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太陽の対流
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太陽対流層は、コアで
核融合により発生した
エネルギーを、放射で
運ぶことができないため
に熱対流不安定の状態
→対流層は熱対流に
埋め尽くされている。

(Hinode/SOTによる
観測)



熱対流と差動回転、子午面還流そして磁場
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アネラスティック近似による全球殻熱対流計算
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対流層内部では、音速が対流速度に対して
とても速いので音速無限大の仮定で伝搬を解かない

Miesch氏提供



アネラスティック近似によって達成されたこと
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Miesch, 2008

赤印は混合距離理論による予測

15.̶(a) Standard deviation, (b) skewness, and (c) kurtosis of the three velocity components are shown as a function of radius, averaged over a time interval of
0.71Rsun 0.98Rsun

Figure 1.1.6: Figure from Miesch et al. (2008) with a modification about the hor-
izontal axis. Solid, dashed, and dotted lines show the standard deviation of the
radial, the longitudinal, and the latitudinal velocity, i.e. the RMS velocity of the
turbulent component.
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shown in Table 2, this mode is actually propagating slowly
in a prograde direction and is being advected backward by
the local di†erential rotation. The high-latitude m \ 7 mode
is also propagating slowly prograde, boosted by the local
di†erential rotation.

In case LAM, the persistence and propagation of banana
modes is evident in the (/, t) images of Figure 8, particularly
at low latitudes. The mean azimuthal wavenumber spec-
trum of the low-latitude image exhibits a strong peak at
m \ 9, and this mode has a relatively well-deÐned prograde
phase velocity that is faster than the local angular velocity
(Table 2). In contrast, the dominant features at high lati-
tudes are of signiÐcantly larger scale (m B 4) and propagate
retrograde relative to the rotating coordinate system and
relative to the local angular velocity. At midlatitudes, the
pattern is more jumbled, with greater time dependence,
more contributing azimuthal modes, and a phase velocity
that is less well deÐned. Still, the analysis described above
reveals a dominant, prograde-propagating m \ 8 mode
(Table 2).

We emphasize that the velocity features in Figures 5, 6, 7,
and 8 are not simply advected along with the di†erential
rotation. Rather, they represent traveling convective modes,
each with a characteristic phase velocity. The propagation
characteristics of the low-latitude modes are similar to the
Rossby-like waves described by Glatzmaier & Gilman
(1981a), which arise from the near-conservation of potential
vorticity in the presence of a density stratiÐcation. For
further results on the propagation of linear convective
modes in rotating spherical shells, see Gilman (1975), Busse
& Cuong (1977), Soward (1977), and Zhang (1994).

Persistent downÑow lanes, such as those exhibited by
both simulations LAM and TUR, are associated with hori-
zontally converging Ñows in the upper convection zone and
are therefore potential sites for the large-scale concentration
of magnetic Ñux. Such structures may help to explain per-
sistent regions of enhanced magnetic activity observed on
the Sun and other stars, commonly referred to as ““ active
longitudes ÏÏ (e.g., Jetsu et al. 1997).

5. MEAN FLOWS AND THERMODYNAMIC VARIATIONS

5.1. Di†erential Rotation and SpeciÐc Entropy ProÐles
It was mentioned in ° 1 that thermal convection under

the inÑuence of rotation tends to redistribute angular

momentum and that this redistribution process is likely
quite di†erent in laminar and turbulent Ñow regimes. If the
rotational inÑuence is strong and baroclinic e†ects are
weak, the resulting di†erential rotation proÐles tend toward
a Taylor-Proudman state in which angular velocity con-
tours are parallel to the rotation axis. Previous simulations
of solar convection in spherical shells generally gave
angular velocity proÐles of this type (Gilman 1977, 1979 ;
Glatzmaier 1984, 1985a, 1987 ; Gilman & Miller 1986).
Departures from such cylindrically aligned Taylor-
Proudman states can occur because of baroclinicity
(latitudinal entropy gradients) or Ñow components not
strongly inÑuenced by rotation, such as small-scale vortical
motions that are part of a turbulent cascade.

