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ABSTRACT

The collapse of rotating magnetized molecular cloud cores is studied with axisymmetric magnetohydro-
dynamic (MHD) simulations. Because of the change of the equation of state of the interstellar gas, molecular
cloud cores experience several phases during the collapse. In the earliest isothermal runaway collapse
(nd1010 H2 cm

�3), a pseudodisk is formed, and it continues to contract until an opaque core is formed at the
center. In this disk, a number of MHD fast and slow shock pairs appear whose wave fronts are parallel to the
disk. We assume that the interstellar gas obeys a polytropic equation of state with the exponent of � > 1
above the critical density at which the core becomes optically thick against the thermal radiation from dusts
ncr � 1010 cm�3. After the equation of state becomes hard, an adiabatic quasi-static core forms at the center
(the first core), which is separated from the isothermal contracting pseudodisk by the accretion shock front
facing radially outward. By the effect of the magnetic tension, the angular momentum is transferred from the
disk midplane to the surface. The gas with an excess angular momentum near the surface is finally ejected,
which explains the molecular bipolar outflow. Two types of outflows are found. When the poloidal magnetic
field is strong (its energy is comparable to the thermal one), a U-shaped outflow is formed, in which gas is
mainly outflowing through a region whose shape looks like a capital letter U at a finite distance from the rota-
tion axis. The gas is accelerated by the centrifugal force and the magnetic pressure gradient of the toroidal
component. The other is a turbulent outflow in which magnetic field lines and velocity fields seem to be ran-
domly oriented. In this case, globally the gas moves out almost perpendicularly from the disk, and the out-
flow looks like a capital letter I. In this case, although the gas is launched by the centrifugal force, the
magnetic force working along the poloidal field lines plays an important role in expanding the outflow. The
continuous mass accretion leads to a quasi-static contraction of the first core. A second collapse due to the
dissociation of H2 occurs in it. Finally, another less massive quasi-static core is formed by atomic hydrogen
(the second core). At the same time, it is found that another outflow is ejected around the second atomic core,
which seems to correspond to the optical jets or the fast neutral winds.

Subject headings: ISM: clouds — ISM: jets and outflows — ISM: magnetic fields —
methods: numerical — stars: formation

On-line material: color figures

1. INTRODUCTION

Star formation has been a long-standing target in astro-
physics. The infrared protostar distribution revealed that
the molecular cloud cores, which coincide with relatively
high-density parts (n � 104 cm�3) of the molecular clouds,
are the sites of star formation. The observed molecular
cloud cores are divided into two categories: those observed
associated with and without protostars. The molecular
cloud cores without protostars are called starless cores or
prestellar cores and are considered younger than those asso-
ciated with protostars (protostellar cores). From a theoreti-
cal point of view, clouds or cloud cores experience the
isothermal runaway collapse first, and then accretion onto
the stellar core develops (Larson 1969). In the former col-
lapse, the central density increases greatly in a finite time-
scale (’free-fall time). A number of prestellar cores show
inflow motions (e.g., in L1544, rotation and infall velocities
�0.1 km s�1 are observed by Ohashi et al. 1999). This indi-
cates that they are in the dynamically contracting phase, or
in other words, in the runaway collapse (Ciolek & Basu
2000). After the epoch when the dust thermal emissions are
trapped in the central part of the cloud (nc � 1010 cm�3), an
adiabatic core is formed at the center, and isothermal gas
continues to accrete onto the core. The molecular cloud core
in this phase is observed as a protostellar core. It is shown

that the dynamical evolution of the cloud core is character-
ized by the sequence from prestellar cores to protostellar
cores.

Dynamical collapse of magnetized clouds has been
studied by many authors (Scott & Black 1980; Phillips
1986a, 1986b; Dorfi 1982, 1989; Bentz 1984; Mouschovias
& Morton 1991, 1992; Fiedler & Mouschovias 1992, 1993;
Basu & Mouschovias 1994; Tomisaka 1995, 1996; Naka-
mura, Hanawa, & Nakano 1995; Nakamura et al. 1999).
Rotating cloud collapse has been attacked seriously with
numerical simulations by many authors (Bodenheimer,
Tohline, & Black 1980; Norman, Wilson, & Barton 1980;
Wood 1982; Narita, Hayashi, & Miyama 1984; Truelove et
al. 1997, 1998; Tsuribe & Inutsuka 1999a, 1999b). However,
a restricted number of articles have been published regard-
ing the dynamical contraction of the cloud with both rota-
tion and magnetic fields (Dorfi 1982, 1989; Basu &
Mouschovias 1994, 1995; Boss 2000, 2001); for quasi-static
evolution, see Tomisaka, Ikeuchi, & Nakamura (1990).
These researches are confined to the relatively early pre-
stellar stage.

Is it sufficient to consider the effects of the rotational
motion and the magnetic fields separately? In the dynamical
contraction phase, the molecular outflow is believed to be
driven by the cooperative effect of the magnetic fields and
rotation motions (Tomisaka 1998). The toroidal magnetic
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fields are generated from the poloidal ones by the effect of
rotation motions (Ampere’s law). The torque works only
when the poloidal and toroidal magnetic fields coexist, since
the Lorentz force in the �-direction works between the po-
loidal magnetic field and the poloidal current, which makes
the toroidal magnetic field. This magnetic torque leads the
angular momentum transfer along the magnetic field line,
which is important for ejecting the outflow. Since the out-
flow brings the excess angular momentum, the amount of
angular momentum that remains in a protostar and thus in
a newborn star is reduced by a factor from 10�2 to 10�3

from that of the parent molecular cloud core (Tomisaka
2000). Numerical simulations have confirmed that no out-
flows are observed in the magnetized and nonrotating cloud
(Scott & Black 1980; Tomisaka 1996) or the rotating and
nonmagnetized cloud (Norman et al. 1980). Therefore, rota-
tion and magnetic fields are both essential to the evolution
of molecular cloud cores. In the present paper, we study the
dynamical contraction of the magnetized and rotating
cloud.

Cooperative effects of magnetic fields and the rotation
motions become important after the adiabatic core is
formed at the center of the cloud core (Tomisaka 1998).
Therefore, the evolution throughout from the prestellar to
protostellar core should be studied.

The plan of this paper is as follows: in x 2, the model and
numerical method are described. As the initial condition, we
choose a slowly rotating cloud threaded by purely poloidal
magnetic fields (no toroidal magnetic fields), and we follow
the evolution using magnetohydrodynamic (MHD) simula-
tions. Section 3 is devoted to the numerical results. In this
section we compare clouds with strong magnetic fields and
those with weak magnetic fields. This shows us that two
completely different types of outflows are formed in the
respective clouds. Another comparison is made between fast
and slow rotators. In x 4, we discuss the evolution until the
second core, which becomes actually a newborn star, is
formed. It is found that another outflow is found around
the second core, which seems to correspond to the optical
jets or high-speed neutral winds. We also discuss whether
the mass inflow/outflow rates and the momentum outflow
rates observed in molecular bipolar outflows are explained
or not.

2. MODEL AND NUMERICAL METHOD

To study the dynamical contraction, we consider an iso-
thermal cylindrical cloud in hydrostatic balance with infin-
ite length as the initial state. In several star-forming regions,
such as the Taurus and Ophiuchus regions, we often find fil-
amentary molecular clouds. However, the relationship is
controversial between the direction of the magnetic fields
and that of the filament: the � Ophiuchi clouds L1709,
L1729 (Loren 1989), and L1755 (Goodman et al. 1995) have
filamentary shapes, and the directions of the major axes
agree with the direction of magnetic field lines, which are
measured by the near-IR polarization observations of the
background field stars; while in B216�217 clouds in Taurus,
the magnetic field lines seem to run perpendicular to the
major axes of the dark clouds, even if they seem filamentary
(Heyer et al. 1987; Goodman et al. 1992). In this paper, we
examine the evolution of these magnetized filamentary
clouds. We focus on the model in which magnetic field lines
are parallel to the major axis of the filament, and the case

with perpendicular magnetic fields will be studied in a sepa-
rate paper.

In terms of the gravitational potential  and the isother-
mal sound speed cs, the radial distributions of density �,
rotation speed v�, and magnetic field density Bz are calcu-
lated using the equation of hydrostatic balance as
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and the Poisson equation for the self-gravity as
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where G represents the gravitational constant. This equa-
tion has a solution as follows (Stodóokiewicz 1963):
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with using the scale height at the center,

H2
c ¼

c2s þ B2
c0=8��c0

4�G�c0 � 2�2
c0

; ð6Þ

where �c0, �c0, and Bc0 represent the density, angular rota-
tion speed, and magnetic flux density, respectively, at the
center of the cylindrical cloud (r ¼ 0). This is the same
hydrostatic configuration studied by Matsumoto, Hanawa,
& Nakamura (1997). However, we assume no initial toroi-
dal magnetic field B� ¼ 0, in contrast to them. The density
distribution is assumed to extend until the radius where the
thermal pressure c2s�s becomes equal to the external pressure
pext, where �s represents the density at the surface of the
cylindrical cloud. The solution contains three nondimen-
sional parameters characterizing the distribution after
adopting natural normalization such as for distance
r0 � r=H � r=½cs=ð4�G�sÞ1=2�, for time t0 � t=�ff � t=
½1=ð4�G�sÞ1=2�, and for density �0 � �=�s � c2s�ðrÞ=pext. We
summarize the conversion factors from nondimensional to
physical quantities in Table 1. The first parameter charac-
terizing the initial state is related to the magnetic-to-thermal
pressure ratio as

� � BzðrÞ2=4��ðrÞc2s ¼ B2
c0=4��c0c

2
s ; ð7Þ

where � ¼ 2=� if we use the plasma �. The second one is
related to the angular rotation speed as

�0 ¼ �c0=ð4�G�sÞ1=2 : ð8Þ

Finally, the third one is the center-to-surface density ratio
as

F � �c0=�s : ð9Þ

The scale height at the center Hc is rewritten using these
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nondimensional parameters as

H 02
c ¼ H2

c

c2s=4�G�s
¼ 1þ �=2

F � 2�02 : ð10Þ

From this equation, it is shown that a hydrostatic balance is
achieved only when F > 2�02, i.e., 4�G�c0 > 2�2

c0 in dimen-
sional form. The �-parameter of Matsumoto, Nakamura, &
Hanawa (1994), which represents the ratio of the centrifugal
force to the thermal pressure force, is expressed using our
parameters as

� ¼ � �ðrÞv�ðrÞ2=r
c2s d�ðrÞ=dr

¼
2�2

c0H
2

c2s

¼ 2�02 1þ �=2

F � 2�02 : ð11Þ

To initiate the cloud collapse, we added density perturba-
tions with a small amplitude. The wavelength of the pertur-
bation is taken equal to that of the most unstable Jeans
mode of this isothermal filament. Its linear stability was
already studied by Matsumoto et al. (1994). They gave a fit-
ting formula for the most unstable wavelength as follows:

�max
cs

ð4�G�sÞ1=2

" #�1

’ 2� 1þ �=2þ �ð Þ1=2

0:72 1þ �=2þ �ð Þ1=3�0:6
h i

F1=2
;

ð12Þ

where we used equations (7), (9), and (11). Therefore, we
take this most unstable wavelength, and the initial density is
assumed equal to

�ðz; rÞ ¼ �0ðrÞ 1þ A cos
2�z

�max

� �� �
ð13Þ

for ��max=2 � z � �max=2. The amplitude of the perturba-
tion A is taken equal to 0.1. Hereafter, we omit the primes
which indicate the nondimensional quantities, unless the
quantities could be confused with dimensional ones.

