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ABSTRACT

We investigate the dynamical instability of the one-armed spiral m = | mode in differentially rotating stars
by means of 3 + 1 hydrodynamical simulations in Newtonian gravitation. We find that both a soft equation
of state and a high degree of differential rotation in the equilibrium star are necessary to excite a dynamical
m = | mode as the dominant iastability at small vaiues of the ratio of rotational kinetic to gravitational
potential energy, T/|W]|. We find that this spiral mode propagates outward from its point of origin near the
maximum density at the center to the surface over several central orbital periods. An unstable m = | mode
triggers a secondary m = 2 bar mode of smaller amplitude, and the bar mode can excite gravitational waves.
As the spiral mode propagates to the surface it weakens, simultaneously damping the emitted gravitational
wave signal. This behavior is in contrast to waves triggered by a dynamical m = 2 bar instability, which
persist for many rotation periods and decay only after a radiation reaction—damping timescale.

Subject headings: gravitation — hydrodynamics — instabilities — stars: neutron — stars: rotation

L. INTRODUCTION

Stars in nature are usually rotating and may be subject
to nonaxisymmetric rofational instabilities. An exact
treatment of these instabilities exists only for incompres-
sible equilibrium fluids in Newtonian gravity (e.g.,
Chandrasekhar 1969; Tassoul 1978). For these configura-
tions, global rotational instabilities may arise from non-
radial toroidal modes ¢ (where m = L1, £2, ... and @ is
the azimuthal angle).

For sufficiently rapid rotation, the m =2 bar mode
becomes cither secularly or dynamically unstable. The onset
of instability can typically be identified with a critical value
of the nondimensional parameter J= T/|W|, where T is
the rotational kinetic energy and W the gravitational poten-
tial energy. Uniformly rotating incompressible stars in
Newtonian theory are secularly unstable to bar modc for-
mation when 3 > Fg =~ 0.14. This instability can grow only
m the presence of some dissipative mechanism, such as vis-
cosity or gravitational radiation, and the associated growth
timescale is the dissipative timescale, which is usually much
fonger than the dynamical timescale of the system. By con-
trast, a dynamical Instability to bar mode formation sets in
when 3 > 4y, = 0.27. This instability is independent of any
dissipative mechanisms, and the growth timec is the
hydrodynamic timescale.
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Determining the onset of the dynamical bar mode insta-
bility, as well as the subsequent evolution of an unstable
star, requires a fully nonlinear hydrodynamic simutation.
Simulations performed in Newtonian gravity (e.g., Tohiine,
Durisen, & McColiough 1986; Durisen et al. 1986; Williams
& Tohline 1988; Houser, Centrella, & Smith 1994; Smith,
Houser, & Centrella 1996; Houser & Centrella 1996;
Pickett, Durisen, & Davis 1996; Toman et al. 1998; New,
Centrelfa, & Tohline 2000) have shown that &y, depends
only very weakly on the stiffness of the equation of siate.
Once a bar has developed, the formation of a two-arm spiral
plays an imporiant role in redisiributing the angular
momentum and forming a core-halo structure. Both Gy,
and Js. are smaller for stars with a high degree of differen-
tial rotation (T'ohline & Hachisu [990; Pickett at al. 1996;
Shibata, Karino, & Eriguchi 2002; Shibata, Karino, &
Eriguchi 2003). Simulations in relativistic gravitation
{Shibata, Baumgarte, & Shapire 2000; Saijo et al. 2001)
have shown that 3y, decreases with the compaction of the
star, indicating that relativistic gravitation enhances the bar
mode instability. To efficiently use computational resources,
most of these simulations have been performed under cer-
tain symmetry assumptions (e.g., m-symmetry) that do not
affect the growth of the m = 2 bar mode but suppress any
m = 1 modes.

Recently, Centrella et al. (2001) reported that such m =1
“one-armed spiral” modes are dynamically unstable at
surprisingty smalil values of T/IW]. Centrella et al. (2001)
found this instability in evolutions of highly differentially
rotating equifibrium polytropes with polytropic index
n =333 Typically, these equilibria have a *“toroidal”
structure, so that the maximum density is not located at the
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geometric center but rather on a toroid rotating about the
center.

