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前半の構成
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ルンゲクッタ法など

オイラー法

精度の向上

数値計算の誤差、一般論、各種の定義

後半へ
(正準形式の解法)



数値計算の誤差
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数値計算の誤差 (1)

• 物理法則の表現 → 連続関数

• 計算機内での操作は離散的
• 計算の打ち切り(妥協)

• 無限級数をどこかの次数で打ち切る

• 曲線的な図形を多角形で近似する

• ：

• この操作による誤差 → 打ち切り誤差
• 本講義が言及する誤差(精度)はこれ
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多角形による近似

無限級数の打ち切り



数値計算の誤差 (2)

計算機内の小数点表現は有限桁
• 4.6875 = 4                             + 0.5                + 0.125 + 0.0625

            = 1*22 + 0*21 + 0*20 + 1*2-1 + 0*2-2 + 1*2-3 + 1*2-4

                 → 100.1011 (二進法表現)

有限のビット数では有限個の数しか表現できない
• 1ビット → 21 =     2 種類

• 2ビット → 22 =     4 種類

•  :

• 7ビット → 27 = 128 種類

• :
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数値計算の誤差 (2)

現代の標準規格 IEEE754
• 単精度 (24ビット相当)

• 224 =               16777216 種類 → log10(2
24) ~  7.22桁

• 倍精度 (53ビット相当)
• 253 = 9007199254740992種類 → log10(253) ~15.95桁

数は無限にある
• そのうち幾つかしか表現できない

• 近くにある数で代表させる → 「丸める」→ 丸め誤差
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https://ja.wikipedia.org/wiki/IEEE_754


一般論と前置き
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(重力)N体問題の運動方程式

• この講義で話すのは左辺の計算(時間積分)

• 右辺(力)の計算については別講義で

r1

r2

r3

1

2

3
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常微分方程式の正規形

または

x → t (時刻)とすれば時間発展の形

注・時には x が従属変数として使われる。しかし

本講では市販の教科書たちと整合させるため、 y を従属変数とする
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微分方程式の初期値問題

•  y’ = f (x, y)

• 「方向の場」
• 初期値を与えればあとは

そこからの流れに乗って進む

•  例. y’ = y + x − 1

• 解 y = C e x − x

• 各色線は異なる初期値から
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階数の下げ方
• 高階の微係数 y, y’, y’’, y’’’, … y(n) を含む場合

• y(n) = f (x; y, y’, y’’, y’’’, …, y(n−1))

• 0階, 1階, …, n−1階の微係数を別個の従属変数と見做す
• y  y0,  y’  y1,  y’’  y2,  …,  y(n−2)  yn−2,  y

(n−1) 
 yn−1

• 新しい従属変数で書き直す
• y ’n−1 = f (x; y0, y1, y2, …, yn−1)   ← yn−1に関する一階常微分方程式

• y ’n−2 = yn−1                                 ← yn−2に関する一階常微分方程式

• :

• y ’1 = y2

• y ’0 = y1

• 「階数」 = order 11

→ n 本の連立一階常微分方程式

→ 1 本の n 階常微分方程式



階数の下げ方
例. 三階の常微分方程式

変数の置き換え

三本の連立一階常微分方程式に変換して解く
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階数の下げ方

重力N体系の運動方程式 → 変数 r に関する二階の常微分方程式

速度 v を新たな従属変数とし、階数を下げる
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常微分方程式を「解く」

y’ = f (x, y) を「解く」とは？

• 以下を求め続けること

14x0 x0+ h

y (x0+ h)

y (x0)



