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ABSTRACT

We perform numerical simulations of nonlinear MHD waves in a gravitationally stratified molecular cloud
that is bounded by a hot and tenucus external medium, We study the relation between the strength of the
turbulence and various global properties of a molecular cloud, within a 1.5-dimensional approximation.
Under the influence of a driving source of Alfvénic disturbances, the cloud is lifted up by the pressure of
MHD waves and reaches a steady state characterized by oscillations about a new time-averaged equilibrium
state. The nonlinear effect results in the generation of longitudinal motions and many shock waves; however,
the wave kinetic energy remains predominantly in transverse, rather than longitudinal, motions. There is an
approximate equipartition of energy between the transverse velocity and fluctuating magnetic field (as
predicted by small-amplitude theory) in the region of the stratified cloud that contains most of the mass; how-
ever, this relation breaks down in the outer regions, particularly near the cloud surface, where the motions
have a standing-wave character. This means that the Chandrasekhar-Fermi formula applied to molecular
clouds must be significantly modified in such regions. Models of an ensemble of clouds show that for various
strengths of the input energy, the velocity dispersion in the cloud o o« Z%3, where Z is a characteristic size of
the cloud. Furthermore, o is always comparable to the mean Aifvén velocity of the cloud, consistent with
observational resuits.

Subject headings: ISM: clouds — ISM: magnetic fields — methods: numerical — MHD — turbulence —

waves
On-line material: color figures

1. INTRODUCTION

Interstellar molecular clouds, the sites of current star
formation in our Galaxy, have long been known to yield
supersonic line widths of molecular spectral lines (e.g., see
Zuckerman & Palmer 1974). Objects classified as molecular
clouds span a large range of mean radit (R ~ 1-100 pc),
masses (M ~ 102-105 M), and mean number density
{n ~ 101-10% cr~3). In fact, these quantities are correlated
with the one-dimensional velocity dispersion o through the
well-known line-width-size-density relations (e.g., Solo-
mon et al. 1987):

o= 0.72(R/pc)"® km s~} ,
n=23x10*R/pc)” em™ .

(1)
(2)

Thus, the velocity dispersion is typically supersonic since
the sound speed ¢, is only 20.2 km s ~L for the typical molec-
ular cloud temperature T = 10K (e.g., Goldsmith &
Langer 1978).

The largest clouds, of mass M = 10* M, often classified
as giant molecular clouds (GMCs) are in fact complexes of
smaller clouds, since the volume-averaged density may be
fower than the excitation density of CO {e.g., Blitz &
Williams 1999}, and also lower than allowed from thermal
stability arguments (Falgarone & Puget 1986). Hence, the
basic building blocks of interstellar molecular clouds, which
contain most of mass of molecular material, are the dark
(or dwarl) molecular clouds, which have R ~ 1-10 pec,
M ~ 102104 Mg, and n ~ 102-10% cm~3. These clouds
have velocity dispersion o ~ 1-2 km 5! and represent the
class of objects that we are interested in modeling in this
study. We also note that observed smaller scale (R ~ 0.1 pe)
dense cores are a separate object class that are embedded
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within dark ciouds and collectively contain only a smalt
fraction of the total cloud mass.

While even dark clouds have masses that significantly
exceed the thermal Jeans (1928) mass

3/2 32 “12
YA o I D ST (A by S W V)
mG ) pl/? 10K 10% em—?
(3)

(where we have used p = mr and m = 2.33my, in which my
is the mass of a hydrogen atom), the line-width-size—density
relations do imply that molecular clouds are individually in
an approximate virial balance between turbulent and gravi-
tational energies. In this paper we equate the presence of
nonthermal line widths with the presence of a random
superposition of noniinear {presumably hydromagnetic)
waves and refer loosely to the latter as ** turbulence.” Within
each cloud, the turbulence is expected to collectively exert a
force (e.g., Chandrasekhar 1951) that resists the inward pull
of gravity.

The origin and persistence of turbulent motions in molecu-
lar clouds remain an active area of investigation. It was long
understood (see Mestel 1965; Goldreich & Kwan 1974) that
supersonic hydrodynamic motions would decay rapidly
through shocks, thereby creating a mystery of why the turbu-
lence was commonly observed throughout the lifetime of
molecular ciouds. For GMCs, the lifetime is estimated to be a
few times 107 yr (e.g., Blitz & Williams 1999), which is at jeast
a few times longer than the crossing time 7. = 2R/o of the
complexes. The smaller dark molecular clouds may have even
longer lifetimes ~10® yr (Shu, Adams, & Lizano 1987). Since
slow- and fast-mode MHD waves are also compressive and
can be highly dissipative, it was suggested by Arons & Max
{1975) that the transverse Alfvén mode might be a long-lived
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component, thereby preventing a rapid overall collapse of
the clouds and explaining the observed persistence of the tur-
bulence over their inferred lifetime. Mouschovias (1975)
made the related suggestion that the long-lived component
may be due to standing waves, i.e., normal mode oscillations,
of magnetized clouds. Such global magnetogravitational
motions cannot be studied with a simple plane wave analysis
in an infinite uniform medium.

The MHD wave picture has been strengthened by the
detection of large-scale magnetic fields within molecular
clouds, through maps of polarized absorption and emission
{e.g., Vrba, Strom, & Strom 1976; Goodman et al. 1590;
Schleuning 1998; Matthews & Wilson 2002) and Zeeman
measurements of the line-of-sight magnetic field strengths
{Crutcher 1999 and references therein). The latter imply that
the magnetic energy (like the turbulent energy) is compara-
ble to the gravitational potential energy: equivalently, the
mass-to-fiux ratio is close to a critical value

M) -1/2
el = €] G . (4
(@ crit )

In the above equation, the constant ¢, has been calculated
to be in the range 0.13-0.17 on the basis of detailed two-
dimensional equilibrium states (Mouschovias & Spitzer
1976; Tomisaka, Ikeuchi, & Nakamura 1988) and is equal
to 1/{2n) in the case of a flattened one-dimensional layer
(Nakano & Nakamura 1978). Collectively, the magnetic
field measurements allow the possibility that clouds are
supported lateral to the large-scale field B by its associated
Lorentz force, while these magnetic field lines act as a carrier
of Alfvénic disturbances with 6B ~ B, explaining the
observed spectral line widths and preventing the clouds
from assuming a very flattened configuration,

The dynamical effect of propagating MHD waves using
analytic or semianalytic means has been studied by several
authors. Dewar (1970) developed a formalism for calculat-
ing the effect of small-amplitude hydromagnetic waves on a
slowly varying background medium, using the WKB
approach. Assuming ideal MHD and no dissipation of the
waves, this leads to a steady state relation between wave
pressure P,, and gas density p of the form P, « p'/? (McKee
& Zweibel 1995). Simplified caiculations of the effect of
small-amplitude MHD waves on a molecular cloud have
been performed by Fatuzzo & Adams (1993) and Martin,
Heyvaerts, & Priest (1997). Both satisfy the above scaling of
P, in the ideal MHD limit. In particular, the WKB model
of Martin et al. (1997) yields a steady state density structure
of an infinite one-dimensional cloud supported by short-
wavelength Alfvén waves in the ideal MHD limit, and also
when accounting for damping of linear waves by ion-neutral
friction. In addition to ion-neutral friction, which damps
even linear waves (Kulsrud & Pearce 1969), there are several
nonlinear effects that will work to enhance dissipation. The
second-order effect of a gradient in the magnetic pressure
V682 /8m will in general lead to steepening of the waves fol-
lowed by dissipation (Cohen & Kulsrud 1974). Zweibel &
Josafatsson (1983) state the form of this dissipation rate,
which can dominate the process of ion-neutral friction for
nonlinear and/or long wavelength modes. There are also
other known nonlinear avenues for wave dissipation, such
as the conversion of a parallel-propagating Alfvén wave
into an acoustic wave and another Alfvén wave traveling in
the opposite direction (Sagdeev & Galeev 1969).

