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We present resuits of three dimensional numerical simulations of the merger of unequal-mass binary neutron
stars in full general relativity, A I"-law equation of state P={I"— 1}pe is adopted, where P, p, £, and I are the
pressure, rest mass density, specific internal energy, and the adiabatic constant, respectively. We take I'=2 and
the baryon rest-mass ratio {2, to be in the range .85~ 1. The typical gnid size is (633,633,317) for (x,y,2). We
improve several implementations since the latest werk. In the present code, the radiation reaction of gravita-
tional waves is taken into account with a good accuracy. This fact enables us to follow the coalescence all the
way from the late inspiral phase through the merger phase for which the transition is triggered by the radiation
reaction. It is found that if the total rest mass of the sysiem is more than ~ 1.7 times of the maximum allowed
rest mass of spherical neutron stars, a black hole is formed afler the merger, irrespective of the mass ratios, The
gravitational waveforms and outcomes in the merger of unequai-mass binaries are compared with those in
equal-mass binaries. It is found that the disk mass around the so formed black holes increases with decreasing
rest-mass ratios and decreases with increasing compactness of neutron stars. The merger process and the

gravitational waveforms also depend strongly on the rest-mass ratios even for the range ¢, =0.85-1.
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L. INTRODUCTION

Binary neutron stars such as the Hulse-Taylor binary pul-
sar [1] adiabatically inspiral as a result of the radiation reac-
tion of gravitational waves, and eventually merge, In the
most optimistic scenario, the latest statistical study suggests
that such rmergers may occur approximately once per year
within a distance of about 30 Mpc {2]. Even the most con-
servative scenario predicts an event rate approximately one
per year within a distance of about 400 Mpc [2]. This implies
that the merger of binary neutron stars is one of the promis-
ing sources for kilometer-size laser interferometric detectors,
such as the Laser Interferometric Gravitational Wave Obser-
vatory (L1GO), TAMA, GEQ600, and VIRGO [3.4].

Interest has also been stimulated by a hypothesis about
the central engine of y-ray bursts (GRBs)} [5]. Recently, it
has been found that many GRBs are of cosmological origin
[5]. In cosmological GRBs, the central sources must supply a
large amount of the energy =10°" ergs in a very short time
scale {order of milliseconds to minutes). Most GRB models
involve a stellar system resulting in a stellar-mass rotating
black hole and a massive disk of mass ~0.1-1M, which
could supply a large amount of cnergy by neutrino processes
or by extracting the rotational energy of the black hole.
GRBs may be classified into two classes. One is a long burst
for which the duration of the bursts is longer than ~1 s and
typically ~ 10 s, and the other is a short burst for which the
duration is typically ~ 100 ms. It has been recently sug-
gested that the merger of binary neutron stars is a possible
progenitor to producing short bursts.

Hydrodynamic simulations employing full general relativ-
ity provide the best approach for studying the merger of bi-
nary neutron stars. Over the last few years, numerical meth-
ods for solving coupled equations of the Einstein and
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hydrodynamic equations have been developed [6-10] and
now such simulations are feasible. In previous papers [7,8],
we focused on the binary neutron stars of equal mass, and
have found the following results: (i) the final outcome (of
either a neutron star or a black hole) depends on the com-
pactness of each neutron star and on the equation of state,
Even if the total mass of the system is ~ 1.5 times larger than
the maximum allowed rest mass of a spherical star for a
given equation of state, a differentially rotating neutron star
supported by a significant centrifugal force may be formed;
{it} in the case of neutron star formation, nonspherical oscil-
lation modes of the formed neutron star are excited and, as a
result, gravitational waves with characteristic frequency ~2
to 3 kHz are emitted; (iii) in the case of black hole formation,
the disk mass around the formed black hole is negligible
because the specific angular momenturn of all the mass ele-
ments in equal-mass binary neutron stars is too small and
also because the angular momentum transfer is not effective
during the merger.

So far, all the simulations in general relativity have been
performed assuming that two neutron stars are identical
[7,8,11,12], since they are indeed approximately identical in
the observed systems of binary neutron stars [13]. For ex-
ample, mass ratio of the Hulse-Taylor binary is about 0.963
[141 However, it seems there is no theoretical reason that
nature should produce only binary neutron stars of nearly
equal mass. Allowed mass range of neutron stars may fall in
a fairly broad range ~1 to 2Mg according to theories of
neutron stars [ 135,16]. From the theoretical point of view, it is
reasonable and an interesting subject to investigate the
merger of two uncqual-mass neutron stars.

One of the most important findings in the previous works
[7.8} is that black hole formation is not accompanied by
disks with a large mass. The mass of the disk is found to be
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less than 0.01M . This result suggests that binary neutron
stars of equal mass may not be good progenitors for the
central engine of GRBs. On the other hand, the disk mass
may be much larger in the merger of binary neutron stars of
unequal mass, because the smaller-mass neutron star would
be tidally disrupted by the more massive primary before con-
tact and would subsequently form a tidal tail around the pri-
mary in which angular momentum transfer is likely to be
efficient to form disks around the central object. In addition,
in association with the change of the merger process, gravi-
tational waveforms may be significantly modified. Actually,
Newtonian and post-Newtonian simulations indicate such
significant changes [17-201.

From a computational point of view, we have substan-
tially improved our implementation for a solution of Einstein
and hydrodynamic equations from our previous approach
{7,8]. Primarily, a modified numerical scheme for solving
hydrodynamic eguations by adopting the so-called high-
resolution shock-capturing scheme {10,217 provides better
accuracy. The spatial gauge condition is changed from a
minimal distortion type [22,23] to a dvnamical one in which
a hyperbolic type equation is adopted for determining the
shift vector [24,25]. This has resulted in saving a substantial
amount of computation time. Finally, we have modified the
treatment for the transport terms in the evolution equations
of geometric variables. This improves the accuracies for a
solution of the geometric quantities and for conservation of
the total Arnowitt-Deser-Misner (ADM) mass and angular
momentum significantly,

The paper is organized as follows. In Sec. II, we review
basic equations, gauge conditions, and methods for setting
initial conditions currently adopted in fully general relativis-
tic simulations of binary neutron star mergers. In Sec. Iil,
methods used for analysis of gravitational waves are summa-
rized. In Sec. IV, the numerical results arc presented, paying
particular attention to merger process, disk mass, and gravi-
tational waveforms. Section V is devoted to a summary.
Throughout this paper, we adopt the geometrical units in
which G=c=1 where G and ¢ are the gravitational constant
and the speed of light. Latin and Greek indices denote spatial
components (x,y,z} and space-time components (f,x,¥,2),
respectively. 8;,(= &) denotes the Kronecker delta.

II. FORMULATION
A. Basic equations

In our numerical simulation, the Einstein and general rela-
tivistic hydrodynamic equations are solved without any ap-
proximation, The formulation for a numerical solution of
these coupled equations is based on those described in a
previous work {8]. However, we have improved several nu-
merical implementations since then, and the form of the ba-
sic equations adopted in numerical simulation has also been
modified. A summary of the current formulation is, therefore,
in order here.

The line element is written in the form

ds*=g,,dxtdx"

=(—a’+ B, dt* + 2 Bidx'dt+ ydx'dx!, (2.1)
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where 2,,. @, B'(B;=v;B), and y,; are the four dimen-
sional spacetime metric, the lapse function, the shift vector,
and the three dimensional spatial metric, respectively. Fol-
lowing [26,23,6], we define the quantities as

y=det( %J_)E€|2¢, (2.2)
iijﬁe_w’)’ij, (2.3)

- _a¢ 1
Aj=e K= 3 vk (2.4)

where K; is the extrinsic curvature, and K its trace. In the
Cartesian coordinates adopted in our simulation, det(y;;)
should be unity. In the numerical computations, ¢, ;,-j, K,
and A, ; are evolved in time, instead of y;; and K;;. Note that
the indices of A;; (A" are raised (lowered) in terms of ¥
(¥:)). Hereafter, D; and D, are used as covariant derivatives
with respect to y;; and v,;, respectively. In addition, the
Laplacians are defined as A=D'D; and A=D'D,.

As the matter source of the Einstein equation, a perfect
fluid is adopted. Then, the energy-momenturn tensor is writ-
ten as

Ty=(ptpetPluu,+Pg,,, {2.5)
where p, g, P, and u o are the baryon rest-mass density, the
specific internal energy density, the pressure, and the four-

velocity, respectively. Initial conditions are given using a
polytropic equation of state as

1
F=1+-,

- (2.6)

P= Kpr,

where « and n arc a polytropic constant and a polytropic
index, During the time evolution, we adopt a I'-law equation
of state of the form
P=({I'—1)pe. 2.7
In the absence of shocks, the polytropic form of the equation
of state is preserved even if Eq. (2.7) is used. Thus the quan-
tity k' =P/p' [=e/(T—1 yp' '] measures the efficiency of
the shock heating. In this paper, we set n=1 (I'=2) as a
reasonable qualitative approximation to moderately stff
equations of state for neutron stars [15].
The hydrodynamic equations {continuity, Euler, and en-
ergy equations) are written in the forms

APyt ailp ') =0, (2.8)
8Pt T (pyv'ij+ Pae®®d )
_ 66
=Pdae }
; S o i Vown )y 2.9
— Py Whija—u;d;8 +mwkuﬂ7ﬂ’ . (29
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O pe€)+ oL pevi+ Petl(vi+ 8]

P oa n o A s
= ae®?PK+ ﬁu,-u_flf‘f—p*uiy”Dja, (2.10)
where
p=pwe’?, (2.11)
P
h=1+g+—, (2.12)
P
w=au, (2.13)
wp=hiy, {2.14)
; ewT fpv=} il 2.15)
e = hp o —
e e = ot (2.
= g i 4 oy {2.16)
YT Bty W . whet¢ '

Here, the conservative form of the energy equation is
adopted in contrast with the previous works [7,8]. In numeri-
cal simulations, Egs. {(2.8)~(2.10} are solved to evolve p,,
l;!k , and €. Once .ftf is obtained, w is determined from the
normalization relation of the four-velocity, u#u u= L
which can be written as

-

” iy R O P\’
wo=1+yuu=1+y"uu; ;"l‘p? , (2.17)

where F and p are related to p,, e, and w as P=P(p,&)
=P[p, N (web®).e] and p=p, /(we®?).

