energy dissipated in one oscillation period is much smaller
than the total mass energy of the system and the radiation
reaction time scale is much longer than the oscillation pe-
riod.

Figures | and 3 indicate that (i) the wavelength is inde-
pendent of L and L,, (ii} the amplitude of gravitational
waves is overestimated for the smaller values of L and L,
and (it} the amplitude for model 83 approximately con-
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FIG. 3. Gravitational waves with /=2 from nonrotating neutron stars with axisymmetric oscillations (a) for models $2 (left) and {b) S3
{right). For both models, we show the resuits with N=480 (dotted-dashed curve), 600 (long-dashed curve}, and 720 (solid curve). The
dashed curves dencte the corresponding gravitational waveforms by the quadrupole formula, Here, the gravitational waveforms are extracted
at L,~0.9L. Note that the behavior of the raw data is very similar te that in Fig. 1, i.c., with the increase of L, (with the increase of N for

a fixed grid spacing), the amplilude of the drift is larger.

verges to an asymptotic value for N=600 within ~10% er-
ror. These facts suggest that for L,= ) (see Table II), con-
vergent gravitational waveforms within 10% error can be
computed. On the other hand, if the outer boundaries are
located in a near zone with L<CA, the amplitude of gravita-
tional waves is overestimated: For L~2\/3, it is overesti-
mated by a factor of ~20%. This result is consistent with
that in our previous study for gravitational waves from bi-
nary neutron stars in quasiequilibrium circular orbits {30].
The quadrupole formula yields well-approximated gravi-
tational waveforms besides a systematic underestimation of
the wave amplitude. For models 52 and S3, the asymptotic
amplitudes of A, /M are about 0.010 and 0.007, respectively.
On the other hand, according to the quadrupole formula, they
are about 0.008 and 0.0055. Thus, the undcrestimation factor
is ~20%. If it is due to the first post-Newtonian correction,
the factor should be proportional to the compactness of neu-
tron stars M/R(=GM/Rc?) or v2(=v*/c®) where v de-
notes the typical magnitude of the oscillation velocity. To
determine which is the dominant component, we performed a
simulation reducing the magnitude of the velocity perturba-
tion initially given (i.e., reducing the magnitude of V) and

found that the wave amplitude is underestimated by ~20%
irrespective of the magnitude of V. Therefore, we conclude
that the underestimation factor is proportional to the magni-
tude of M/R in the present case.

Although the wave amplitude is underestimated, the wave
phase is computed accurately by the quadrupole formula.
The most important element in detection of gravitational
waves using matched filtering techniques is to g priori know
the phase of gravitational waves. From this point of view, the
quadrupole formula is a useful tool for computation of gravi-
tational waveforms.

2. Rotating stars

In Fig. 4, gravitational waveforms with =2 from oscil-
lating and rapidly rotating neutron stars for models R2 and
R3 are displayed. For these simulations, velocity perturba-
tions are added initially without changing other quantities.
The numerical results are shown for N=480 {long-dashed
curve) and 720 (solid curve). For N=480 and 720, the
gauge-invariant variables are extracted at =~2A/3 and A, re-
spectively. The waveforms computed by the quadrupole for-
mula (dashed curves) are displayed together.

TABLE II. Values of L and L, in units of M for various values of N. For comparison, we show a
gravitational wavelength for the fundamental quadrupole (/=2) mode derived from numerical resudts.

Nonarotational LiM for N=480, 600, 720 L,/M for N=480, 600, 720 NM
S1 64.4, 80.5, 96.6 53.5, 66.9, 80.3 94.8

52 57.5,719, 863 47.8,598,71.8 70.5

53 554,693, 83.2 46.1, 57.6, 69.2 60.5
Rotational LiM for N=480, 720 L, /M for N=480, 720 NM
Rl 63.3, 94.9 579, 869 80.8

R2 38.0, 87.0 53.1, 79.6 73.3

R3 532,798 48.7, 73.0 66.5
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FIG. 4. Gravitational waves with /=2 from rotating neutron stars R2 {left) and R3 {right} with N =480 (long-dashed curve) and 720
{solid curve). The dashed curves denote Lhe results by the quadrupole formula.