Recently, several studies have resulted in a solution of the
full set of nonlinear equations of ideal MHD using finite dif-
ference approximations, Gammie & Ostriker (1996) per-
formed a one-dimensional numerical simulation of MHD
turbulence in a periodic domain. This has been followed up
by several multidimensional simulations, also in a periodic
domain (e.g., Stone, Ostriker, & Gammie 1998; Ostriker,
Gammie, & Stone 1999; Mac Low et al. 1998; Mac Low
1999; Padoan & Nordlund 1999; Ostriker, Stone, &
Gammie 2001). These models impose prescribed velocity
fluctuations, at the initial time and sometimes also through-
out the computed time, and investigate the dissipation rate
of turbulence, as well as various properties of turbuient fluc-
tuations. One of the important results of these papers is that
the decay time of the MHD turbulence is comparable to the
crossing time over the driving scale of the turbulence. The
nonlinear coupling of the Alfvén to the fast- and slow-mode
MHD waves is considered to be a significant source of the
dissipation that reduces the lifetime of MHD turbulence rel-
ative to the ideal of pure Alfvénic turbulence. We note that
periodic models represent only a local region of a much
larger molecular cloud and maintain a fixed mean density.
They cannot study global effects associated with the density
stratification in a cloud or the existence of a cloud
boundary.

In this paper we perform a different type of numerical
simulation of MHD turbulence. We concentrate on one
self-gravitating cloud and study the effect of the turbu-
lence on the mechanical structure of the cloud. This cor-
responds to an extension of the model studied by Martin
et al. (1997) into a fully nonlinear counterpart. As an ini-
tial condition, we use a hydrostatic equilibrium between
thermal pressure and self-gravity in a cloud that is
bounded by an external high-temperature medium. We
input turbulent energy into the system continuously and
see now the mechanical equilibrium changes. Similar
numerical simulations have been performed to study the
propagation of Aifvén waves in the solar chromosphere
and corona (e.g., Hollweg, Jackson, & Galloway 1982;
Mariska & Hollweg 1985; Hollweg 1992; Kudoh &
Shibata 1999; Saito, Kudoh, & Shibata 2001). We extend
this class of model to a self-gravitating cloud and study
the relation between the strength of the turbulence and
various global properties of a molecular cloud. This is
the first of a series of papers on global models of MHD
wave support in molecular clouds. In this paper we
develop high-resolution one-dimensional models under
the assumption of ideat MHD.

The paper is organized as follows. The numerical model
we used for the simulation is summarized in § 2. The results
of the simulation are described in § 3. We add some discus-
sion of the results in § 4 and summarize the paperin § 5.

2. THE NUMERICAL MODEL
2.1. Schematic View of Owr Model

Figure 1 shows a schematic picture of our model, We con-
sider a molecular cloud that is threaded by a large-scale
magnetic field and concentrate on a local region of the
molecular cloud enclosed by the rectangle in the figure. We
assume a driving force near the midplane of the cloud and
follow the dynamical evoiution of the vertical structure of
the cloud.
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Fi6. 1.—Schematic pictare of our model, A molecular cloud that is threaded by a large-scale magnetic field is considered. A local region of the molecular
cloud enclosed by the rectangle in the figure can represent the region that we are modeling in: this paper. We input a driving force near the midplane of the cloud

and follow the dynamical evolution of the vertical structure of the cloud.

2.2, Assumptions

For simplicity, we assume ideal MHD, 1.5 dimensions,
and isothermality for each Lagrangian fluid element. The
1.5-dimensional approximation means that physical
quantities depend on only one coordinate, but we evolve
nonzere components of vectors in one additionat direction.
Isothermality for each Lagrangian fluid element means that
the temperature does not change in time for each fluid ele-
ment as it moves through Eulerian space, which is different
from the assumption of a uniform time-independent tem-
perature throughout the region. These assumptions appear
in § 2.3 more concretely.

2.3. Basic Equations

We use local Cartesian coordinates {x,»,z) on the
molecular cloud, where we set z to be the direction of the
large-scale magnetic field. According to the symmetry of
the 1.5-dimensional approximation, we set

d 0

Fri T (5)

The above symmetry and the divergence-free condition on
the magnetic field imply

B; = constant , (6)

where B, is the z-component of the magnetic field that
threads the molecular cloud. Moreover, from the assump-
tion of linear polarization of the waves, we can set

vy =By =0 @)

without loss of generality, where ¢, and B, are the x-
components of the velocity and magnetic field, respectively.

Therefore, the basic MHD eguations that we use in this
paper are as follows: mass conservation,

dp dp  Ov;
TR el ®)
the z-component of the momentum equation,
O, dv, 1 aP 1 9B, _
TR iy ey ey
the y-component of the momentum equation,
du, gy, 1 _ OB,
- —= =R 10
ot T oz 471‘sz az ' (10)
the equation of energy,
aT ar av,
—_ — = =y - T s 11
8f+vz az (’Y ])T 62 H ( )
the y-component of the induction equation,
gB, @
El' =5 (~t.B, +v,B.); 12)
the equation of state,
kT
P=p—=¢ 13
P =GP {13)
where
kT
= 4f—— 14
Cs po (14)
15 the isothermal sound speed; and the Poisson equation,
99.
e . E
B 4rGp (15}
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In these equations, ¢ is the time, G is the gravitational con-
stant, & is Boltzmann’s constant, m is the mean molecular
mass, v is the specific heat ratio, p is the density, P is the
pressure, T is the temperature, g, is the z-component of the
gravitational field, v, is the z-component of velocity, v, is
the y-component of velocity, and B, is the y-component of
the magnetic field.
In equation {11), we assume - = I, so that the energy
equation becomes
ar o ar o
ot oz
which guantifies the assumption of isothermality for each
Lagrangian fluid element.

(16)

2.4. Initial Conditions

As an initial condition, we assume hydrostatic equili-
brium of a self-gravitating one-dimensional cloud, The
hydrostatic equilibrium is calculated from the equations

1 dpP
e gz » (17)
dg:
= = —4nGp, (18)
p=p L (19)

g:(z=0)=0, (20)
plz = O) = Poy (2})
Pla=0) = po 2 (22)

where pp and T} are the initial density and initial tempera-
ture at z = 0, respectively.

In order to solve the above equations, we need to assume
an initial temperature distribution. If the temperature is
uniform throughout the region, we have the following
analytic solution pg found by Spitzer (1942).

ps(z) = po sech’(z/ Ho) , (23)
where
<50
Hy = 24
= o (24)
is the scale height and
T
o = kTo. (25)
m

However, an isothermal molecuiar cloud is usually sur-
rounded by warm or hot material, such as neutral hydrogen
or ionized gas. Therefore, we assume the initial temperature
distribution to be

1 — Zc
T{z)=To+=(T.— To) [l + tanh (|_Z_|_i)] ,  (26)
2 zZq
where we take 7T, = 00Ty, z. = 3Hy, and z; =02H,
throughout the paper. This distribution shows that the
temperature is uniform and equal to Ty in the region of
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0<z<z,=3H, and smoothly increases to another
uniform value 7., = 1007} at z =~ z. = 3Hp. By using this
ternperature distribution, we can solve the ordinary differen-
tial equations (17)-(19) numerically. The numerical solution
of these equations shows that the initial distribution of den-
sity is almost the same as Spitzer’s solution in the region of
0 < z < z. (see Fig. 2).
We also assume the following initial conditions:

2(2) = ,(2) = 0, o)
B,(z) =0, (28)
B.(z) = By, {29)

where By is a constant. According to equation (6}, B is
spatially uniform and independent of time throughout the
calculations.