Helioseismic results imply that the angular velocity
proÐle in the highly turbulent solar convection zone is not
cylindrically aligned (Thompson et al. 1996 ; Schou et al.
1998). Figure 9a illustrates the main features of the internal
solar rotation proÐle as inferred from helioseismology,
obtained from six months of p-mode frequency measure-
ments by the GONG network of solar telescopes
(Thompson et al. 1996 ; see also Fig. 11). Midlatitude
angular velocity contours tend to be radially aligned rather
than cylindrically aligned, and sharp radial gradients are
conÐned to narrow shear layers near the base of the convec-
tion zone and just under the photosphere.

The lower shear layer is known as the solar tachocline
and represents a narrow transition region between the dif-
ferential rotation of the convection zone and the approx-
imately solid body rotation of the radiative interior.
Although the analysis is complicated by accuracy and
resolution limitations in the helioseismic inversions, the
tachocline seems to be centered at or slightly below the base
of the convection zone, with a width and little[0.1 R

_latitudinal variation (Kosovichev 1996 ; Wilson, Burton-
clay, & Li 1996 ; Basu 1997 ; Corbard et al. 1998 ; Antia,
Basu, & Chitre 1998). Theoretical models suggest that
intense horizontal turbulence and global-scale circulations
driven by shear instabilities and magnetic e†ects produce
poleward angular momentum transport in the tachocline
and keep it relatively narrow (Spiegel & Zahn 1992 ; Elliott
1997 ; Gilman & Fox 1997 ; Gough & McIntyre 1998).

The upper shear layer near the surface is most pro-
nounced at low latitudes. It is likely produced by the vigor-

FIG. 9.ÈLongitudinally averaged angular velocity proÐles : (a) the solar rotation according to an RLS inversion of p-mode frequency splittings from the
Ðrst six months of GONG data (Thompson et al. 1996) ; (b)È(d) the rotation in simulation TUR; (b) at one time step ; (c) averaged over one rotation period ;
and (d) averaged over 10 rotation periods. The color tables and contour levels used for the helioseismic and simulation data are indicated. Note that the
computational domain does not extend all the way to the photosphere, as discussed in ° 3.

Figure 1.1.7: Schematic picture of the physics in the solar interior.
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as required by the anelastic approximation. Time averages of
! and " are shown in Figure 6.

The angular velocity profile is similar to the solar internal ro-
tation profile inferred fromhelioseismicmeasurements (Thompson
et al. 2003), although the variation is smaller, and there is some-
what more radial shear within the convection zone. The mean
angular velocity decreases by about 50 nHz (11%) from the equa-
tor to latitudes of 60!, compared to about 90 nHz in the Sun.
This difference may arise from viscous diffusion, which, although
lower than in previous models, is still higher than in the Sun,
or from thermal and mechanical coupling to the tachocline that
is only crudely incorporated into this model through our lower
boundary conditions (Miesch et al. 2006). For example, perhaps
the tachocline is thinner, and the associated entropy variation
correspondingly larger, than what we have imposed (x 2). More
laminar models have more viscous diffusion, but they also have
larger Reynolds stresses, so many are able to maintain a stronger
differential rotation, somewith conical angular velocity contours
as in the Sun (Elliott et al. 2000; Robinson&Chan 2001; Brun&
Toomre 2002;Miesch et al. 2006). Amore complete understand-
ing of how the highly turbulent solar convection zone maintains
such a large angular velocity contrast requires further study.

At latitudes above 30! the angular velocity increases by about
4Y8 nHz (1%Y2%) just below the outer boundary (r ¼ 0:95Y
0.98 R#). This is reminiscent of the subsurface shear layer in-
ferred from helioseismology, but its sense is opposite; in the
Sun the angular velocity gradient is negative from r ¼ 0:95 R#
to the photosphere (Thompson et al. 2003). This discrepancy
likely arises from our impenetrable, stress-free, constant-flux
boundary conditions at the outer surface of our computational
domain, r ¼ 0:98 R#. In the Sun, giant-cell convection must
couple in some way to the supergranulation and granulation
that dominates in the near-surface layers. Such motions cannot
presently be resolved in a global three-dimensional simulation
and involve physical processes such as radiative transfer and
ionization, which lie beyond the scope of our model.

The meridional circulation is dominated by a single cell in
each hemisphere, with poleward flow in the upper convection
zone and equatorward flow in the lower convection zone (Fig. 6c).
At a latitude of 30!, the transition between poleward and equa-
torward flows occurs at r $ 0:84Y0:85 R#. These cells extend

Fig. 5.—Enstrophy (!2, wherew ¼ : < v) shown for a 45! ; 45! patch in lat-
itude (10!Y55!) and longitude at (a) r ¼ 0:98 R# and (b) r ¼ 0:85 R#. The color
table is as in Fig. 1 but here scaled logarithmically. Ranges shown are (a) 10%12 to
10%7 s%2 and (b) 10%13 to 10%8 s%2.