In contrasi to those from oscillating and nonrotating neu-
tron stars, the gravitational waveforms are not of simple sine
curve. There are two main reasons. One is the following: In
the nonrotating case, the restoring forces against a compres-
sion for w and z directions are of identical magnitude and,
hence, the oscillation periods of two directions agree. For the
rotating stars, on the other hand, the two restoring forces are
not of identical magnitude and, therefore, the oscillation pe-
riods of two directions do not agrec. Due to this fact, the
waveforms are composed of more than two oscillation
modes.

The other reason is that gravitational waves are emitted
due to a quasiradial motion in the case of rotating neutren
stars in contrast to nonrotating neutron stars. In parlicular,
here we choose rapidly rotating neutron stars and, therefore,
the wave amplitude can be as large as that for the quadrupole
oscillations.

To clarify what oscillation modes are relevant, the Fourier
spectrum F(f) for models R2 and R3 is displayed in Fig. 5.
This shows that there are two characteristic peaks in the
spectrum. The oscillation periods defined by 1/f e, where
fpeax 18 the frequency of the peaks in the Fourier spectrum,
are listed in Tables I and 111

For models R1-R3, the oscillation period of the larger
frequency is

R3
Poe=0.5X2m =,

where R is the equatorial circumferential radius. The coeffi-
cient (=+0.5) depends very weakly on the compactness of the
neutron star. This indicates that the oscitlation mode is the
fundamental quadrupole mode.

The frequency of the other peak is smaller than that of the
fundamental quadrupole mode. This peak is likely to be as-
sociated with the fundamental quasiradial oscillation mode
(p, mode}. To confirm this prediction, we performed the
Fourler analysis to the time sequence of the central density
and found that the characteristic oscillation period indeed
coincides with that of the second peak (see Table IIT). Fur-
thermore, it agrees with the characteristic frequency for qua-
siradially oscillating neutron stars presented in [12] All these
facts confirm our prediction.

The Fourier spectra indicate that gravitational waves from
axisymmetric global oscillations of rigidly rotating stars are
composed of two dominant modes. To confirm this conjec-
ture, we performed simulations initiated from another initial
condition in which the pressure is uniformly depleted but the
velocity (ield is unperturbed, To uniformly deplete the pres-
sure, K is decreased by 20% at r=0. In Fig. 6, we display (a)
the gravitational waveform and (b) the Fourier spectrum for

(41)
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FIG. 5. The Fourier spectrum
of gravitational waveforms for
models R2 {left} and R3 (right).
The spectrum is normalized by the
maximum value, and the fre-
guency f is shown in units of
M~'. The peaks of the smaller
and larger frequencies indicate the
quasiradial and  quadrupole
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TABLE MlI. P /(2oRY M ') for the fundamental guasira-
dial mode calculated from the evolution of the central density and
gravitational waveforms, The last columa shows the resuits ob-
tained from simulations of the quasiradial osciliation.

P /2aR¥M Ty p  H2uRM Ref. [12]
{for central density) (for gravitational waves}
Rl 0.66 0.66 0.66
R2 0.69 0.70
R3 .76 0.76 0.76

model R1 for this simulation. Figure 6(b) shows that two
modes, the fundamental quadrupole and quasiradial ones, are
dominant again. This result justifies our conjecture. In con-
trast to the cases in which the nonspherical velocity pertur-
bation is added, the mode with lower frequency, i.e., the
quasiradial mode, is dominant. This is because the matter
motion is almost guasiradial.

In the collapse of a massive rotating stellar core, a proto-
neutron star will be formed. If the progenitor star is not rap-
idly rotating and its degree of differential rotation is not high,
the protoneulron star relaxes to a nearly quasistalionary state
soon after the collapse {e.g., [1]}. At the formation of a ro-
tating protoneutron star in a nearly quasistationary state, non-
spherical oscillations are excited by the quasiradial infall.
Because of the nonspherical nature, gravitational waves are
emitted [1]. As illustrated above, in such oscillating neutron
stars in a nearly quasistationary state, two dominant modes
{(quasiradial and quadrupole modes) may be excited. If the
collapse is quasiradial, the quasiradial mode will be the main
component. On the other hand, if the nonspherical quadru-
pole oscillation of high amplitude is excited, the quadrupole
mode will be dominant.