1t is possible that the m = | instability in equilibrium stars
is related to that arising in protostellar disk systems. This
instability originally was found in nearly Keplerian thin
gascous disks around central point masses, both
numerically (Adams, Ruden, & Shu 1989; Heemskerk,
Papalozizou, & Savonije 1992) and analytically (Shu et al.
1990). The centra! point mass moves away from the center
of mass of the whole system because of a perturbation and
this displacement triggers the instability. This particular
mode of instability occurs only when the mass ratio
M gisk / Mo exceeds 0.2, Anm = | instability has also been
found in thick self-gravitating protosteilar tori (Woodward,
Tohline, & Hachisu 1994) and protostellar disks (Laughlin
& Bodenheimer 1994), as well as in finite fluid cores sur-
rounded by disk halos (Pickett et al. 1996). In the latier case,
the instability ariscs from the internal interaction between
different regions of a single continuous body, and the disk
does not need to satisfy the above mass criterion fo trigger
the m = 1 instability (see also Bonnell 1994 for an example
of an unstable central accreting object surrounded by a
rotationally supported gas disk).

The purpose of this paper is to study further the condi-
tions under which a dynamical m = 1 instability is excited.
We vary both the polytropic index, 1.e., the stiffness of the
equation of state, and the degree of differential rotation to
isolate their effects on the instability. Since the onset of rota-
tional instahilities is often characterized by 4, we keep this
value approximately fixed in our sequences. We find thata
soft equation of state and a high degree of differential rota-
tion are both necessary to dynamically excite the m = 1|
mode at the smali value of 5 = 0.14 chosen in this paper.
We find that a toroidal structure is not sufficient to trigger
the m =1 instability, but our findings suggest that a
toroidal structure may be necessary.

While our goal is 1o gain a deeper understanding of the
nature of the m = 1 instability as opposed to simulating
realistic astrophysical scenarios, we point out that there
exist evolutionary sequences that may well lead to rapidly
and highly differentially rotating configurations. For
example, cooling by thermal emission from a rotating star
will cause the star to contract and spin up. If internal viscos-
ity and magnetic fields are sufficiently weak, this process will
tead to differential rotation even if the initial configaration
is rotating uniformly. This scenario may arise in supermas-
sive stars, for which the equation of state is dominated by
radiation pressure and may be modeled by a {soft) n =3
polytrope. In the absence of viscosity and maguetic braking,
the star will contract quasi-statically as it cools to a toroidal
configuration, which may be subject to m=1 or m=2
instabilities (New & Shapiro 2001). Stellar collisions and
mergers may also lead to differentially rotating stars. For
the coalescence of binary neutron stars {Shibata & Uryi
2000, 2002), the presence of differential rotation may tempo-
rarily stabilize the “ hypermassive " remnant and may there-
fore have important dynamical effects (Baumgarte, Shapiro,
& Shibata 2000; Lyford, Baumgarte, & Shapiro 2003)}.
However, as we find in this paper, the m = | mode is un-
stable only for very soft equations of state, so that it is not
obvious that they will arise in the remnant of a binary
neutron star merger. However, they may arise in a rapidly
spinning proto-neutron star core when surrounded by a
fall-back disk, possibly forming a low-mass condensation

that can explode and induce a large neutron star recoil speed
(Colpi & Wasserman 2002). Finally, the m = 1 instability
might arise in massive disks around black holes, especially if
the disks are radiation dominated and hence governed by a
soft equation of state.

This paper is organized as follows. In § 2 we present the
basic equations, our initial data, and diagnostics. We dis-
cuss our numerical results in § 3 and briefly summarize our
findings in § 4. Throughout this paper we use gravitational
units* with G =c¢ =1 and adopt Cartesian coordinates

{x, y, 7).

2. BASIC EQUATIONS
2.1. Newtonian Hydrodynamics

We construct a 3+ 1 dimensional Newtonian hydro-
dynamics code assuming an adiabatic I'-law equation of
state

P=(I"—1jpe, (1)

where P is the pressure, ' the adiabatic index, p the mass
density, and & the specific internal energy density. For pet-
fect fluids the Newtonian equations of hydrodynamics then
consist of the continuity equation

dp  O{pv')

e =0, 2
at ax! ' (2)
the energy equation
e Oevf) 1 e vt
— = e Pois— 3
At + Ot r° Oxt ' ®)
and the Fuler equation
8({)5,’) a(pt“jb‘f) _ 8(!’ + Pvis) a%

: - 4
Gt ax/ oxf P o @
Here o is the fluid velocity, @ is the gravitational potential,
and e is defined according to

e=(pe)'/". (5)

We compute the artificial viscosity pressure P, from
Richtmyer & Morton (1994)

.2
Py = { Cysp(dvy  for év <0, (6)
0 for 6e >0,

where dv = 26xd and dx(= Ax = Ay = Az) is the local
grid spacing, and we choose the dimensionless parameter
Cuis = 2. When evolving the above equations we limit the
step size At by an appropriately chosen Courant condition.