汎用的な解法群
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汎用的な解法群

• 長い研究史と多くの成果がある
• 電子計算機の登場よりずっと前から

• この講義(前半部)が沿う書籍 →

• 本学校の過去の講義録も参照
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https://topics.libra.titech.ac.jp/recordID/catalog.bib/BA35046985?hit=-1&caller=xc-search
https://topics.libra.titech.ac.jp/recordID/catalog.bib/BA35046985?hit=-1&caller=xc-search
https://topics.libra.titech.ac.jp/recordID/catalog.bib/BA35046985?hit=-1&caller=xc-search
https://topics.libra.titech.ac.jp/recordID/catalog.bib/BA35046985?hit=-1&caller=xc-search
https://topics.libra.titech.ac.jp/recordID/catalog.bib/BA35046985?hit=-1&caller=xc-search
https://topics.libra.titech.ac.jp/recordID/catalog.bib/BA35046985?hit=-1&caller=xc-search
https://www.cfca.nao.ac.jp/~cfca/hpc/muv/text/makino_07.pdf
https://www.cfca.nao.ac.jp/~cfca/hpc/muv/text/makino_07.pdf


簡単な方法

その場の傾きから次の値を予想する

テイラー展開とは一次項まで一致

「オイラー法」
17

x0 x0+ h

y (x0+ h)

y (x0)



オイラー法の精度

1ステップ(h)あたりの誤差 (局所誤差)
• O(h2)

x = a から x = b までステップ h で進む
• ステップの総数 = (b−a) / h

全ステップで発生する誤差 (大域誤差)
• O(h2) * (b−a) / h  O(h1)

 オイラー法の精度は一次 O(h1)

• 「次数」 = order (時にdegree)

18

h h h

x = a b



例
BEGIN{

 #dx  =  0.10  # from the command line

 x0  =  0.0  # initial value

 y0  =  1.0  # initial value

 xmax = 10.0

 printf("%e %e %e\n", x0, y0, 0)

}

{

 x = x0

 y = y0

 while (x < xmax){

  y += fxy(x,y)*dx

    x += dx

  printf("%e %e %e\n", x, y, fabs(y-yas(x)))

 }

}

19

# y' = dy/dx = f(x,y)

function fxy(x,y){

 return y

}

# analytic solution of y(x)

function yas(x){

 return exp(x)

}

# absolute value

function fabs(x){

 if  (x >= 0) return  x

 else      return -x

}

• 常微分方程式 y’ = y

• 初期条件 (x, y) = (0, 1)

• 厳密解 y = e x



実例
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厳密解 y = e 
x との比較 厳密解との差分 y

x

y y

x



(オイラー法) 精度の向上
• 形式的な解

• オイラー法

• 台形で近似できればもっと良い

21

x

f

x0 x0+h



(オイラー法) 精度の向上
予想値をオイラー法で求め、台形の面積を計算する

テイラー展開とは二次項まで一致（各自試しましょう）

• 1ステップ(h)あたりの誤差   O(h3)

• 全ステップで発生する誤差  O(h2)

「修正オイラー法」、精度は二次 O(h2)
22

x

f

x0 x0+h

← y (x0 + h) の予想値 (オイラー法)



(オイラー法) 精度の向上
BEGIN{

 #dx  =  0.10  # from the command line

 x0  =  0.0  # initial value

 y0  =  1.0  # initial value

 xmax = 10.0

 printf("%e %e %e\n", x0, y0, 0)

}

{

 x = x0

 y = y0

 while (x < xmax){

  yeu = y + fxy(x,y)*dx                    # Euler

  y  += dx * (fxy(x,y) + fxy(x+dx,yeu))/2  # Trapezoid

    x  += dx

  printf("%e %e %e\n", x, y, fabs(y-yas(x)))

 }

} 23



(オイラー法) 精度の向上

24

x

y y

x

厳密解 y = e 
x との比較 厳密解との差分 y



(オイラー法) 精度の向上

• 方法は他にもある

• 誤差をもっと小さくしたい → 高次化

25

x

f

x0 x0+h



ルンゲ・クッタ(4段)

• 4次の精度 O (h4)