From calculations of one-dimensional, nonrotating,
nonmagnetized spherical cloud collapse, the effective

equation of state of the gas forming a star is summarized
as follows (Tohline 1982): the equation of state is deter-
mined by the balance between radiative cooling and com-
pressional heating (Masunaga & Inutsuka 1999). Gas in
the molecular cloud core with � � 104 H2 cm�3 obeys the
isothermal equation of state with the temperature of
T0 � 10 K, in which the gas is mainly cooled by the ther-
mal radiation from dust. However, radiative hydrody-
namical calculations (e.g., Masunaga & Inutsuka 1999)
have shown that the molecular gas becomes optically
thick against such emissions, at the density approximately
equal to �c ¼ �A � 1010 H2 cm�3. The gas becomes adia-
batic beyond the density, and a quasi-hydrostatic H2 core
forms that is supported by the thermal pressure (Larson
1969). This is called a first core. In this phase, the poly-
tropic exponent C of this molecular hydrogen gas is well
approximated equal to 7/5, although C is as large as 5/3,
while the temperature is quite low, and neither rotational
nor vibrational modes of the molecules are excited. The
mass of the first core grows by continuous accretion, and
the central density and thus temperature increase with
time. Finally, hydrogen molecules (H2) dissociate into
hydrogen atoms (H) when the core’s temperature exceeds
Tdis ’ 103 K. Typical density at which the temperature
reaches Tdis is equal to �B ¼ �AðTdis=T0Þ1=ð��1Þ ’
1015 H2 cm�3ðTdis=103 KÞ5=2ðT0=10 KÞ�5=2. The dissocia-
tion ends at the density �C ’ 1019 H2 cm�3. Since the
hydrogen dissociation reaction absorbs its thermal energy
liberated by the compression, the polytropic exponent
decreases as � ’ 1:1. Finally, an atomic hydrogen core is
formed, which is called the second core by Larson (1969).
Since the constituent of the second core is atomic hydro-
gen, C becomes ’5/3. To include these changes, we
adopt a multiple polytrope approximation as

p ¼

c2s� � < �A ;

c2s�A
�

�A

� �7=5

�A < � < �B ;

c2s�A
�B
�A

� �7=5
�

�B

� �1:1

�B < � < �C ;

c2s�A
�B
�A

� �7=5
�C
�B

� �1:1
�

�C

� �5=3

� > �C ;

8>>>>>>>>>>><
>>>>>>>>>>>:

ð14Þ

TABLE 1

Conversion from the Nondimensional to the Physical Quantities

Physical Quantities Conversion Factors Physical Values (l ¼ 2:33)

Velocity (m s�1) .............................................................. cs 190

Density (H2 cm
�3) ........................................................... �s 102

Length (pc) ..................................................................... cs=ð4�G�sÞ1=2 � H 0:341ðcs=190 m s�1Þð�s=102 H2 cm�3Þ�1=2

Time (Myr) ..................................................................... ð4�G�sÞ�1=2 � �ff 1:75ð�s=102 H2 cm�3Þ�1=2

Mass (M�) ...................................................................... c3s=ð4�GÞ3=2�
1=2
s 0:227ðcs=190 m s�1Þ3ð�s=102 H2 cm�3Þ�1=2

Mass accretion rate (M� yr�1)......................................... c3s=4�G 1:29� 10�7ðcs=190 m s�1Þ3
c3s=G

a 1:62� 10�6ðcs=190 m s�1Þ3
Momentum inflow/outflow rate (M� yr�1 km�1 s�1) ...... c4s=4�G 2:45� 10�8ðcs=190 m s�1Þ4

c4s=G
b 3:08� 10�7ðcs=190 m s�1Þ4

Magnetic field (lG)......................................................... cs�
1=2
s 3:75ðcs=190 m s�1Þð�s=102 H2 cm�3Þ1=2

a Tomeet the conventional normalization, we adopt c3s=G in x 4.
b Tomeet the conventional normalization, we adopt c4s=G in x 4.
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with �A ¼ 1010 H2 cm�3, �B ¼ 1015 H2 cm�3, and
�C ¼ 1019 H2 cm�3. This is similar to that adopted by
Bate (1998). Since the equation of state is achieved by
the balance of radiative loss and compressional heating,
the result obtained assuming the spherical symmetry
might be incorrect if we apply it to the multidimensional
simulations. However, as is seen later, the cores (the first
and the second cores) are almost spherical, and the
approximation of the multiple polytropes is valid.

The basic equations to be solved are the magnetohydro-
dynamic equations and the Poisson equation for the gravi-
tational potential. In cylindrical coordinates (z, r, �) with
@=@� ¼ 0, the equations are expressed as follows:
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where the variables have their ordinary meanings. Equation
(15) is the continuity equation; equations (16), (17), and (18)
are the equations of motion. The induction equations for
the poloidal magnetic fields are equations (19) and (20), and
equation (21) is for the toroidal magnetic field. The last
equation (22) is the Poisson equation.

The MHD equations are solved using van Leer’s (1977)
monotonic interpolation and the constrained transport
method by Evans &Hawley (1988) with the method of char-
acteristics (MOC) modified by Stone & Norman (1992).
This code is based on a hydrocode written from scratch by
the author (Tomisaka & Bregman 1993) referring to
Norman & Winkler (1986). This is similar to ZEUS2D,
which is distributed by NCSA. To ensure that the specific
angular momentum �rv� and the toroidal magnetic fields B�
are convected similar to the density, advections of such val-
ues are calculated using the consistent advection, which was
first pointed out by Norman et al. (1980). We rewrite the

advection terms of equations (18) and (21) as
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To evaluate the right-hand side of equations (18) and (21),
we choose the same numerical mass flux �v as used in equa-
tions (15) and (16) and multiply B�=� and rv� by the mass
flux to get numerical fluxes for the angular momentum den-
sity and the toroidal magnetic fields. To solve the Poisson
equation (22), we adopted MILUCGS (modified incom-
plete LU decomposition preconditioned conjugate gradient
squared method; Meijerink & van der Vorst 1977;
Gustafsson 1978).

The gravitational contraction proceeds in a significantly
nonhomologous way. To see the early-phase evolution, we
have to cover a spatially wide region. On the other hand, to
see the late-phase evolution, high spatial resolution is
needed, especially near the central compact object. These
demands conflict with each other. To overcome the diffi-
culty, we adopt the nested grid method (Berger & Oliger
1984; Berger & Colella 1989), similar to our previous series
of papers that treated cloud collapse (Tomisaka 1996, 1998,
2000). In this method, a number of levels of grids with differ-
ent spacings are prepared; finer grids cover the central high-
density portion, and coarser ones cover the cloud as a
whole. The grids are named as L0 (the coarsest), L1, L2, . . .,
and the grid spacing of Ln is chosen equal to half of that of
Ln� 1; that is, the grid spacing of Ln is equal to
Dzn ¼ Dz02�n and Drn ¼ Dr02�n. The L0 grid covers the
region��max=2 � z � �max=2 and 0 � r � �max.

In the nested grid method, a true boundary condition is
applied only to the outer boundary of the coarsest grid L0,
on which we adopt the fixed boundary condition at r ¼ �max

and the periodic boundary condition at z ¼ ��max=2.
Adopting the periodic boundary condition means that mass
and angular momentum are not removed from the system
through the upper and lower boundaries. Even if an outflow
is ejected and the Alfvén wave generated by the rotational
motions propagates, as long as these do not reach the boun-
daries the results do not suffer from the boundary condition.
This is true for all the models that we calculated. The code
has been tested comparing the results obtained with and
without the nested grid technique (for details see Tomisaka
1996). The most unstable growth rates of perturbations are
slightly different (’8%): �c ¼ 104�s was attained at
t ¼ 1:25�ff without the nested grid (but using a relatively
large number of grid points, 400� 400) but at t ¼ 1:351�ff
in the calculation with the nested grid method. This is
mainly due to the fact the eigenfunction of the most unsta-
ble mode is as wide as the whole size of the numerical box,
and this mode is represented better by a simple calculation
with a large number of zones (400� 400) rather than the L0
grid (64� 64) of the present scheme. However, after the per-
turbation has grown to be nonlinear, the growth rate agrees
well.

As another test, we calculated the evolution of a model
(model A) using a setup in which the number of grid points
in one level is increased to 128� 128, while the number of
levels is unchanged. This gives twice higher spatial resolu-
tions than models that will be shown in the next section.
Comparing these two, it is found that the time necessary to
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form the core (� ¼ �A) is slightly different, as is expected;
the calculation with lower resolutions (64� 64) gives a lon-
ger timescale for core formation (tc ’ 0:7219�ff ) than that
with higher resolutions (128� 128; tc ’ 0:7097�ff ), which is
consistent with the result of the former test. However, the
evolutions after core formation are the same for the two cal-
culations, if we use the time after the core formation epoch,
t� tc, instead of t itself. This shows us that the 64� 64 grid
points in each level are sufficient for discussing the evolution
of molecular cloud cores to form stars, if we employ the
nested grid technique.