2.5. Driving Force

We introduce a perturbation into the initiaily hydrostatic
cloud by adding a driving force, F(z,7}, into the y-
component of the momentum equation (10) as follows:

oo, A\ 1 _ 8B,
P(—a}"l‘vzg) —E%:Bz oz +Flz,1), (30)

where

F(z,f) =
pay (ﬁ) sin{2myt) exp [ (zz»—a) 2} {t < 10%) ,

2
pag sin(2wt) exp [— (EZ—) ]
a

0 {t > 401y) ,

(10!0 <t < 402‘0} ,

(31)
and
_

” (32)

In
Furthermore, ay is the amplitude of the induced accelera-
tion, ¥y is the frequency of the driving force, and z, repre-
sents the region in which we input the driving force. The
equations show that we input the sinusoidal driving force
near the midplane of the cloud, and we increase the maxi-
mum driving force linearly with time until ¢ = 10z and
maintain it to be constant during 105 < r < 407, After
t = 40¢;, we terminate the driving force.

2.6. Boundary Conditions

We used a mirror-symmetric boundary condition atz = 0
and a free boundary at z = z,,, the outer boundary of the
calculation. In order to remove the reflection of waves at the
outer boundary, we set z,,; to be a large value, ie.,

Zow = 2.6 x 100 Hy (33)

and use nonuniform grid spacing for large z (see § 2.8).
In addition to this, we set the gravitational fleld to be zero
at large distances by introducing an artificial acceleration
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{g..) into equations (9) and (17), 1.e.,

g.(2) = — Q-é-z—) [1 + tanh (%)} , (34)

where we take z, = 100H; in this paper. This force is zero
until z ~ z, = 100Hy, but it becomes essentially equal to g.
with negative sign for z > z, = 100H, and compensates the
gravity there,

The above boundary conditions show that we have effec-
tively two outer boundaries. The first one is 2.y, and the sec-
ond one is z,, which is the boundary for the gravitational
field. In order to remove the reflection of waves at the outer
boundary, it is useful to have a large z,,,. However, a very
large zoy; introduces numerical problems because the den-
sity decreases exponentially at large z, according to the
stratification of a self-gravitating cloud. A very low density
leads to a very large Alfvén speed, making simulations inef-
ficient by forcing very small time steps for an explicit calcu-
lation, By setting the net gravitational field to be zero at
large distances, we can avoid an extremely low density for
large z and therefore take a large z4, in order to remove the
reflection of Alfvén waves at the cuter boundary. We also
note that for any slab of finite extent, as opposed to the
infinite slab implied by our one-dimensional model, the net
gravitational field should indeed decrease at Jarge distances,
although not in the specific manner prescribed here.

Because of the added artificial acceleration, our effective
numerical boundary is located at z ~ z, = 100H;, and we
cannot trust the results beyond this region. However, as we
show later, all dynamical events we are interested in occur
within z < 50Hj, where most of the mass and energy are
concentrated. Hence, the effect of the artificial acceleration
is negligibie for the main results in this simulation.

2.7. Numerical Parameters

A natural set of fundamental units for this problem are
cs0, Hy, and py. These yield a time unit ty = Hy/ew. The ini-
tial magnetic field strength introduces one dimensionless
free parameter, ie.,

8Py 8wpock
h=TE TR
o 0

(35)

which is the initial ratio of gas to magnetic pressureat z == 0,

In this cloud, 3; is related to the mass-to-flux ratio. For
Spitzer’s self-gravitating cloud, the mass-to-flux ratio
normalized to the critical value is

s

- 1/2
where
¥s = f psdz = 2poHy (37)

is the column density of Spitzer’s seif-gravitating cloud.
Therefore,

Bo = 4 . (38)

‘The column density of the cloud we used in this paper is
almost equal to that of Spitzer’s cloud. If we define the col-
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umn density of the cloud, T, as the integral of density within
—z, < Z < Z,, then

5= f " p(t = 0)dz ~ 0.988%s . (39)
-

This means that we can use the value of ug as an excellent
approximation to the dimensionless mass-to-flux ratio of
the mode! cloud.

Observations show that the dimensionless mass-to-flux
ratios of molecular clouds are close to unity over a range of
scales (Crutcher 1999; Shu et al. 1999). Hence, we take
o = 1 in the models presented in this paper.

The driving force introduces three more important free
patrameters: &z = aa{Hy/c%,), the dimensionless amplitude
of the acceleration due to driving, & = wyl, the dimension-
less frequency of driving, and z, = z,/ Hy, the dimensionless
scale of the driving region. For simplicity, we take i = 1
and %, = 0.1 throughout this paper and adjust the strength
of driving by varying &, from 10 to 50.

Dimensional values of all guantities can be found
through a choice of Tj and pq, along with the values of the
dimensionless free parameters. For exampie, if Tp = 10K
and 5y = po/m = 10* em~3, then ¢ =02kms™!, Hy =
0.05pe, Ng=Xg/m=3x10" cm2, 1 =2.5x10° yr,
and By = 20 uGlfﬂn = 1.

2.8. Numerical Technigue

Tn order to solve the equations numerically, we use the
CIP method (Yabe & Aoki 1991) for equations (8)-(10),
and (16), and the method of characteristics-constrained
transport (MOCCT) (Stone & Norman 1992) for equation
(12). The combination of the CIP and MOCCT methods is
summarized in Kudoh, Matsumoto, & Shibata {1999). The
CIP method is a useful method to solve advection equations
such as equation (16) accurately and is also applicable to
advection terms of equations (8)—(10).

Recause of the mirror-symmetric boundary condition at
z = 0, Poisson equation (15) can be simply integrated from
the midplane of the cloud:

g:(z) = ~4nG foz plz)dz . (40)

‘We solve this equation by numerical integration.

In this simulation, we actually use variants of the original
CIP method. We use a conservative-CIP method for the
mass conservation equation (8), which was recently devel-
oped by Xiao et al. (2002). This scheme assures exact con-
servation of mass and less numerical oscillations. The
original CIP method does not assure the exact conservation
of mass, so that a systematic deviation during each time step
can cause a problem for long time integrations; this is espe-
cially a problem if the Poisson equation, which utilizes the
mass distribution, is being solved simultaneously. Hence,
the conservative-CIP method significantly improves the
accuracy of our solution. We also use the monotonic-CIP
method (Xiao, Yabe, & Tto 1996) for the advection terms of
equations (%), (10) and (16), and use the CCUP method
(Yabe & Wang 1991) for the calculation of gas pressure, in
order to get more numerically stable results. The recent
developments of CIP related schemes are summarized in
Yabe, Xiao, & Utsumi (2001).
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We used a uniform grid size, Az; = 0.02Hy, from z = 0 to
2 = 80H,, where Az; is the grid size of the fth grid point. For
80H; < z < 120H;, we gradually increase the grid size as
Az 1 = min(1.05Az;, 0.2Hp), where min is a function that
picks the minimurm from the two values; hence, the maxi-
mum grid size in this region is 0.2H. For 120Hp < z < Zouts
where the gravitational field is compensated by the artificial
force, we further increase the grid size according to
Azyy = 1.05Az;. In this paper we used a totai of 4310 grid
points, most of which are concentrated in the region of the
uniform grid, i.e., z < 80H,.