Fig. 6.—Differential rotation, meridional circulation, and mean temperature perturbation averaged over longitude and time (58 days). Angular velocity shown as
(a) a 2D image and (b) a function of radius for selected latitudes as indicated. Contour levels in (a) are every 10 nHz, and the rotation rate of the coordinate system
(414 nHz) is indicated on the color bar (black line). Contours of the streamfunction " in (c) represent streamlines of the mass flux with red (black contours) and blue
(gray contours) representing clockwise and counterclockwise circulation, respectively. The color table saturates at " ¼ &1:2 ; 1022 g s%1. Characteristic amplitudes
for hv!i are 20 m s%1 (poleward) at r ¼ 0:95 R# and 5 m s%1 (equatorward) at r ¼ 0:75 R#. Contour levels for the temperature perturbation (d) are every 1 K.
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アネラスティック近似でうまくいっていなかったこと
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Fig. 4. Because wavelengths of helioseismic waves may be comparable to or larger
than convective features through which they propagate, the ray approximation is in-
accurate and finite-wavelength e↵ects must be accounted for when modeling wave
propagation in the Sun [20]. In order to derive the 3D finite-frequency sensitivity
function (kernel) associated with a travel-time measurement [21], we simulate waves
propagating through a randomly scattered set of 500 east-west-flow ‘delta’ functions,
each of which is assigned a random sign so as not to induce a net flow signal [22] (up-
per panel). We place these flow deltas in a latitudinal band of extent 120� centered
about the equator, because the quality of observational data degrades outside of this
region. We perform six simulations, with these deltas placed at a di↵erent depth in
each instance, so as to sample the kernel at these radii. The bottom four panels show
slices at various radii of the sensitivity function for the measurement which attempts
to resolve flows at r/R

�

= 0.96. Measurement sensitivity is seen to peak at the
focus depth, a desirable quality, but contains near-surface lobes as well. Note that
the volume integral of flows in the solar interior with this kernel function gives rise to
the associated travel-time shift, which explains the units.

Fig. 5. Observational bounds on flow magnitudes and the associated Rossby num-
bers. Panels a, b: solid curves with 1-� error bars (standard deviations) show ob-
servational constraints on lateral flows averaged over m at radial depths, r/R

�

=
0.92, 0.96; dot-dash lines are spectra from ASH convection simulations [6]. Colours
di↵erentiate between the focus depth of the measurement and coherence times. At
a depth of r/R

�

= 0.96, simulations of convection [6] show a coherence time of
T

coh

= 24 hours (panel a) while MLT [16] gives T
coh

= 96 hours (panel b), the
latter obtained by dividing the mixing length by the predicted velocity. Both MLT
and simulations [23, 24] indicate a convective depth coherence over 1.8 pressure scale
heights, an input to our inversion. At r/R

�

= 0.96, MLT predicts a 60 ms�1,
` = 61 convective flow and for r/R

�

= 0.92, an ` = 33, 45m s�1 flow (upon
applying continuity considerations [23]). Panel c shows upper bounds on Rossby num-

ber, Ro = U/(2⌦L), L = 2⇡r/
p

`(`+ 1), r = 0.92, 0.96R
�

. Interior
convection appears to be strongly geostrophically balanced (i.e., rotationally domi-
nated) on these scales. By construction, these measurements are sensitive to lateral
flows i.e., longitudinal and latitudinal at these specific depths (r/R

�

= 0.92, 0.96)
and consequently, we denote these flow components (longitudinal or latitudinal) by
scalars.
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局所日震学で見積もられた、
熱対流速度の最大値の制約は、
熱対流直接数値計算の結果に比べて
最大２桁ほど小さかった
→熱対流数値計算で得られていた
熱対流は実際の太陽をうまく再現
できていなかった可能性が高い
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アネラスティック近似で取り扱えない部分
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音速
対流速度

Model S
アネラスティック近似で
は、音速が無限大だと仮定
している。

しかし、この仮定は表面
近くでやぶれる(>0.98Rsun)