The Einstein equation is split into the constraint and evo-
lution equations, The Hamiltonian and momentum constraint
equations are written in the form

. Pl 2
A,,[,:-ngkL""QTTle//S—“"S“(AjJA"—gKZ), (2.18)

b 2 6m 6
where y=e®, py=T""n,n,, and J;=~T""n y,; with n,
={(—a.,0). Here, R; (ﬁij) denotes the Ricci tensor with re-
spect to v; (¥,,), and R =R v/ (R =R, ¥"). These con-
straint equations are solved only at =0 to set initial condi-
tions (see Sec. IID) and for t>0, they are used to monitor
the accuracy of numerical solutions.

Following [26,23,6--8], evolution equations for the geo-
metric variables are written as

- - e - 2.
(3,—B'a) V= 2adt 71‘]:18:'}_3' '}’jkﬁf{i_ “j*?’.‘jﬁfk ;
(2.20)
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- _ 1 -
((?',_16',(9,')‘4 '.'= e 44{ a'( R”"— §€4d)y,’ijk)

L, .
(D,-Dja—gew'yijAa)
2 . N 1.
- gﬁkaf_i_S”m(e 8- g?sjskk),
(2.21)

L | —

KzJ —Aa+4’rra(pH+SAk),
(2.22)

(8,—Ba)K= alﬁ;igj'i+

where §,;=T*"y ,v,;. Equations (2.20)—(2.22) are solved

to evolve ;;, A;;, and K.
In the previous works [26,23,6-8], the evolution equation
for ¢ is written in the form

1
(4= B d=c(—aK+B). (2.23)

Instead of this form, in the present work, a conservative form
is adopted as

38— a,(Bet?)= —aKeb?. (2.24)

As in the previous works, we introduce an auxiliary vari-

able F;= 5&?1:}7,-]- [26], which evolves according to the evo-
lution equation

. U
(8,— Bla)F=—167al+2al f9A, + YA~ 7y

2 .
+6Q5'kAL‘;_ —K,i +§M

3 *2a‘kﬂ~,-j+ﬁ':khi‘,-,,

~ - 2.
+( 7’;‘!3{;4" ')’j.'Bfi""“ 57’:;‘551} ]1 (2.25)
&

where 7;; and %" are split into &;+h;; and 87+ f7. In the
numerical simulations, a term &% Yix.;; Which appears in the
expression of R;; in Eq. (2.21) is evaluated using F; as £, ;.
This replacement is crucial to enable a stable and longterm
simulation.

B. Improvements for numerical implementations

In this section, we report our improvement to several nu-
merical implementations since the latest work [8]. Firstly, the
hydrodynamic part has been improved adopting the so-called
high-resolution shock-capturing scheme for computation of
the transport terms of Egs. (2.8)—(2.10) as described in [21].
With this scheme, shocks are captured with a much better
accuracy than in the previous implementation [6-8] Al-
though the shocks generated during the merger of binary
neufron stars are nol very strong, it is promising fo use such
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high-resolution schemes to accurately compute peak densi-
ties and to evaluate effects of the shock heating.

Numerical treatments for transport terms in the evolution
equation for geometric variables have been also improved.
For the transport terms in Egs. (2.20)-(2.22), a second-order
upwind scheme has been adopted [23]. To avoid numerical
instabilities, we incorporate a limiter f by which the order of
the finite differencing for the numerical flux is lowered from
the second order to the first order at a point of steep gradient
as

Fnuln:Flf+ FZ(I Wf)u {226)
where F,,,, Fi, and F, denote the total, first-order, and
second-order fluxes. Since the previous choice of fis found
to be too dissipative [23], we have changed the functional
form of f o

|5Q:1E+16le' ‘
where Q denotes one of the variables among 4,;, K, and ;.
80, and 8@ ; denote the difference of Q for two neighboring
grid points as §Q,=Q,;,,—Q,; and 80 ,=Q;—,_, where
Q; denotes the value of Q at the fth grid point.

For the evolution of ¢®?, we have also changed the finite
differencing scheme. As shown in Eq. (2.24), the evolution
equation for ¢%¢ has the same conscrvative form as that of
hydrodynamic equations. Thus the numerical flux is com-
puted using the third-order upwind scheme with an appropri-
ate min-mod Hmiter as done in the hydrodynamic equations
[21]. This change plays a significan{ role for enforcing the
conservation of the total ADM mass and angular momentum.

The outer boundary condition for ¢ has been also im-
proved. In our previous works, we simply imposed

d=0(r""). {2.28)
1t is replaced with a better condition as
M e
¢=5=+0(r™7), (2.29)
2y

where M is the ADM mass which will be defined in Sec. 1 E.

C. Change in gauge conditions

As the time slicing condition, an approximate maximal
slice (AMS) condition K~0 is adopted following previous
papers [8]. On the other hand, the spatial gauge condition has
been changed.

QOur previous simulations were performed adopting an ap-
proximately minimal distortion (AMD) gauge condition [23].
The equation in this condition is schematically written as

o1 )
8B+ 5 3= 84, (2.30)

where S, denotes the source term composed of geometric
variables and matter sources, and Af the flat Laplacian. In
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FIG. 1. Evolution of ceniral density p, in units of the initial
value p, o and central value of the lapse fuaction e, for an oscillat-
ing and rapidly rotating neutron star with »=1. The baryon rest
mass and the ADM mass in units of k=1 (see Sec. {I E) are 0.186
and 0.172, respectively. The compactness measured by the equato-
rial {polar} radius is 0.129 (0.207). The angular vejocity is constant
and equaj o the Kepler velocity at the equatorial surface. The time
is shown in units of p_¢”. The solid and dashed curves denote the
results by the dynamical and AMD gauge conditions, respectively.

this gauge condition, a vector elliptic-type equation has to be
solved. A serious drawback of this is the long computational
time needed to obtain its numerical solution, Typically,
~5(% of total computational time is consumed in solving
this equation.

To overcome this drawback, we adopt a dynamical spatial
gauge condition, ¢.g., in [24,25]. Following [27], the equa-
tion for the shift vector is chosen to be

3B =Y F i+ A1(8,F )], (2.31)
where At denotes a time siep in numerical computation. The
second term in the right-hand side of Eq. (2.31) is introduced
to stabilize the numerical computation. In this choice, 8*
obeys a hyperbolic type equation (for a sufficiently small
value of Ar) as

. R L
BB =8B+ 3V BT, 232)

where 5/ denotes the source term. With this gauge condition,
the fraction of the computational time occupied for imposing
the spatial gauge is negligible. Furthermore, we have con-
firmed that the numerical solution in this gauge condition
agrees well with that in the AMD gauge condition for col-
lapse of neutron stars to a black hole [27] and for oscillating
and rapidly rotating neutron stars (cf. Fig. 1). This indicates
that the present dynamical gauge is physically as good as the
AMD gauge.

Since B* obeys a hyperbolic type equation in this gauge
condition, so should F;. Thus we impose an outgeing
boundary condition for F; as
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{tr—7)

F,=f’———, (2.33)
v

where f,{t—r) is a function and its value at outer boundaries

is determined from the values on the eight nearby grid points

at a previous time step. The same type of boundary condition

is imposed for 4;; and 7,; [26].

D. Initial conditions

Binary neutron stars with a moderate compactness of or-
bits as a/M =6 where a denotes an orbital separation are in
a quasiequilibrium state even just before the merger because
the time scale of gravitational radiation reaction at Newton-
ian order ~5/{64Q(My0)>} [15] (where My and ) de-
note the Newtonian total mass of system and the orbital an-
gular velocity of binary neutron stars) is several times longer
than the orbital period. Thus a quasiequilibrium state should
be prepared as the initial condition for a realistic simulation
of the merger. Such quasiequilibrium states are obtained by
solving coupled equations of gravitational field and hydro-
static equations. For the gravitational field, we adopted the
conformal flatness formulation [28] in which the three geom-
etry is assumed to be conformally flat and the selected com-
ponents of the Einstein equation are solved. Specifically, the
selected components are the Hamiltonian and momentum
constraints, and the trace of spatial projection of the Einstein
equation with the maximal slicing condition K=0. The so-
lution in this formalism is fully general relativistic in the
sense that they satisfy the constraints.

Tt is expected that most of the close binary neutron stars in
quasiequilibrium circular orbits have irrotational velocity
fields approximately since the viscous time scale is much
longer than the gravitational radiation time scale and the or-
bital period ~2 ms is much shorter than the typical spin
period of neutron stars [29]. Assuming the irrotational veloc-
ity field and the presence of a helical Killing vector as

g\ Y
I -
¢ —(&r) +Q(r?so) ’
the hydrodynamic equations are written into a first integral of
the Euler equation and an elliptic-type equation for a velocity
potential [30].