• 段数 = step
26



一般化の例

• これを y (x0+h) のテイラー展開と比較する

• h要求次数 まで一致するように           を定める
• 変数の数 > 方程式の数

• 公式は唯一には決まらない
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多段法（考え方のみ）

• m段(m回の関数 f 計算)が必要な理由
• m次の多項式を作ってテイラー展開を近似する

• 過去に計算した結果を使えば良いのでは？
• 例. f0,  f−1,  f−2, … を使いm次の近似多項式 p(x) を作る

• 段数 = step

28

x0 x1x−1x−2x−3x−4

f0

f−1

f−2f−3f−4

f1

やや仔細なので飛ばして良い



多段法（考え方のみ）

• 滑らかな系であれば高い精度を得られる
• 例. Adams-Bashforth公式

• だが出発値を揃えるのが面倒

• 単なる外挿だと計算が不安定化することあり

• 何らかの予測 → 修正
• 例. Adams-Moulton公式

「予測子・修正子法」
29

x0 x1x−1x−2x−3x−4

f0

f−1

f−2f−3f−4

f1

やや仔細なので飛ばして良い



多段法（考え方のみ）

• それでも出発値の準備の面倒さは不可避

• 高階の導関数を使った多項式近似
• 例. エルミート法

• 本学校の他講義を参照

30

x0 x1x−1x−2x−3x−4

f0

f−1

f−2f−3f−4

f1Makino (1991)など

やや仔細なので飛ばして良い

https://ui.adsabs.harvard.edu/abs/1991ApJ...369..200M/abstract


(本来の目的) 二階の常微分方程式

に関し、以下の方法は良い。

• 様々な名称がある
• Leapfrog (LF), velocity Verlet法, Störmer法など

• “The Newton–Störmer–Verlet–leapfrog法” (Hairer+, 2003)

• 本学校の実習でも使われる

t

vi−1/2 vi+1/2 vi+3/2 vi+5/2 vi+7/2

ri−1 ri ri+1 ri+2 ri+3
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t

https://en.wikipedia.org/wiki/Leapfrog_integration
https://en.wikipedia.org/wiki/Leapfrog_integration
https://www.cambridge.org/core/journals/acta-numerica/article/abs/geometric-numerical-integration-illustrated-by-the-stormerverlet-method/E55395D5DD7A4E0526D10EA74DA6C46B


後半の構成
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演算子の分割例

一次の方法

精度の向上 (高次化)

数値計算例

演算子による記述
ハミルトン形式の復習



正準形式の解法
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正準形式の解法

• 1990年代から急速に研究が盛んになった
• 解析力学の理論体系に裏付けされており、

天体力学と親和性が高い

• 多数の文献あり

• 日本人の貢献も大

35

https://www.saiensu.co.jp/search/?isbn=4910054690651&y=1995
https://www.saiensu.co.jp/search/?isbn=4910054690651&y=1995


復習

• (重力) N 体問題 → 多くはハミルトン形式で記述できる

• 一般化座標 q, 一般化運動量 p

• 正準運動方程式

• ハミルトニアン

H = 運動エネルギー(pの関数) + ポテンシャルエネルギー(qの関数)

= T (p) + V (q)

36



復習

• 正準変換： 変数変換 (q, p) → (Q, P) 後も正準形式に書けること
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復習

• 何らかの変数変換

• 変換のヤコビ行列

• 変数変換(q, p) → (Q, P)が正準変換になる必要十分条件

38

但し



復習

• ハミルトン系の時間発展

• これを変数変換と見做す → 正準変換になっている
• ウェッジ積による表現 ( dq∧dp)

• ポアソン括弧による表現

• 行列による表現

• ：  

• この性質(構造)の保持を主目的とした数値解法がある
39



定義

• ポアソン括弧 {, }

40



定義

• ポアソン括弧演算子 { , K}

• { , K} の指数関数(指数演算子)
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形式的な解

• z = q または p , ポアソン括弧 {, } を使うと正準方程式は

• 以下のように記す (z に演算子 {, H} を作用させる)

•  z () のテイラー展開を考える
42



形式的な解
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指数演算子e H}の定義



形式的な解

• ハミルトニアンの分割 (運動エネルギーT, ポテンシャルV )

• 形式的な解

44



形式的な解

• 以下の操作(演算)では厳密な解が求まる

• eA を使った説明。p に演算を施すと

45←この演算を施しても p は不変 (定数)



