

岩﨑一成(大阪大学)

CfCA ユーザーズミーティング @NAOJ

Formation of Molecular Clouds Initial Condition of Star Formation

• Physical properties of dense cores

- Velocity, magnetic fields, density structure (strongly influences the star formation (Machida et al. 2016)
- Core mass function ~ IMF (e.g., Motte et al. 1998, Ikeda & Kitamura 2009, Andre et al. 2010)
- Star formation efficiency (great diversity among molecular clouds)
 - Dense gas mass (e.g., Lada et al. 2010, Heiderman et al. 2010, Evans et al. 2014...)

it is crucial to understand SF from MC formation

Molecular Cloud Formation by Multiple Shock Compression

Inoue & Inutsuka (2009, 2012), Inutsuka et al. (2015)

Head-on Collision of Two-phase HI gas

Athena++ (Stone, Tomida, and White in prep.) without self-gravity (1024 × 512 × 512)
+ Simplified chemical reactions (H+, H, H2, He, He+, C, C+, CO) + Heating/Cooling processes
2-ray approx. extinction of FUV, escape probability of cooling photons

Parallel Magnetic Field $\theta = 0$

Slightly Tilted Magnetic Field ($\theta = 0.064\pi = 11$ 度)

Impact of $\overrightarrow{B_0}$ on Turbulence Properties

parallel B case

Anisotropic turbulence $\delta v_x \gg \delta v_y, \delta v_z$

Nearly isotropic turbulence $\delta v_x \sim \delta v_y \sim \delta v_z$

0

 $\mathbf{5}$

10

15

-5

slightly-tilted B case

The total mass of dense gases are almost independent of θ

What determines this transition ?

0

-20 -15 -10

Transition From Anisotropic to Isotropic Turbulence

$(V_0 - B_0 \sin\theta)$ Diagram (Preliminary)

With Self-gravity (Preliminary)

- Test calculation including the self-gravity implemented by Tomida-san
- Resolution ~ 0.04 pc (insufficient)
- $\langle n_0 \rangle = 10 \text{ cm}^{-3}$, $V_0 = 20 \text{ km/s}$, $B_0 = 5\mu G$, $\theta = 0.064\pi$ (slightly anisotropic turb.)

CIII

 $\log_{10}($

 $\mathsf{time}=\mathsf{5.000}\;\mathsf{Myr}$

CO column density integrated along compression dir.

many filamentary structures exist

Summary and Future Works

- We performed simulations of the MC formation by taking account of the detailed physics, chemical reactions, radiative transfer, and heating/cooling.
- We investigated the dependence of the MC formation on B direction.
- B field greatly changes the turbulence properties in the post-shock region
 - The total mass of dense gases $(n > 100 \text{ cm}^{-3})$ is almost independent of θ .
 - The cold clouds can survive in a strong shear motion of surrounding WNM owing to efficient cooling.
 - As θ increases, turbulence changes from anisotropic to isotropic.
 - We derive a simple analytic criterion for anisotropic turbulence.

Future Works

- Mechanism determining f : conversion efficiency from bulk motion to random motion
 - interaction between shock front and CNN clumps, interaction between CNM and WNM
- How the sensitive dependence of B on turbulence affects the star formation.
 - perform simulations with high resolution enough to resolve the core size 0.1pc with self-gravity.
- Connection to global scales.