The coupled equations of the selected Einstein and hydro-
static equations are solved by a pseudospectral methed de-
veloped by Bonazzola, Gourgoulhon, and Marck [31]. De-
tailed numerical calculations have been done by Taniguchi
and part of the numerical results are presented in [32].

Quasiequilibrium solutions are given as the initial condi-
tions for simulations without any modification. In a realistic
system of binary neutron stars, the orbit is not strictly circu-
lar because of the presence of the approaching velocity due
to gravitational radiation reaction. As pointed out by Miller
[33], neglecting the effect of the approaching velocity yields
a systematic error in waveforms and the merger process, if
we choose a quasiequilibrium with a very small orbital sepa-

ration as the initial condition. It is likely that gravitational
waveforms, in particular the wave phase, obtained below

(2.34)
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contain a small systematic error. However, it has been stud-
ied in [8] that the merger process and the final outcome de-
pend very weakly on an artificial approaching velocity of
=~ 0% of the orbital velocity.

E. Definitions of quantities

In numerical simulations, we refer to the total baryon rest
mass, the ADM mass, and the angular momentum of the
system, which are given by

M,= j pudix, (2.35)
1 i
M=- 5 ﬁ._‘ID el S;
— 505_{__5_?5_{3' A'”"”%Kz‘“ﬁ k_—44 d3
= pue 167\ ij 3 L€ X,
{2.36)
A iF 6
Jﬁg}“ ]._»I(,DA!- € d.Sj
Y Y WIRERLAG FPET S
=|e ,-(,O'g"q;l,-jﬁﬂ zij‘PH’
2 X
+§w<p-f(?iK d'x, (2.37)

where dS ;= r*D;rd(cos fdg and ¢ = —y(3)+x(3,). To
rewrite the expressions for M and J, the Gauss law is used.
Here, M, is a conserved quantity, and it uniquely specifies a
model of a stable neutron star for a given value of I,

M and Jf are computed using the volume integral shown in
Egs. {2.36) and (2.37). Since the computational domain is
{inite, they are not constan{ and decrease after gravitational
waves propagate to the outside of the computational domain
during time evolution. Therefore, in the following, they are
referred to as the ADM mass and the angolar momentum
computed in the finite domain {or simply as M and J, which
decrease with time). As easily predicted [rom the caleulation
using the quadrupole formula, M decreases al most by 0.5%
and may be regarded as an approximately conserved quan-
tity, while J decreases by ~5-10%.

A model of each neutron star is specified using the com-
pactness (M/R),, which is defined as the ratio of the ADM
mass to the circumferential radius of a spherical neutron star
in isolation (see Tables I and IT). To indicate how massive the
system is, we also introduce the ratio of the total baryon
rest-mass of the system to the maximam allowed mass of

spherical neutron stars for a given equation of state M fﬂm,

M*
M‘T' (2.38)
$max
Physical units enter the problem through the polytropic
constant x initially chosen, which can be completely scaled

out of the problem. Since ™ has the dimension of length,

Q.=
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TABLE I, A list of several quantities for quasiequilibria of irrotatioral binary neutron stars with n=1. The compactmess of each siar in
isolation {(M/R)., the maximurm density for each star, the baryon rest-mass ratio Q=M ., /M |, the total baryon rest mass, the ADM
mass at 1=0 (M), go=Jo /M3, P,_o=P,_o/M, the orbital compactness [ Co={(M,£2)*?], the ratio of the total baryon rest mass to the
maximum atlowed mass for a spherical star (Q,=M /M:fﬁ“ax), gravitational wavelength in units of L in the maximum grid number, and
the products we found when we stopped simulations, In the tast column, the cstimated ratio of the disk rest mass located for r>3 M at the
termination of the simulation to the total rest mass for the black hole formation case is listed. All quantities are normalized by « appropriately
to be dimensionless: The mass, the radius, and the density can be rescaled to desirable values by appropriately choosing «. Here, M

£ Max
denotes the maximum altowed mass of a spherical star (M'_\:f“mx%(). 180 at p,,,~0.32 for n=1 and x=1). BH and NS denote *‘black hote™
and “neutron star.”

Modet (MIR).. Proa Ou M, M, g P, Co Qp Ly Product Myy/M,
Mi4i4 0.14 vs 0.14 0.118,0.118  1.00 0292 0269 0951 193 0.102 162 0510 NS

MI1315 0.13 vs .15 0.104, 0.134 0901 0292 0269 0961 206 00976 1.62 0479 NS

Mie6l6 0.16 vs .16 0.151, 0.151 .00 0320 0292 0914 158 0.116 178 0.533 BH <0.2%
M1517 015 vs 0.17 0,133, 0171 0925 0319 0291 0923 169 0.111 177 0507 BH <2%
MI1418 0.14 vs 018 0.118, 0,193 0.855 0317 0.290 0933 182 0.106 176 0.467 BH =4%
M150183  0.159 vs 0.183  0.149,0.203 0925 0332 0301 0508 156 0.118 184 0498 BH <1%
time, and mass in the geometrical units c=G=1, dimen- E. Calibration

sionless variables can be constructed as Several test simulations, including spherical collapse of

dust, stability of spherical and rotating neutron stars, com-

M =M,k ", M=Mx "2 R=Rx™"" parison of eigenoscillation modes of spherical stars with the
(2.39)  known results, and longterm evolution of rotating stars, have
F=Jk™" p=px", and Q=0 been performed to check the reliability of numerical results

obtained in the new implementation. A list of these test simu-
lations and some of their resulls are described in [21].
During the simulations, we monitored the violation of the
Hamiltonian constraint, and the conservation of the baryon
resi-mass, the ADM mass, and the angular momentum. Be-
cause of the emission of gravitational waves, M and J com-
puted in the finite volume by Egs. (2.36) and (2.37) decrease
with time, However, the sum of M and accumulated radiated
energy of gravitational waves, and the sum of J and accumu-
lated radiated angular momentum of gravitational waves

2 .
K M should be conserved {at least approximately) in numerical
M gim= LSOMO( 1.455% 1607 cgs) (0.180)’ (2.40) computation as [34]

in the following, only these dimensionless quantities are pre-
sented (namely units of x=1 are adopted) and, hence, the
bar is omitted.

Nondimenstonal quantities may be converted to dimen-
sional ones for a value of x. For k= 1.455X 10° cgs which is
chosen in [9], the mass, the density, and time in the dimen-
sional units are written as

M)+ AE(y=My, (2.43)

1
K
Paim™ 1.86X 101 g/cm3( ) ( P ) 3
1.455x 10% cgs] 10.300 J(6)+AS()=1y, (2.44)

(2.41)
where AE(r} and AJ{z) denote the total radiated energy and

2 angular momentum by gravitational waves until a time f, for
(_m> (2.42)  which the definitions are described in Sec. IIL. Mg and Jg
100, denote the initial values of M and J.

K
1.455% 10° cgs

Tdim =403 ms(

TABLE II. Computalional setting for test simulations.

Model AlM, Grid size Likg LiMg
Mi616 0.134 (633,633,317} 0.533 42.2
Mi616-2 0.134 (505,505,252} 0.425 337
Mi616-3 0.134 (313,313,157} 0.263 20.8
Mi616-4 0.111 (377,377,189) 0.263 20.8
M1616-5 0.169 (249,249,125 0.263 20.8
Ml414 0.156 (633,633,317} 0.510 49.3
M1414-2 0.156 (313,313,157} 0.252 243
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The violation of the Hamiltonian constraint is locally
measured by the equation as

- - 2
.Awm ﬂRk*+2pr¢5+% A”AU—§K2)
fo= Vo o W 2
|Ay|+ —R.’\ EQTTPH'J'fH? IAUA!'IHgKh

(2.45)

Following [21], we define and monitor a global quantity as

PHYSICAL REVIEW D 68, 084020 (2003)

Hereafter, this quantity will be referred to as the averaged
violation of the Hamiltonian constraint.

II. ANALYSIS OF GRAVITATIONAL WAVES

Gravitational waves are measured in terms of the gauge-
invariant Moncrief variables in a flat spacetime [35]. To
compute them, first we perform a coordinate transtormation
for the three-metric from the Cartesian coordinates to the
sphcrical polar coordinates, and then split y,; into 7;

H= E_ £,d%x (2.46) + L i » where 77;; is the flat metric in the spherical polar
M Pt Im :
* coordinates and ;7 is given by
i
H2|'mY.'m f1 ”.’H’YI'HLH h'ﬁ[rny,’m.rp
é’fm ¥ rz(K!n1YIm+GIm W.’ur) rzGImX.’m
if .
* * rism2 & KinYim— G!m me)
0 - Cfm(?:py.'m fsin 8§ C.'m(;ffyx’msin 0
+ * rle‘mXIm/Sin 0 - rzD{m WhnSin q {3;)
* * - rzDz‘mX.fmSin t

Here, the asterisk denotes the symmelric components. The
quantities H2!m * hl!m » K{m > G.’m » Cim » and Dfm are func-
tions of r and ¢, and are calculated by performing integrals
over a two-sphere of a given coordinate radius [see [26] for
details]. ¥;,, is the spherical harmenic function, and W, and
X, are defined as

Yim 1

W{m Ii(ﬁ(f)hm(-«ﬂt 6’96’ 20{(’)?)2

leﬁzaqu[aﬁ‘_c{)t 9] Y!‘m . (32)

The gauge-invariant variables of even and odd parities are
defined by

f2(0—2)!
.'fn(! r}~— (1+2)| {4k21m+l([+ l)ka}’ (33)

RU+D)1 C,,
Rgn( ry=s (1—2)' =+ rd D[m) R (3.4)
where

h Lim

klx'mE K:’m + l(['+" 1 )G.'m + 2rarG.’m - 27‘: (35)
H2Im

kli‘mmT"_ [r{K1!17+I(Z+ I}G.’m}}

(3.6)