We have tested the ability of our code to resolve shocks
by selving a wall shock problem, in which two phases of a
fluid collide at supersonic speeds. In Figure | we compare
numerical results with the analytic solution for initial veloc-
ities that are similar to those found in our simulations
below. With Cys = 2 we find good agreement for Mach
numbers up to Myacn 6. The drop in density at x =0 is
usually interpreted as “wall heating” (e.g., Hawley, Smarr,
& Wilson 1984).

4 Since we adopt Newtonian gravity in this paper, the speed of light
enters only in the gravitational waveforms {§§ 2.3 and 3).
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6 — — constant. In absence of shocks, the polytropic form of the
T 1 T T 1 T F 1T T [ 71 T3 : - )
- - equation of state is conserved by the I'-law equation of state
5 - AR PN LT FICCT T S LY AL L LA TR LR J (eq il]) R . )
- / \Hn' ! - To enhance any m = 1 or m = 2 instability, we disturb
- | i ' 7] the initial equilibrium density peq by a nonaxisymmetric
s 4 ! b : - perturbation according to
o - i | 3 22
= - 2 + + )
= : - g eq( Req R )
2= ' = with (1) = 6@ = 10-? in all our simulations.®
S N
l: . 2.3, Gravitational Waveforms
0: T R We compute approximate gravitational wayeforms by
-1 -0.5 0.5 1 evaluating the quadrupole formula. In the radiation zome,

? b
x/x()

FiG. |.—Cemparison between numerical and analytical results in a one-
dimensional wail shock problem at ¢ = 2.5x(") /vy {where the fluid fow is
aligned with the x-axis), showing anzlytic results (solid lines) and numerical
results {dushed lines). For this simulation we chose I'= 130, pl¥ =
280 % 1073, k= 5.85 % 1072, x(®) = 0.5 with a grid space §x = 5 x 103
and vp = 2.78u,, where v, is the initial speed of sound.

The gravitational potential is determined by the Poisson
equation

AD = dmp {7)
which we solve subject to the outer boundary condition
M dix
= —= -5+ 007 (8)

Here M is the total mass

M= [ pdx®, 9)

I

and d; is the dipole moment

d; = /px,-dx3. (E0)
Jv

2.2, Initial Data

As initial data, we construct differentially rotating equili-
brium models with an algorithm based on Hachisu (1986).
Individual models are parameterized by the ratio of the
polar to the equatorial radius R,/R.q and a parameter of
dimension length d that determines the degree of differential
rotation through

Jo
de2+w2 . (I
Here £} is the anguiar velocity, jy 18 a constant parameter
with units of specific angular momentuem, and wis the cylin-
drical radius. The parameter d determines the length scale
over which 1 changes; uniform rotation is achieved in the
limit d — oo. For the construction of initial data we also
assume a polytropic equation of state

P ﬁ;pl'H/” ; (12)

where r=1/(F —1) is the polytropic index and & a

gravitational waves can be described by a transverse irace-
less perturbed metric 41T with respect to a flat spacetime. In

the quadrupole formuia, hF is found from Misner, Thorne,
& Wheeler (1973)
2 d?
" :?E]'?T‘T’ (14)

where r is the distance to the source, I is the quadrupole
moment of the mass distribution (see eq. [36.42b] in Misner
et al. 1973}, and TT denotes the transverse iraceless projec-
tion. Choosing the direction of the wave propagation to be
along the z-axis, the two polarization modes of gravitational
waves can be determined from

hy =40y —hy ), he=hy (15)

For observers along the z-axis, we thus have

rh I d,. :

=g e ) (16)
¥y, 1 d .
M Mda 7

The number of time derivatives f; that have to be taken can
be reduced by using the continuity equation (2)

@:/ww+mwwx (18)

in equations {16) and (17) (see Finn 1989).

2.4, Numerical Implementation and Diagnostics

Qur code is hased on the post-Newtonian hydrodynamics
scheme of Shibata, Baumgarte, & Shapiro (1998) and Saijo
et al. (2001), to which the reader is referred for a more
detailed description, discussion, and tests. We choose the
axis of rotation to align with the z-axis and assume planar
symmetry across the equator. The equations of hydrody-
namics are then solved on a uniform grid of size
169 % 169 = §5. We terminate our simulations either when
the central density has increased to a point at which our
resolution becomes inadequate or after a sufficient number
of central rotation periods (between 20 and 40) for us to
detect dynamical instabilities.