3. RESULTS

3.1. Dynamical Contraction

In model A, we calculate the evolution with � ¼ 1,
�0 ¼ 5, F ¼ 100, and �s ¼ 102 H2 cm

�3. We summarize the
adopted parameters in Table 2. Similar to the nonrotational
magnetized cloud (see Figs. 2b and 2c of Tomisaka 1996),
the cylindrical cloud fragments into a prolate spheroidal
shape whose wavelength is equal to �max. This prolate
spheroidal shape coincides with the structure expected from
the linear stability analysis by Matsumoto et al. (1994).
Next, this density-enhanced region begins to contract along
the major axis of the cylindrical cloud, since the magnetic
fields are assumed to run parallel to the major axis. Finally,
it forms a contracting disk (pseudodisk) perpendicular to
the magnetic field lines (Fig. 2d of Tomisaka 1996). The
snapshot at this stage is shown in Figure 1. Using the con-
version factors from nondimensional to dimensional quan-
tities shown in Table 1, the epoch t ¼ 0:6066�ff corresponds
to 1:06 Myrð�s=102 H2 cm�3Þ�1=2 from the beginning of
calculation. The respective panels of Figure 1 have different
spatial coverages. Figure 1a, which shows L1, represents a
global structure of the contracting disk extending horizon-
tally, which is perpendicular to the magnetic field lines. At
this epoch, the central density reaches �c ’ 108:44�s.

1 The
figure clearly shows that the cloud continues to collapse.
This means that the centrifugal force cannot sustain the
cloud collapse. The spatial resolution of L1 is so limited that
there seems no internal structures in the contracting disk.

However, L5, which has 16 times finer resolution than L1,
shows that outward-facing shock fronts extend parallel to
the r-direction. Fronts near z ’ �0:02H are the fast-mode
MHD shock fronts, because the magnetic fields bend
toward the front passing the shock front. We can see
another density jump near z � 0:01H (hereafter we will
omit the sign � and mention the upper half of each figure
since the structure is symmetric).

The shock fronts formed parallel to the disk are known in
contracting nonmagnetized rotating isothermal clouds
(Norman et al. 1980; Matsumoto et al. 1997). These are not
due to the rotation; multiple shock fronts are also found in
the contracting magnetized cloud without rotation (Naka-
mura et al. 1999). However, the situation becomes a bit
complicated in this cloud. In the outer region ze0:02H, the
magnetic field lines run almost vertically (Bz4Br and B�).
Passing the MHD fast shock, in the intermediate region
(0:01Hdzd0:02H), the radial and toroidal components
are amplified, and the density increases compared to the
outer region. Finally, after passing another front near
z ’ 0:01H, the toroidal component B� decreases. That is,
since the magnetic field lines deflect departing from the front
at the second front, this is a slow MHD shock. The
density range represented in this panel is from
102:3�s ¼ 104:3ð�s=100 H2 cm�3Þ H2 cm�3 to 107:3�s ¼
109:3ð�s=100 H2 cm�3Þ H2 cm�3. It should be noticed that
these shocks occurs in the isothermal gas. This phase is
called runaway collapse, in which the central density (�c)
increases greatly in a finite timescale.

Figure 1c shows the structure represented in L10. Almost
all the gas in this figure is isothermal. However, a central
small part of the contracting disk (rd6� 10�4H and
jzjd1� 10�4H) enters the polytropic regime with a harder
equation of state than the isothermal one. At this stage, we
can see that another density jump where many density con-
tour lines are confined locally is forming just outside the pol-
ytropic part of the disk. This corresponds to the gas with
� > 1, which is seen as a gas � > �A ¼ 108 in nondimen-
sional units. This density jump seems to grow into an accre-
tion shock front, since it is known that an accretion shock
forms outside the core when the adiabatic core develops
(Larson 1969). This is easily understood as follows: the gas
with specific heat ratio � > 4=3 has a hydrostatic equili-
brium irrespective of its mass. The scale height in the z-
direction of the core becomes larger than that of the disk.
The gas with a harder equation of state forms a spherical
static core. Since we assume the multiple polytropic relation
for � > �A (eq. [14]), the core should be called a polytropic
core. However, we will call it an adiabatic core in this paper.
This is justified since the core is almost spherical (see x 2)
and similar to that obtained by radiative hydrodynamic
calculations assuming spherical symmetry (Masunaga &
Inutsuka 1999).

Figure 2 shows crosscut views along two axes (along the
disk midplane z ¼ 0 [panel a] and along the z-axis r ¼ 0
[panel b]), which shows how the adiabatic core is formed.
The lines with 0.6066 represent the stage shown in Figure 1.
At this stage (t ¼ 0:6066�ff ), inflowing gas is almost isother-
mal (� < �A). In Figure 2a, the radial distributions of the
density, the magnetic flux density, and the radial and the
toroidal components of velocity are shown. We can see that
density and magnetic flux density distributions are approxi-
mately expressed by power laws as � / r�2 and Bz / r�1

except for the central part. At t ¼ 0:6067�ff , the density in

TABLE 2

Model Parameters

Model � �0 �A

�s
(H2 cm

�3) Polytrope

A.............. 1 5 108 102 Realistic

AH1......... 1 5 108 102 C= 2

AH2......... 1 5 108 102 C= 5/3

B .............. 1 1 108 102 Realistic

BH........... 1 1 108 102 C= 2

CH........... 1 0.2 108 102 C= 2

DH .......... 0.1 1 108 102 C= 2

EH........... 0.01 1 108 102 C= 2

N ............. 0 5 108 102 Realistic

NH .......... 0 5 108 102 C= 2

R.............. 1 1 106 104 Realistic

1 The central density obtained by L1 is only �c ’ 104:94�s. However, this
is owing to the restriction of the spatial resolution of L1. Using deep levels
of grids, we can obtain the true central density.
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the core exceeds 109�s ¼ 1011ð�s=100 H2 cm�3Þ H2 cm�3,
and at t ¼ 0:6068�ff , it reaches 1010�s ¼
1012ð�s=100 H2 cm�3Þ H2 cm�3. At this stage, a radially
outward-facing shock front is seen even inside the disk;
infall motion is abruptly decelerated, and the density
and magnetic flux density are compressed. This shows that a
compact core is formed inside the accretion shock
front. The central density increases with time, and
inside rd1:8� 10�4H polytropic gas (� > �A) dis-
tributes. The size of the core is equal to
r � 1:9� 1014ðcs=190 m s�1Þð�s102 H2 cm�3Þ�1=2 cm � 13
�ðcs=190 m s�1Þð�s102 H2 cm�3Þ�1=2 AU. This reduces
with time since the mass of the core increases by the effect of
continuous accretion.

Before the shock front is formed (t < 0:6067�ff ), the
radial inflow velocity takes the maximum about’2:5cs near
r ’ 7� 10�3H. For the Larson-Penston self-similar solu-
tion for the spherically symmetric dynamical collapse
(Larson 1969; Penston 1969), this maximum inflow speed is
expected to be equal to’3:28cs. On the other hand, it equals
’1:736cs for the nonrotating isothermal disk (Saigo &
Hanawa 1998). Therefore, it is shown that the actual inflow
speed ranges between those expected for the spherically
symmetric self-similar solution and for the axially symmet-

ric thin disk solution. After the shock front is formed
around the core, the inflow velocity takes the maximum just
outside the shock front and the maximum speed increases
with time. Inflow motion is accelerated toward the shock
front. Similar acceleration is also seen in the toroidal veloc-
ity, v�. Before core formation the toroidal speed v� takes the
maximum v� � 1:7cs near r ’ 2:5� 10�3H. However, v�
increases toward the accretion shock after the core forma-
tion. At t ¼ 0:6068�ff it reaches v� ’ 3cs (see also Fig. 1 of
Tomisaka 1998).

The structure seen in the crosscut along the z-axis is more
complicated (Fig. 2b). Two shock fronts mentioned earlier
(Fig. 1b) correspond to the jumps near jzj ’ 0:02H and
’0:005H.2 At t ¼ 0:6066�ff , the density and the inflowing
velocity distributions have no discontinuities besides these
two shock fronts. However, at t ¼ 0:6067�ff , the inflowing
velocity distribution begins to indicate a clear discontinuity
near jzj ’ 1:5� 10�4H. This shows that a newly formed
shock front is propagating spatially. Comparing two curves

Fig. 1a Fig. 1b

Fig. 1c

Fig. 1.—Evolution of model A with � ¼ 1 and �0 ¼ 5. Snapshots at the time of t ¼ 0:6066�ff represented in different levels are shown: L1 (a), L5 (b), and
L10 (c). Horizontal and vertical axes represent the r- and z-axes, of which the units are nondimensional. The actual size of the frames of L5 (b) and L10 (c) are,
respectively, 1/16 and 1/512 smaller than that of L1 (a). Magnetic field lines (dotted lines) and isodensity contours (solid lines) are presented as well as the
velocity vectors (arrows). Near the bottom right corner, the logarithms of the maximum and the minimum of the densities are numerically shown. Contour
levels are chosen for log � ¼ log �min þ nðlog �max � log �minÞ=20 for nondimensional density � with n ¼ 0; 1; 2; . . . ; 20. The maximum speed is also shown,
and the velocity vector corresponding to its value is illustrated at the lower left corner by a horizontal arrow. Level, the elapsed time from the beginning, and
the number of time steps are shown on the top. The time steps are counted for the coarsest level at that time (L0 for this model). Thus, L1’s own time steps are
equal to 332� 21, and L5’s are 332� 25. [See the electronic edition of the Journal for a color version of this figure. In the electronic version, the magnetic field lines
are displayed with red solid lines.]

2 The shape of the inner slow MHD shock is concave. On the z-axis it is
found near z ’ 0:005H, while departing from the z-axis (re0:02H), it is
found near z ’ 0:01H.
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of t ¼ 0:6067�ff and t ¼ 0:6068�ff , it is shown that this shock
front breaks into two fronts, and the inner one
(jzj ’ 1:5� 10�4H) is standing still, while the outer one
(jzj ’ 5� 10�4H) is propagating outwardly. These two
shock fronts are outwardly facing. Thus, the inward propa-
gation of the inner fronts is due to the infalling gas motion.

Figure 2 indicates that the inflow near the z-axis is accel-
erated reaching the central core. Further, comparing vz for
two different epochs, for example, t ¼ 0:6067�ff and
t ¼ 0:6068�ff , we can see that the inflow near the z-axis is
accelerated with time. This is a natural consequence of the
fact that the inflow is essentially controlled by the gravity
(free fall) in the z-direction, which is parallel to the magnetic
fields and angular momentum vectors. In this case, accre-
tion speed increases reaching the source of the gravity, and
accretion speed also increases with time.

