Simulations of Giant Molecular Cloud Formation in the Barred Galaxy, M83, using Enzo

Outline

Introduction

Correlation between gas and star formation

Different star formation activity in each region of a barred galaxy

Simulation

The AMR code 'Enzo'

The initial conditions

- Results
- Conclusions

Introduction

Correlation between gas and star formation

- Star formation is one of the key processes governing the evolution of galaxies.
- Many observations of nearby disc galaxies indicate an empirical relation between the gas surface density and the star formation rate surface density.

Different star formation activity in each region of a barred galaxy

Star formation rate (SFR) and efficiency are twice as high in the spiral arms as in the bar.

Our study

- What is the physical process that creates this difference?
- Stars are formed in giant molecular clouds (GMCs).
- Could there be a difference in the properties of the GMCs in each region?

We performed 3D hydrodynamical simulations of the barred galaxy M83 at high resolution and investigated the properties of the GMCs.

Simulation

The code

• Enzo: a 3D adaptive mesh refinement (AMR) hydrodynamics code

We used Cray XT4 @ CfCA

CPU: 256 Time: ~ 2 weeks

Box size: $(50 \,\mathrm{kpc})^3$ Root grid: 128^3

refinement level: n=7

$$\Delta x_n = \Delta x_0 \times 2^{-n}$$

Radiative cooling: T > 300K

Self-gravity of gas

No star formation or feedback

The Initial Structure of the Galactic Disc

Observational gas distribution

$$\rho(r,z) = \rho_0 \exp\left(-\frac{r}{2265 pc}\right) \operatorname{sech}^2\left(\frac{z}{100 pc}\right) M_{\odot}/pc^3$$

H₂ gas distribution from Lundgren et al. (2004)

Stellar potential

(Hirata 2009 Private communication)

- disc + bar + spiral
- 10⁵ fixed motion star particles
- The pattern speed of the bar and spiral is 54 km/s/kpc.

Static dark matter potential

bar + arm star particles are shown

NFW profile
$$\rho(r) = \frac{\rho_0}{(r/r_s)(1 + r/r_s)^2}$$

Results

Surface density plot 10⁰ 10-1 10⁻³ 10⁻⁴ 8kpc

Cloud identification

Find <u>peaks</u> in the gas density; field with

$$\rho \ge 100 \text{cm}^{-3}$$

Search peak neighbours for cells also with

$$\rho \ge 100 \mathrm{cm}^{-3}$$

Surface density plot with clouds

Surface density plot with clouds

Surface density plot with clouds

Surface density plot with clouds 167 disc clouds **₽**222 spiral clouds 213 bar clouds 214213 inter-arm clouds star particles 0.5kpc

the number density of clouds

evolution of merger rate per volume

Cloud lifetime

Cloud Properties - mass -

No significant difference between regions

Cloud Properties - radius -

No significant difference between regions

Cloud Properties - 1D velocity dispersion -

Cloud Properties - virial parameter -

Measure of gravitational binding:

$$\alpha_{\rm vir} \equiv \frac{5\sigma_{\rm c}^2 R_{\rm c}}{GM_{\rm c}}$$

bar clouds are less bound than others.

vertical distribution

evolution of merger rate per volume

evolution of merger rate per mass

Conclusions

- The cloud number density is much higher in the bar regions.
- The merger rate per volume is much higher in the bar regions.
- Cloud size and mass are independent of cloud environment.
- Clouds in the spiral arm and bar tend to have high velocity dispersion and be less bound than those in disc.
- The merger rate per mass is much lower in the bar regions.
- If cloud collisions trigger massive star formation, this would explain the star formation activity in the barred galaxy.