As Fig. 4 shows, the wave amplitude decreases with time
in the early phase (r~r,=<500M), and then relaxes to a
small value. On the other hand, the amplitude does not de-
crease in Fig. 6. This indicates that the amplitude of the
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quadrupole oscillation decreases with time to a small value,
while the quasiradial oscillation does not. As mentioned
above, the oscitlation frequencies for z and w directions are
not identical for the quadrupole oscillation of rotating stars.
As a result, shocks may be formed at a collision of compres-
sion waves in the two different oscillation directions. Repeat-
ing this process, the quadrupole oscillation may be gradually
damped. On the other hand, there is no process that damps a
quasiradial mode quickly. Thus, it is reasonable to expect
that the quasiradial mode eventually dominates in the oscil-
lating and rotating stars.

Using Eq. {14), the luminosity is computed. It is found
that until £~ F000M, the total radiated energy is computed as
~5%107*M, which is much smaller than the total mass
energy of the system. Therefore, the damping time scale of
the wave amplitude due to gravitational waves is much
longer than the oscillation and rotation periods.

As in the nonrotating case, approximate gravitational
waveforms were computed using the quadrupole formula.
Figures 4 and 6 indicate that the waveforms agree with those
computed by the gauge-invariant method, besides a system-
atic underestimation of the amplitude. The underestimation
factor is of order M/R as in the nonrotating cases. In the case
of rotating stars, a modulation of the wave amplitude is out-
standing. Using the quadrupole formula, however, such
modulation can be well computed. As mentioned in Sec. IV
C 1, the most important element in detection of gravitational
waves using matched filtering techniques is to a priori know
the phase and modulation of gravitational waves. The results
here indicate that they are computed well in the quadrupole
formula. Therefore, for compuiation of gravitational waves
in a rotating stellar core collapse to a protoneutron star, the
quadrupole formula may be a useful tool.

V. SUMMARY AND DISCUSS1ON

We have studied gravitational waves from axisymmetri-
cally oscillating neutron slars adopting the gauge-invartant
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FIG. 6. (a) Gravitational waves with /=2 from rotating neutron stars R1 in a quasiradial oscillation with N=480 (solid curve). The
dashed curves denote the results by the quadrupole formula. (h) The Fourier spectrum of gravitational waves. The spectrum is normalized by
the maximum value, and the frequency fis shown in units of M ', The peaks of the smaller and larger frequencies indicate the quasiradial
and quadrupole modes, respectively. In this case, the quasiradial mode is dominant {compare with Fig. 5).
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wave extraction method as well as the quadrupole formula. It
is found that several types of the nonwave components such
as the stationary paris of metric and numerical errors are
contained in the gauge-invariant variables. The numerical er-
rors are generated due to an approximate treatment for the
outer boundary conditions. We illustrate a method to subtract
the dominant components of the numerical errors and dem-
onstrate that it is possible to extract gravitational waves even
from such noisy data sets with a residual of magnitude
~107",

The gravitational waveforms computed in the quadrupole
formula agree well with those obtained from the gauge-
invariant fechnique besides a systematic underestimation of
the amplitude by ~~20%. An important point is that the evo-
lution of the wave phase and the modulation of the amplitude
are computed with a good accuracy. This indicates that for a
study of gravitational waveforms from rotating stellar core
collapse to a protoneutron star, the quadrupole formula will
be a useful tool in fully relativistic simulations. It should be
also addressed that the result in this paper supports the treat-
ment in [1] in which gravitational waveforms are computed
using a quadrupole formula in approximate general relativis-
tic simulations.

The gauge-invariant variables are cxtracted for various
values of extraction radii. It is found that to extract gravita-
tional waves within ~ 10% error, the extraction radius has to
be larger than ~90% of the gravitational wavelength. If the
outer boundaries are located in the near zone with L<<X\, the
amplitude of gravitational waves is overestimated: For L
~2 N3, it is overestimated by ~20%. For L<<2A/3, the
factor of the overestimation is even larger.