3.2. Outflow

Figure 3 illustrates the structure at t ¼ 0:6069�ff .
Although the gas is inflowing both inside and outside of the
disk at t ¼ 0:6067�ff (Fig. 2), at this stage (t ¼ 0:6069�ff
[� ¼ 3:2� 10�4�ff ]),

3 a prominent outflow is formed outside
of the disk. This shows that the flow pattern is completely
changed in Dt ’ 2� 10�4�ff � 400 yr. The outflow sweeps a
sphere with a radius of rd1:2� 10�3H (Fig. 3a). Figure 3b
indicates that the gas near the disk surface flows inwardly
for re2� 10�4H. However, the direction of the flow is
changed upwardly near r ’ 2� 10�4H. Finally, this gas is
ejected, while the gas flowing near the midplane of the disk
(jzjd1� 10�5H) continues to contract. This is reasonable

because the total amount of angular momentum in one
magnetic flux tube must be conserved in the axisymmetric
ideal MHD simulation; for the outflow gas to get angular
momentum, a part of the gas in the same magnetic flux tube
has to lose its angular momentum and to fall further. In the
acceleration process of the gas, the angular momentum is
transferred from the gas near the midplane to the gas near
the surface of the disk. Considering the angular rotation
speed, the angular momentum is transferred from the fast-
rotating midplane to the slowly rotating surface gas.

From Figures 1c and 3a (both show the structure repre-
sented in L10), we can see that the magnetic field lines run
completely differently comparing before (�c < �A; Fig. 1c)
and after (�c > �A; Fig. 3a) the adiabatic core formation.
That is, in the isothermal runaway collapse phase (Fig. 1c)
the magnetic field lines run vertically, in other words, per-
pendicularly to the pseudodisk. In contrast, after the adia-
batic core is formed, the disk continues to contract and
drags the magnetic field lines inwardly. Thus, the angle
between the magnetic field lines and the disk decreases.

Figure 3b is a close-up view whose spatial resolution is 4
times finer than that of Figure 3a. This panel shows us that
the angle between the flow and the disk is ’45	. The reason
why the outflow begins only after core formation is related
to the angle between the magnetic field lines and the disk,
	mag. Blandford & Peyne (1982) have pointed out that for a
cold gas rotating with the Keplerian speed to get angular
momentum from the Keplerian disk via infinitely strong
magnetic fields, 	mag must be smaller than a critical value
	cr ¼ 60	. This is understood as follows. Consider the gas in
a magnetic flux tube. When the magnetic flux tube is rising
steeply from the disk as 	mag > 	cr, the gas has to climb the
effective potential well even if it rotates with the same angu-
lar speed as the Keplerian disk. On the other hand, when
	mag < 	cr, gas can escape from the gravitational well by get-

Fig. 2a Fig. 2b

Fig. 2.—Crosscut views along the equatorial plane (a) and the z-axis (b). All the dependent and independent variables are those of nondimensional units.
The figures show the formation of the first core. In (a), log �ðr; z ¼ 0Þ (solid lines), logBzðr; z ¼ 0Þ (short-dashed lines), v�ðr; z ¼ 0Þ (long-dashed lines), and
�vrðr; z ¼ 0Þ (dotted lines) are plotted, while in (b), log �ðr ¼ 0; zÞ (solid lines), logBzðr ¼ 0; zÞ (short-dashed lines), and�vzðr ¼ 0; zÞ (dotted lines) are plotted.

3 The term t represents the time from the beginning of calculation, but
� � t� tc represents the time after core formation.We assume that the core
consists of gas with density � > �A.
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ting angular momentum from the disk, if the gas has the
same angular speed as the Keplerian disk. Although the
exact value of 	cr depends on the disk rotation speed and the
disk–to–central star mass ratio, a small angle is preferable
for acceleration. This is known as the magnetocentrifugal
acceleration mechanism. Kudoh, Matsumoto, & Shibata
(1998) have studied a jet ejected from the Keplerian disk
with two-dimensional MHD simulations. Using the effec-
tive potential defined as

 eff ¼  � 1
2�

2
F r

2 ; ð24Þ

they found that the gas is accelerated after passing the local
maximum of this effective potential, when they followed the
path of a gas element. (Here�F is the angular velocity of the
magnetic field line.) It should be noted that this configura-
tion is achieved only after core formation (Tomisaka 1998).

To explore which force is working to drive the outflow,
we calculated the amplitude of respective forces to drive the
flow at each grid point: the pressure gradient �

D

p, the mag-
netic force ð

D

� BÞ� B=4�, and the centrifugal force
�v2�=rer, and we compare their components parallel to the
poloidal magnetic field as

Fp ¼ �

D

p x
Bp

jBpj
; ð25Þ

Fm ¼ ð

D

� BÞ� B

4�
x
Bp

jBpj
ð26Þ

¼ � 1

8�r2
Bp

jBpj
x

D

ðrB�Þ2 ð27Þ

(Ustyugova et al. 1999), and

Fc ¼
�v2�
r

Br

jBpj
: ð28Þ

Figure 3c (right) shows the largest force at each grid point.
The region filled with asterisks shows the region where the
centrifugal force, Fc, dominates over other forces. We will
call it region C, which means the centrifugal force–domi-
nated region. An outflow region, which can be seen in the
flow vectors displayed in the left half, extending at an angle
of ’�45	 to the disk around the point P1
ðz; rÞ ’ ð1� 10�4H; 2:5� 10�4HÞ completely agrees with
this region C. Just radially exterior to this region C,
there is a region near the point P2 ðz; rÞ
’ ð2� 10�4H; 3:5� 10�4HÞ filled with plus signs where
the magnetic force dominates (region M). We can see that
the strongest outflow coincides with this region M and the
above region C. This means that the outflow is driven by the
centrifugal force and the magnetic force (the toroidal mag-

Fig. 3a Fig. 3b

Fig. 3c

Fig. 3.—Same as Fig. 1, but for the snapshot at t ¼ 0:6069�ff . (a) Structure represented in L10, which is the same as Fig. 1c. At this stage, gas begins to
outflow from the disk. Outflow sweeps the sphere rd1:2� 10�3H. (b) L12, which has 4 times finer spatial resolution than (a). (c) Shown is which force is
dominant: the thermal pressure gradient, the magnetic force (the toroidal magnetic pressure gradient), or the centrifugal force. The components parallel to the
magnetic field are compared for each grid point. The asterisks (*), plus signs (+), and blank spaces indicate the grid points where the centrifugal force is the
largest, the magnetic force is the largest, and the thermal pressure gradient is the largest, respectively. On the left, poloidal magnetic field lines and velocity field
are shown as in (b). [See the electronic edition of the Journal for a color version of this figure.]
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netic pressure gradient). Another fast outflow found near
the point P3 ðz; rÞ ’ ð2� 10�4H; 1:8� 10�4HÞ seems to
be driven by the centrifugal force, since this is occupied with
another region C. A magnetic force–dominated region
(region M) spreads near the z-axis. However, this is an
inflow region. At the blank grid points, the thermal pressure
gradient is the largest (region T). As a conclusion, it is
shown that the gas outflows through the region C and the
regionM extending from the disk at an angle of’� 45	.

The toroidal-to-poloidal ratio of the magnetic field
strength is as small as�0.6 in the disk; that is, the disk is po-
loidal dominated. However, in the region where the gas
flows outwardly (ze5� 10�4H), the toroidal component
grows, and the toroidal-to-poloidal ratio reaches e5–8. In
the above regions C and M, which coincide with the
strongest outflow, the toroidal magnetic field dominates
over the poloidal one. The coincidence of the acceleration
region with the toroidal-dominant region seems to indicate
that the toroidal fields play an important role in accelerating
the gas. This coincidence is understood as follows. The
toroidal component of the Lorentz force,

F� ¼ 1

c
jzBr � jrBzð Þ

¼ 1

4�

1

r

@rB�
@r

Br þ
@B�
@z

Bz

� �
; ð29Þ

works mainly below this toroidal-dominant region; that is,

zd5� 10�5H. This toroidal component F� accelerates the
toroidal velocity v�, and the resultant toroidal motion
amplifies the toroidal component of the magnetic fields. The
rotational motion has the effect of increasing the centrifugal
force and forms region C, and the toroidal magnetic field
gives a large magnetic pressure gradient. Therefore, it
should be concluded that the gas is accelerated by the centri-
fugal force and the toroidal magnetic pressure gradient,
both of which are driven by the rotational motion of the
disk. Outflow speed exceeds the sound speed, and the fastest
speed reaches vout ’ 7:5cs at this time. This increases with
time.

3.3. Effect of the Hardness of the Polytropic Gas

Although the outflow seems to continue, the further evo-
lution is hard to study, because the timescale (the free-fall
timescale at the central core) becomes shorter and shorter.
Therefore, we study model AH with a constant polytropic
exponent larger than that of model A. In models AH1
(Fig. 4a) and AH2 (Fig. 4b), the polytropic exponents are
chosen as � ¼ 2 and � ¼ 5=3, respectively, for � > �A.
(Models whose names have ‘‘ H ’’ have a simple polytropic
relation with � ¼ 2 or � ¼ 5=3 for � > �A.) Because of the
hard polytropic exponents, the size of the adiabatic core,
whose surface is determined by the jump in vr, becomes
large; for example, at t ¼ 0:6069�ff the size is equal to
rc ’ 4� 10�4H for model AH1 and rc ’ 3� 10�4H for

Fig. 4a Fig. 4b

Fig. 4c

Fig. 4.—Same as Fig. 1, but for models AH1 and AH2. Snapshots at the same epoch as Fig. 3a, t ¼ 0:6069�ff , are shown for models AH1 (� ¼ 2) and AH2
(� ¼ 5=3) in (a) and (b), respectively. Although the structure of the core is different, the outflow is very similar for each model. In (c), the snapshot at
t ¼ 0:6105�ff (� ¼ 3:94� 10�3�ff from the core formation epoch) is plotted for model AH1. Be careful that the linear size of this panel is 32 times larger than
(a) and (b). Comparing with Fig.1b (the same resolution), it is shown that the shock front passed the slow-mode MHD shock and has just reached the outer
fast-mode shock front. [See the electronic edition of the Journal for a color version of this figure.]
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model AH2, while it is equal to rc ’ 1:5� 10�4H for model
A. Similar to model A, just outside the core, outflow begins
to be accelerated. The region swept by the outflow expands,
and the surface, which separates the inflow and the outflow,
forms another MHD shock front. The expansion of the
front is very similar to that of model A (the front reaches
z ’ 1� 10�4H at this time, which is similar to model A).