3. RESULTS
3.1, Typical Result

In this subsection, we show the results of &, = 30 as the
typical case.

3.1.1. Density Structure in the Cloud

Figure 2 shows the density and temperature as a function
of z. The dashed lines show the initial distributions, and the
solid lines show the distribution at 7 = 30#.

The dotted line in the density shows the distribution of
Spitzer’s seif-gravitating cloud with a uniform temperature
7y. The initial density deviates from Spitzer's solution
around z = z, = 3H, where the initial temperature increases

density
10.0000F - . :
1.0000
0.1000
$ ]
~ i
S 0.0100¢
0.0010
0.0001 L p ) ,
0 5 10 15 20
z/Hy
temperature
1000.0F : ‘ .
1000 pmm ;
c ' ]
o b 1 1
& j0.0r €t=0 (=30t ]
[ E ! E
- : :
1.0 f—— .
o.1( . , ‘
0 5 10 15 20
z/H,

P16, 2.—Density (upper panel) and temperature (Jower panel) as a func-
tion of z. The dashed lines show the initial distributions and the solid lines
show the distribution at ¢ = 30y, The dotted line in the density plot shows
the distribution of density in Spitzer’s infinite self-gravitating eguilibriam
with a uniform temperature 75.
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up to 1007y The density decreases rapidly around z =
z, = 3Hy because of the pressure balance between low-
temperature cloud and high-temperature external medium,
For z > z, = 3Hy, the scale height of the density is very
large and the density decreases gradually.

The snapshot of density at 7 = 307 shows that the density
has a complicated structure including many shock fronts.
This is caused by the driving force in equation (30). The
driving force generates nonlinear Alfvén waves in the cloud
that produce a magnetic pressure gradient. The magnetic
pressure gradient and thermal pressure gradient usually
push the cloud upward, but the self-gravity of the cloud
always pulls it down. These up and down motions create the
complicated structure in the cloud. On the other hand, the
temperature shows a smooth structure. This is due to iso-
thermality for each Lagrangian fluid element. Only the posi-
tion of the temperature transition region changes in time.

Figure 3 shows the time evolution of the density. The den-~
sity plots at various times are stacked with time increasing
upward in uniform increments of 0.21. Because the driving
force increases linearly with time up to # = 101, the density
changes gradually at first. After t = 104y, the density struc-
ture shows many shock waves propagating in the cloud and
significant upward and downward motions of the outer por-
tion of the cloud, including the transition region. After ter-
minating the driving force at ¢ = 401, the shock waves are
dissipated in the cloud and the transition region falls to
around the initial position, although it is still oscillating.

Figure 4a shows the column density as a function of the
time-averaged position of several Lagrangian fluid ele-
ments, which are equally spaced at time ¢ = 0 with spacing
Az = 0.1 Hy starting at z = 0.01H}. The time average is cal-
culated between f = 107, and 1 = 40zy, while the driving
force is input with constant amplitude. The dashed line
shows the initial distribution,

The Lagrangian fluid elements have constant enclosed
column density as a function of time, By using this property,
we evaluate the location of Lagrangian fluid elements from
the surface density. The difference between the initial distri-
bution and that of the time average shows that the cloud is
lifted up. Figure 4b shows the time average of the density for
each element as a function of the time-averaged position of
each element. These time averages were also calculated
between = 10¢) and ¢ = 401y. In contrast to the snapshot
in Figure 2, the time-averaged density structure shows a
smooth distribution. The dashed line shows the initial den-
sity distribution of the cloud. The scale height of the time-
averaged distribution is about 3 times larger than the initial
value.

3.1.2. Velocities in the Cloud

Figure 5a shows the time evolution of v, at z=0.
Initially, it is oscillating about zero sinusoidally with the fre-
quency of the driving force. However, as time goes on, the
oscillation shows sharp structures, and it becomes nonsym-
metric around the mean. The sharp structures are caused by
nonlinear effects in the cloud such as shock waves. More-
over, the mean value shows a deviation from zero as time
goes on. This implies that the net p-momentum of the
cloud is not zero and the cloud has a2 mean motion in the
y-direction as well as an oscillatory motion.

This mean motion is ultimately caused by the driving
force. Prior to = 101, the driving force is not symmetricin
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density

"'mTT P T}

Fi6, 3. Time evolution of the density. The density plots at various times
are stacked with time increasing upward in uniforms increments of 0.2¢.

time, because it is proportional to zsin{2mwt). However,
even if the driving force is symmetric in time, the net
momentum in the cloud never remains exactly zero if we use
a driving force like the one in equation (31), which is con-
fined to a region near the midplane. The net momentum of
the cloud is generated by the nonlinear and nonsymmetric
propagation of this disturbance into the stratified cloud, the
nonsymmetric restoring forces in the system, and non-
symmetric refiection at the cloud boundary. As disturbances
propagate, the restoring force due to the magnetic field is
not exactly symmetric in space and time. Also, some of the
wave momentum is reflected at the boundary between the
cold cloud and hot external medium, and part of it escapes
from the cloud. Hence, a net y-component of momentum
can and does appear within the cloud, creating a mean
motion. We note that if we were modeling a two-
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Fic. 4—{a) Column density as a function of the time-averaged position
of each Lagrangian finid element. The dashed line shows the initial distribu-
tion. The time average is calculated between £ = 10f and ¢ = 401, The
Lagrangian fluid elements have constant enclosed column density asa func-
tion of time. By using this property, we evaluate the location of Lagrangian
fluid elements from the surface density. Each Lagrangian fluid element is
equally spaced at time f=0 with spacing Az =0.1H, starting at
z = 0.01Hy. (b} Time average of the density {or each fluid element as a func-
tion of the time-averaged position of the element. The dashed line shows
the initial disiribution.

dimensiona] cloud, i.e., the system had finite extent in the y-
direction, we could reduce the net drift with a y-distribution
of driving force such that the net driving force is zero in the
y-direction. Also, if the system was closed in the z-direction,
as in a periodic boundary system, it is possible to add
momentum in a regulated way so that the net transverse
momentum remains exactly zero {e.g., Gammie & Ostriker
1996), However, the combined effects of our 1.5-dimen-
sional approximation, cloud stratification, and open cloud
boundary make it difficult to regulate the net drift of the
cloud in the y-direction.

Therefore, for our analysis, we divide v, into two parts.
The first is the mean velocity, which shows the mean motion
of the entire cloud. The second is the oscillating component
of the velocity. We calculate the mean y-component of
velocity of the cloud as

2 (1) 4
(1) = A0 E2E 41

f;f(f) de ’

In this equation, z,(7) is the full mass position of the cloud,
which is defined by

(1) by
f pdz = 0.998 75 , (42)
0
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Fic, 5—Transverse velocities vs. time. (@) The pcomponent of the
velocity at z =0 as a function of time. (b} The mean y-component of
velocity of the cloud as a function of time. (¢} The time average of the mean
v-component of velocity for each cycle of the sinusoidal period of the driv-
ing force as a function of time. (4) The y-component of the velocity atz =0
minus the time average of the mean y-component of velocity, as a function
of time.

and z(r} corresponds to the position of the Lagrangian
fluid element which is initially located at ~z,, the initial posi-
tion of the transition region of the temperature. The time
evolution of v,, is shown in Figure 56,

Figure 5& shows that the mean velocity is still oscillating
while the driving force is input {r = 0 — 40z). In order to
remove the oscillation, we take a time average of v,, for each
cycle of the sinusoidal period (#o) of the driving force and
define {»,) in the following manner. For example, (vn)
between nty and (n + 1) is calculated as

(vm¥(t=ntg— (n+ Dtp) = T

{(n+1}t0
f V()| (43)

1o

where n is an integer. This calculation is done fromr = 0 to
n = 59. Figure 5¢ shows {v,,} 25 a function of time. Accord-
ing to the definition, (v,) has the same value between nip
and {n + Dtp.
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Fig, 6.—Time-averaged rms of various velocities for each Lagrangian
fluid element vs. the time average of the position of each element. Open
circles show the time-averaged rms of ., filled circles show that of v, and
the dashed line shows the time average of the sound speed. The sohd line
shows the rms of the time average of the effective one-dimensional velocity
dispersion.