5 The numerica! finite difference error is in principle sufficient to wigger
instabilities, but starting from such a small amplitude it would take the
instability prohibitively long to reach saturation.
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We monitor the conservation of mass M (eq. [9]), angular
momentum J,

J= [p(xu” — v )dx 19
energy £,

E=T+U+ W:%/pva;d3x+ /,06(!13er% fp@d3,x ,
(20)

and the location of the center of mass xpy

Xy = [prcz'3x. (21)

Here T is the kinetic energy (all rotational at ¢ = (), U the
internal energy, and ¥ the gravitational potential energy.
Given our assumption of equatorial symmetry, we have
xpym = 0 identically, so that we need only to monitor the x-
and y-components of x.,,. Because of our flux-conserving
difference scheme the mass M is also conserved up to round-
off error, except if matter leaves the computational grid
(which was never more than 0.08% of the total mass). In all
cases reported in § 3 the energy £ and the angular momen-
tum J were conserved up to ~0.1% of their initial valuoes,
and the center of mass moved by less than about 1% of 1
spatial grid cell per central rotation period.

To monitor the development of i = 1 and m = 2 modes
we compute® a * dipole diagnostic ™

fing - v 'y 3.
D — <€ >m:! = — piw«’?d X (22)
and a “ quadrupole diagnostic”

inng \2 _J (2\,]))
Q - <£ »/ m=2 Mf \2 +J,2 ], s (23)

where angle brackets denote the density weighted average.
In the following we plot only the real parts of D and Q.

3. RESULTS
3.1. Dynamical Bar Formation

Before studying m = [ one-armed spiral instabilities, it is
useful to test the capability of our code and our diagnostics
to detect any instabilities. To do so, we reproduce an m = 2
bar mode instability that was recently found by Shibata
et al. (2002) in highly differentially rotating n = | polytropes
for surprisingly small values of T/{W|. The parameters of
our initial data for this test are listed in Table 1. For all our
simulations we add a small dipole (m = 1) and quadrupole
(rm = 2) perturbation to the initial equilibrium star (eq. [3])
to enhance the growth of any instability.

In Figure 2 we show both diagnostics D and  as a func-
tion of time. The dipole diagnostic D remains very small
throughout the evolution (small oscillations are due to the
initial perturbation), while the quadrupele diagnostic ¢
grows exponentially until it saturates. These results indicate

& Qur diagnostics differ from those in previous treatments {Centrella
et al, 2001), in which the growlh of the mode is measured at a single
arbitrary Bulerian radius in the equatorial plane inside the star.
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FiG. 2.—-Diagnostics D and @ as a function of 7/ P, for our bar formation
model (see Table 1), showing the values of D (solid fines) and Q {dotted
lines). We lerminate our simulation when = 132p,. Hereafter P,
represents the central rotation period.

that the star is unstable toward bar formation but stable
toward one-armed spiral formation. The bar persists with-
out decay for over one surface-rotation period following
saturation, corresponding to over 30 ceniral rotation
periods. After this we terminate our integration.

The bar mode formation is also evident in Figure 3, which
shows a snapshot of the density contours just before we ter-
minate the evolution. Because of the small value of 7/
the bar is too weak to form double spiral arms. The gravita-
tional waveform emitted by the bar formation is shown in
Figure 4. We expect that it will survive without decay unti}
gx avitational radiation reaction forces destroy the bar

R/M 52 dyn > Idyn}

-1.5-1-050 05 1 1.5
x /I R

Fic. 3.—Final density contours in the equatorial plane for our bar for-
mation model. Sl‘]dp‘ihol\ are plotted at (i/Pe. pm; n/{)m}l\) ={132, 1.25),
where pmax i3 the maximum density, pmix 18 the initial maximum density,
and R is the initial equatondi radius. The contour lines denote densities
Pl P = 6.67(16 — 1) x 1072 (i =1, ..., 15)
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Fii. 4 —Gravitational waveferm for a bar-unstable star as seen by a
distant observer focated on the z-axis.