The cosine and sine components of the gauge-invariant vari-
ables, which are real quantities, are also defined as

i E
E le+R.' " nd RE RImWRI —-m

RIm+ T m- \/,;-—,

(m=>0).
(3.7)

Using the gauge-invariant variables, the energy luminos-
ity and the angular momentum flux of gravitational waves
can be calculated as

r
d{ 3277, E [iﬁR.'mlz+iﬁR1mI ]s (38)
dl r? . 0,

d[ 3271' % [lin((y R',”i RI"’l + [’n (9 Ri'm l'mt] (39)

The total radiated energy and angular momentum are defined
as

AE(r) J’Id ax AJ J’rd i 3.10
t)= t—, )= {—. 2,

(0= digr. Ad0=] digr. (310)
We have computed modes with [=2, 3, and 4, and found
that the even modes with /={m|=2 are dominant, and the
even mode with {=2 and m=0 is secondly dominant, For
merger of unequal-mass binaries, the amplitude of the even
modes with I=|m|=3 are as large as that of /=2 and m
=}, Thus attention is paid to these three modes.
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To search for the dominant frequencies of gravitational
waves, the Fourier spectra are computed by

a iy .
R;mt(f)ﬁf e ™R, L dt. (3.11)
fi

In the analysis, ¢/ is chosen as the time at which the simula-
tion is stopped. Before 1< ry,, where r, denotes a radius at
which gravitational waves are exiracted, no waves propagate
O rops, SO that we choose {7~ r ;.

Using the Fourier spectrum, the energy spectrum which is
often referred to in literature (e.g., [18,20]} can be written as

dE 7
—=—? R 312
df 9 F LmE;O l hn(f)f} ( )
where for m#0, we define
ién'mﬁ\/|R1111+(f)|2+;Rhnf(f)lz‘ (313)

To help the calculation of dE/df, |R,,(f)f!r is presented as
the Fourier spectrum in the following.

IV. NUMERICAL RESULTS
A. Setup for simulation

Several quantities that characterize quasiequilibrium
states of irrotational binary neutron stars used as initial con-
ditions for the present simulations are summarized in Table L
All quantities are appropriately scaled with respect to « to be
dimensionless.

As the initial conditions, we choose binaries of an orbital
separation which is slightly (by ~ 10%) larger than that for
an innermost orbit. Here, the innermost orbit is defined as a
close orbit for which Lagrange points appear at the inner
edge of neutron stars [36,31]. Models M1414 and M 1616 are
equal-mass binaries, and others arc unequal-mass ones. Total
baryon rest-masses for models M1616, M1517, and M1418
or for M1414 and M1315 are almost identical, while the
baryon rest-mass ratios are identical for models M1517 and
M159183 as 0.925.

The frequency of gravitational waves for binaries in these
quasiequilibria is given by

_2 060 H-(Z'SM@
foe= P z

C(} 372
7 ———) , (4.1)

0.12

and, thus, the orbital period of the quasiequilibria, P,_y. is

2.8Mg "( Cqo

— 32
P_g~2.08 ms( ", 6""1”2“) . {4.2)

where Cy is a compactness parameter of an orbit defined by

M
Co=(M,Q)P3=—2. (4.3)

0]

Here, a, is defined as the initial orbital separation. For the
initial conditions chosen in this paper, ao=>8.5M .
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The simulations were performed uvsing a fixed uniform
grid and assuming reflection symmetry with respect to the
equatorial plane {here, the equatorial plane is chosen as the
orbital plane). The typical grid size is (633, 633, 317) for
(x,v,z). The grid covers the region —L=x=<L, —[L=y
=</, and O0<z=<I where L is a constant. The grid spacing
(which is L/316 in the typical case) is determined from the
condition that the major diameter of each star is covered with
about 40 grid points initially.

Numerical results depend weakly on the grid resolution
and location of the outer boundaries. In order to investigate
this, additional test simulations were performed choosing the
smaller grid sizes with a fixed value of grid spacing and the
larger grid spacings with a fixed value of L for selected mod-
els. The setting for the test stmulations are summarized in
‘fable IT and the numerical results are presented in Sec. IVE.

With a {633, 633, 317) grid size, about 240 GB computa-
tional memory is required. For the case of neutron star for-
mation, the simulations are performed for about 20000 time
steps and then stopped artificially. The computational time
for one model in such a calculation is about 100 CPU hours
using 32 processors on FACOM VPP5000 in the data pro-
cessing center of National Astronomical Observatory of Ja-
pan (NAOQIJ). For the case of black hole formation, the simu-
lations crash soon after the formation of apparent horizon
because of the so-called grid stretching around the black hole
formation region. In this case, the computational time is
about 50 CPU hours for about 10000 time steps.

In the above setting, the wavelength of gravitational
waves at +=0 (denoted by Aq) is about twice that of L (cf.
Table 1). As found in a previous paper [8], gravitational
waves and radiation reaction are taken into account with a
fair accuracy (within ~ 10% numerical error) in this setting.
Since the typical wavelength of gravitational waves becomes
shorter and shorter in the late inspiral phase, the accuracy of
the wave extraction is improved with the evolution of the
system. As a result, the magnitude of the error in the total
radiated energy and angular momentum would be much
smaller than 10%. This point will be reconfirmed in Sec.
IV D. The wavelength of quasiperiodic waves emitled from
the formed neutron star is much shorler than Ay and L, so
that the waveforms in the merger stage can be computed
accurately in the case of neutron star formation,

As found in [36,31], orbits for irrotational binaries of
equal mass with I'<<2.5 (n>>2/3) are dynamically stable
from the infinite separation to the innermost orbit. Therefore
the merger in reality should be triggered by the radiation
reaction of gravitational waves for I'=2. In the previous
implementation, however, the radiation reaction for the late
inspiral stage was not very accurately computed. Thus the
simulations were initiated by setting a binary at the inner-
most orbit and reducing the angular momentum slightly to
induce prompt merger [7,8]. In the new implementation, on
the other hand, the radiation reaction can be computed with a
good accuracy (within ~ 1 to 2% error throughout a simula-
tion, see Sec. IV D). Thus, in the present work, we prepared
binaries of orbits slightly far away from the innermost orbits
and started simulations without adding any perturbation.
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FIG. 2. Snapshots of the density contour curves for p in the equatorial plane for model M1315. The solid contour curves are drawn for
pl0.15=1-0.1j for j=0,1,2,....9, and the dashed-solid curves are for p/0.15=0.05, 001, 1073, and 107*. Vectors indicate the local
velocity field (0%,0%), and the scale {s shown in the upper right-hand corner. P,., denotes the orbital period of the quasiequilibrium
configuration given at t=0. The length scale {s shown in units of GMy/c?, where M, is the gravitational mass computed at ¢ =0, In the first
panel, the primary neutron star is located at x>>0.

With this setting, a transition from the inspiral to the merger  the minimum value of & for all the models adopted in this
is triggered by the radiation reaction. This point will be dem-  paper except for model M159183.

onstrated in Sec. IVD. The numerical results for models M1414 and M1616
computed by an old implementation have been already pre-
sented in [7,8]. With the present new implementation, how-

B. Characteristics of th ; . : o -
aracteristics of the merger ever, the quality of the numerical results is significantly im-

In Figs. 2-5, we display the snapshots of the density con-  proved and, hence, the improved results are displayed as the
tour curves and the velocity vectors at selected time steps for  updated ones.
models M1315, M1414, M1418, and M1616 [37]. Figure 6 The simulations for models M1616, M1517, and M1418

shows the evolution of the maximum values of p and ¢, and  crashed soon after the formation of apparent horizons be-
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FIG. 3. The same as Fig. 2 bu: for model M1414.

cause the black hole forming region was stretched signifi-
cantly and the grid resolution became tco poor to resolve
such a region. On the other hand, we artificially stopped the
simulations for models M1414 and M1315 at t=3.5F, ¢ to
save the computational time, At the termination of these
simulations, the averaged violation of the Hamiltonian con-
straint does not increase rapidly and remains of order 0.1
Therefore the simulations could be continued for a much
longer time than 3.5P,_, in the formation of the massive
neutron stars.

In every model, the merger is triggered by the radiation
reaction: For #=<P,_, the orbital separation decreases
gradually as a result of gravitational radiation reaction and
each neutron star is elongated little by little. The elongation
is always larger for the smaller-mass star in nonequal mass
binaries. At a critical separation which is reached at 1 ~0.8 to

0.9P,_g, the orbit becomes unstable probably against hydro-
dynamic instability to start the merger. At this point, the lag
angle which is defined to be the angle in the equatorial plane
between the major axis of each star and the axis connecting
the centers of mass of iwo stars [20] is ~10°-15°. In
unequal-mass binaries, we always find a larger lag angle for
the smaller-mass star. This is in agreement with that in [20].
In contrast to previous Newtonian [17,18], post-
Newtonian [19,20], and approximately relativistic simula-
tions [38}, the formation of a black hole can be determined in
fully general relativistic simulations. In the black hole for-
mation, most of the fluid elements are swallowed into the
black hole. Therefore the evolution of the system is signifi-
cantly different from that in the neutron star formation. From
this reason, we describe the character of the merger for the
formation of neutron stars and black holes separately.
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FIG. 4. The same as Fig. 2 but for mode} M1418, Here, the solid contour curves are drawn for p/0.20=1t — 0.1 for j=0,1,2,....9, and
the dashed-solid curves are for p/0.20=0.05, 0.01, 10”7, and 107*, The thick dotted circle in the last panel of radius r~0.5M denotes the
location of the apparent horizon. At £=0, the primary neutron star is focated at x>0.