To see the similarity in more detail, we calculate the mass
of the core,

Mcore �
Z
�>�A

� dV ; ð30Þ

for models A, AH1, and AH2. These are equal
to 0:1407c3s=ð4�GÞ3=2�1=2s , 0:1504c3s=ð4�GÞ3=2�1=2s , and
0:1450c3s =ð4�GÞ3=2�1=2s at the time t ¼ 0:6069�ff (� ¼
3:2� 10�4�ff ) for models A, AH1, and AH2,
respectively. At later epoch t ¼ 0:6085�ff [� ¼ 2� 10�3�ff
’ 3200ð�s=102 H2 cm�3Þ�1=2 yr], Mcore ’ 0:4697c3s=
ð4�GÞ3=2�1=2s ’ 0:11ðcs=190 m s�1Þ3ð�s=102 H2 cm�3Þ�1=2

M� (model AH1) and Mcore ’ 0:4104c3s=ð4�GÞ3=2�1=2s

’ 0:09ðcs=190 m s�1Þ3ð�s=102 H2 cm�3Þ�1=2 M� (model
AH2). From these results, it is shown that the core mass
increases with time because of the continuous accretion and
the mass does not depend on the exact equation of state in
the core. This is understood as follows: the core mass is
determined by the accretion rate of the isothermal gas,
which is independent from the polytropic exponent C in the
core.

The gravity by the core has an effect on the outer inflow
and outflow. Since the effect depends only on its mass, the
difference in the polytropic exponents of the core does not
play an important role for the inflow and outflow. There-
fore, we will study this model AH to see the long-time evolu-
tion of the outflow.

In Figure 4c, a snapshot at t ¼ 0:6105�ff [� ¼ 4
�10�3�ff ’ 7000ð�s=102 H2 cm�3Þ�1=2 yr] is plotted for
model AH1. Comparing this with Figure 1b for model A
(both have the same resolution but for different epochs), it is
shown that the shock front that separates the inflow and the
outflow passed the slow-mode MHD shock front near
z ’ 0:01H and has just reached the outer fast-mode shock
front near z ’ 0:02H. The evolution of model AH2 is essen-
tially the same. The maximum speed of the outflow reaches
�8cs � 2ðcs=0:2 km s�1Þ km s�1. This maximum speed
seems smaller than that observed in the molecular outflow.
Since the mass accumulated in the core is equal to only
�0:1ðcs=190 m s�1Þ3ð�s=100 H2 cm�3Þ�1=2 M�, the out-
flow speed seems to be much faster than this value, when the
mass has grown to that of a typical T Tauri star. Figure 3b
indicates that the outflow is accelerated near the core and
the opening angle of the outflow in this region is wide. How-
ever, departing from the acceleration region, the flow
changes its direction toward the z-axis. Figure 4c shows that
the opening angle decreases as the outflow proceeds. This
indicates that the flow is collimated.

3.4. Effect of the Initial Rotation Speed

To see the effect of the initial rotation speed of the cylin-
drical cloud, we compare models AH1 (�0 ¼ 5��1

ff ), BH
(�0 ¼ 1��1

ff ), and CH (�0 ¼ 0:2��1
ff ). These models have the

same magnetic field strength, �. In Figures 5a–5c, the struc-
tures at the final epoch of the isothermal runaway collapse
phase are plotted for respective models. Models BH and CH

indicate no prominent discontinuity in L6 (Figs. 5b and 5c),
while model AH1 has several shock fronts as described in
x 3.1. However, in L10 (not shown), there are discontinuities
near z ’ 6� 10�4H (model BH) and z ’ 5� 10�4H (model
CH) as well as in model AH1 (z ’ 1� 10�4H). Comparing
panels b and c, distributions of the density and magnetic
field lines are similar. This indicates that the evolution in the
isothermal phase is slightly dependent on the initial angular
momentum if �0d1� ��1

ff . This seems to correspond to the
fact that evolutions of the runaway collapse phase with dif-
ferent initial conditions converge to a self-similar solution
(Nakamura et al. 1999).

Figures 5d–5f show the structure at the age
� ¼ 4:5� 10�3�ff after core formation. In all models the
outflows are formed. However, the size of the region swept
by the outflow is different for each model. With increasing
�0, more energetic outflow is driven. From the velocity vec-
tors, it is shown that model AH1 (Fig. 5d) forms a bit more
collimated outflow than models BH and CH (Figs. 5e and
5f). This seems to correspond to the differences in density
distribution and magnetic field configuration. That is, in
model AH1 (also A and AH2), there is a relatively thick disk
seen in L6 that is bounded by the shock fronts. This thick
disk seems to confine the outflowing gas in model AH1,
while in models BH and CH, the disk is relatively thin,
which seems to make the flow isotropic. Further, the open-
ing angle of the magnetic field lines in models BH and CH is
larger than that of model AH1. This causes the flow also to
open.

The difference between models BH and CH comes from
the fact that the epochs when outflows begin are different.
Since the initial rotation speed in model BH is 5 times larger
than that of model CH, in model BH the outflow begins ear-
lier than in model CH. When � ’ 6� 10�3�ff has passed,
however, even in model CH the top of the outflow reaches
z ’ 0:02H, and the structure looks very similar to model
BH at � ’ 4:5� 10�3�ff (Fig. 5e).

At the epoch when the snapshots of Figures 5d–5f are
taken [� ¼ 4:5� 10�3�ff ’ 8� 103ð�s=102 H2 cm�3Þ�1=2

yr], the mass in the adiabatic core reaches Mcore ’
0:667c3s=ð4�GÞ3=2�1=2s (model AH1), ’1:311c3s= ð4�GÞ3=2�1=2s

(model BH), and ’1:469c3s=ð4�GÞ3=2�1=2s (model CH). The
instantaneous rate of mass accretion onto the adiabatic core
for each model attains _MMacc � dMcore=dt ’ 110c3s=ð4�GÞ
(model AH1), ’180c3s=ð4�GÞ (model BH), and ’220c3s=
ð4�GÞ (model CH). Therefore, the core mass is approxi-
mately proportional to the mass accretion rate, and the
mass accretion rate is larger for models with smaller angular
rotation speed�0.

The accretion rate expected from the inside-out collapse
model (Shu 1977) is equal to 0:975c3s=G ¼ 12:25c3s=ð4�GÞ.
Therefore, the accretion rates calculated here are 9–18 times
larger than that expected by the inside-out collapse model,
while Whitworth & Summers (1985) obtained another self-
similar solution, which expresses the evolution after core
formation, before which the Larson-Penston self-similar
solution is valid for the runaway collapse. Their solution
expects an accretion rate of ’47c3s=G ¼ 590c3s=ð4�GÞ. The
observed accretion rates are smaller than that of Whitworth
& Summers (1985).

Consider the reason why the mass of the core decreases
with increasing �0. Since the gas is supplied to the core
mainly through the disk, we consider the mass inflow/out-
flow transport in the disk. The gas disk can be divided into
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three regions. The outermost region is occupied with
isothermal gas, and the gas is contracting or inflow-
ing (pseudodisk). Therefore, the inflow mass rate
ð _MMinÞoutermost > 0, and the outflow mass rate
ð _MMoutÞoutermost ¼ 0 in this outermost region. Inside this
region, outflow is generated, although a large part of the
gas is still inflowing. Therefore, in this middle region, the
inflow rate is smaller than that of the outermost region,
ð _MMinÞmiddledð _MMinÞoutermost ’ ð _MMinÞmiddle þ ð _MMoutÞmiddle, and
the excess mass is transported to the outflow,
ð _MMoutÞmiddle > 0. Innermost is the adiabatic core. Since the
mass accretion rate to the core is equal to the net mass
inflow rate from the middle region, _MMacc ’ ð _MMinÞmiddle.

Mass inflow driven by self-gravity becomes more impor-
tant in a model with small �0 in which self-gravity is ineffec-
tively counterbalanced with centrifugal force. Therefore,
ð _MMinÞoutermost becomes larger for a slow rotator. This is the
first effect of the rotation.

Furthermore, the outflow brings away an appreciable
amount of gas. As mentioned previously, the outflow is
strongly generated in the fast rotator. Thus, the mass
outflow rate increases with increasing �0 as
ð _MMoutÞmiddle � 80c3s=ð4�GÞ (model AH1), �20c3s=ð4�GÞ
(model BH), and �10c3s=ð4�GÞ (model CH). As a result,
increasing �0, the proportion of outflow gas to inflow gas
ð _MMoutÞmiddle=ð _MMinÞmiddle becomes as large as �40% for

Fig. 5a Fig. 5b

Fig. 5c Fig. 5d

Fig. 5e Fig. 5f

Fig. 5.—Comparison of models with the same magnetic field strength, �, but different rotation speeds, �0. Panels a and d represent the structure of model
AH1 (�0 ¼ 5��1

ff ) captured by L6. Panels b and e are for model BH.Model B corresponds to a slower rotator�0 ¼ 1��1
ff . Panels b and e represent the structure

captured by L6 at the ages of t ¼ 0:7219�ff and t ¼ 0:7264�ff (� ¼ 4:5� 10�3�ff ), respectively. Panels c and f are for model CH (�0 ¼ 0:2�ff ) and show the
snapshots at t ¼ 0:7262�ff and t ¼ 0:7307�ff (� ¼ 4:5� 10�3�ff ), respectively. [See the electronic edition of the Journal for a color version of this figure.]
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model AH1, compared with �10% for model BH andd5%
for model CH. These two effects work cooperatively to
reduce the mass accretion rate _MMacc ’ ð _MMinÞmiddle to the core
for the cloud with large�0.

The maximum outflow speeds realized in the respective
figures are equal to Vmax ’ 9:3cs (model AH1), 6:4cs (model
BH), and 3:2cs (model CH). Since the outflow is accelerated
by the effect of the toroidal magnetic fields that are gener-
ated by the rotation motion, this Vmax increases with
increasing�0.

As shown in Tomisaka (2000), since the excess angular
momentum of the inflowing gas is effectively removed by the
outflow, the total angular momentum of the first core,
which is defined as a gas with � > �A, is equal to
jcore ’ 9:2� 10�5csH contained in a mass of
Mcore ¼ 0:67c3s=ð4�GÞ3=2�1=2s (model AH1),’2:5� 10�6csH
in Mcore ¼ 1:31c3s=ð4�GÞ3=2�1=2s (model BH), and
’7:4� 10�6csH in Mcore ¼ 1:47c3s=ð4�GÞ3=2�1=2s (model
CH). The total angular momenta contained in the first cores
withMcore are only 1.1%, 0.07%, and 0.9% of the initial ones
for the respective models.