Finally, we define the oscillating compenent of the y-
velocity as

v, = vy~ (Um) - (44)

Figure 54 shows the time evolution of v}. In contrast to
Figure 5a, it is oscillating around v}, = 0.

Figure 6 shows the time average of various velocities for
each Lagrangian fluid element plotted versus the time aver-
age of the position of each element. Open circles show the
time-averaged rms of v,, filled circles show that of v}, and
the dashed line shows the time average of the sound speed.
The solid line shows the rms of the time average of the
effective one-dimensional velocity dispersion

o=/3B+ W)+ (45)

for each fluid element. The time average is taken between
t =10tz and ¢=40s. This figure shows that the y-
component of the velocity is the dominant component in the
cloud, The averaged y-component of the velocity increases
as a function of (z),, except for near the midplane. This
means that the largest velocity dispersion occurs in the low-
density region. This is a tendency similar to that of linear
Alfvén waves. If we assume the WKB approximation and
no wave dissipation, the energy flux of the waves is constant,
ie.,

p(v})? Va = constant , (46)

where ¥4 is the Alfvén velocity of the background magnetic
fleld, i.e.,

B;
Va = —Su | (47)
(4mp)'/?
This leads to
o, oc pm (48)

Although this relation is not exactly applicable to our non-
linear result, our result shows a similar tendency. We discuss
this further in the next section,
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3.1.3. Pressures in the Cloud

Figure 7a shows the time averages of the thermal pres-
sure, magnetic pressure, and dynamic pressures for each
Lagrangian fluid element as a function of the time average
of the position of each element. The thick dashed line shows
the thermal pressure, the thick solid line shows the magnetic
pressure of the y-component of the magnetic field, ie,
B2 /8w, the dash-dotted iine shows the dynamic pressure for
the y-component of velocity, i.e., 2,o(v),)2 and the dotted
line shows the dynamic pressure of the z-component of
velocity, i.e., 1 pv2. The thin straight line shows the magnetic
pressure of background magnetic field, B3/8m, and the thin
dashed line shows the initial thermal pressure.

In contrast to the WKB theory, the dynamic pressure of
the z-component of the velocity is nonzero in our results,
although it is smaller than the dynamic pressure of the y-
component of the velocity. According to the smail-
amplitude theory, the dynamic pressure of the y-component
of the wvelocity and the magnetic pressure obey

time averaged pressure

10.000; T ; j T T T (é)
E Bi/8n ]
1.000 L
3 _
= 0.100§ %
> o
&
0.010F
0.004F. .. e . i ,
0 2 4 6 B 10 12 14
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comparison with WKB
1000 f I P92 (b} |
£ ‘ ______________ Nt 3
b e L
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FiG. 7.—(a) Time averages of thermal pressure, magnetic pressure, and
dynamic pressure for each Lagrangian fuid element as a function of the
time-averaged position of each element. The thick dashed line shows the
thermal pressure, the thick solid line shows the magnetic pressure of the y-
component of the magnetic field, the dash-dotted line shows the dynamic
pressure of the y-component of velocity, and the dotted line shows the
dynamic pressure of the z-component of velocity. The thin sclid line shows
the magnetic pressure of background magnetic field, and the thin dashed
line shows the initial thermal pressure. (b} The dynamic pressure for the
y-component of velocity (dash-dotted line) and the magnetic pressure of
the y-component of the magnetic field (solid line} as a function of density.
The dotted line shows the scaling expected from the WKB theory. [See the
electronic edition of the Journal for a color version of this figure.]
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equipartition, i.e.,

2B

50 =25 - (49)
Figure 7a shows that such an equipartition is almost satis-
fied between z = 1 Hyp and z = 5H,, although there are devi-
ations near the midpiane. This deviation comes from the
effect of a nonzero driving force at z =10 and the sym-
metrical boundary condition B,(z = 0) = 0. Forz > 5Hp, a
region which contains a small fraction of the total cloud
mass (see Fig. 4), the two energies have distinct spatial pro-
files. Near the interface between the cold and hot material
(the cloud boundary), the magnetic pressure decreases more
rapidly than expected from the WKB theory. We believe
this is due primarily to a standing wave that is set up in the
outer cloud, with the cloud boundary acting as a node for
B, and an antinode for v,. Although many different wave
modes are generated by the turbulence in the cloud, only
those that satisfy the boundary condition for a standing
wave will interfere constructively upon reflection. A trans-
verse standing wave can be set up even though the boundary
itself is moving, since the Alfvén speed is much greater in the
outer cloud than the vertical speed of the boundary. The
influence of the boundary reaches well inside the cloud,
since the effective wavelength of Alfvén waves {scaling as
p~172 for waves of fixed frequency) is also quite large in the
low-density region. For example, at z=5H,, where
p == 0.1po, Alfvén waves of the input frequency 1y = c0/Ho
have wavelength A = 4.5Hy; at z = 10H,, it increases to
A ~ 8 Hy. An important result is that even though the waves
are quasi-linear in the outer cloud (8, € By), the transverse
velocity amplitude is much farger than expected from

equipartition arguments.

In Figure 76 we show the dynamic pressure of the
y-component of velocity and the magnetic pressure of the y-
component of the magnetic field as a function of density in
order to compare with the WK B model predictions,

We find that the energy in transverse velocities,  p(t) ¥,
scales approximately as p 1/2 in the outer cloud, the same as
the WK B theory, although there is a noticeable upward turn
at z ~ 9H, due to the standing wave effect. However, the
wave magnetic energy B3 /(87), which is directly responsibie
for vertical support, decreases more rapidly than in the
WXB model in the outer cloud, scaling approximately as p.
We ntote that strict adherence to the WKB predictions is not
expected in our model due to nonlinearity, wave dissipation,
and the low-frequency vy = ¢y /H of the input turbulence.

3.1.4. Energies in the Cloud

Figure 8 shows the time evolution of various energies in
the cloud. These are calculated as follows: kinetic energy of
the z-component of velocity

zf(f)] 5
E:{1) =jo 3 pUdz (50)

kinetic energy of the y-component of velocity

Zf(!)l ,
Bo()= [ 4pids— Eum. (s1)

where Ej,, is the kinetic energy of the mean motion of the
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Fic. 8.—Time evolution of various energies in the cloud. The thick solid
line shows Ey,, the dotted line shows Ej., the thin solid line shows E,, and
the dash-dotted line shows Ep. The vatues of each energy are smoothed
out over every one cycle of the driving force in order to remove periodic
oscillations originating from the driving force. [See the electronic edition of
the Journal for a color version of this figure.}

cloud, i.e.,

21
Eunt) =hon)® [ ez (52)

magnetic energy of the y-component of magnetic field

z (1) g2
mm=£ Lz (53)

and the sum of the above terms
Er(1) = Exs(t) + Eig (1) + Em(?) . (54)

In the above equations, the integration was done from 0 to
z7(7) because we are interested in energies of the cold mate-
rial. Strictly speaking, the total energy in each case is twice
the value we calculate because of the mirror-symmetric
boundary condition at z = 0. Equation (51) shows that the
mean kinetic energy of the cloud is subtracted from the
kinetic energy of y-component of velocity, so that Ep, means
the kinetic energy of the oscillating velocity.