形式的な解

• q に演算を施すと

46
この演算では p を一定とするので定数 → q は等速直線運動



形式的な解

• eA による演算のまとめ
• p → 不変

• q の変化量 ∝  → 等速直線運動

• eB による演算も同様 (試してみましょう)
• q → 不変

• p の変化量 ∝  → 等速直線運動

• これらの操作(演算)を組み合わせて近似解を得たい
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• 真の時間発展 e(A+B)は

• 厳密に求まるのは

48

または



一次のスキーム

• eB eA の演算結果を書き下すと

49

シンプレクティク数値解法
(一次)



一次のスキーム

• オイラー法で同様な計算をすると

50



調和振動子（オイラー法）
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BEGIN{

#dt =     0.10 # from the command line

 q  = q_pre = 1.0  # initial value  

 p  = p_pre = 0.0  # initial value

 tmax    = 100.0

}

{

 t = 0

 while (t < tmax){

  t += dt

  q += dt*p_pre

  p -= dt*q_pre

  printf("%e %e %e\n", t, q, p)

  q_pre = q

  p_pre = p

 }

}

ハミルトニアン

運動方程式

厳密解（位相空間内での回転）



調和振動子（オイラー法）

• 発散する

52q

p



調和振動子（シンプレクティク数値解法）
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BEGIN{

#dt =     0.10 # from the command line

 q  =     1.0  # initial value

 p  =     0.0  # initial value

 tmax    = 100.0

}

{

 t = 0

 while (t < tmax){

  t += dt

  q += dt*p

  p -= dt*q

  printf("%e %e %e\n", t, q, p)

 }

}

ハミルトニアン

運動方程式

厳密解（位相空間内での回転）



調和振動子（シンプレクティク数値解法）

• 発散しない

54q

p



違いは少しだけ
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while (t < tmax){

 q += dt*p_pre

 p -= dt*q_pre

}

オイラー法

シンプレクティク数値解法

while (t < tmax){

 q += dt*p

 p -= dt*q

}



エネルギーの保存状態

56t

全エネルギー



この辺りの背景

57

• 計算スキーム(左辺)、それが支配する系(右辺)

• ハミルトニアン H とは？

• 元々のハミルトニアン(H = T + V )との差異は O() に留まる

誤差ハミルトニアン



この辺りの背景
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Z は交換子 [X,Y] だけで書ける

XとYが可換 → [X, Y] = 0

指数演算子の積

Z = X + Y

CBHD公式（以前はBCH公式とも）
Campbell, Baker, Hausdorff, and Dynkin

やや仔細なので飛ばして良い



この辺りの背景

• 便宜的に C を導入

• CBHD公式より

• A, B, Cの定義より

• この演算子の線形性より

59

Jacobiの恒等式を使う

 で両辺を割ってある

高次の項も同様

やや仔細なので飛ばして良い



この辺りの背景

【注】

保存量(H)の存在がこの方法の

シンプレクティク性を示すのではない

60

q

p



(再掲) 正準変換

• 何らかの変数変換

• 変換のヤコビ行列

• 変数変換(q, p) → (Q, P)が正準変換になる必要十分条件

61

→「シンプレクティク条件」



一般の演算子に適用すると

• 時間発展を表す演算子 

• の作用を表すヤコビ行列 

• による演算が正準変換 
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演算 eB eA では

63

・eA の作用：

・eB の作用：



演算 eB eAでは

64

積行列

転置

 J 
 T は

→ シンプレクティク条件を満たす → 正準変換



(話を戻して) 精度の向上

• 高次スキームの一般形

• 以下の各々を代入

• A, B, A2, AB, BA, B2, …の係数を比較し、未知数 c1, c2, …, d1, d2, 
… (とk)を定める

65

→ 左辺へ

→ 右辺へ



係数の計算例（一次）
# [A,B] != [B,A]

with(Physics):

Setup(noncommutativeprefix = {A, B}):

# exp(x) up to x^1

expx := x -> 1 + x;