対流層の底での音速の速さ
を解決しつつ、表面付近ま
で解ける方法はないだろう
か？



音速抑制法
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50 m/s

対流速度

200 km/s

音速 アネラスティック近似音速抑制法
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�t
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�2
� · (�v)

この方法により、実効的な音速は1/ξになり、時間幅Δtも
大きくできる。
アネラスティック近似に比べて、通信量が少なく並列計算において
スケーリングがいいのも特徴



音速抑制法の妥当性
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RMS速度(3成分)、浮力・圧力
による仕事、フーリエ成分
自動判別による対流セルの大き
さは、
Ma < 0.7
Ma: (対流のRMS速度)/(抑制された音速)
の条件のもとでは、変化しなか
った。
非一様なξも、非保存形の形式
をとることで対流の性質を損な
わずに使用できることがわかっ
た。
→表面近くにアクセス可能！
(Hotta et al., 2012, A&A)



音速抑制法を用いた球殻対流数値計算
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方程式：
粘性熱伝導あり回転系流体 パラメータ依存性など

ASHコードとほぼ同じ依存性を
示している。
(適合細分化格子も導入)
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アネラスティック近似を用いた計算が間違っていることの一つ
に、上の境界の位置がある。
実際に、この位置に正しい位置に変えて行ったときに、熱対流の
構造はどう変わるのか調べるのが目的である。

圧
力
ス
ケ
ー
ル
長
 [c
m
]

r/Rsun



計算設定 1

12

計算設定
領域の大きさ：30°～150°(余緯度)、0°～90°(経度)
底の境界：0.71Rsun(対流層の底)

case 1 case 2 case 3 case 4
上の境界の位置 0.96Rsun 0.97Rsun 0.98Rsun 0.99Rsun
上の境界での
圧力スケール長 11000 km 8400 km 5800 km 3000 km

密度比 29 45 82 220

ちなみに本物の太陽の表面r=Rsunは圧力スケール長：300 km
密度比：6000ほど

音速抑制法で
実現した部分



計算結果(動径方向の速度)
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界が上がると、
スケールの大きな流れが
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→日震学との差異を直す
センス
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Fig. 4. Because wavelengths of helioseismic waves may be comparable to or larger
than convective features through which they propagate, the ray approximation is in-
accurate and finite-wavelength e↵ects must be accounted for when modeling wave
propagation in the Sun [20]. In order to derive the 3D finite-frequency sensitivity
function (kernel) associated with a travel-time measurement [21], we simulate waves
propagating through a randomly scattered set of 500 east-west-flow ‘delta’ functions,
each of which is assigned a random sign so as not to induce a net flow signal [22] (up-
per panel). We place these flow deltas in a latitudinal band of extent 120� centered
about the equator, because the quality of observational data degrades outside of this
region. We perform six simulations, with these deltas placed at a di↵erent depth in
each instance, so as to sample the kernel at these radii. The bottom four panels show
slices at various radii of the sensitivity function for the measurement which attempts
to resolve flows at r/R

�

= 0.96. Measurement sensitivity is seen to peak at the
focus depth, a desirable quality, but contains near-surface lobes as well. Note that
the volume integral of flows in the solar interior with this kernel function gives rise to
the associated travel-time shift, which explains the units.

Fig. 5. Observational bounds on flow magnitudes and the associated Rossby num-
bers. Panels a, b: solid curves with 1-� error bars (standard deviations) show ob-
servational constraints on lateral flows averaged over m at radial depths, r/R

�

=
0.92, 0.96; dot-dash lines are spectra from ASH convection simulations [6]. Colours
di↵erentiate between the focus depth of the measurement and coherence times. At
a depth of r/R

�

= 0.96, simulations of convection [6] show a coherence time of
T

coh

= 24 hours (panel a) while MLT [16] gives T
coh

= 96 hours (panel b), the
latter obtained by dividing the mixing length by the predicted velocity. Both MLT
and simulations [23, 24] indicate a convective depth coherence over 1.8 pressure scale
heights, an input to our inversion. At r/R

�

= 0.96, MLT predicts a 60 ms�1,
` = 61 convective flow and for r/R

�

= 0.92, an ` = 33, 45m s�1 flow (upon
applying continuity considerations [23]). Panel c shows upper bounds on Rossby num-

ber, Ro = U/(2⌦L), L = 2⇡r/
p

`(`+ 1), r = 0.92, 0.96R
�

. Interior
convection appears to be strongly geostrophically balanced (i.e., rotationally domi-
nated) on these scales. By construction, these measurements are sensitive to lateral
flows i.e., longitudinal and latitudinal at these specific depths (r/R

�

= 0.92, 0.96)
and consequently, we denote these flow components (longitudinal or latitudinal) by
scalars.