3.5. Effect of theMagnetic Field Strength

To see the effect of the magnetic field strength, we com-
pare models NH, BH, DH, and EH, in which we take � ¼ 0,
1, 0.1, and 0.01, respectively.

3.5.1. Model withoutMagnetic Fields

Model NH has no magnetic fields. In Figure 6a, a snap-
shot at t ¼ 0:6977�ff captured by L8 is shown for this model.
At this stage, the whole cloud is in the isothermal regime,
and the disk experiences runaway collapse even if the centri-
fugal force works to support the cloud. This confirms the
earlier results obtained in 1980s by Norman et al. (1980)
and Narita et al. (1984). The physical reason why the centri-
fugal force does not stop the contraction in the isothermal
runaway collapse phase is explained in Hayashi (1987) as
follows: because of the centrifugal force, the mass contained
in the Jeans scale [�cs=ðG�cÞ1=2] from the center is decreas-
ing throughout the collapse. In this sense the centrifugal
force does work! Only a small part of the cloud that resides
near the center becomes high density. But, the contraction
itself continues, and the central density rises greatly in a

finite timescale, as long as the isothermal equation of state is
valid.

Similar to the previous magnetized models, after the poly-
trope becomes hard (� > 1), a small adiabatic core is
formed first. Since there is no magnetic field, magnetic brak-
ing does not work, however, in this model. Therefore, gas
accreting onto the core must have a relatively large angular
momentum in contrast to the magnetized model. As a
result, a centrifugally balanced ring forms by the gas that
accreted onto the adiabatic core. The specific angular
momentum of the gas increases with the distance from the
center. Since the specific angular momentum ( j � rv�) of
newly accreted matter increases further with time, the radius
of the centrifugal ring grows radially. Another snapshot in
Figure 6b at t ¼ 0:7011�ff (� ’ 3:4� 10�3�ff ) shows the ring
clearly. The ring seems unstable for nonaxisymmetric per-
turbations. This may form a spiral structure similar to that
found by Klein et al. (1999). However, this is beyond the
scope of this paper. Therefore, it is concluded that a rotating
but nonmagnetic cloud leads to a rotating ring after core
formation.

3.5.2. Models withMagnetic Fields

To see the effect of the magnetic field strength, in Figure 7
we compare models BH (� ¼ 1), DH (� ¼ 0:1), and EH
(� ¼ 0:01). All models have the same initial rotation speed
�0 ¼ 1 and the polytropic exponent � ¼ 2. In panels a–c,
the structures at the core formation epoch are plotted. Com-
paring these with each other, it is shown that in model BH
(� ¼ 1) a flare-up disk is formed whose isodensity lines are
departing from the disk midplane as they leave the center.
Decreasing the initial magnetic field strength from model
BH to model EH, the shape of dense part of the disk
becomes rounder. A similar effect is already reported for
nonrotating magnetized cloud collapse (Tomisaka 1996);
that is, deceasing �, the shape of the isothermal contracting
disk becomes rounder and finally forms a sphere for � ¼ 0.

In Figure 7d we plot a snapshot for model BH at
t ¼ 0:7264�ff (� ¼ 4:46� 10�3�ff ) represented in L7. This is
the same as illustrated in Figure 5e but for L7, which has
twice as fine spatial resolution as Figure 5e. Figure 7d, which
shows the structure near the root of the outflow, indicates
that this is very similar to that of model AH1. For example,
the outflow leaves from the disk in the direction almost

Fig. 6a Fig. 6b

Fig. 6.—Same as Fig. 1, but for model NH. This model is for a nonmagnetized cloud. In (a), a snapshot at t ¼ 0:6977�ff represented in L8 is shown. At this
stage, the whole cloud is in the isothermal regime. Another snapshot at t ¼ 0:7011�ff is shown in (b). Accreted gas forms a ring that is supported essentially by
the centrifugal force.
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Fig. 7a Fig. 7b

Fig. 7c Fig. 7d

Fig. 7e Fig. 7f

Fig. 7g Fig. 7h

Fig. 7.—Comparison of models with the same rotation speed, �0 ¼ 1, but different magnetic field strengths, �. Panels a, b, and c represent the structure
when the adiabatic core begins to form, while panels d, e, and f represent the structure after a protostar is formed. In panel a, we plot a snapshot for model BH
captured by L7 at t ¼ 0:7219�ff , which is the same snapshot shown in Fig. 5b but for different level. Panel d represents the structure of the same model but for
the protostellar phase, that is, t ¼ 0:7264�ff (� ¼ 4:46� 10�3�ff ). This corresponds to Fig. 5e. Panels b and e illustrate snapshots at t ¼ 0:7790�ff and at
t ¼ 0:7836�ff (� ¼ 4:59� 10�3�ff ), respectively, for model DH (� ¼ 0:1). Panels c and f are for a model with extremely weak magnetic fields (model EH;
� ¼ 0:01). The snapshots at the epoch t ¼ 0:7784�ff and t ¼ 0:7830�ff (� ¼ 4:53� 10�3�ff ) are illustrated in panels c and f, respectively. Panels g and h are the
same figure as Fig. 3c but for models DH and EH. Panel g shows the distribution at the same epoch as panel e. This indicates that near the disk the centrifugal
force dominates (region C) jzjd5� 10�3H. Above jzje5� 10�3H, region M is mainly distributed. Compared with Fig. 3c of model A, the magnetic force
plays a more important role for models with low �. Panel h, which shows the force distributions at the same epoch as panel f, indicates that the magnetic force–
dominated region is predominantly distributed in the magnetic bubble for jzje3� 10�3H. This means that the magnetic force plays a major role in the
magnetic bubble for model EH. [See the electronic edition of the Journal for a color version of this figure.]



parallel to the disk, but it changes its direction to the z-
direction. This figure shows that in a timescale of
� ’ 4:5� 10�3�ff , the flow pattern is completely changed
from the runaway collapse to the outflow plus continuous
inflow in the disk. The outflow gas flows through a region
whose shape resembles a capital letter U. The outflow
departs from the disk with a wide opening angle, but it
changes its direction parallel to the z-axis.

In Figure 7e, we plot the structure expected for a model
with weaker magnetic fields (model DH; � ¼ 0:1 and
�0 ¼ 1). The snapshot corresponds to the epoch of
t ¼ 0:7836�ff . This corresponds to � ¼ 4:59� 10�3�ff ,
which is similar to the timescale between panels a and d. In
contrast to the previous model BH, the outflow gas is
observed to form a sphere, and the magnetic field lines are
folded inside this sphere. The magnetic field lines are folded
by the pinch or the hoop stress by the toroidal magnetic
field. The toroidal magnetic field component is the strongest
in the regions where the adjacent poloidal magnetic field
lines are running in the opposite directions, for example, the
regions around ðz; rÞ � ð0:003H; 0:004HÞ and ðz; rÞ �
ð0:003H; 0:006HÞ in Figure 7e.

In this model, the initial poloidal magnetic fields are
weak compared to the previous model, BH. Therefore,
rotation motion amplifies the toroidal fields, and their
strength surpasses easily that of the poloidal ones. Thus,
the hoop stress by the toroidal field pinches efficiently the
poloidal magnetic field lines. In the outflow acceleration
region, the toroidal component is predominant over the
poloidal one. Magnetic field lines are pinched locally and
folded. As a result, a spherical magnetic bubble is formed
in this process, in which the toroidal magnetic field is
predominant.

The toroidal component of the magnetic fields is continu-
ously generated by the twisting motion driven by the disk
rotation. The disk angular momentum is transferred by this
process. As a result, we do not see any rings that are sup-
ported by the centrifugal force.

For the model with an extremely weak field, we calcu-
lated model EH (� ¼ 0:01 and �0 ¼ 1). In panel f, we
plot the snapshot at t ¼ 0:7830�ff (� ¼ 4:53� 10�3�ff ).
The density distribution and magnetic field configuration
show that the flow in the magnetic bubble becomes more
complicated or turbulent in this model. Figure 7f shows
that the magnetic field lines and flow velocities of model
EH have spatially smaller scale variations than model
DH in panel e. The shape of the bubble is more elon-
gated than that formed in model DH. Distribution of
toroidal field lines seems not to show any systematic pat-
tern inside the bubble. The size of the bubble both in the
z- and r-directions is smaller than those of models BH
and DH. Thus, it is concluded that the size of the out-
flow region increases with increasing magnetic field
strength �. Comparing these three models, it is shown
that there are at least two types of outflows, that is, a
laminar U-type flow in which fast-moving gas flows
through a region whose shape resembles a capital letter
U and a turbulent outflow in which the magnetic fields
and the velocity change their directions in a small scale.
For weak poloidal magnetic fields, the global flow pat-
tern of the turbulent outflow looks like a capital letter I.
Therefore, it is concluded that there are two patterns of
outflows: the U-type flow for � ’ 1 and the I-type flow
for �5 1.

Plots similar to Figure 3c are shown in Figures 7g and 7h
for models DH and EH, respectively. The centrifugal force–
dominated region (region C), which is indicated by the
asterisks, is found mainly near the disk, while departing
from the disk, the magnetic force–dominated region (region
M) indicated by the plus signs becomes predominantly dis-
tributed. This shows us that to launch the gas from the disk
both the centrifugal force and the toroidal magnetic field
gradient work, while the toroidal magnetic field gradient
has an important role in expanding the bubble. That is, the
magnetic energy stored inside the I-type flow drives the out-
flow motion. It should be noticed that this is completely dif-
ferent from Figure 3c with strong magnetic fields, in which
regions M and C form a line, and along the line gas seems to
be accelerated.

Calculating the plasma � � c2s�=½ðB2
z þ B2

r þ B2
�Þ=8��, the

magnetic bubble or the I-type outflow shows � < 1, while
the outer pseudodisk shows 10 < � < 100 for model EH.
This value is larger than that of model BH, which shows
� < 0:1 in the outflow and 1d�d10 in the disk. This differ-
ence comes from the fact that the initial magnetic field is
weak (� ¼ 0:01) for model EH. However, it should be
noticed that even though the initial magnetic field is weak,
the magnetic field is amplified greatly from the seed field in
the outflow region. A quarter of the outflow in volume is
occupied by a gas of � < 0:1, which indicates that the mag-
netic field is important to the dynamics of the outflow. On
the other hand, considering the poloidal magnetic field, the
magnetic field lines are folded almost vertically in the mag-
netic bubble. In other words, a large part of the bubble is
occupied by poloidal magnetic field lines dominated by Bz

over Br. This configuration is disadvantageous to the mag-
netocentrifugal acceleration mechanism (x 3.2). In this case,
the magnetic force (the magnetic pressure gradient) seems
to accelerate the gas.