In Figure 8 the thick solid line shows Ey,, the dotted line
shows Ej,, the thin solid line shows E,, and the dashed-dot-
ted line shows E7. The values of each energy are smoothed
out over every one cycle of the driving force in order to
remove periodic oscillations originating from the driving
force. Among the energies, Ey, and E,, are comparabie to
each other, but Ej, is significantly smaller than the others.
The sum of energies Ey is almost constant in a logarithmic
scale while the input energy is constant (# = 10#—461),
although it has some fluctuations. After the driving force
is terminated at f= 401, the energies decrease almost
exponentially. The decreasing time is ~8.5%,.

3.2. Parameter Dependence on the Strength
of the Driving Force
3.2.1. Density, Velocity, and Pressure

In this paper we study the effect of changing the strength
of the driving force by changing a4in equation (31).

Figure 9 shows the time evolution of densities for dz = 20
and @, = 40. The y-velocities at z = 0, ), are also shown in
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the figure. This figure shows that a stronger driving force
causes a larger turbulent velocity, which results in a more
dynamic evolution of the molecular cloud, including
stronger shock waves and larger excursions of the cloud
boundary. However, after terminating the driving force at
t = 404, the shock waves dissipate and the clouds shrink in
both cases.

Figure 10 shows the time average of the density and veloc-
ities for each Lagrangian fluid element for &z = 20 and
Ay = 40, The time average is taken between 7= 10r and
t = 40¢y. This figure also shows that a stronger driving force
causes the cloud to move further outward and a larger
velocity dispersion within the cloud.

Figure 11 shows the time average of pressures for &y == 20
and @, = 40. When the driving force is strong, the magnetic
pressure and dynamic pressure of the z-component of veloc-
ity become significantly larger than the thermai pressure.

3.2.2. Energy

Figure 12 shows the time evolution of Ey for both
iy = 20 and ay; = 40. These values are also smoothed out
over every one cycle of the driving force to remove periodic
oscillations, In the case of @y = 20, the energy is almost con-
stant in a logarithmic scale while the driving amplitude is
constant {t = 10£—401;). However, in the case of 4 = 40,
the energy is still graduatly increasing until ¢ = 30zy, but
afterward becomes almost constant until 7 = 40#,. After ter-
minating the driving force at =407, both energies
decrease almost exponentially. The energy decreasing times,
ts for each parameter, which are estimated by fiting an
exponential function, are listed in Table 1. In this study, we
terminate the driving force at ¢ = 40# in every case for sim-
plicity. However, we found that the energy decreasing time
can vary somewhat depending on when we terminate the
driving force. Accounting for this as weli as the fitting error
of the exponential function, we conclude that the energy
decreasing times have a range of variation about :£21 of the
values listed in Table 1.

3.2.3. Correlations between Velocities and Sizes

Here we investigate the correlation between the velocity
dispersion and the height of the cloud. Figure 13a shows
the time-averaged velocity dispersions (o2);/* of different
Lagrangian fluid elements for different &,, as a function of
(z),. The open circles correspond to Lagrangian fluid ele-
ments whose initial positions are located at z = 2.51Hy,

TABLE 1
DisstPATION TIME AS A FUNCTION OF @y

z{t=0) = 2351Hy zZ(t =0} = 0.61H,

g tajte (EBJHo (o0 ee (@ /Hy (0 e
90 400 2.54 0.76 118
55 682 3.73 1.13 1.54
85 108 465 1.78 1.92
90 179 5.73 291 247
150 174 5.99 334 268

Note.—Time-averaged height and time-averaged velocity dispersion as
a function of &, for two Lagrangian elements: z(r = 0) = 2.51H,, approxi-
mately the full-mass position, and z(f = 0} = 0.61 Hp, epproeximately the
half-mass position.
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Fi6, 9.—Fvolution of clouds with &, = 20 and 4, = 40. (&) Time evolution of densities for &y = 20. (b) The oscitlating part of y-velocity atz =0, v, asa
function of time for &; = 20. (¢) Time evolution of densities for &z = 40. (¢} The oscillating part of p-velocity at z = 0, 1}, as a function of time for G, = 40.
The density plots at various times are stacked with time increasing upward in uniform increments of 0.24.

which is close to the edge of the cold cloud. The filled circles
corresponds to Lagrangian fluid elements whose initial posi-
tions are located at z = 0.6LH,, which is approximately the
half-mass position of the cold cloud. Each circle corre-
sponds to a different value of &y These values are summar-
ized in Table 1. The dotted line shows

(@7 o (2] (55)

This figure shows that the velocity dispersions have a good
correlation with the heights of the molecular clouds.

Figure 136 shows the correlation between the velocity dis-
persion and mean Alfvén velocity of the cloud ¥ at the
mean position {z), of the Lagrangian elements. The dotted

ine shows
(@ o Ty (56)

This figure shows that the velocity dispersions have a good
correlation with the mean Alfvén velocity, defined by

Py =20 (57)
™
where
by
D= 58
P 2(2,}: ( )

is the mean density and £ is the column density for each
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Fic. 10.~Demnsity and velocity dispersions for the cases dy = 20 and &z = 40. () Time average of the density for each element asa function of the time-
averaged position of each element for &, == 20. The time average is calculated between ¢ = 10f and ¢ = 40¢. Each Lagrangian fluid element is equally spaced
at time ¢ = 0 with spacing Az = 0.1Hp starting at z = 0.01 Hp. (b} The time-averaged rms of various velocities for each Lagrangian fluid element plotted vs. the
time average of the position of cach element for &; = 20. Open circles show the time-averaged rms of v;, filled circles show that of v/, and the dashed line shows
the time average of the sound speed ¢,. The solid line shows the rms of the time average of the effective one-dimensional velocity dispersion. (¢} The time
average of the density for each element as a function of the time-averaged position of each element for &; = 40. (4) The time-averaged rms of various velocities
for each Lagrangian flnid element plotted vs. the time average of the position of each element for &y = 40.

Lagrangian element. We discuss the meaning of these
correlations in the next section.

4. DISCUSSION
4.1, Velocity Dispersion and Equilibrium

In Figure 13a we found that the velocity dispersion obeys
the line-width-size relation

(o)) o (2] (59)

This relation is satisfied (at both the fuil-mass and half-mass
Lagrangian positions) for an ensemble of the clouds with
different strengths of the driving force. It is consistent with
observational results of molecular clouds (Larson 1981;
Myers 1983; Solomon et al. 1987). Within any individual
cloud, (02):/ 2 also increases toward the cloud boundary.

