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Messengers from a Supernova

Known particles Exotic particles
Photons 3 SN 1987A P;XIonls (AL(PS))
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Light Sterile Neutrinos

« Hypothetical neutrinos that do not participate in the weak interaction

« A possible solution to the reactor antineutrino anomaly
[see Mention et al., PRD 83 (2011) 073006, and Giunti et al., PLB, 829 (2022) 137054 for recent development]

« Mixing with active neutrinos

> In this study, we focus on mixing with v

Z

cosf vy +sinf v,

—sinf vy + cosf v,

ZaN
&

~" d g
electron muon sterile
neutrino neutrino neutrino neutrino ?
©OHiggs-tan

3715



Parameter Space of Light Sterile Neutrinos
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Ildea: Active-sterile oscillations
can happen in SNe as well.
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Parameter Space of Light Sterile Neutrinos
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7Q. How do sterlle neutrinos affect SN dynamics?
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-> Self-consistent simulations are needed!
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Neutrino heating rate is
significantly reduced.
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Explosion Mechanism of Core-collapse SNe

Core collapse Core bounce Shock propagation

~1000 km

SN explosion Shock breakout
~a few days
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Active-Sterile Oscillations

v’ Sterile neutrinos are produced by the neutrino oscillation Bounce shock

v MSW resonance condition:

my : v, mass
Oy : v-v, mixing angle MSW resonance
5m\2, A 3\/§G v 1 G : Fermi coupling
R & Bl Lppl\ e e Y. :electron fraction
i 2 2 e _ h
n, : baryon number density v-Spnere

v' The conversion probability is given by Landau-Zenar formula:
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SN Simulation Coupled with v,

Code: 3DnSNe [Takiwaki, Kotake & Suwa MNRAS 461 (2016) L112]

Neutrino transport: IDSA [Liebendsrfer, Whitehouse, & Fischer ApJ 698 (2009) 1174]

Dimension: 2D EoS: LS220

Progenitor: 14+9 1/, merger model
“SN 1987A progenitor model”

[Urushibata et al., MNRAS 473 (2018) L101]

Resolution: N, X N, = 512 x 128

Resource: XD2000 & XC50
~4 k nodes hours

Vv ¢ mass and
V-V mlxmgangle
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Z [km]

Model A

Model NoSterile (6 m2=3.90 eV, sin22 8 =0.040)
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Sterile neutrinos hinder SN explosion! 9 /15



Shock Radius
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v When sterile neutrinos are considered,
the shock revival is delayed.

v When dm?sin 26 is sufficiently large,
the shock is not revived until the end

of the simulations.
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Explosion Energy

KM, Takiwaki, Kohri, & Nagakura, PRD 111 (2025) 083046.
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When sterile neutrinos are considered, the explosion energy is reduced.
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Active-Sterile Oscillation

om?2 sin 20 small

l _.a-"'_'_'___:.'.T— -f:.'_"_':',‘_':'_'.. e P T b e e e — 10 | |
0.9 i J - tpb=50 ms | w tpb=100 ms
277, e St
= 08} | £
,EEd 07t dm?sin 20 large G%H 0f S
(a1 "
E 0.6f g 5t
mu 04T C - o | NoSterile
- {]3 | D ...... i %‘15 A
E---- v C----
.l] 2 i i i i :_ED L L I I i 1
5 10 15 20 25 30 60 80 _lﬂﬂ 120 140
Energy [MeV] Radius [km]

KM, Takiwaki, Kohri, & Nagakura, PRD 111 (2025) 083046.

v’ The v, survival probability depends on dmZsin26

v' The neutrino heating rate is reduced!
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SN 1987A Explosion Condition
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Condition for successful SN 1987A

explosion:

sin20 < 0.45eV?/6m;?

v SN explodability can provide a
new constraint on sterile
neutrinos!

v' A part of the area preferred by the

reactor anomaly is excluded.
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SN Constraint on Dark Photons

KM, T. Takiwaki, & K. Kohri, accepted by PRD
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v When the mixing parameter, ¢, is

sufficiently large, supernovae do

not explode.

v' SN explodability is useful to

constrain various exotic particles!
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Summary
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Light sterile neutrinos (m.~1 eV)

would hinder SN explosion.

A new constraint can be
obtained based on explodablity.

« This argument can be applicable
to other particle models such as

dark photons.

/15



	スライド 1: 素粒子標準模型を超えた物理に対する 超新星の爆発可能性に基づく新たな制限 Exploring New Physics with Supernova Explodability
	スライド 2: Messengers from a Supernova
	スライド 3: Light Sterile Neutrinos
	スライド 4: Parameter Space of Light Sterile Neutrinos
	スライド 5: Parameter Space of Light Sterile Neutrinos
	スライド 6: Explosion Mechanism of Core-collapse SNe
	スライド 7: Active-Sterile Oscillations
	スライド 8: SN Simulation Coupled with νs
	スライド 9
	スライド 10: Shock Radius
	スライド 11: Explosion Energy
	スライド 12: Active-Sterile Oscillation
	スライド 13: SN 1987A Explosion Condition
	スライド 14: SN Constraint on Dark Photons
	スライド 15: Summary