1. Formation of hypermassive neutron star

For models M1315 and M1414, massive neutron stars are
formed {(cf. Figs. 2 and 3). In this case, the total baryon
rest-mass of the system is about 1.62 times as large as M f}f’;ﬂx
for a polytropic equation of state with n= 1. Thus the formed
neutron star is hypermassive in the sense that the mass is
larger than the maximum allowed value for rigidly rotating
neutron stars with n=1 [39]. As indicated in the previous
papers [7,8], such a large mass is supported by a large cen-
trifugal force due to rapid and differential rotation.

In [7,8], we concluded that the merged object for model
M1414 eventually collapses to a black hole in 2 to 3 P, =g,
However, in the present improved simulation, a hypermas-
sive neutron star is formed instead of a black hole. There are
two plausible reasons for this discrepancy. One is that shocks
are calculated in a better accuracy with the new implemen-
tation of a high-resolution shock-capturing scheme and, as a
result, the thermal energy, which could play an important

role for supporting the massive object, is increased in the
new result. The other possible reason is an improvement on
the treatment of the transport term for geometric variables.
This makes the angular momentum conservation more accu-
rate, avoiding the spurious coliapse.

Besides the correction to the threshold for collapse of
merged objects, the qualitative properties during the merger
of equal-mass binaries are essentially the same as those
found in the previous simulations [7,8]: The merged object
constitutes a double core structure soon after the merger [cf.
fifth panel of Fig. 3 and Fig. 7(b)]. At the collision of two
neutron stars, the radial infall velocity is not so large that
shock heating is not very important around the mass center.
In Fig. 8, we show ' along the x and y axes, which denotes
the efficiency of the shock heating. In our notation, it is unity
everywhere inside the neutron stars at 1=0. Thus the fluid
elements for which the value of &' is larger than unity have
experienced the shock heating, This figure shows that for r
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FIG. 5. The same as Fig. 4 but for model MI616.

=4My, k' is ~ 1 to 2, implying that the shocks do not play
a very important role except for the outer envelops.

In the outer region, small spiral arms are formed soon
after the merger sets in, but they do not spread outward
widely because of insufficient angular momentum. The spiral
arms subsequently wind around a central double core. In the
central region, the double core has not only a rotational mo-
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tion around the mass center but also has a quasiradial oscil-
lation which is originally excited by a radial plunge at a
transition from the inspiral to the merger stage. Because of
the quasiradial oscillation, weak shocks are formed in the
outer envelops. As a result, the outer region is heated up and
gains the kinetic energy to expand outward [cf. Fig. 8(b}].
This process is repeated many times transferring the kinetic
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FIG. 6. Evolution of the maximum values of p and ¢, and the minimum value of a (a) for models M1414 (dashed curves) and M1315
{solid curves), and (b) for models M 1616 (dashed curves), M 1517 {long-dashed curves), and M 1418 (solid curves}. Note that for the case of
black hole formation [Fig. 6{b)], the maxirmum density decreascs in the final stage. The reason is as follows: We choose p,, as a fundamental
variable to be evolved and compute p from p,, fwle®® In the final stage, ¢ is very large (> 1) and, hence, a small error in ¢ results in a
large error in p. Note that the maximum value of p,, increases monotonically by many orders of magnitude.
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FIG. 7. The density profile along the x (dotted curves) and y axes (solid curves) (a} for model M1315 at r=2.303P,_, and {b} for model

MI414 at 1=2.351P,..

energy of the inner core to the outer region and, hence, the
quasiradial oscillation of the core damps gradually (see Fig.
6).

For the merger of an unequal-mass binary (for model
M1315), the merger process is qualitatively different from
that in the equal-mass case because tidal disruption of the
smaller-mass star by the massive primary takes place (cf.
fourth panel of Fig. 2). The tidally disrupted star subse-
quentty forms a tidal tail. During the formation of the tidal
tail, the anguiar momentum is efficiently transferred outward
and, as a result, large spiral arms are formed. The spiral arms
subsequently wind around the central core to be accretion
disks. Because of the angular momentum transfer at the tidal
disruption and at subsequent formation of spiral arms, the
disk radius is much larger than that for model M1414 (cf.
Fig. 9).

1000 T i T T T T E 1 T T T T T T E
- M1315 .
< oL =
le E
0'1 1 1 L | 13 H 1 i | I3 i 1 I3 { i i 1
-5 0 5
(@ X / M,

In the central region, a massive object with an asymmetric
double core is formed [cf. the last panel of Fig. 2 and Fig.
7(a)]. As in model M1414, the central core oscillates quasira-
dially (see Fig. 6). This motion produces shocks around the
outer part of the core and, as a resuit, the energy is trans-
ferred to the outer envelops [cf. Fig. 8(a)]. Since this process
is repeated, the quasiradial oscillation of the core damps
gradually, The amplitude of the quasiradial oscillation for
model M1315 is not as large as that for model M1414. This
refiects the difference of the merger process between M1414
and M1315: For M1414, two neutron stars merge without
tidal disruption and mass ejection outward. Therefore all the
mass elements in this system collide coherently. On the other
hand, for M13135, the tidal disruption takes place. As a resuls,
a fraction of mass elements in the smaller-mass star do not
have a plunging motion at the collision and, hence, the

1000 g 3
< 10k .
“ F E
1E <
0.1 ] i 1 1 | 1 ] i 1 | 1 1 1 H | 1 1 i ]
-5 0 5
(b} X/ M

FIG. 8, «'{=g/p) along the x (solid curves) and y axes (dotted curves} (a) for model M1315 at 1=2.303P,_, and (b} for modet M1414
at t=2.351P,_;. Note that at r=0, this guantity is unity everywhere inside neutron stars. x> 1 implies that shock heating is experienced.
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FIG. 9. Evolution of the baryon rest-mass fraction outside the spheres of radius 3M, (solid curve}, 4.5M (dashed curve}, and 6M,

(dotted-dashed curve) (a) for model M1315 and (b} for model Mi414,

merger does not set in as coherent as that for model Mi414,
Due to this reason, the amplitude of the quasiradial oscilla-
tion is suppressed.

Figure 6{(a) shows that the maximum density of the hy-
permassive neutron star for model M1315 is larger than that
for M 1414 in spite of the fact that the total baryon-rest mass
is nearly identical. This reflects the fact that the region
around the mass center for model M 1315 rotates less rapidly
than that for M1414, This suggests that the hypermassive
neutron stars formed from the merger of the smaller rest-
mass ratios are more compact.

In Fig. 9, we plot the cvolution of the baryon rest-mass
fraction outside the sphercs of radius 3M, (solid curve),
4.5M (dashed curve), and 6M; (dotted-dashed curve).
Here, r=0 is chosen as the center of the spheres. This shows
the significance of the angular momentum transfer for model
M1315. For model M1414, the baryon rest mass outside the
spheres of fixed radii simply oscillates with a mean value
which is approximately constant with time evolution. The
fraction of the rest mass outside the sphere of radius 6 M is
~ 1% in this case. On the other hand, for M1315, the baryon
rest mass outside spheres of fixed radii increases gradually
with time., This result reflects an efficient angular momentum
transfer, Figure 9 indicates that the fraction of the rest mass
outside the sphere of radius 6M, is ~5%, implying that
disks of =0.1M, are formed around the hypermassive neu-
tron star.

A post-Newtonian simulation reports that the fraction of
the disk mass for an equal-mass merger is ~6% [20]. This
value is much larger than the value obtained in this paper. A
plausible reason for this discrepancy is that in the post-
Newtonian approximation, the gravity of the hypermassive
neutron star is underestimated and, hence, the mass captured
by it is also underestimated.

Because of the nonaxisymmetric and quasiradial oscilla-
tions of the hypermassive neutron stars, quasiperiodic gravi-
tational waves of a few characteristic oscillation modes are
simultaneously excited for models M1315 and M1414 for a

long duration after the merger. This point will be discussed in
Sec. IVC,

2. Formation of rotating black hole

For models M1418, M1517, M1616, and M159183, black
holes are formed (cf. Figs. 4, 5, and 10) in a dynamical time
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FIG. 10. Comparison of the density contour curves for p in the
equatorial plane near the end of the simulations for models M1616,
Mi317, M1418, and M159183. The solid contour curves and the
velocity vectors are drawn in the same manner as those for Fig. 4.
The thick dotted circle of radius r~(.5M denotes the location of
the apparent horizon.
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M1418. (b) The same as (a) but for models M1517 and M159183 for which the rest-mass ratio is identical but the total baryon rest mass is

different.

scale ~1.3P,_, irrespective of the baryon rest-mass ratios,
The formation of the black holes is determined by finding the
apparent horizons [40]. In all the cases, the total baryon rest
mass of the system is about 1.75 times as large as Mfff;ax for
a polytropic equation of state with r=1. Since the black
holes are formed for M . =1.75M :ff,’m while the hypermas-
sive neutron stars are the outcomes for M = | .65Mf[f}r;m, the
threshold of the total baryon rest mass for the prompt black
hole formation is between 1.65 and 1.75M 0 for n=1.

The formation process of the black holes depends on the
rest-mass ratios. For the merger of two equal-mass neutron
stars, the merger results in a massive object of a double core
without tidal disruption and mass ejection outward. The
merged object is too massive Lo support its self-gravity and,
hence, collapses to a black hole promptly. Since the specific
angular momentum of each fluid element is too small [8] and
also since there is no efficient transfer of angular momentum
during the merger, the disk mass around the formed black
hole is very small [cf. Figs. 10(a) and 10(e}].