# the authentic operator (1st)

expx := x -> 1 + x;

# the authentic operator (1st)

opeauth := expand(expx(t*(A+B)));

# si operator (1st)

opesim1 := convert(expand( expx(c1*t*(A))*expx(d1*t*(B)) ),polynom);

# sort and truncate up to t^2

sort(mtaylor(combine(opeauth), [t], 2), t, ascending);

sort(mtaylor(combine(opesim1), [t], 2), t, ascending); 66



係数の計算例（一次）
  |\^/|   Maple 2018 (X86 64 LINUX)

._|\|  |/|_. Copyright (c) Maplesoft, a division of Waterloo Maple Inc. 2018

\  MAPLE  /  All rights reserved. Maple is a trademark of

<____ ____>  Waterloo Maple Inc.

   |    Type ? for help.

> expx := x -> 1 + x;

               expx := x -> x + 1

> opeauth := expand(expx(t*(A+B)));

              opeauth := A t + B t + 1

> opesim1 := convert(expand(expx(c1*t*(A))*expx(d1*t*(B)) ),polynom);

               2

        opesim1 := c1 t  d1 (A B) + c1 t A + d1 t B + 1

> sort(mtaylor(combine(opeauth), [t], 2), t, ascending);

                1 + (A + B) t

> sort(mtaylor(combine(opesim1), [t], 2), t, ascending);

               1 + (A c1 + B d1) t
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係数の計算例（一次）

c1 = 1

d1 = 1

(k = 1)
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係数の計算例（二次）
# [A,B] != [B,A]

with(Physics):

Setup(noncommutativeprefix = {A, B}):

# exp(x) up to x^2

expx := x -> 1 + x + (x^2)/2!;

# the authentic operator (2nd)

opeauth := expand(expx(t*(A+B)));

# si operator (2nd)

opesim2 := convert(expand( expx(c1*t*(A))*expx(d1*t*(B))

                          *expx(c2*t*(A))*expx(d2*t*(B)) ),polynom);

# sort and truncate up to t^2

sort(mtaylor(combine(opeauth), [t], 3), t, ascending);

sort(mtaylor(combine(opesim2), [t], 3), t, ascending);
69



係数の計算例（二次）
> expx := x -> 1 + x + (x^2)/2!;

 expx := x -> 1 + x + Physics:-`*`(Physics:-`^`(x, 2), Physics:-`^`(2!, -1))

> opeauth := expand(expx(t*(A+B)));

                2         2        2          2

opeauth := 1 + t A + t B + 1/2 t  ^(A, 2) + 1/2 t  (A B) + 1/2 t  (B A)  + 1/2 t  ^(B, 2)

(中略)

> sort(mtaylor(combine(opeauth), [t], 3), t, ascending);

                                 2

      1 + (A + B) t + 1/2 (^(A, 2) + A B + B A + ^(B, 2)) t

> sort(mtaylor(combine(opesim2), [t], 3), t, ascending);

                     2

1 + (A c1 + A c2 + B d1 + B d2) t + 1/2 (c1  ^(A, 2) + 2 c2 c1 ^(A, 2)

    2           2                2

  + c2  ^(A, 2) + ^(B, 2) d1  + 2 ^(B, 2) d2 d1 + ^(B, 2) d2

                                   2

  + 2 d1 c2 (B A) + 2 c1 d1 (A B) + 2 c1 d2 (A B) + 2 c2 d2 (A B)) t
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係数の計算例（二次）

c1 = ½

d1 = 1

c2 = ½

d2 = 0

(k = 2)
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二次の方法

形式的に書けば

実際的な書き下し

72

Leapfrogと等価



二次の方法（Leapfrog）調和振動子

73

BEGIN{

#dt =     0.10 # from the command line

 q  =     1.0  # initial value

 p  =     0.0  # initial value

 tmax    = 100.0

}

{

 t = 0

 while (t < tmax){

  t += dt

  qd = q  + dt*p/2

  p  = p  - dt*qd

  q  = qd + dt*p/2

  printf("%e %e %e\n", t, q, p)