1. Stein RF, Nordlund Å (2000) Realistic Solar Convection Simulations. Solar Physics
192:91–108.
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Fig. 4. Because wavelengths of helioseismic waves may be comparable to or larger
than convective features through which they propagate, the ray approximation is in-
accurate and finite-wavelength e↵ects must be accounted for when modeling wave
propagation in the Sun [20]. In order to derive the 3D finite-frequency sensitivity
function (kernel) associated with a travel-time measurement [21], we simulate waves
propagating through a randomly scattered set of 500 east-west-flow ‘delta’ functions,
each of which is assigned a random sign so as not to induce a net flow signal [22] (up-
per panel). We place these flow deltas in a latitudinal band of extent 120� centered
about the equator, because the quality of observational data degrades outside of this
region. We perform six simulations, with these deltas placed at a di↵erent depth in
each instance, so as to sample the kernel at these radii. The bottom four panels show
slices at various radii of the sensitivity function for the measurement which attempts
to resolve flows at r/R

�

= 0.96. Measurement sensitivity is seen to peak at the
focus depth, a desirable quality, but contains near-surface lobes as well. Note that
the volume integral of flows in the solar interior with this kernel function gives rise to
the associated travel-time shift, which explains the units.

Fig. 5. Observational bounds on flow magnitudes and the associated Rossby num-
bers. Panels a, b: solid curves with 1-� error bars (standard deviations) show ob-
servational constraints on lateral flows averaged over m at radial depths, r/R
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=
0.92, 0.96; dot-dash lines are spectra from ASH convection simulations [6]. Colours
di↵erentiate between the focus depth of the measurement and coherence times. At
a depth of r/R
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= 0.96, simulations of convection [6] show a coherence time of
T

coh

= 24 hours (panel a) while MLT [16] gives T
coh

= 96 hours (panel b), the
latter obtained by dividing the mixing length by the predicted velocity. Both MLT
and simulations [23, 24] indicate a convective depth coherence over 1.8 pressure scale
heights, an input to our inversion. At r/R
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convection appears to be strongly geostrophically balanced (i.e., rotationally domi-
nated) on these scales. By construction, these measurements are sensitive to lateral
flows i.e., longitudinal and latitudinal at these specific depths (r/R
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and consequently, we denote these flow components (longitudinal or latitudinal) by
scalars.
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15. Käpylä, PJ, Mantere MJ, Guerrero G, Brandenburg A, Chatterjee P (2011) . As-
tronomy and Astrophysics 531:A162–A180.

16. Spruit HC (1974) A model of the solar convection zone. Solar Physics 34:277–290.

17. Gough DO (1977) Mixing-length theory for pulsating stars. Astrophysical Journal
214:196–213.

18. Duvall, Jr. TL, et al. (1997) Time-Distance Helioseismology with the MDI Instrument:
Initial Results. Solar Physics 170:63–73.

19. Gizon L, Birch AC (2004) Time-Distance Helioseismology: Noise Estimation. Astro-
physical Journal 614:472–489.

20. Marquering H, Dahlen FA, Nolet G (1999) Three-dimensional sensitivity kernels for
finite-frequency traveltimes: the banana-doughnut paradox. Geophysical Journal In-
ternational 137:805–815.

21. Duvall, Jr. TL, Birch AC, Gizon L (2006) Direct Measurement of Travel-Time Kernels
for Helioseismology. Astrophysical Journal 646:553–559.

22. Hanasoge SM, Duvall, Jr. TL, Couvidat S (2007) Validation of Helioseismology
through Forward Modeling: Realization Noise Subtraction and Kernels. Astrophysical
Journal 664:1234–1243.

23. Nordlund Å, Stein RF, Asplund M (2009) Solar Surface Convection. Living Reviews
in Solar Physics 6:2.

24. Trampedach R, Stein RF (2011) The Mass Mixing Length in Convective Stellar En-
velopes. Astrophysical Journal 731:78.