On the other hand, for the merger of two unequal-mass
neutron stars, the black hole formation appears 1o be trig-
gered by accretion to the primary star: First, the primary star
tidally disrupts the smaller-mass companion at a critical
separation. Subsequently, most of the tidal debris accrete to
the massive primary star and a small fraction of them form
spiral arms, The accretion increases the mass of the primary
star rapidly, eventually, exceeding the critical value for for-
mation ol a black hole. During the merger, the angular mo-
mentum transfer works efficiently in the spiral arms, subse-
quently forming an accretion disk around the formed black
hole.

In Fig. 10, we compare snapshots of density contour
curves soon after the formation of apparent horizons for
models M1616, M1517, M1418, and M159183. Obviously,
fractions of the disk mass and the disk radius are larger for
binaries of the smaller rest-mass ratios. Comparing the fig-
ures for M1517 and M159183 for which the rest-mass ratio
is identical as 0.925, it is also found that the disk mass and
radius are smaller for the merger of the larger compactness.

Figure 11 shows the evolution of the baryon rest-mass
fraction ouiside spheres of fixed coordinate radii for models
Mi6i6, M1517, M1418, and M159183. As the coordinate
radii of the spheres, it is desirable to choose the radius of the
innermost stable circular orbit around the formed black
holes, but in practice it is difficult to determine it from nu-
merical results exactly for dynamical spacetimes. Thus we
rather arbitrarily choose 3M and 4.5M which are not far
away from the radius of the innermost stable circular orbit
for rotating black holes of nondimensional angular momen-
tumm parameter ~0.8 to 0.9. For model M1616, the mass
fraction outside these radit decreases monotonically, and at
the termination of the simulation, less than 0.2% of the total
rest mass of the system is outside the sphere of radius 3M.
On the other hand, the mass fraction for r==3M, appears to
approach ~2% and ~4% for models M1517 and M1418,
respectively. This indicates that for mergers of unequal-mass
neutron stars, a certain fraction of the mass would form
disks, and the mass fraction seems to increase in proportion
to 1 — @y, for a given value of M.

Comparing the results for models M1317 and M159183
for which the rest-mass ratio is identical as 0.925, it is found
that the mass fraction of disks decreases with the increase of
the compactness of neutron stars. The reason is simply that
the gravity of the system is stronger for model M159183 and,
as a result, a larger fraction of the mass is swallowed into the
biack hole. Obviously, smaller compactness of progenitor
neutron stars is in favor of the formation of disks around a
formed black hole.

Figures 12(a)—12(d) show «' along the x axis for models
M1616, M1517, M1418, and M159183. Figures indicate that
most of the Huid elements are heated up by shocks, except
the inner region of the disk where the value of &' is less than
10. This tmplies that the shock heating is not very important
for high density regions; i.e., at the collision of two neutron
stars, the shocks are not very strong.

In Fig. 13, we display the time evolution of mass of ap-
parent horizons M,y in units of My for models M1616,
Mi517, M1418, and M159183. M,y is defined by
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where § is the area of the apparent horizon. The figure indi-
cates that M /My appears {o approach ~0.85 for models
M1616, M1517, and M159183, and ~0.75 for model
M1418. For models of the smaller rest-mass ratios, the value
of May/M, is smaller; ie., a larger fraction of the mass
element is not swallowed into a black hole.

Since most of the mass clements fall into the black hole
and radiated energy of gravitational waves is less than 1% of
M, for model M1616 (see Sec. IV C}, the black hole mass
may be approximated by M, within ~ 1% error, Further-
more, recall that the area of a Kerr black hole of mass M and
Kerr parameter Mg (g=J/M?) is written by

(4.4)

[T
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dashed curve), and M 159183 (dotted curve).

S=8aM’[1+(1—¢*)'". (4.5)

For model M1616, M~ M, and M yy~ 0.85M . This implies
a value of ~0.9 for the nondimensional angular momentum
g of the formed black hole for model M1616. Since the ini-
tial value of the system, g, is about 0.913, and M and J
decrease by ~0.5% and ~7% by gravitational radiation (see
Sec. IV), respectively, the expected final value of g is ~0.85,
which agrees with the numerical value within ~5% error.
(The disagreement is due to a numerical error associated
with insufficient grid resolution. This point is confirmed by
the convergence test presented in Sec, IV E.) The result pre-
sented here indicates that the location and the area of the
apparent horizon are determined within ~5% error with the
current grid resolution.

C. Gravitational waves

In Figs. 14-16, we present the gravitational waveforms
(gauge-invariant quantities) and the accumulated energy and
angular momentum loss by gravitational radiation as a func-
tion of the retarded time (7—ry, )/ P,—g. (In the following,
the retarded time is always normalized by P,_q.) Tt should
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FIG. 14. R3p. r, Ryz=r, and Roor as a function of the retarded time (a) for model M1315 and (b} Tor model M 1414, The solid and dashed

curves for Ry, and R; denote Ry, and R, .
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be noted that Ry r/Ma=1 implies the values of riz, and
rh, along the z axis due to /=m =2 modes are =~ 1.85 km,
where

'thp
2t
Fesin g

_ ! Yoy —
hi= p( Yoo~ m) » hy= (4.6)

Irrespective of the mass and the mass ratio of binaries, the
inspiral waveforms are dominant for f—r 5, < P,_p, and sub-
sequently, the merger waveforms are excited. For hypermas-
sive neutron star formation, quasiperiodic waves are excited
because of its quasiradial and nonaxisymmetric oscillations.
For the black hole formation case, the computation crashed
soon after the formation of apparent horizon. As a result, we
were not able to compute complete gravitational waveforms
for t—rg= Pr=g, for which gravitational waves would be
dominated by quasinormal mode ringings [41]. A straightfor-
ward approach to compute such gravitational waves is to
develop a black hole excision technique [42], by which it
may be possible to continue the simulation for a long time
duration even after the formation of the black hole. An alter-
native approach is to extract gravitational waves from a re-

0.005
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m 0.002
<]

TTr 11T [ T [ f 1 11 11
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stricted spacetime data set using the so-called Lazarus tech-
nique [43]. Leaving the development of the two methods for
future implementations, we focus our discussions below
mainly on the character of gravitational waves for neutron
star formation than for black hole formation.

1. Hypermassive neutron star formation case

In Fig. 14, the gauge-invariant quantities for (/,m)
=(2,2), (3,3), and (2,0} for models M1315 and M1414 are
displayed. In both cases, the inspiral waveforms are domi-
nant for r—rg < P,_y and quasiperiodic waves excited by
nonaxisymmetric quasiperiodic oscillations are emitted after
the merged cohjects are formed for 1 — 7= P, p. It is found
that the waveforms of the (2,2) mode for two models are
similar but a slight difference can be seen in the quasiperi-
odic oscillation for t— ryp= P,_y. For model M1315, quasi-
periodic waves appear to be mainly composed of a single
oscillation mode. On the other hand, a non-negligible modu-
lation can be observed in the waveforms for model M1414.
This implies that they are composed of more than two domi-
nant modes,

Figure 14 shows that the gauge invariant variable for the
(2,0) mode does not oscillate around zero. This is due to the
fact that gravitational waves are extracted at a finite radius
and, as a result, this variable contains nonwave components
associated with a stationary quadrupole moment. To calcu-
late the Fourier spectrum of gravitational waves, we first

subtracted the stationary component from R, and, then, per-
formed the Fourier transformation. In Fig. 17, the Fourter
spectra of the gauge-invariant variables for models M1313
and M 1414 are displayed. Here, |R,,,(f)f|r is plotted. When
taking a look at this figure, the following should be also kept
in mind; (i) the spectra presented for the (2,2) mode are not
realistic for f<fqp because the spectra of inspiraling wave-
forms should be dominant in reality as [Rp(f)f|xf " for
F=fqe; (ii) the amplitude of the peaks found at f~2fqg and
3fqr for the (2,2} mode and at foe for the (2,0) mode is
underestimated because we stopped the simulations during
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gpectrum of I=m=73 for model M1315.

the oscillation of the formed hypermassive neutron stars to
save computational time (sce discussion below).

For model M1315, a single peak is found at a frequency
=3.2fqe in the Fourier spectrum, while for model M1414,
two peaks of ~2.0fqg and 2.95fq; are found for the (2,2)
miode. The difference in the number of the peaks reflects the
difference of the merger process. For model M1414, the
merged obiect constitutes a nonaxisymmetric hypermassive
neutron star of a double core structure, which quasiradially
oscillates with a large amplitude. Therefore at least two
modes {nonaxisymmetric and quasiradial oscillation modes)
are contained. The peak al f~3fqg is associated with the
nonaxisymmetric bar-mode oscillation, while that at f
~2fqe is produced by a modulation due to coupling between
the nonaxisymmetric and quasiradial oscillations because the
difference of their frequencies is approximately equal to fop
which corresponds to the frequency of the quasiradial oscil-
lation. These two peaks in the Fourier spectra have been also
found in Newtonian {18] and post-Newtonian simulations
[19,20]. On the other hand, for model M1315, the merged
object forms a hypermassive neutron star of an asymmetric
double core structure. In this object, the amplitude of the
quasiradial motion is not as large as that for model M1414,
As a result, the peak ai f~2fqg associated with the modu-
lation between the nonaxisymmetric and quasiradial oscilla-
tions is not as remarkable as that for model M1414. This
feature has been also found in the post-Newtonian study
[20].