These simulations indicate thai our code and diagnostics
are capable of detecting instabilities and also reconfirm the
findings of Shibata et al. (2002) that strongly differentially
rolating stars can be unstable to dynamical bar mode
formation even at very small values of 7/| W/,

3.2, Dynamical One-armed Spival Formation

We now focus on m = | one-armed spiral instabilities.
Before we analyze their dependence on the stiffness of the
equation of state and the degree of differential rotation in
the following subsections, we first want to reconfirm the
findings of Centrella et al. (2001). To reconstruct their initial
data, we adopt a polyiropic index of n = 3.33 and a high
degree of differential rotation (d/R, = 0.2). We study two
different models, which are detailed in Table 2. The more

TABLE 1

InITIAL DATA FOR BAR FORMATION
TesTs {(n = 1)

Parameter Value
A/ Reg®oiiiiims 0.20
Ry/Req {.250
0./ ey 26.0
Do/ Pan® 0,160
Rinaxd/ Reg® v 0.383
T/W| ... . 0119
m=1.. Stable
7 2 Unstable

4 R denotes the equatorial radius.

& R, denotes the polar radius.

¢ Q. denotes the central angular
velocity, and £l the equatorial angular
velocity at the surface.

d 5. denotes the central density, and
Pmax the maximum density.

¢ Roaxa denotes the distance between
the origin and the location of maximum
density.

f7 denotes the rotational Kkinetic
energy, and W thc gravitational
polential energy.
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TABLE 2
INTTIAL DATA FOR THE 2 = | TEST (1 = 3.33)
Parameter Model  (a} Model I{h)

G R cveeeniiiiniins 0.20 0.20
Ry/Req . 0.417 0.542
Qe f8eq . 26.0 26.0
O/ Puas even. 0.531 1,00
Rusasa / Regq wvevsrvrrnrens 0.192 0.00
THW o, 0.144 0.090
A= e, Unstable Stable

rapidly rotating model T (a) (the case T/|W|=0.14 of
Centrella et al. 2001} has a toroidal structure, while model 1
(b) (the case T/{|W} = 0.09 of Centrella et al. 2001) does
not. Confirming the results of Centrella et al. (2001), we find
that model I (a) develops an m = 1 instability, while model I
(b) remains stable.

The different stability properties of the two models can be
seen in Figure 5, where we show both diagnostics D and (.
Formodel I (b), both diagnostics remain very small, indicat-
ing stability,” while for model I (a) both diagnostics grow.
The dipole diagnostic D), however, grows more strongly
than the quadrupole diagnostic Q, mdicating that the m = 1
mode is the dominant unstable mode. This is also evident in
the density contours in Figure 6, which clearly exhibit the
one-armed spiral in model I (&) at intermediate times, In all
cases that we found to be unstable to an m = | mode, we
simultaneously found a growing m = 2 mode.

In Figure 7 we show the maximum density pn,x as a func-
tion of time for both models. Even for the stable model 1 (h)
the central density slowly increases over the course of sev-
eral central rotation periods. This stow growth 1s due to
numerical and artificial viscosity, which tends to decrease
the degree of differential rotation. As a consequence, the
angular velocity at the center decreases, which also

7 The small growth of the m = 1 mode in model I (b) is a numerical arti-
fact triggered by the initial perturbation; the absence of an exponential
growth indicates that this is not an instability.

U-]JH‘I\I\|H‘!H\I‘I\H_ AEAANLARRNRARRFRERINURRES
- I(a) 10 I(b) ’
005 L —
o C ’
/o - =
L _ L _
=B C :
mO.()5j _— 77
_017|11al|t|\|uix§:rl\lwlf Do e b Tegai
it 3 10 15 20 250 5 10 15 20 25
t/P, t/P,

Fic. 5.—Diagnostics D and Q as a function of 1/ P, for model 1 (a) and
(b) (see Table 2}, showing 2 (solidd finex) and Q@ (dotted lines). We terminate
our simulation at 1~ 20P. or when the maximum density of the star
exceeds about 10 times its initial value.
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I (b)-ii

-15-1-050 05 1
x / R

1.5 -1.5-1-050 05 1 1.5

x / R

Fi;, 6.— Intermediate and final density contours in the equatorial plane for medel | {a) and model 1 {b). Snapshots are plotted af values of
(I/PE,,r)ﬁm/pfgf“,d} equal to {16.3, 3.63,0.287) for (a)i, equal to (14.7,2.08,0.333) for (b)i, equal to (233, 11.5,0.287) for (a)-ii, and equal to
(20.6, 3.56, 0.333) for (b)-ii. The contour lines denote densities g/ gy, = 10700 (=1, .., 15).

