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1 Overview

During the 2002 Kouki term, we have been working on the development of a fast and accurate
N-body solver which runs on parallel grape6 systems. We plan to use the code to simulate
the formation of galactic structure. Unlike conventinal cosmological simulations that assume
that simulation particles are a discrete representation of a smooth density field, our simulations
are aimed at revealing how the formation and the structure of dark halos are affected if mass
elements —graviational sources— are massive compact objects such as primordial black holes.
For this purpose we need a fast N-body code which can accurately follow close encounters of
particles.

2 Parallel-Grape-Gadget

Our code is based on parallel N-body code GADGET (Springel, Yoshida & White 2001). We
replace its gravity calculation part with GRAPE-6 modules. Specifically, the code is designed
to utilize the Mitaka parallel GRAPEG6 cluster. We describe the implementation in this section.

2.1 GRAPE-6

GRAPE-6 is the successor of GRAPE-4, designed for high-accuracy integration of gravitational
N-body system using the individual timestep scheme. Since many technical papers on grape
architectures are available (e.g. Fukushige et al. 1995), I will not describe the system details in
this report. The biggest advantage of GRAPE-6 over previous versions of GRAPE is that the
prediction stage typically employed in leap-frog schemes can be done on board. To be specific,
GRAPE-6 calculates the following quantities:
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where
Tijj = Xj pred — Xi; (4)
Vij = Vjpred — Vi- (5)

Here, x;, v;, a;, ; are the position, velocity, acceleration, the first time derivative of acceleration
of particle ¢, G is the gravitational constant which is fixed to be unity in GRAPE-6, and € is
the usual plummer softening parameter.

The position and velocity of particle j in equations (4), (5) have an additional suffix “pred”
to denote that they are predicted values at a system time ¢ using the following formulae:
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We have dropped the subscript j in the right-hand side for clarity, and xg, v, etc. are true values
at time ¢;. For usual cosmological simulations that employ only the lowest-order integration
schemes, one simply uses

Xj pred = Atvg + X, (9)

for force computation. The first derivative of acceleration (equation (2)) is not used in such
cases, although predicted velocities may be used in the hydro part.

2.2 On-demand particle update

In past simulation codes using GRAPE such as Steinmetz’s GRAPE-SPH (1996), the positions
of all the simulation particles are predicted to be at system times on the host computer and the
predicted values are sent to GRAPE at every time step. This has been a source of significant
overhead, even though the force computation itself is done very fast on GRAPE. We completely
eliminate this overhead of host = grape communication by sending only updated particles. The
implementation looks like this:

1. determine-timesteps-and-mark-forceupdate-particles();
2. compute-acceleration-and-move();

3. update-posvel-and-send-to-grape();

4. go back to 1.

Other non-update particles will be kept in the memory on GRAPE until their next update
time. Of course, all the particles must be sent in the beginning of simulations and after domain
decomposition is done.
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Figure 1: Schematic illustration of the parallel force computation scheme employed in PG6-
Gadget. The local force computation done by treewalk is replaced with the direct force summa-
tion by GRAPESG.

2.3 Force computation

Force computations for update particles are done in essentially the same way as the tree-force
computation in Parallel-Gadget. First, a chunk of update particles are created and shared by
all the processors. Each processor computes the forces from its local particles exerting on the
update particles and the contributions are summed up in the end stage. Figure 1 illustrates
how this is done. Since GRAPEG has 48 gravity pipelines per board, the force computation
for the update particles is done repeatedly, i.e., 48 particles per one round. This is the only
one minor complication in the force computation. The computed forces are exact down to the
softening scales (which can be set very small) and the calculation speed does not depend on
spatial clustering. Hence this code opens a new window for simulating a single halo for studies
of the density profile, star cluster simulations, simulations of planet formation etc. Note that, if
periodic boundaries are used, either the Ewald correction must be added or a Fourier technique
must be used to add forces from periodic images. This can be done in a neat way in some cases
(see the last section).