The core masses accumulated in � � 4:5� 10�3�ff
are equal to 1:3c3s=ð4�GÞ3=2�1=2s for model BH, 0:87c3s=
ð4�GÞ3=2�1=2s for model DH, and 0:65c3s=ð4�GÞ3=2�1=2s for
model EH. This shows that the mass accretion rate, _MMacc, is
an increasing function of the initial magnetic field strength,
�. This seems strange if we remember _MMacc is a decreasing
function of the initial rotation speed, �0, since both � and
�0 have the same effect of counterbalancing against self-
gravity. This means that the mass inflow rate in the isother-
mal runaway collapse region, ð _MMinÞoutermost, increases with
increasing �. This seems to come from a number of reasons;
that is, the initial cylindrical cloud becomes more massive
with increasing �. Another reason is related to the charac-
teristic wave speed in the magnetized medium. That is, the
characteristic speed of the fast-mode MHD wave is equal to
ðc2s þ B2

0=4��Þ
1=2 ¼ csð1þ �Þ1=2 in the case where the wave

is propagating perpendicular to the magnetic field lines.
This implies that the mass inflow rates are proportional to
the cube of the characteristic wave speed as c3s ð1þ �Þ3=2,
which leads to the accretion rates for these models as
BH : DH : EH ¼ 2:83 : 1:15 : 1:02. This is not inconsistent
with the actual values.

4. DISCUSSION

4.1. Evolution to Form the Second Core

In the previous section, we introduced a simple polytrope
above the critical density � > �A except for model A. How-
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ever, this is an approximation to see a long evolution. In this
section, the evolution assuming the multiple polytrope (eq.
[14]) is shown. Here, a further evolution later than that
shown in Figures 1 and 2 is shown. In model R, we use the
multiple polytrope to include combined effects such as
dynamical compressional heating, radiative cooling
through dust thermal emissions, and energy loss associated
with the H2 dissociation. This corresponds to the continua-
tion of model A, but we consider here a more compact cloud
as �s ¼ 104 H2 cm�3. It should be addressed that since �s is
assumed 100 times larger than other models, the size scale

H ’ 1:05� 1017ðcs=190 m s�1Þð�s=104 H2 cm�3Þ�1=2 cm is
10 times smaller than other models with �s ¼ 102 H2 cm�3.

The evolution up to the first core formation is similar to
model A. After the equation of state becomes hard, � > �A,
the collapse of the core slows down, and isothermal gas
begins to accrete onto the core. In Figure 8a, we plot the
structure represented in L6 just before the first core forma-
tion, t ¼ 0:7201�ff .

Since the accretion continues, the mass of the first
core increases with time, which leads to a quasi-static
core collapse. The structure at this stage (at

Fig. 8a Fig. 8b

Fig. 8c Fig. 8d

Fig. 8e Fig. 8f

Fig. 8.—Evolution of model R. In this model, since �s is assumed equal to 104 H2 cm�3, the size scale H is 10 times smaller than other models with
�s ¼ 102 H2 cm�3. In (a), we plot the structure represented in L6 just before the first core formation t ¼ 0:7201�ff . At t ¼ 0:7239�ff (� ¼ 3:8� 10�3�ff ), the first
core gradually contracts by the effect of continuous mass accretion (b). Finally, at t ¼ 0:724230�ff (� ¼ 4:132� 10�3�ff ), the central density reaches �B (c).
After that, the second collapse begins. In this phase, flow is very similar to that realized in the isothermal runaway collapse phase. In (d ), we plot the structure
captured in L16 at t ¼ 0:724236�ff (� ¼ 4:138� 10�3�ff ). After the central density exceeds �C, another adiabatic core (the second core) is formed (e). By a
similar mechanism for forming a bipolar outflow, a second outflow is formed around the second core ( f ). This is a snapshot of L16 at t ¼ 0:724237�ff
(� ¼ 4:140� 10�3�ff ). [See the electronic edition of the Journal for a color version of this figure.]
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t ¼ 0:7239�ff or � ¼ 3:8� 10�3�ff ) is shown in panel b.
The radius of the first core shown in this panel is
equal to r � 3:5� 10�4H ’ 2:45ðcs=190 m s�1Þð�s=104 H2

cm�3Þ�1=2 AU. The curved boundary of the core is real.4

This quasi-static contraction phase ends when the central
density reaches �B.

The structure at this stage (t ¼ 0:724230�ff
[� ¼ 4:132� 10�3�ff ]) is plotted in panel c. Comparing this
with panel b, both of which illustrate L12, it is clear that the
adiabatic core is shrinking. After that, a second collapse
begins. Since the thermal energy is lost by the process of the
dissociation of H2, the equation of state is assumed to be
soft (� ’ 1:1) again. In this phase, the flow is very similar to
that realized in the isothermal runaway collapse phase
(�c < �A). The similarity comes from the fact that the equa-
tions of state for both phases are soft (� ’ 1). In panel d, we
plot the structure represented in L16 at t ¼ 0:724236�ff
(� ¼ 4:138� 10�3�ff ), which represents the typical structure
in the second-collapse phase. It should be realized that the
flow pattern of the second collapse is very similar to the first
collapse (the isothermal runaway collapse). This continues
until the central density exceeds �c > �C, beyond which
another adiabatic core (the second core) is formed, shown in
panel e. The size of the second core is equal to
’1:3� 10�6H � 2 R�ðcs=190 m s�1Þð�s=104 H2 cm�3Þ�1=2.
This meets a similar situation when the first adiabatic core is
formed; that is, a central part of the gas obeys a harder
equation of state and forms a quasi-static core, while the
outer part obeys a softer equation of state and continues to
collapse. The analogy between the first and the second core
leads to an expectation of a bipolar outflow around the sec-
ond core. In Figure 8f, it is shown the second outflow is
formed around the second core. This is a snapshot of L16 at
t ¼ 0:724237�ff (� ¼ 4:140� 10�3�ff ), which resembles the
structure seen in Figure 3b.

This model strongly indicates to us that there is another
kind of outflow accelerated around the second core (the sec-
ond outflow) besides that formed around the first core (the
first outflow). The flow speed of the second outflow, �50cs,
is much faster than that of the first outflow. This seems to
come from the fact that the outflow occurs in circumstances
forming a faster outflow; for example, the thermal speed
near the second core is much faster, and the local gravita-
tional potential is much deeper compared with the site
where the first outflow is formed. Since the time span of the
simulation shown here is restricted, we cannot trace the evo-
lution further. However, the simulation predicts that at least
two different outflows are formed, each of which is related
to different types of adiabatic cores. Since the flow speed of
the second outflow is much faster than that of the first out-
flow, the respective outflows correspond to the molecular
bipolar outflow (the first outflow) and the fast neutral wind
or the optical jets (the second outflow). The radial size of the
outflow is approximately equal to 2� 10�5H � 2:1
�1012ðcs=190 m s�1Þð�s =104 H2 cm�3Þ�1=2 cm (=0.14 AU

or 30 R�). This indicates that optical jets are found inside
molecular bipolar outflows.

In model R, we assume the ideal magnetohydrodynamics.
However, the ionization fraction of high-density gas is quite
low, and the electric conductivity decreases as collapse pro-
ceeds. Calculation of ionization equilibrium (Nakano &
Umebayashi 1986) shows us that after nHe1012 cm�3,
charged grains are more abundant than ions and become
carriers of the electric currents. Since the mass-to-charge
ratio of grains is much larger than that of ions, the electric
conductivity decreases greatly, and the magnetic field
decays mainly through Joule dissipation. Therefore, in the
late phase of the first core (quasi-static contraction), the
magnetic field in the core decreases its strength until the field
configuration becomes force free. After the dissociation of
H2 begins, the temperature of the central region is high
enough to achieve the thermal ionization of metals. Thus, in
the second-collapse phase, coupling of magnetic fields is
recovered. From these, the ideal MHD is consistent in the
first- and the second-collapse phases. However, the mag-
netic flux density at the beginning of the second-collapse
phases seems to be much weaker than that obtained here.
As shown in x 3.5.2, when the poloidal magnetic field is
weak, the flow pattern is different from the case where the
magnetic energy is comparable to the thermal one. There-
fore, if the magnetic flux is partly lost from the central part
of the first core, a turbulent outflow around the second core
seems to be formed similar to Figure 7f.

4.2. Mass Inflow/Outflow Rate

In this subsection, mass inflow/outflow rates and linear
momentum outflow rates are seen more closely. The outflow
mass-loss rate through the boundary of each grid level is cal-
culated as

_MMoutðLnÞ ¼
Z
boundary of Ln

�max½v x n; 0�dS ; ð31Þ

where n represents the unit vector outwardly normal to the
surface. The integrand means that only the outwardly run-
ning mass flux is summed up. Similarly, the mass inflow rate
is calculated as

_MMinðLnÞ ¼
Z
boundary of Ln

�max½�v x n; 0�dS : ð32Þ

These rates are calculated for the respective levels of the
nested grid system.

The time variations of mass inflow and outflow rates are
illustrated for the respective models in Figure 9. The time
(horizontal axis) is measured from the epoch of the core for-
mation. Time variations, especially longer time variations,
seen in the inflow rates are common for all panels. Just after
core formation, the inflowing mass flux decreases with the
distance from the center or from L11 to L6. This means that
the inner part of the isothermal collapse region is well
expressed by the Larson (1969)–Penston (1969) self-similar
solution (Ogino, Tomisaka, & Nakamura 2000), which
leads to a mass inflow rate of 47c3s=G. Departing from the
center, the approximation of the Larson-Penston solution
becomes worse, and the inflow rate decreases. At
� � 4� 10�3�ff , the inflow rates for various surfaces con-
verge to ’20c3s=G, although intense outflow reduces the
inflow rate below this value.

4 To explore the reason why the surface of the core becomes wavy, we
plot the angular rotation speed, which varies in the polytropic core. The
ridge is formedmainly by fast-rotating gas, while the trough corresponds to
slowly rotating gas. The angular momentum of the core is dependent on the
efficiency of the angular momentum transport to the outflow. That is, core
gas in a magnetic flux tube from which the strong outflow blows has a small
angular momentum. Such a gas even shows counter rotation.
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Fig. 9a Fig. 9b

Fig. 9c Fig. 9d

Fig. 9e

Fig. 9.—Mass inflow/outflow rates calculated at the boundaries of nested grid systems (eqs. [32] and [31]). Panels a–e correspond to models AH1, BH, CH,
DH, and EH. The horizontal axis represents the time after the core formation. Levels at which the mass inflow/outflow rates are calculated are shown near the
respective lines.We plot L11 as a solid line, L10 as a dotted line, L9 as a short-dashed line, L8 as a long-dashed line, L7 as a short-dash–dotted line, and L6 as a
long-dash–dotted line. In panel e, to specify which line represents the outflow, we add brackets to the outflow rates. Inflow rates are larger than outflow rates
for respective levels. [See the electronic edition of the Journal for a color version of this figure.]