T T 11 rr«s+] ror7mr T TTd

15
t/P
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Fi6. 7—Maximum density gy 25 a function of 7/ P, for model 1 (a)
{sofid Iine) and model T (b) {dotted line). We terminate our simulation at
t ~ 20P. or when the maximum density of the star exceeds about 10 times
its initial value, pfm,x.

decreases the rotational support of the matter at the center,
and hence leads to a slow increase of the central density,
even for supposedly stable stars (see also Fig. 8). This effect
is a numerical artifact, although viscosities in stars in nature
would have a very similar effect. For the unstable model I
(b), however, we find a much more rapid increase in the cen-
tral density. This enhanced increase is caused by the grow-
ing spiral instability as it redistributes the matter in the star
and destroys the toroidal structure (compare Fig. 8).

Unlike in bar formation, in which the bar persists for
many rotational periods (compare § 3.1; Brown 2000; Saijo
et al, 2001), we find that D and Q start decreasing immedi-
ately after reaching a maximum (see Fig. 5; note that the
decrease in D is not as dramatic as the decrease in 0). This is
also evident in Figure 6, in which the density contours
approach axisymmetry at late times. As the spiral arm prop-
agates through the star, it rearranges the density profile,
eliminates the toroidal structure, and ultimately leads to a
new axisymmetric equilibrinm configuration.

In Figure 9 we show the gravitational wave signal emitted
from this instability, Gravitational radiation couples to
quadrupole moments, and the emitted radiation therefore
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Fic. 8.—Density profiles along the x-axis during ithe evolution for
models T (a) and I (b). Solid, dotted, dashed, and dash-dotied kines, respec-
tively, denote times #/P. = 1.16 x 10-3, 6.99, 14.0, and 21.0 for 1 (a) and
7.36 » 1074, 6.63, 13.3, and 19.9 for F {b). Note that the density distribution

develops asymmetrically in the presence of the m = 1 modc instability and
that this instability destroys the toroidal structure.

scales with the quadrupole diagnostic 0, which we always
find excited along with the # =1 instability. We consis-
tently find that the pattern period of the m = 2 modes is very
similar to that of the m = 1 mode, suggesting that the for-
mer is a harmonic of the latter (see Table 3). Since the diag-
nostic () does not remain at its maximum amplitude after
saturating, we find that the gravitational wave amplitude is
not nearly as persistent as for the bar mode instability. We
also find that the gravitational wave period, here Pow ~
0.7P. ~ Q1 is different from the value Pgw ~ 3.3P, ~ ng‘
we found for the bar mode in § 3.1, which points to a
difference in the generation mechanism. Characteristic wave
frequencies fGw correspond to the central rotation period of
the star.

The results of this subsection confirm the findings of
Centrella et al. (2001) and establish that stars with soft equa-
tions of state and large degrees of differential rotation are
unstable to one-armed spiral arm formation. Such stars

ST

FrTr i 7 17 17 17T 7 v T T 1 T T 1T

-5 Ld LT E O U o § 1 O O | I T ‘ T
0 5 10 15 20 25
t/P,

Fi6. 9.—Gravitational waveforms us seen by 2 distant observer located
on the z-axis for model | (a) (solid fine) and model 1 {b) {dashed line).
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TABLE 3
COMPARISON OF PATTERN PERIODS
Period ofm = | Periodof i = 2 Pattern Period

Model Mode (P Mode (P,) (P.)
I{ay@...... L6 6.7 1.4
mkP...... 2.5 1.2 24
... 2.0 1.0 2.0
(... 1.6 0.7 1.4
TH () ... 1.6 6.7 14
mi(dyr....... 1.6 6.7 1.4

4 See Fig. 5.

b See Fig. 10.
¢ See Fig. 15.

have a toroidal structure, which is erased by the growing
m = 1 mode. One might be led to believe that this toroidal
structure is a necessary and perhaps even a sufficient condi-
tion for the growth of the m = [ instability. In the following
two subsections we analyze the dependence of the onset of
instability on both the stiffness of the equation of state and
the degree of differential rotation and find that toroidal
structure alone is not suflicient for a one-armed spiral
instability.

3.3. Stiffness of the Equation of State

We parameterize the stiffness of the equation of state by
varying the polytropic index n between n = 3.33 and n = 2.
[n this sequence we keep the degree of differential rotation
(ie.. d and hence (2. /€2.q) fixed and adjust the overall rota-
tion rate (parameterized by R,/ R} so that the value of
T/|W| remains very close to 0.144 (as for model I [a]). We
list our four different models 11 in Table 4 and note that
model IT (d) is identical to model I (a).