A similar but not identical relation, relating the velocity
dispersion at z = 0 to the size of the cloud, is expected in vir-
tually any one-dimensional model, regardless of the form of
spatial variation of the pressure within the cloud. This is
because an integral over the vertical force-balance equation
reveals that the total pressure at z = 0, Pyor ¢ must equal the

weight of the accumulated gas above, 7GE?/2, assuming
that the surface pressure is negligible. If Piyo = pooggy
where gy o is the effective velocity dispersion at z = 0, and
¥ = 2poZ, in which Z is the typical size scale of the cloud,
then one naturally obtains

Teit o x Z'7? (60)
for an ensembie of clouds of fixed total column density X
but varying oer . This relation applies to the Spitzer equili-
brium state, in which owr g = ¢; and Z = Hy. It also applies
10 the equilibrium state caiculated by Martinetal. (1997),in
which oo is the effective velocity dispersion assoclated
with Alfvén waves at z = 0. While a similar relation will
inevitably apply to our nonlinear model as well, we note that
the relation (59) is more general, in that it relates the velocity
dispersion at the position (not z = 0) of a Lagrangian mass
element to the position of that element. This more general
correlation is a less predictable property of our time-
averaged equilibrium state. Tt is also closer to what is often
measured, since optical depth effects may mean that a mea-
sured velocity dispersion samples the largest scales of an
observed cloud rather than the center.
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Fii. 11.—Time averages of the thermal pressure, magnetic pressure, and
dynamic pressures for each Lagrangian fluid clement as a function of the
time-averaged position of each element. The upper panet is for iy = 20 and
the lower panel is for dgz = 40. The thick dashed line shows the thermal
pressure, the thick solid line shows the magnetic pressure of the y-
component of the magnetic field, the dash-dotted line shows the dynamic
pressure of the y-component of velocity, and the dotted line shows the
dynamic pressure of the z-component of velocity. In both panels the thin
solid line shows the magnetic pressure of background magnetic field and
the thin dashed line shows the initial thermal pressure, [See the electronic
edition of the Journal for a color version of this figure.}
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FiG, 12.—Time evolution of Erfor botha; = 20 and a; = 40. The values
of each energy are smoothed out over every one cycle of the driving force n
order to remove periodic oscillations originating from the driving force.
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Fi¢. 13.—Global properties of an ensemble of clonds with different
driving strengths dy. {a) Time-averaged velocity dispersions of different
Lagrangian fluid elements for different &y, as a function of time-averaged
positions. The open circles correspond to Lagrangian fluid elements whose
initial positions are located at z == 2.51 Hy, which is close to the edge of the
cold cloud. The filled circles correspond to Lagrangian fluid elements whose
initial positions are located at z = 0.61.H,, which is approximate}{ the haif-
mass position of the cold cloud. The dotted line shows (g2})7% o {2)77.
Each circle can be associated with a particular model in our study by com-
parison with the numbers in Table 1. (b} Time-averaged velocity dispersions
a5 a function of the mean Alfvén velocity of the cloud. The dotted line
shows (2% « Pa.

Equation (59) is strongly related to another relation,
(o7 o Vo, (61)

which is shown in Figure 136, once more for both the half-
mass and full-mass positions for our ensemble of clouds,
This relation is also consistent with observational resuits of
molecular clouds (Crutcher 1999; Basu 2000). For example,
Figure 1h of Basu (2000) shows an excellent correlation
between the line-of-sight component of the large-scale mag-
netic fleld By, and op!/2 for observed clouds of widely vary-
ing values of p, By, and o, essentially the same correlation
as equation (61) if By, o< Bon average.

Here we would like to point out that the relation (61) does
not necessarily imply that turbulent motions are due to
Alfvén waves, although that is primarily the case in our sim-
ulation. The relation is far more general in that it is obtained
when the velocity dispersion is caused by any mechanism
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which resuits in the clouds being in virial balance between
gravitational and turbulent energies, as well as having a
mass-to-flux ratio that is approximately uniform from cloud
to cloud (Mouschovias 1987; Shu et al. 1987). Rather than
imagining a time-independent mean Alfvén speed in a cloud
(strictly true in an incompressible medium or a periodic box
simulation with a fixed mean density) and turbulent
motions becoming comparable to that speed, our simuia-
tion reveals that it is the mean Alfvén speed of any cloud
that readjusts to a new value as j drops to accommodate a
particular level of turbulent driving. In this view, the turbu-
lent dispersion & is the more fundamental quantity, depend-
ent on the particular source of driving, and Fa is a quantity
which readjusts to become comparable to .

Finally, we note that the relation (61) depends on the defi-
nition of the mean Alfvén velocity. If we use the local Alfvén
velocity of each particle, we could not get a clear correlation
iike equation (61). The mean Alfvén velocity is often calcu-
lated observationally using the mean density, as in equa-
tions (57) and (58), because it is difficult to directly measure
a local Alfvén velocity, The local Alfvén velocity in a gravi-
tationally stratified cloud often takes on values much differ-
ent than the overall mean quantity ¥ used in equation (61).
For example, the time-averaged local Alfvén velocity near
the edge of the cloud is about 2.6 times greater than Fy for
the case of @y == 30,

4.2. Relation to Linear Model and
Chandrasekhar-Fermi Formula

In our simulation, the velocity component parailel to the
background magnetic field () is generated by the nonlinear
effect of the waves. However, the time-averaged magnitude
of v, is significantly less than the time-averaged magnitude
of v, in all our models (see Figs. 6, 7, 10, and 11). Although
the waves are nonlinear, the coupling between the Alfvén
and slow-mode MHD waves is not so strong as to destrog
an approximate equipartition between B3 /(87) and § p(v},)
throughout much of the cloud, which is the expected result
for purely transverse linear Alfvén waves. However, this
equipartition does break down in the outer part of the
cloud, where standing wave motions are established in
which B, has a node at the cloud boundary and v}, has an
antinode.

The breakdown of the ¢, versus B, relation in outer cloud
means that the original Chandrasekhar-Fermi formula
breaks down there as well. If we assume that the dispersion
of polarization angle of the magnetic field (66) is related to
the velocity dispersion as

1By _ 1o

===

B 78 {62)

we can estimate the strength of the magnetic field of the
cloud by using the observational values of polarization
angie, density, and velocity dispersion. This yields

By = aldwp)' |t |(66) (63)

where « is a nondimensional factor and equals 1 for linear
Alfvén waves. The relation (63) with o = | was proposed by
Chandrasekhar & Fermi (1953) in order to estimate the
strength of the background magnetic field in the interstellar
medium, The generalized form with o # 1 can be fit to our
simulation if we define o in our simulation as the square
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Fi¢. 14.—Parameter o, which appears in the Chandrasekhar-Fermi
formula (eq. [63]), as a function of the time-averaged position of fluid
elements within the cloud for the case of @y = 30. The time-averaged
density, which was shown in Fig. 4, is also shown as a dashed line, mainly
1o clarify the position of the edge of the cloud.

root of the ratio of time-averaged magnetic pressure to
dynamic pressure for cach Lagrangian fluid element, i.e.,

BTN ()
(p(h)*/2),)

The resulting distribution of o as a function of {z), for the
case of 4; = 30 is shown in Figure 14. The time-averaged
density, which was shown in Figure 4, is also shown as a
dashed line to clarify the edge of the cloud. It shows that ex is
close to unity inside the cloud in the region where most of
the mass is enclosed (see Fig. 4), but it decreases near the
surface of the cold cloud, where the standing wave effect
becomes important; the minimum value is about o = 0.23,
Outside of the cloud ({z), > 12Hy in Fig. 14), o =1 since
the waves are linear there due to the low density and high
ambient Alfvén speed. Therefore, while our nonlinear
model supports the use of the Chandrasekhar-Fermi for-
mula throughout most of a stratified cloud, we caution
against its use with a = 1 near the surface of a cloud.

4.3. Global Oscillations

Figure 15 shows the time evolution of the position of a
Lagrangian fluid element whose initial position is z = 2.51,
for the standard model with driving strength a; = 30. This
corresponds to the motion of the outer edge of the cloud.
The motions resembie longitudinal normal mode oscilla-
tions, with the excursions of the outer cloud very similar to
free-fall. The dotted line in the figure shows the trajectory
for free-fail motion of the fluid element for several different
time intervals. The peak of the trajectories are chosen to
coincide with a peak of the oscillation in the computed
madel. The paths are parabolic as a resuit of the constant
gravity acting on a comoving mass shell in the one-
dimensional approximation. Similar to the transverse
standing wave that is set up in the outer cloud, the longitudi-
nal motions in this region also resemble a standing wave
pattern with an antinode of v, at the cloud boundary. The
outermosi part of the cloud suffers the greatest displace-
ments, as in the case of a pulsating star. Once the internal
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FiG. 15.—Time evolution of the position of a Lagrangian fluid element
whose initial position is located at z = 2.51Hy, for the case of @y = 30. The
dotted line shows the trajectories of free-fall motion for the element.

driving is discontinued (¢ > 4075), the outer surface also
moves inward in nearly a free-fall manner.