In the present work, the amplitude of gravitational waves
in a local wave zone is much larger than that of systematic
numerical errors. This fact enables us 1o subtract them from
the gauge-invariant variables accurately. If the magnitude of
the errors is much larger than that of the amplitude of gravi-
tational waves, however, it would not be possibie to carry out
an accurate subtraction. For example, in rotating stellar core
collapse, the amplitude of gravitational waves in the local
wave zone at r~\ is at most ~ 1077 according to gravita-
tional waveforms calculated by a quadrupole formula [11 To

PHYSICAL REVIEW D 68, 104020 (2003)

achieve that, we need to impose more accurate outer bound-
ary condittons. Developing such conditions is crucial in com-
puting gravitational waves of small amplitude of 01073
from raw data sets of metric.

Another possible method for computing accurate gravita-
tional waves of small amplitude is to adopt a quadrupcle
formula taking into account higher-order post-Newtonian
terms. As indicated in this paper, the simple quadrupole for-
mula underestimates the amplitude of gravitational waves by
O(M/R). In rotating stellar core collapse, the error in the
amplitude will be ~10%. To compute the amplitude within
~ 1% error, we should take into account higher general rela-
tivistic corrections. In guadrupcle formulas with the higher
post-Newtonian corrections (as derived in [31]), it may be
possible to obtain gravitational waveforms within 1% error.
Such formulas will be useful to extract gravitational waves
of small amplitude from rotating stellar core collapses and
from oscillating neuvtron stars.

In addition to the study for gravitational wave extraction,
oscillation modes of rotating neutron stars are analyzed. It is
found that two modes {the {undamental quadrupele and qua-
siradial modes) are dominantly excited due to the global os-
cillation. The frequency of the quadrupole mode is propor-
tional to yGM/R, and is higher than that of the guasiradial
one for the typical values of mass and radius of neutron stars.
It is shown that the amplitude of the quadrupele mode de-
creases with time due to an incoherent nature of the osciila-
tion, but that of the quasiradial mode is not damped quickly,
hence being the dominant mode after several dynamical time
scales. We expect that in rotating stellar core collapse 1o a
protoneutron star in a nearly quasistationary state, these two
modes may be the main components in the burst phase of
gravitational waves. The quadrupole mode will be damped
within a few dynamical time scales and subsequently the
guasiradial mode will be the deminant component of the
long-term quasiperiodic waves.
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APPENDIX: SOLUTIONS FOR THE TENSOR LAPLACE EQUATION
Here, we describe solutions for the tensor Laplace equations in spherical polar coordinates as
Ak, =0 (A1)
h,p is expanded by tensor harmonic functions as
A!Ym FB[Y;G"Q 0 0 0O rC,r?;,Ym sin &
hab:E * rHKY g+ GiW) 0 1% 0 =rD,Wysind |, {(A2)
! 2,
* * r?sin? 8 (K,Y 10— G,Wio) ¥ 0

where A, B,, C,;, D;, G, and K, are functions of . With the above expansion, the components of the Laplace equation are

written as
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i , N2 2 2N . 2 , AN—2 2
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P
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s
S |

Zl (H{Y 1o+ HIW1p)=0,

A‘ Moo

]

= X (—HY g~ H{W i) =0, (A3)
resin’ g !
where A;=I({+ 1} and ' denotes d/dr.

Setting A;=A,r", B,=Bp", K,=K;r", and F,=F " where A;~F, are constants, simultaneous equations for the even-
parity modes are derived as

x—4  4x 4 0 A,
2 x—4 -2 2n-41{] B

_ =0, (Ad)
2 -2n o x=2 00 ¢

0 2 0 x+2

where x=n(n+ 1}—A,. For the existence of the solutions, the determinant of the matrix should be zero. Then, an algebraic
equation for n is derived, and the solutions are n=[+2, [, —{+1 and —1— 3. The relations among A ,~ F, are easily obtained
for each value of n. It is also easy to check that the solutions with n={—2 and —/—3 are written in the form V;;+V; using
a vector V; of even-parity.

From the same procedure, the solutions for the odd-parity mode are written as C;=C,#" and D,=D;r" where n=1[=*1,

—!and —I—2, and C, and D, are constants. In this case, the solutions with n=1[—1 and —1— 2 are written as Vit Vi using
a vector V; of odd-parity.
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