We will see each model more closely. The mass outflow
rate rises in the deeper levels (Ln with larger n) first, and this
propagates to lower levels (Lnwith smaller n). This indicates
that the outflow region expands outwardly. Comparing
models AH1 (panel a), BH (panel b), and CH (panel c), the
effects of the initial rotation speed, �0, are apparent. (1)
With increasing �0, the outflow begins earlier. (2) With
increasing �0, the mass outflow rate increases; although the
ratio _MMout= _MMin is equal to only �10% in model CH
(�0 ¼ 0:2), in model AH1 (�0 ¼ 5), it attains�50%.

We compare models BH (panel b), DH (panel d ), and EH
(panel e) to see the effects of the initial magnetic field
strength, �. This indicates that with decreasing � (from
models BH to DH) the mass outflow rate increases. How-
ever, in model E, in which we assume extremely weak
poloidal magnetic fields, the time variations in the mass
inflow and outflow rates are rather chaotic and are led by
the chaotic flow pattern realized in model EH (Fig. 7f ).
Averaging the rates as h _MMi ¼

R T
0

_MM dt=T , the mass outflow
rate of model EH is �20%–40% smaller than that of model
DH. Considering the disk after rotating at a fixed angle, the
disk of model EH can generate weaker toroidal magnetic
fields than model DH, since model EH has only weak poloi-
dal (source) magnetic fields. Therefore, it is reasonable that
the mass outflow rate in model EH, h _MMouti, is smaller than
that of model DH.

What about the increase in the mass outflow rate from
models BH to DH? This is inconsistent with the above dis-
cussion. This increase seems related to the fact that the flow
patterns of models BH and DH are different. That is, in
model DH a magnetic bubble, in which magnetic field lines
are folded and amplified, is formed, and the bubble
expands. In contrast, in model BH, the gas is flowing out-
ward along specific magnetic field lines, and outflowing gas
moves through a region that looks like a capital letter U.
The mass outflow rate seems larger in the magnetic bubble–
type outflow than in the U-type outflow.

The linear momentum outflow rates are calculated by

dMV

dt

				
				
out

ðLnÞ ¼
Z
upper and lower boundaries of Ln

�vz

�max½v x n; 0�dS ; ð33Þ

where we summed up the outflowing linear momentum in
the z-direction through the upper and lower boundaries of
Ln. Time variations of the momentum outflow rate are
shown in Figure 10.

Figures 10a, 10b, and 10c have a prominent common
feature in that the momentum outflow rates (dMV=dt)
calculated at the boundaries of Ln for n � 7 are much
larger than those of the boundaries of Ln for n > 7. This
feature is common in models with � ¼ 1 (models AH1,
AH2, BH, and CH). However, models with weaker mag-
netic fields do not show this feature. Recall the fact that
models AH1, AH2, BH, and CH form the U-shaped out-
flow, and in contrast models DH and EH form the
magnetic bubble or the I-type outflow. Difference in the
momentum outflow rate seems to be related to the out-
flow pattern. In the laminar U-shaped outflow, the out-
flow is ejected with a rather wide opening angle and
collimated to the symmetric axis. Since equation (33)
counts the momentum passing the upper and lower boun-
daries, the outflow rate increases after the outflow is col-

limated, and the gas flows parallel to the z-axis. This
occurs on the larger scale than L7.

Typical momentum outflow rates for molecular bipolar
outflows observed with 12CO J ¼ 2 1 (Bontemps et al.
1996) are distributed between �10�4 M� yr�1 km s�1 for
objects associated with active Class 0 IR sources and
�2� 10�6 M� yr �1 km s�1 for objects associated with late
Class I IR sources. This range corresponds to
320c4s=G 6:5c4s=G, respectively, if we assume cs ¼
190 m s�1. Figure 10 shows us that the momentum outflow
rate in the range from �10c4s=G to �40c4s=G is expected.
Thus, the momentum outflow rates for almost all the CO
bipolar outflow sources associated with low-mass young
stellar objects are explained by our model except for the
active early Class 0 sources.

Comparing models AH1, BH, and CH, it is shown that
the momentum outflow rate increases with �0. Comparing
mass outflow and momentum outflow rates, models AH1,
BH, and CH indicate that the momentum outflow rate is
approximately proportional to the mass outflow rate, which
means that the outflow speed is approximately equal irre-
spective of �0. However, changing � is more complicated.
Compare panels b, d, and e. As shown in Figure 9, model
DH (� ¼ 0:1) shows a larger mass outflow rate than model
BH (� ¼ 1). In contrast, as for the momentum outflow rate,
the maximum rate of model BH is larger than that of model
DH (Fig. 10). This means the outflow speed of model BH
(� ¼ 1) is faster than that of model DH (� ¼ 0:1). Panel e
shows that the momentum outflow rate has a chaotic time
variation like the mass outflow rate (Fig. 9e) for model EH,
which seems to correspond the turbulent outflow shown in
Figure 7f.

Summarizing the effect of changing �:

1. The mass outflow rate increases with increasing � for
�d0:1 but decreases after �e0:1.
2. The outflow speed is an increasing function of �.
3. There are two distinctly different types of flow pat-

terns: models with strong magnetic fields lead the U-shaped
outflow, while the flow becomes turbulent for models with
weak magnetic fields.

4.3. Estimates of AngularMomentum

Here, we intend to clarify where the outflow is ejected. In
the runaway collapse phase, the rotational motion is rela-
tively unimportant. After core formation, the rotational
motion increases, especially around the first core. This
occurs near the centrifugal radius, which is defined for a gas
with specific angular momentum j as

Rc ¼ cc
j2

GM
; ð34Þ

whereM denotes the mass inside the radius Rc and cc repre-
sents a numerical factor of the order of unity. Considering a
self-similar solution for the runaway collapse phase (Saigo
& Hanawa 1998), the specific angular momentum j is pro-
portional toM. This is confirmed by numerical calculations
as the mass and the specific angular momentum are propor-
tional to each other (see Fig. 2 of Tomisaka 2000). This is
valid only at the core formation epoch, and the core loses its
angular momentum after core formation. Further, a uni-
form-density cylinder that is rotating with a uniform rota-
tion speed ! has a j-distribution proportional to M.
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Fig. 10a Fig. 10b

Fig. 10c Fig. 10d

Fig. 10e

Fig. 10.—Linear momentum outflow rates calculated at the upper and lower boundaries of nested grid systems (eq. [33]). Panels a–e correspond to models
AH1, BH, CH, DH, and EH. The horizontal axis represents the time after core formation. Levels at which the linear momentum outflow rates are measured
are shown near the respective lines. We plot L11 as a solid line, L10 as a dotted line, L9 as a short-dashed line, L8 as a long-dashed line, L7 as a short-dash–
dotted line, and L6 as a long-dash–dotted line. [See the electronic edition of the Journal for a color version of this figure.]



Assuming j ¼ qGM=cs (q is a numerical factor), the centri-
fugal radius is written

Rc ¼ cc
q2GM

cs
: ð35Þ

As shown in x 3, the angular momentum is redistributed
in one magnetic flux tube, after the core is formed and the
outflow begins to flow. That is, gas near the disk surface
obtains a large amount of the specific angular momentum,
but that near the disk midplane loses the angular momen-
tum. If the gas near the disk surface has an angular
momentum of jþ > j in consequence of the angular momen-
tum redistribution, the condition that the effective potential
at the centrifugal radius

�ðRcÞ ¼ �GM

Rc
þ j2þ
2R2

c

ð36Þ

is larger than or equal to zero leads to a minimum angular
momentum of

jþ 
 ð2ccÞ1=2j ; ð37Þ

above which the gas with the specific angular momentum
can escape from the gravitational well. Since the angular
momentum transfer occurs mainly after core formation, the
specific angular momentum j expected for a magnetized
cloud is comparable to that of the nonmagnetized one ( j) at
the core formation epoch. After the core formation epoch,
because of the angular momentum redistribution, j of the
gas near the disk surface increases. Equation (37) shows us
that if the specific angular momentum of such a gas exceeds
ð2ccÞ1=2j, the excess centrifugal force can drive the gas out-
ward. The fact that the factor ð2ccÞ1=2 ’ 1 is not too large
seems to ensure the ejection of the outflow by this
mechanism.

5. SUMMARY

We have explored the evolution of a magnetized interstel-
lar cloud rotating around the symmetric axis. Following the
change in the equation of state of the interstellar gas (Toh-
line 1982), the cloud experiences several phases before going

to a star, that is, the isothermal runaway collapse, the slowly
contracting core composed of the molecular hydrogen (the
first core), the second runaway collapse in the high-density
gas where the dissociation of hydrogen molecules proceeds,
and finally, the second core that is made up of the atomic
hydrogen. The magnetized cloud forms pseudodisks in
which the first and the second runaway collapses occur. The
pseudodisks are threaded by the magnetic field lines running
perpendicularly to the disk. In the pseudodisk, a number of
fast- and slow-mode MHD shock pairs are formed whose
wave fronts are extending parallel to the disk. Just after the
first core is formed at the center, an accretion shock front
appears that surrounds the core, through which the super-
sonic inflow motion is decelerated. While the first and sec-
ond cores are slowly contacting, the outer pseudodisks
continue to contract. Just outside the accretion shock front,
the infall motion is accelerated, and thus rotational motion
becomes important from the conservation of angular
momentum. By the effect of rotational motion, the toroidal
magnetic fields and the poloidal electric currents are ampli-
fied, which bring a strong magnetic torque. The magnetic
torque leads the angular momentum transfer from the mid-
plane to the surface of the pseudodisk. This is actually con-
firmed by the fact that in the outflow region the centrifugal
force and the magnetic pressure gradient of the toroidal
magnetic fields are dominant over the thermal pressure gra-
dient. This is the origin of the outflow found in star-forming
regions. Large-scale bipolar molecular outflows are made
outside of the first core, while optical jets and fast neutral
winds are expected to be accelerated outside of the second
core. Matter losing its excess angular momentum continues
to contract further to form a star.
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