Figure 10, where we plot the dipole diagnostic D as a
function of time, clearly shows that an m = 1 instability is
excited in models 11 (b) and I (¢} in addition to model H {d).
After reaching saturation, D decreases again, similar to
model I {(a), which we described in detail in § 3.2. Model 11
{a), however, which has the most pronounced toroidal
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Fii. 10.-—Diagnostics D and @ as a function of 1/ P, for models I (see
Table 4). Solid and dotted lines denote D and (. We terminate our simula-
tion at + ~ 25P, or when the maximum density of the star exceeds about 10
thmes its initial value.
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TABLE 4
INITIAL DATA SEQUENCE VARYING THE POLYTROPIC INDEX

n d/ch R,'J/'Req Qz-/’ﬂeq Pv/.ﬁmax Ruaxd /Req TII‘ W‘ m = ] Stability
2.00 0.20 0.271 26.0 0.091 0.34¢ 0.145 Stable
2.50 0.20 0.354 26.6 0.193 0.295 0.145 Unstable
3.60 0.20 0.39¢ 26.0 0,325 0.243 0.147 Unstable
3.33 0.20 0.417 26.0 0.531 0.192 0.144 Unstable

4 Polytropic index.
b Same as model I {a).

structure, remains stable. These findings are also evident in
Figure 11, where we show density contours of intermediate
and final configurations,

In Figure 12, we show the maximum density as a function
of time. As we have seen in § 3.2, the maximum density
slowly increases in all cases because of dissipation of differ-
ential rotation. Once the one-armed spiral forms in models
I (b} and 1T {c), however, this increase is much more rapid,
which indicates again that the unstable mode rearranges the
matter in the star and destroys the toroidal structure. This
effect can also be seen in the density profiles in Figure 13.

We show the gravitational wave signal emitted from
models I in Figure 14. As we found in § 3.2, consistent with
the diagnostics D) and Q, the gravitational wave signal emit-
ted by the one-armed spiral mode does not persist over
many rotational periods and instead decays fairly rapidly
after it has been excited. This characteristic is very different
from what has been found for m = 2 bar mode instabilities
{compare § 3.1 and Brown 2000; Sajjo et al. 2001). We also
find that the maximum wave amplitude is much smaller
than can be found for configurations unstable to a pure bar
mode (compare Fig. 4) as gravitational radiation requires a
quadrupole distortion and the m =2 perturbation in
models T is being excited only as a lower amplitude
harmonic of the m = | mode (as suggested by a comparison
of the pattern periods; see Table 3).

3.4, Degree of Differential Rotation

We now focus on the dependence of the one-armed spiral
instability on the degree of differential rotation. Starting
again with model T (a), we now increase the parameter  to
explore more modest degrees of differential rotations. As
before, we would Hke to keep 5 ~ 0.14 in this sequence. For
very soft equations of state, this value can be achieved only
for very strong degrees of differential rotation. Therefore, to
keep /3 approximately constant, we simultaneously have to

decrease n as we decrease the degree of differential rotation.?
We list the details of our models ITI in Table 5.

We show the dipole diagnostic D as a function of time in
Figure 15, which shows that models [II (a) and I1I (b) are
stable against one-armed spiral formation while models 111
(¢) and IIT (d) (which is the same as model I [a]) are not. The
same conclusion can be drawn from the density snapshots
in Figure 16. Asin § 3.3, we find that the one-armed spiral
results in a large increase in the central density (Fig. 17) and
an elimination of the toroidal structure (Fig. 18). Tohline &
Hachisu (1990) similarly found that the elimination of the
toroidal structure is related to an outward transport of
angular momentum. To quantify this effect, we monitored
the angular momenturm distribution in model III (d) by
computing a mean radius of angular momentum
) M| [ dop\/x> + y*{x) — yv)]

/ J( [avp/x +37)
This mean radius is Initially 1.1 but increases to 1.5
at 1 = 24.5PF,, indicating that in fact the m =1 mode
transports angular momentum outward.

We show gravitational waveforms from models III in
Figure 19. We again find that the amplitude decreases after
reaching a maximum, which is a typical behavior of m = 1
instability (in Table 3 the pattern period of diagnostics D
and Q is the same). In some cases, however, this decrease is
not monotonic, and the amplitude may increase again to
form several distinct wave packets. Our numerical data are
not sufficient to determine the generic character of the gravi-
tational waves emitted from m = 1 mstabilities, and we
expect that this will be subject of future investigations. The
problem is that the growth of central concentration during
the evolution exceeds the ability of our code to resolve the
innermost regions for arbitrary long times in all cases.