25. Spruit H (1997) Convection in stellar envelopes: a changing paradigm. Memorie della
Societa Astronomica Italiana 68:397.

26. Kosovichev AG, et al. (1997) Structure and Rotation of the Solar Interior: Initial
Results from the MDI Medium-L Program. Solar Physics 170:43–61.

27. Kitchatinov LL, Ruediger G (1995) Di↵erential rotation in solar-type stars: revisiting
the Taylor-number puzzle. Astronomy and Astrophysics 299:446.

28. Balbus SA (2009) A simple model for solar isorotational contours. Monthly Notices
of the Royal Astronomical Society 395:2056–2064.

29. Rempel M (2005) Solar Di↵erential Rotation and Meridional Flow: The Role of a
Subadiabatic Tachocline for the Taylor-Proudman Balance. Astrophysical Journal
622:1320–1332.

4 www.pnas.org/cgi/doi/10.1073/pnas.0709640104 Footline Author

ASH$code�

helioseismology�

Fig. 4. Because wavelengths of helioseismic waves may be comparable to or larger
than convective features through which they propagate, the ray approximation is in-
accurate and finite-wavelength e↵ects must be accounted for when modeling wave
propagation in the Sun [20]. In order to derive the 3D finite-frequency sensitivity
function (kernel) associated with a travel-time measurement [21], we simulate waves
propagating through a randomly scattered set of 500 east-west-flow ‘delta’ functions,
each of which is assigned a random sign so as not to induce a net flow signal [22] (up-
per panel). We place these flow deltas in a latitudinal band of extent 120� centered
about the equator, because the quality of observational data degrades outside of this
region. We perform six simulations, with these deltas placed at a di↵erent depth in
each instance, so as to sample the kernel at these radii. The bottom four panels show
slices at various radii of the sensitivity function for the measurement which attempts
to resolve flows at r/R

�

= 0.96. Measurement sensitivity is seen to peak at the
focus depth, a desirable quality, but contains near-surface lobes as well. Note that
the volume integral of flows in the solar interior with this kernel function gives rise to
the associated travel-time shift, which explains the units.

Fig. 5. Observational bounds on flow magnitudes and the associated Rossby num-
bers. Panels a, b: solid curves with 1-� error bars (standard deviations) show ob-
servational constraints on lateral flows averaged over m at radial depths, r/R

�

=
0.92, 0.96; dot-dash lines are spectra from ASH convection simulations [6]. Colours
di↵erentiate between the focus depth of the measurement and coherence times. At
a depth of r/R

�

= 0.96, simulations of convection [6] show a coherence time of
T

coh

= 24 hours (panel a) while MLT [16] gives T
coh

= 96 hours (panel b), the
latter obtained by dividing the mixing length by the predicted velocity. Both MLT
and simulations [23, 24] indicate a convective depth coherence over 1.8 pressure scale
heights, an input to our inversion. At r/R

�

= 0.96, MLT predicts a 60 ms�1,
` = 61 convective flow and for r/R

�

= 0.92, an ` = 33, 45m s�1 flow (upon
applying continuity considerations [23]). Panel c shows upper bounds on Rossby num-

ber, Ro = U/(2⌦L), L = 2⇡r/
p

`(`+ 1), r = 0.92, 0.96R
�

. Interior
convection appears to be strongly geostrophically balanced (i.e., rotationally domi-
nated) on these scales. By construction, these measurements are sensitive to lateral
flows i.e., longitudinal and latitudinal at these specific depths (r/R

�

= 0.92, 0.96)
and consequently, we denote these flow components (longitudinal or latitudinal) by
scalars.
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日震学

数値計算

これまでの数値計算は
大きいスケールがエネ
ルギーを持ちすぎてい
たと予想される



まとめ

16

・これまでのアネラスティック近似を用いた計算で、太陽
　対流層内部の平均速度、差動回転の成因などが明らかになった

・最近の局所日震学の観測により、アネラスティック近似で
　導かれた速度場との間でスペクトルに大きな違いがあること
　がわかった。

・アネラスティック近似では、表面付近は解けない
　→音速抑制法を提案

・音速抑制法を用いて、表面付近をより含んだ計算を実行
　
・表面付近を取り入れることによって、やや深い層でも表面の
　影響を受けて、長波長のエネルギーが落ちて、短波長の
　エネルギーが上がり観測に近くなっていくことがわかった。