The frequency of the peaks for the (2,2) mode around f
~3foe for model M1315 is slightly larger than that for
M1414, This results from the fact that the maximum density
(or the compactness) of the formed hypermassive neutron
stars is larger for M1315 (see Fig. 6}. This fact indicates that
for the smaller rest-mass ratio, the gravitational wave fre-
guency associated with the nonaxisymmetric oscillation is
higher for a fixed total rest mass of the systemn.

Assuming that the total mass of the system is 2.8M,, for
is =750 Hz for model M1414 and ~700 Hz for model
M1315 according to Eq. (4.1). This implies that the peaks in
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models M1414 (dashed curve} and M1315 (solid curve). (b} Fourier

the Fourier spectrum appear at =~ 1.5 and 2.2 kHz for M1414
and at =2.25 kIz for M1315, These frequencies will be too
high to be detected by the first LIGO. However, these qua-
siperiodic gravitational waves will be interesting targets for
resonant-mass detectors and/or specially designed advanced
interferometers such as the advanced LEGO [3].

It should be mentioned that the peak frequencies in the
post-Newtonian simulation [20] are smaller than those found
in our study for a given neutron star mass and radius
=15 km. This may be due to the fact that, in our fully gen-
eral relativistic simulation, the gravity is taken into account
correctly and is stronger than that in the post-Newtonian ap-
proximation. Consequently, the formed hypermassive neu-
tron star is more compact and hence the oscillation frequency
higher.

The magnitude of the quasiradial oscillation is reflected in
the amplitude of the gravitational waves for the (2,0) mode
[45]. In the early phase (£~ r = P,=q). this mode is domi-
nated by a stationary quadrupole mode which is not associ-
ated with gravitational waves, but after a hypermassive neu-
tron star is formed it becomes a dominant component. Figure
14 shows that the amplitude of the {2,0) mode for model
M1414 is larger than that for M1315 by a factor of ~2. This
results from the fact that the amplitude of the quasiradial
oscillation for M 1414 is larger than that for M1313.

The frequency of gravitational waves for the (2,0) mode is
within the sensitive band of kilometer-size laser interferom-
eters as ~ fop~0.7(2.8M 5 /M) kHz. Although the ampli-
tude is ~5% of that of the dominant (2,2) mode, this mode
does not damp scon as indicated in Fig. 6(a). Therefore if the
cycles are accumulated using a theoretical template, the ef-
fective amplitude may be much larger than that for one cycle
and may be as large as the amplitude of Ryy(~Mg/r) at f
~for. Unfortunately, it is difficult to exactly estimate the
effective magnitude from the present numerical results of
finite duration. However, gravitational waves of this mode
may be an interesting target even for the first-generation
gravitational wave detectors such as the first LIGO.
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2. Dependence of inspiral waveforms on mass ratios

From Fig. 15, we find that the maximum amplitude is
smaller for models of the smaller rest-mass ratios. According
to the quadrupole formula, the maximum amplitude for a
given total mass is proportional to @, /(1+Q4)? which is
in a small range 0.246-0.25 for 0.8<Q,,<1. This suggests
that the maximum amplitude would depend weakly on the
value of Q,; . However, the ratios of the maximum ampli-
tude for models M1517 and M1418 to that for model M1616
are 0.966 and (.909, respectively. This implies that the maxi-
mum amplitude is suppressed with the decrease of Q,, . This
results from the fact that the tidal effect plays a more impor-
tant role in the close binaries of the smaller rest-mass ratios:
Since the tidal disruption sets in at a larger orbital separation
for the smaller rest-mass ratios, the maximum amplitude
should be decreased. [Similar results are also found in Fig.
16(h) (see below).] This property has been reported in the
Newtonian and post-Newtonian studies, too [17,19,20]. Ac-
cording to [19,20], the suppression factor is proportional to
Qyy (for a fixed value of M), agreeing with our results
approximately.

Another difference of gravitational waveforms between
models of equal-mass and unequal-mass binaries can be seen
in the modes of odd values of m (Figs. 14 and 16). For the
merger of equal-mass hinary neutron stars, the amplitude for
those modes is zero because of the m-rotation symmetry. On
the other hand, it is not negligible for thc mergers of
unequal-mass binaries. However, the amplitude is at most
5% of that of the (2.2) mode.

3. Radinted energy and angular momentum

Figure 16 shows that in the final inspiral phase (t—r
= P,_y), ~0.3-0.5% of the initial ADM mass and ~6-8%
of the initial angular momentum are carried away by gravi-
tational radiation. (M does not change much but J decreases
significantly.) This implies that the nondimensional angular
momentum parameter g decreases by ~5-7% due o the
gravitational radiation. Since a large fraction of baryon mass
of the system is swallowed into a black hole for models
Mi6li6, M1517, M1418, and M159183, the ADM mass of
the black hole should be ~ M, within a few percents crror.
From this fact, we may expect that the final value of ¢ is
~0.95g, within a few percents error and, hence, it is in the
range between (.8 and (.9, This value is approximately con-
sistent with the value derived from the area of apparent ho-
rizons computed at the termination of the simulations.

Figure 16 also indicates that the energy and angular mo-
mentum loss by gravitational radiation decrease with the de-
crease of rest-mass ratios. The reason is that tidal disruption
takes place before the orbital separation becomes as small as
the sum of radii of two stars for the merger of unequal-mass
neutron stars. The orbital separation at the tidal disruption is
larger for the smaller rest-mass ratios for a fixed value of the
total rest mass of the system. This implies that the maximum
valuc of the compactness of binary orbit is smaller for the
smaller rest-mass ratios, resulting in that the amount of
gravitational radiation becomes smaller.
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For the case of hypermassive neutron star formation, the
energy and the angular momentum are carried away gradu-
ally due to gravitational radiation emitted by the quasiperi-
odic nonaxisymmetric oscillations. Since the emission time
scale is much longer than the dynamical time scale, it is
impossible to follow the longterm evolution of the hyper-
massive neutron stars to the final state, If we assume that the
angular momentum is dissipated by gravitational waves with
the same rate as that at the termination of the simulation, the
angular momentum will become smaller than 0.1/, around
1= 300P,_y. Since the hypermassive neutron stars are sup-
ported by the centrifugal force, they will collapse to a black
hole as a result of the angular momentum dissipation within
~1 s

In the SPH calculations [19,20,38}, the quasiperiodic os-
ciliations of the hypermassive neutron star damp in much
shorter time than in our numerical results. If we believe their
results, the lifetime of the hypermassive neutron stars would
be much longer. The reason for the discrepancy between our
and their results is unclear. However, as far as our simula-
tions are concerned, there is no reason for the damping of the
nonaxisymmetric oscillation in such a short time scale since
the emission time scale of gravitational waves is much
longer than one oscillation period and other damping pro-
cesses such as dynamical angular momentum transfer are
unlikely to work efficiently. We suspect that damping found
in previous works may be due to a spurious numerical dissi-
pation or due to an overestimation of gravitational radiation
damping in the post-Newtontan formalism they adopted.

D. Gravitational radiation reaction

The ADM mass M and the angular momentum J com-
puted in a finite computational domain using Eqgs. (2.36) and
{2.37) decrease with time because of the gravitational radia-
tion, However, conservation laws (2.43) and (2.44) should
still be satisfied. Here, we demonstrate that they are satisfied
approximately in the present simulations.

Figure 18 shows the time evolution of M and J (solid
curves) and of the quantities defined by the following equa-
tions (dotted curves) for models M1414 and Mi517:

M'(r)=My—AE(1), 4.7

S =dy— AJ(1). {4.8)
The relations M "(1}=M (1) and J'(r)=J(t) are equivalent
to the conservation of the total ADM mass energy and angu-
lar momentum. Figure 18 indicates that relations M =M’
and J=J' are satisfied within ~ % error except for the
phase in which the merged object collapses to a black hole
and, as a result, the grid resolution becomes too poor.

In fully general relativistic simulations, the numerical ac-
curacy is restricted by grid resolution and by the approximate
outer boundary conditions imposed in a local wave zone. The
results presented here indicate that these errors are sup-
pressed within ~ 1% error in our simulations in the absence
of a black hole. {In the presence of a black hole, the errors
increased to ~ 10% and the computation crashed.)
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calculated by Egs. (4.7) and (4.8) (dotted curves) (a) for model M1414 and (b) for model M1517.

The conservation of the angular momentum which holds
approximately in our present simulations is a necessary con-
dition for studying the formation of disks and a hypermas-
sive neutron star supported by centrifugal force, and the final
value of g of a black hole. The resulls here indicate the
reliability of the numerical results on the formation of disks
and hypermassive neutron stars, and on determination of the
final value of g presented in Secs. IVB and IV C,

E. Calibrations

Convergence tests were performed employing models
MI1616 and M1414. The test simulations were done {or five
additional models as listed in Table IL To investigate effects
of the location of the outer boundaries at which approximate
boundary conditions were imposed, the values of L were
changed for three levels as L/Ay=0.533 (MI1616), 0.425
(M1616-2), and 0.263 (M1616-3) fixing the grid spacing. To
see effects with regard to the grid resolution, we also per-
formed two additional simulations for models M1616-4
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and M1616-5 in which the location of the outer boundaries
was the same as that for M1616-3, but the grid spacings were
about 5/6 and 5/4 times, respectively, that for M1616-3. A
simulation for model M1414-2 was performed to clarify
weak dependence of gravitational waveforms from quasiperi-
odic oscillations of a hypermassive neutron star on the value
of L.