Figures 3 and 15 also show that some residual osciliations
remain on the largest scale even after the damping of most
of the internal turbulent energy. This effect is reminiscent of
the recent observation of Lada et al. 2003) that implied a
global oscillation of Barnard 68, a cloud with only subsonic
internal turbulence. We hypothesize that Barnard 68 may
have dissipated most of the internal turbulence left over
from its formation but that only a large-scale oscillation
remains, as in the late stage of our simulation after turbulent
driving is discontinued. However, we caution that ours is
a one-dimensional model and that globally coherent
standing-wave motions need to be demonstrated in a
multidimensional model.

4.4, Dissipation of Energy

The dissipation of energy that we input into nonlinear
transverse Alfvén modes is caused by either shock waves or
grid-scale dissipation, which is similar to the resnits of Stone
et al. (1998). In addition to the dissipation, a part of the
energy escapes from the cloud in our simulation. We mea-
sured the Poynting flux, which is the dominant energy flux,
at the fuli-mass position and the 20% mass position, which
is just outside the region we input the driving force. The time
integral of the Poynting flux at the full-mass position is
about 30% of that at the 20% mass position.

In our model, the majority of dissipation occurs due to
the transfer of energy to small scales via nonlinear steepen-
ing and/or a turbulent cascade, followed by damping on the
grid scale through numerical resistivity, This is because the
kinetic energy of longitudinal motions, which are the cause
of shock waves, is smaller than that of transverse motions.
The primary dissipation of Alfvénic motions then, is not
due to coupling to slow modes, although this is present at a
significant level. This is similar to the finding of the one-
dimensional numerical model of Gammie & Ostriker
(1996), although the same authors claim that in a multi-
dimensional simulation, compressive effects become a major
source of dissipation (Stone et al. 1998); however, see Cho &
Lazarian (2003), who find that the primary dissipation
mechanism in a three-dimensional simulation is not the
coupling of Alfvén modes to slow and fast modes.

So if the primary source of dissipation in this simulation
is grid-scale dissipation after nonlinear steepening of waves
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(and perhaps some cascade to smaller wavelengths). then is
the dissipation rate a physical effect or an artifact of the sim-
ulations? Fo answer this, we have increased the resolution
of our numerical simulations until the dissipation rate is
nearly independent of grid size for the case of the typical
parameter. Hence, the numerical diffusion is no longer reso-
tution-determined at our current resolution of 50 points per
initial scale height in the region where most of the mass is
located. If we use a smaller grid size, the final scale of the dis-
sipation is smaller, but the rate of dissipation stays nearly
the same. In reality, there must be a physical effect such as
ion-neutral friction that would damp the waves at small
scales.

The dissipation time of our results are a few crossing
times of the time-averaged scales of the clouds (see Table 1).
They are a bit longer than estimated from periodic box sim-
ulations. We think that this comes from the generation of
longer wavelength modes as the waves travel to jow-density
regions near the cloud’s surface. However, it is already
known that one-dimensional simulations have lower dissi-
pation rates than two- or three-dimensional ones {Ostriker
et al. 2001). Therefore, higher dimensional global simula-
tions will give the final answer in the future.

4.5, Future Work

This is the first in a series of papers. In the next paper, we
wiil conduct a complete survey of the effect of important
parameters such as 3y and vy, Additionally, the study of
random, rather than sinusoidal, disturbances will be consid-
ered. Moreover, we wili study the case of circularly polar-
ized Alfvén waves by including an x-component of motions
in the simulation. A circularly polarized wave is possibly less
dissipative than a linearly polarized wave, since in the theo-
retical Hmit of an infinite wave train, a flux of circularly
polarized waves has no associated magnetic pressure gra-
dient and thereby induces no compression of gas. Although
conversion of Alfvén modes to slow modes is already not a
dominant source of dissipation in our model, it will be use-
ful to see if the dissipation rate is even less than measured
here when circularly polarized waves propagate in a
finite-sized cioud.

We also expect to include ion-neutral friction in a future
simulation. This effect is expected to be important in molec-
vlar clouds, especially in this model as a damping mecha-
nism of Alfvén waves (Kulsrud & Pearce 1969; Zweibel &
Josafatsson 1983). It would also change the density struc-
ture of a cloud lifted up by wave pressure, as demonstrated
in the case of linear Alfvén waves by Martin et al. (1997).

Finaily, we believe that a multidimensional turbulent sim-
ulation in a gravitationally stratified medium is very neces-
sary for the future, especially to obtain more definitive
dissipation rates in a stratified cloud and to study the
feedback to turbulence due to gravitational contraction and
differential rotation.

5. SUMMARY

We have performed a numerical simulation of nonlinear
MHD waves in a stratified molecular cloud. Qur main
results are as follows:

1. Because of the effective pressure of MHD turbulence,
our one-dimensional cloud is lifted upward and establishes
a steady state characterized by oscillations around a time-
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averaged equilibrium state. The outer, low-density parts of
the cloud undergo the largest oscillations, which have the
character of free-fali motions. After turbulent driving is
discontinued, the cloud falls back toward the initial equili-
brium, but some large-scale oscillations of the cloud are the
longest lived modes.

2. The nonlinear effect of the wave propagation results in
a significant conversion of energy from Alfvén waves to
compressive slow (acoustic) modes and consequent shock
formation. However, the energy in transverse modes always
remains significantly greater than that in longitudinal
modes. Further dissipation of transverse modes takes place
through the generation of smaller scale structure through
nonlinear steepening or a cascade, culminating in resistive
dissipation on the grid scale.

3. Within each cloud, the magnetic pressure associated
with wave motion, {B2/(8)),, is in approximate equiparti-
tion with the kinetic energy in transverse motions
(p(vj,)2 /2), in the region containing most of the mass. How-
ever, in the low-density outer regions, the wave amplitudes
have the character of standing waves, such that B, has a
node and ¢} has an antinode. All of this means that the
Chandrasekhar-Fermi model applied to a stratified cloud
will have a multiplicative constant « that is ~1 with weak
spatial dependence through much of the cloud but drops to
much lower values near the edge of the cloud.

4. After turbulent driving is discontinued, the dissipation
time of the cloud turbulence is ~10#; or several crossing
times of the time-averaged equilibrium state during turbu-

HYDROMAGNETIC WAVE SUPPORT 857

lent driving. These times are up to a few times longer than
those found in multidimensional periodic simulations. This
would be due partly to fewer dissipation avenues in a
one-dimensional approximation but also partly to the
generation of long-wavelength modes due to the cloud.
stratification,

5. For an ensembie of ¢clouds with different levels of inter-
nal driving, we find the relation o oc Z%7, where ¢ is the
time-averaged one-dimensional velocity dispersion mea-
sured at a size scale Z of the time-averaged equilibrinm state
of the clond.

6. For the same ensemble of clouds, the above relation
also implies that o oc Va, where V4 is the mean Alfvén
velocity determined from the mean density of the cloud.
This relation is in agreement with observed properties of
magnetized clouds and cloud cores.
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