(24)

8 This means that our results do not separate the dependence on the
degree of differential rotation from the dependence on the stiffness of the
equation of state as cleanly as one might wish.

TABLE 35
INITIAL DATA SEQUENCE VARYING THE DEGREE OF DIFFERENTIAL ROTATION

Model n d f Rey R, /Ry /g 2cf Prasx Rusaxa/ Req T/iWi m = 1 Stability
HE@) e 1,00 0.62 0.500 3.60 0.992 0.189 0.150 Stable
HE(W) ... 2.00 0.41 0.479 6.95 0.935 0.198 0.150 Stable
TE(e) .... 3.00 0.25 0.438 17.0 0.685 0.197 0.147 Unstable
IR (dY 3.33 (.20 0417 260 0.531 0.192 0.144 Unstable

3 Model I{a)inTable. 2.
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FiG. | 1.—Intermediate and final density contours in the equatorial plane for models I1. Snapshots are plotted at values of {1/ F,, p,,u.x/pig.‘)u, d} equal to
(23.8, 1.14, 0.220), for IT (a)-1, equal to (20.6, 1,90, 0.220) for 1T (b)-1, equal to {17.3, 4.98, 0.287) tor IT {c)-i, equal to (16.3, 3,63, 0.287) for IT {d), equal to
(34.7, 1.24, 0.220) for TT {a)-ii, equal to (30.1, 2.92, 0.220) for II (b}-ii, equal 10 (25.2, 7.41, 0.287} for 11 (¢)-1i, and equal to (23.3, 11.5, 0.287} for IT (d)-ii. The
contour lines denote densities pf paax = 10710604 (7 =1, ..., 15).
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4. DISCUSSION

We have studied the conditions under which Newtonian
differentially rotating stars are dynamically unstable to an
m = | one-armed spiral instability and found that both soft
equations of state and a high degree of differential rotation
are necessary to trigger the instability. For sufficiently soft
equations of state and sufficiently high degrees of differen-
tial rotation we found that stars are dynamically unstable
even at the small values of T'/{ | ~ 0.14 considered in this
paper,

While we find that a toroidal structure alone is not suffi-
cient for the m = | instability, all the models that are unsta-
ble do have a toroidal structure, suggesting that this may be
a necessary condition. The growing m = 1 mode redisirib-
utes both matter and angular momentum in the unstable
star and destroys the toroidal structure after a few central
rotation periods.
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Fic. 13.—Density profiles along the x-axis during the evolution of
models . Solid, dotted, dashed, dash-detted line, respectively, denote
times ¢/ P, = 2.17 x 1073, 10.8, 21.7, and 32.5 for IT {a), 1.56 » 10-%, 9.36,
19.0, and 28.5 for TE {b), 1.33 x 162, 7.97, 15.9, and 23.9 for TI {c}, and
1.16 % 1072, 6.98, 14.0, and 21.0 for 11 (d). Note that the toroidal structure
vanishes at late times for models 11 {b), IT {c}, and IT (d).
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Fic. 14 —Gravitational waveforms as seen by a distant observer located
on the o-axis for models H.

Quasi-periodic gravitational waves emitted by stars with
wi = | ipstabilities have smaller amplitudes than those emit-
ted by stars unstable to the m = 2 bar mode. For m =1
modes, the gravitational radiation is emitted not by the pri-
mary mode itself, but by the m = 2 secondary harmonic,
which is simultaneously excited, albeit at a lower amplitude
{see Fig. 5). Unlike the case for bar-unstable stars, the gravi-
tational wave signal does not persist for many periods but
instead is damped fairly rapidly in most of the cases we have
examined.

We have plotted typical wave forms for stars unstable
to m = 2 bar modes in Figure 4 and for stars unstable to
one-armed spiral m = | modes in Figures 9, 14, and 19.
Characteristic wave frequencies fgw are seen to be
~P;1 ). and are considerably higher than (<
(M R3)"* because of appreciable differential rotation. For
supermassive stars (M 2107 M) the amplitudes and fre-
quencies of these waves fall well within the detectable range
of the Laser Interferometer Space Antenna (see, e.g., New &
Shapiro 2001).
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Fii. 15.—Diagnostics D and @ as a function of /P, for models TH (see
Table 5), showing D {solid line} and Q (dotted line).
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1.16 x 10-3, 6.99, 14.0, 21.0 for III (d). Note that the toroidal structure
vanishes al the late time in models 111 {¢) and 1H ().
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