1. Convergence test with regard to grid resolution

Figure 19 shows the evolution of the maximum density,
the central values of « and ¢, the averaged violation of the
Hamiltonian constraint 4 [computed by Eq. (2.46)], M [com-
puted by Eq. (2.36)], and J [computed by Eq. (2.37)] for
models M1616-3 (dotted curves), M1616-4 (solid curves),
and M1616-5 (long-dashed curves). This figure indicates the
dependence of the numerical results on the grid resolution
for a fixed value of L. It is found that the convergence of H
is at first order. A likely reason is as follows: Since the
vacuum is not allowed in our hydrodynamic implementation,
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FIG. 19. Time evolution of the maximum density, the central values of o and ¢, the averaged violation of the Hamiltonian constraint
(), M, and J for models M1616-3 (dotted curves), M1616-4 {solid curves), and M1616-5 {long-dashed curves). In this figure, effects with

regard to the grid reselution are clarified.
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we have to add an atmosphere of small density outside neu-
tron stars. In the present work, the density of the atmosphere
is ~ 1077 in units of k=1. As a result, a very steep density
gradient appears at the stellar surface. In such a region, the
transport term of the hydrodynamic equations is computed
with first-order accuracy in space. This effect seems fo be
non-negligible in determining the global order of the accu-
racy.
The angular momentum is dissipated and transported un-
physically by numerical effects. For the larger grid spacing,
- the dissipation rate is larger and, as a result, the duration of
the inspiral phase becomes shorter. Even in the case of the
best resolution (M1616-4), the angular momentum appears
to be dissipated by ~1%. This effect may be the main
source for the discrepancy between J and J' {see Fig. 18(a)]
in the late phase f—ryp = P, for model M1414,

2. Convergence test with regard to L

In Fig. 20, we show the same figure as that of Fig. 19 but
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for models M1616 (solid curves), M1616-2 (dashed curves),
and M1616-3 {long-dashed curves) to make a comparison
among the numerical results with the different values of L
and a fixed grid spacing. It is found that {i) for a smaller
value of L, the merged object collapses earlier, (ii) H depends
very weakly on the value of L, and (iii} the results for models
Mi1616 and M1616-2 are almost identical.

The reason for (i) is that the magnitude of the radiation
reaction is overesiimated with small values of L. To explain
this effect, gravitational waveforms, the radiated energy, and
the radiated angular momentum are shown in Fig. 21, which
indicate that thc numerical results for models M1616 and
M1616-2 are approximately identical, This implies that with
L.=0.5\, a convergent result may be achieved. On the other
hand, with the smaller value of L<<0.5),, the amplitude of
gravitational waves, the radiated energy, and the radiated an-
gular momentum are overestimated. The radiated energy and
angular momentum for model M1616-3 are about twice as
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FIG. 21. (a) Gravitational waveforms {R4,.) and accumulated energy and angular momentum of gravitational radiation for models
MI616 {solid curves), M1616-2 (dashed curves), M1616-3 {iong-dashed curves), and M1616-4 (dotsed curves). (b) The same as Fig. 18(b),
but for models M 1616 (solid and dotted curves) and M1616-3 {dashed and dotted-dashed curves). The solid and dashed curves denote M/M
and J/J,. and the dotted and dotted-dashed curves 1 —AE/M, and 1 —AJ/M,,.
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large as those for M1616. As a result, the orbital separation
for M1616-3 decreases more rapidly than that for M1616,
Moreover, the radiation reaction is not accurately computed
for model M1616-3, so that the conservation of the angular
momentum (J+ AJ=J,) is largely violated {sce Fig. 21(b)].
A number of numerical simulations for the binary merger in
full general relativity have been recently performed with L
0.5\, {7,11,12]. Figure 21{b) warns that the gravitational
waveforms and the merger process in such numerical simu-
lations are not very reliable.

Figure 22 is the same figure as that of Fig. 21(a) but for
models M1414 (solid curves) and M1414-2 (dashed curves),
for which the outer boundaries are located at L=0.510kq
and 0.252)\,, respectively. For 1 — 7., P, _q, the amplitude
of gravitational waves, the radiated energy, and the radiated
angular momentum are overestimated for the smaller value
of L. Since the angular momentum is dissipated more rapidly
from the system, the inspiral phase is shorter and the merger
sets in earlier for model M1414-2. This results in a phase
difference between gravitational waves of MI414 and
MI1414-2. However, for 1—rg= P, the amplitude of
gravitational waves, the energy luminosity, and the angular
momentum flux are approximately in agreement between
two results (besides the slight disagreement in the wave
phase). This figure shows that quasiperiodic waves emitied
from oscillating hypermassive neutron stars is calculated ac-
curately with our choice of L, since its wavelength is short
enough to compute these quantitics even for the smaller
value of L.

V. SUMMARY

We performed fully general refativistic simulations for the
merger of binary neutron stars focusing particularly on the
unequal-mass case. The following is a summary of the sci-
entific results obtained in this paper.

IT the total rest mass of the system is more than 1.7 times
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of the maximum allowed rest mass of spherical neutron stars
a black hole is formed for the T'-law equation of state with
n=1. The nondimensional angular momentum parameter of
the formed Kerr black hole is likely to be in the range be-
tween 0.8 and 0.9,

Disk mass around a black hole formed after the merger
increases with the decrease of rest-mass ratios for a fixed
value of the total baryon rest mass of binary newiron stars. It
is found that for the rest-mass ratio ~0.85, the disk mass
may be several percents of the total mass of the system if two
neutron stars are not very compact.

Disk mass around a black hole formed after the merger
decreases with the increase of the compactness of the system
for a fixed value of the rest-mass ratio,

Shape of the hypermassive neutron stars formed after the
merger depends on the rest-mass ratio of binaries. For the
merger ol equal-mass neutron stars, a hypermassive neutron
star of a double core is formed. On the other hand, for the
merger of unequal-mass neutron stars, an asymmetric double
core structure s the outcome.

In the hypermassive neutron stars formed after the
merger, both nonaxisymmetric and quasiradial oscillations
are excited. These oscillations induce gravitational radiation.

For the case of hypermassive neutron star formation, the
characteristic frequency of gravitational waves associated
with nonaxisymmetric oscillations is ~3fqg, which is ~2.2
kHz assuming that My=~2.8M;. This value is slightly
higher than that found in the post-Newtonian simulation
[20}. This is likely due to the fact that the formed hypermas-
sive neutron star is more compact in our simulation in which
general relativistic effects are fully taken into account.

The frequency of the peak in the gravitational wave spec-
trum associated with the nonaxisymmetric oscillation is
higher for the mergers of the smaller rest-mass ratic with a
given total rest mass. This reflects the fact that the formed
hypermassive neutron star is more compact for mergers of
the smaller rest-mass ratios.

The amplitude of guasiradial oscillations for hypermas-
sive neutron stars is larger for the merger of equal-mass neu-
tron stars. This is reflected in the amplitude of gravitational
waves for Rqq as well as the magnitude of the peak at ~2fop
of 1%22 .

The characteristic frequency of gravitational waves asso-
ciated with a quasiradial oscillation is ~ fe . The oscillation
docs not damp quickly. Thus if the cycle of gravitational
waves could be accumulated using a theoretical template, the
effective amplitude may be as large as that of the dominant
guadrupole component.

The simulations were performed using a new implemen-
tation. As a result, the accuracy of the numerical results is
significantly improved. In particular, we emphasize that the
gravitational radiation reaction is taken into account with a
good accuracy in the new implementation. We now consider
that fundamental parts of the numerical implementation such
as those for Einstein’s evolution equation, general relativistic
hydrodynamic equations, gauge conditions, and apparent ho-
rizon finder are established well for simulating spacetimes of
no black hole and for earty growth of formed black holes.
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However, there are still technical issues to be solved. The
following is a list of them.

The black hole forming region does not have good reso-
lution in our current computation. Consequently, computa-
tion crashed soon after formation of the apparent horizon.
Obviously, it is necessary to improve the grid resolution
around the black hole forming region for longer time simu-
lations. Since we have to prepare a large computational do-
main with L which is at least half of the wavelength of gravi-
tational waves, using restricted computational speed and
memory, it is desirable to develop numerical techniques such
as the mesh refinement techniques {44] to overcome this
problem.

Gravitational waveforms are incompletely computed in
the case of black hole formation, since the computations
crash soon after the formation of the black holes. A straight-
forward approach to compute such gravitational waves is o
develop a black hole excision technique [42] by which we
might be able to continue the simulation for a long time
duration even after formation of the black holes. An alterna-
tive approach is to extract gravitational waves from a re-
stricted spacetime data sct using the so-called Lazarus tech-
nique [431 Developing either of two technologies is an issue
for the future,

Up until this time, we have performed simulations using
['-law equations of state and neglecting microphysical ef-
fects. To produce more physical and realistic outputs by nu-
merical simulation, it is necessary to take into account so-
phisticated microphysics as done in Newtonian simulations
[46].
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It is desirable to improve the implementation for provid-
ing the initial conditions. In simulations performed to this
time, we have used quasiequilibrium states of a conformally
flat three-metric as the initial conditions for simplicity. The
conformal flatness approximation becomes a source of a cer-
tain systematic error when attempting to obtain realistic qua-
siequilibrium states, since the nonconformal part of the
three-metric is in general nonzero [47]. As a result, this ap-
proximation introduces a systematic error on the initial con-
ditions and subsequent merger simulation. Since the magni-
tude of the ignored terms in the conformal flatness
approximation seems to be small, it is unlikely that this ef-
fect significantly changes the results obtained in this paper.
However, this conclusion is not entirely certain. To rule out
the possibility, it is necessary to perform simulations using
quasiequilibrium states of generic three geometries as initial
conditions. A few formulations in which the conformal flat-
ness is not assumed have been proposed recently [48].
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