 }

}

ハミルトニアン

運動方程式

厳密解（位相空間内での回転）



二次の方法（Leapfrog）

74t

全エネルギーの誤差
一次
二次 (Leapfrog)



二次の方法（Leapfrog）

75

• 計算スキーム(左辺)、それが支配する系(右辺)

• ハミルトニアン H

• 元々のハミルトニアン(H = T + V )との差異は O() に留まる

誤差ハミルトニアン



演算 eA/2 eB eA/2では

76

・eA/2 の作用：

・eB の作用：

・eA/2 の作用：



演算 eA/2 eB eA/2では
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積行列

転置

 J 
 T は

→ シンプレクティク条件を満たす → 正準変換



連続演算時の注意点

78

• 二次スキームの連続演算の形は以下

• eA/2 eA/2 = eA より、以下の形も可能

• だが、結果の出力は eA/2と eA/2 の間で行う必要あり

出力 出力



三次の方法

形式的に書けば

係数

実際的な書き方
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Ruth (1983)

https://ui.adsabs.harvard.edu/abs/1983ITNS...30.2669R/abstract


四次の方法
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• 形式展開

• 係数セットの例



より高次の方法 (偶数次)

81

• 二次の方法 S2 を合成して構成可能

• 一般形

• 六次 (m = 3で足りる)

• 八次 (m = 7が必要)

Yoshida (1990)

https://ui.adsabs.harvard.edu/abs/1990PhLA..150..262Y/abstract


幾何学的積分法

• 例1. 時間発展の正準変換性を保つ
➢ シンプレクティクである

• 例2. 時間反転に関する可逆性を保つ
➢ 正規かつ対称である

➢ Leap frogはいずれの性質も有する

82

Hairer, Lubich, Wanner (2003)
Hairer (2006)

McLachlan & Quispel (2006)

“… One powerful approach is through geometric integrators, which preserve

  (some of) the geometric properties of the phase-space flow described by the

  original equation of motion.” (Tremaine, 2023)

https://doi.org/10.1017/S0962492902000144
https://doi.org/10.1007/3-540-30666-8
https://ui.adsabs.harvard.edu/abs/2006JPhA...39.5251M
https://ui.adsabs.harvard.edu/abs/2006JPhA...39.5251M
https://press.princeton.edu/books/ebook/9780691244228/dynamics-of-planetary-systems


計算例いくつか

93



エネルギーと軌道位置の誤差

• ケプラー運動 → 軌道上の位置誤差∝エネルギー誤差の平均値

➢ エネルギー誤差(の平均値)を低減することが重要

94

l : 平均近点離角(時刻に比例)

二体問題のエネルギー

ケプラーの第三法則

平均近点離角と平均運動

a : 軌道半長径

n : 平均運動



N体の計算例（N=6, 太陽+木土天海冥）

95

全エネルギーの
相対誤差

時刻

● 1次
● 2次 (LF)
● 4次

刻み幅は全方法で共通
(以降の図でも同様)



N体の計算例（N=6, 太陽+木土天海冥）
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全エネルギーの
相対誤差

時刻

● 2次 (LF)
● 4次



谷川衝先生からのご質問 (2025年2月4日)

97

• この比較はフェアでないのでは？
高次のスキームを使えば刻み幅を大きくできる可能性があり、
そうすれば計算の総量が減るかもしれない。

• (回答)フェアであるか否かは、何を比較したいかに拠るはず。
ここでは刻み幅  を一定とし、その上で各スキームやハミルニ
アン分割方法で誤差がどう変化するかを見ている。
計算の総量を比較する場合にはまた別の方法が必要だろう。



演算子(ハミルトニアン)の分割

• H = T (p) + V (q) に限らない
• それぞれが積分可能なら何でも良い

• 例. スペースデブリの運動に関する論文から

98

Hubaux+ (2012)