2.4 Timestepping in GADGET

GRAPEG boards handle the time for predictor in 64 bit fixed point format. The binary point
can be arbitrarily set by g6-set-tunit (tunit) function. The system time and timesteps must
be compatible with the blockstep algorithm, which means that the timesteps must be powers
of two (negative values allowed, i.e. 27" are accepted if tunit is set accordingly). The new
version GADGET?2 (Springel 2003) employs exactly what we need to incorporate the predictor
on GRAPE6. GADGET2 maps the timespan of a simulation, say from tyegin t0 tmax, onto
discrete time bins. Then the individual timestep is set to be the largest powers of two which is
smaller than the required timestep width. Thus one can simply call the exsiting g6 functions
without any modification. Nevertheless, one minor complication arises when the system is
integrated in comoving coordinate, which we describe next.



2.5 Predictor for comoving integration

Gadget2 employs a particular set of variables when the comoving integration is employed. Specif-
ically, it uses comoving position and velocity variables

x =r/a, (10)

u = a’% = av, (11)

with the cosmic expansion parameter a being as time variable. The equation of motion then
becomes
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and the particle position is updated viz.

dx u

da ~ da3H(a) (13)
Since GRAPE-6 predicts a particle’s position based on the assigned velocity exactly as expressed
in equation (4), we need to re-scale the velocity before passing to GRAPE-6. (Although one can
change the time unit by g6-tunit function, it will make things just complicated.) Hereafter we
use the system time and timestep precisely as defined in GADGET?2. Let us re-write equation
(13) in a more direct manner as implemented in the program,

Aa

Xpred = muo + Xo, (14)

where x¢ and ug are the particle’s position and velocity, respectively, at the particle’s time.
Whereas Aa in Gadget-1.1 used to be simply A11.Time - P[i].CurrentTime, one aditional
mapping is necessary in Gadget2. Comparing equation (14) with equation (9), and also by
noting that we pass integer powers-of-two values to GRAPEG as the time variable, we find that
the following formula should be used:

Aa

Xpred = (t — tj) l(t—tj)muo + Xp. (15)

Thus we need to scale the particle velocity by FﬁaH—m) when sending to GRAPEG.
Although this scaling is correct to the first order, one can make it a little more consistent with
other time integration part in Gadget2. Namely, we compute

dtdrift(t,t;)
(t—1)

where dtdrift(t,t;) is the same fucntion as that used in the drift phase.

(16)



2.6 Performance analysis

T used a test simulation set ”ZIC-cluster” included in the publicly available Gadget package. The
simulation follows the evolution of a large spherical region with comoving radius 100k ~'Mpc
within a ACDM cosmogony. The high-resolution region is represented by 140005 particles and
there are 136493 boundary particles (for tidal forces), hence 276498 particles in total. There are
no gas particles. I used 2 processors with a GRAPE6 board connected to each. The cpu time
statistics are shown in the table below:

Gadget-2 PGR6-Gadget speed-up factor

Total 17825.09 sec 3493.67 sec 5.01
Gravity 16677.8 sec 2935.23 sec 5.68
Total timesteps 998 1521 -

Note that in the both cases parameters are not optimized. I used default values for this com-
parison. Thus further speed up should be expected for each run by a different factor by tuning
parameters. Due to the geometry of the simulation region, PM part is not used with Gadget2.
Total number of time steps of the GRAPE run is larger than Gadget, because it employs a
slightly more restictive time step constraint.

2.7 Basic simulation results

Figure 2 compares the density profile of the most massive cluster at z = 0 and also shows
the distribution of particles in the high-resolution region. The grape result shows a shallower
density profile than Gadget2, but this is likely due to the softening effect. GRAPE employs the
Plummer softening whereas Gadget uses a spline function for the softening.

3 Prospects for GrapePM code

GRAPEG has an optional function to evaluate forces with a truncated power-law (Jun Makino,
private communication). It is straightforward to replace the current gravgrape subroutine with
one that computes only short-range forces. Even nicer, the default hardwired function to be
returned is Gaussian-convolved, so it should be ideal to be used together with long range forces
by PM.
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Figure 2: (TOP) Density profile of the most massive cluster at z = 0. Simulation by GRAPE
(filled circles) and by Gadget (open circles). (BOTTOM) Distribution of the high-resolution
particles at z = 0. Simulation by GRAPE (left) and Gadget2 (right).