“Let us consider the following autonomous Hamiltonian function

”

https://ui.adsabs.harvard.edu/abs/2012AdSpR..49.1472H/abstract


演算子(ハミルトニアン)の分割

• 摂動が小さな系では以下の分割が有効

• 以下のように記す

• 誤差ハミルトニアン (二次)

• 例. 太陽系天体の運動
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N体の計算例（N=6, 太陽+木土天海冥）
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全エネルギーの
相対誤差

時刻

● 4次    (T+V)

● 2次 LF
                  (Hkep+ ⲉHint)

4次の方法の”うなり”は出力間隔の
エイリアシング、または何らかの

内部共鳴。誤差の平均値は増減しない



演算子(ハミルトニアン)の分割

• 誤差の主要項の大きさを不変に保つ要請

• 新しい刻み幅

• n次の方法で同様な要請

• 新しい刻み幅

101

➢ 次数 n は小さい方が「お得」

• 太陽系では ⲉ ~ 10 -3

→ new ~ 32  

• 従来の分割での刻み幅 
• 新しい分割での刻み幅 new 

ⲉ = 10 -4

ⲉ = 10 -3

ⲉ = 10 -2

ⲉ 
-1

/n

n



N体系全角運動量の厳密な保存

• 演算 eA では T と可換な量が厳密に保存される

• 演算 eB では V と可換な量が厳密に保存される

• 全角運動量 L = | q×p |

• {L, T} = {L, V} = 0      → L は eA と eB に於いて厳密に保存される

• 各成分 Lx, Ly, Lz も同様

• 全エネルギー E (= H)
• {E, T} ≠ 0, {E, V} ≠ 0  → E は eA と eB に於いて(厳密には)保存されない

102

Yoshida (1990, preprint)



N体系全角運動量の厳密な保存

(全角運動量 L = | q×p |)の具体的な計算

103

Yoshida (1990, preprint)



N体の計算例（N=6, 太陽+木土天海冥）

104

全角運動量の
相対誤差

時刻

次数による
誤差の差異が
無い

● 1次
● 2次 (LF)
● 4次



初期軌道とエネルギー誤差

• 例. 振り子

105

q

p

q

p

(q0, p0) = (/2, 0)

(q0, p0) = (/3, 1)

(q0, p0) = (0, √2)

(q, p)平面に描いた或る
等ハミルトニアン(H)線
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 0.0002
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 0.0005

 0  10000  20000  30000  40000  50000

"/tmp/nl3.txt" u 1:4

初期軌道とエネルギー誤差

• 全エネルギーの誤差
• その平均値は出発点(初期軌道)に依存する

106t

全
エ

ネ
ル

ギ
ー

の
誤

差



初期軌道とエネルギー誤差

107

• エネルギー誤差が極小となる軌道が
初期軌道の近傍に存在する

• それを探す方法がある
• 逐次出発

• 暖気出発

• シンプレクティク修正子

小天体

惑星

惑星軌道上の経度 [度]
小

天
体

の
経

度
の

誤
差

/2
万

年
 [

度
]

e : 小天体の初期離心率

Ito & Tanikawa (2012)

やや仔細なので飛ばして良い

https://doi.org/10.1093/pasj/64.2.35


後半で述べた方法のまとめ

• 時間発展のシンプレクティク性が保たれる
• 全エネルギーの誤差が蓄積されない

• 偶数次の解法は時間反転に対して可逆

• H = T(p) + V(q) 型ではN体系の全角運動量が厳密保存される 

• 正準摂動論の知識体系を活用可 → 天体力学との親和性

• 高精度化・高次化、階層的刻み幅、正則化、… 様々に発展中

108

https://ui.adsabs.harvard.edu/abs/1966PASJ...18..287H/abstract
https://ui.adsabs.harvard.edu/abs/1966PASJ...18..287H/abstract


全体のまとめ

• 常微分方程式の数値解法には多くの種類がある

• 解くべき問題に応じて最適な方法を選択すべし

• 適切なモデルや初期値の検討が更に重要である
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ご清聴ありがとうございます
この学校で様々なことを体験してください
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以下余白
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