GIZMO で遊んでみる

岡本 崇(北海道大学)

December 23, 2019

岡本 崇(北海道大学)

GIZMO で遊んでみる

December 23, 2019 1/19

- 3

イロト イボト イヨト イヨト

GIZMO Users Guide

● 以下の URL

http://www.tapir.caltech.edu/~phopkins/Site/GIZMO_files/gizmo_documentation.html

- 実習するテスト問題用の初期条件やパラメータファイルもここから 入手可能
- /home/hydro00/GIZMO_hydro2019.tar.gz を解凍してできる
 GIZMO_hydro2019/scripts にも演習用の初期条件やパラメータファイルが入っている
- コードにも同じ User Guide が付属 (scripts ディレクトリの中)
- scripts/test_problems/の中にテスト問題のパラメータファイルがある

化基本化基本 一基

準備と確認(1)

- 実習は Intel 環境で行います. XC50 のコマンドラインで module list を実行し、
 - PrgEnv-intel/6.0.4
 - gsl/2.4o_intel-18.0
 - cray-hdf5/1.10.1.1
 - fftw/2.1.5.9

が表示されることを確認.

• 表示されないものがあった場合はそれを

mdule load (or add) しておく.

準備と確認 (2)

- gizmo のディレクトに入り, Config.sh が存在することを確認.
- 無ければ cp Template-Config.sh Config.sh する.
- 好みの editor で (vim のことです) Makefile.systype を開き, SYSTYPE="XC-intel" がコメントアウトされていないことを確認

準備と確認(この実習限定の話)

- 必要な module は自動的に load されているはずです.
- 各自の work 領域 (/work/hydoro[01-20]) に /home/hydro00/GIZMO_hydro2019.tar.gz をコピーして展開します.
- 解凍してできた GIZMO_hydro2019/scripts/test_problems/の中に今回用いるテスト問題が入っています。

実習 1: 点源爆発

 冷たい (10 K) 一様密度 n = 0.5 cm⁻³ のガス分布の中心に 6.78×10⁴⁶ erg のエネルギーを注入.
 → M ~ 1000 の衝撃波と Users Guide には書いてありますが,解析 してみた結果, n = 5×10⁹ cm⁻³, E = 6.78×10⁵⁶ J. なんだこれ.

Config.sh

BOX_PERIODIC

SELFGRAVITY_OFF

EOS_GAMMA=(5.0/3.0)

以外をコメントアウト.特に指定しない場合流体法は MFM (HYDRO_MESHLESS_FINITE_MASS) が選ばれる.

• make する. Config.sh を変更した場合は必ず make し直すこと.

実習 1: 点源爆発--初期条件とパラメータファイル

- 実行ディレクトリに移動.今回の場合, GIZMO_hydro2019/scripts/test_problems/sedov に全部入ってます.
- 実行ファイル GIZMO を実行ディレクトリにコピー (今回はコピーしなくて良い)
- sedov.param の編集 (そのままでも動きます)

sedov.param

MaxSizeTimestep 0.0001

を

MaxSizeTimestep 0.03

に変更. そのままだと最大のタイムステップが小さすぎて独立時間刻み にならない.

◆□▶ ◆□▶ ◆三▶ ◆三▶ ● ● ●

実習 1: 点源爆発--実行

- •1ノードを使って MPI 並列 (40 並列) で実行
- 以下の話は一般論なので皆さんは GIZMO_hydro2019/scripts/test_problems/sedovの下にある batch.sh を使っ て下さい.
- ファイル名を仮に batch.sh としておく

batch.sh #PBS -N sedov #PBS -I nodes=1 #PBS -q test-bp ← 自分の使うキュー名 cd \${PBS_O_WORKDIR} aprun -n 40 ./GIZMO sedov.params >& log

実習 1: 点源爆発–実行(続き)

● 実習用 batch.sh の編集

batch.sh

aprun -n 40 ../../../GIZMO sedov.params を aprun -n 40 ../../../GIZMO sedov.params >& log に変更 後で tail -f log で進捗を見ることができて便利

- qsub batch.sh でジョブをサブミット
- 実行されると OutputDir で指定したディレクトリに (今回は ./output) snapshto_???.hdf5 が出力される (000 から 011 まで 011 はゴミ).

- 実習 1: 点源爆発—可視化
 - とりあえずの可視化には yt が手軽
 ・ #L < はここ
 - 解析サーバーにログイン
 - /work/hydro??/ 以下に適当なディレクトリを作成
 - そのディレクトリで ipython を起動

```
ipython (or projection.py)
```

import yt

ds = yt.load('/xc-work/okamtotk/hydro/tests/sedov/snapshot_010.hdf5') ← 読み込む

snapshot

```
plot = yt.ProjectionPlot(ds, "z", fields=[('gas','density')])
```

plot.save()

- 以上で密度場の projection plot ができる.
 display snapshot_011_Projection_z_density.png で表示できる.
- plot = yt.ProjectionPlot(ds, 'z', fields=[('gas', 'temperature')]), weight_field=[('gas', 'density')] と すると密度で重みをつけた温度の projection map が得られる.

実習 1: 点源爆発--解析

- 物理量の半径依存性を見てみたい
- ちょっと凝った解析をしようとすると yt では大変
- 直接 python で

```
ipython (or sedov_density.py)
import h5py
import numpy as np
ds = h5py.File('/xc-work/okamtotk/hydro/tests/sedov/snapshot_010.hdf5', 'r')
#ここでデータの構造をちょっと見てみる
list(ds.kyes())
# Header と PartType0 が表示されたはず. さらに PartType0 (gas) の中にどんな情報があるかは
list(ds['PartType0'].keys()) # で確認できる. Header の中身は
list(ds['Header'].attrs)
# simulation box の大きさは例えば
boxlen = ds['Header'].attrs['BoxSize']
```

・ロト ・ 同ト ・ ヨト ・ ヨト … ヨ.

実習 1: 点源爆発--matplotlib

ipython (or sedov_density.py)

import matplotlib.pyplot as plt

- c = np.full(3, 0.5*boxlen) #中心の座標
- pos = np.array(ds['PartType0/Coordinates'])
- $r = np.sqrt((pos[:,0] c[0])^{**}2 + (pos[:,1] c[1])^{**}2 + (pos[:,2] c[2])^{**}2)$
- # ↑多分もっと賢いやり方がある知らない

plt.plot(r, ds['PartType0/Density'], ', rasterized=True)
plt.savefig('density.png')

• exit で ipython を抜けて図を確認.

伺下 イヨト イヨト

実習 2: SPH との比較

- PSPH (Saito & Makino の DISPH とほぼ同じ) にしてみる
- Config.sh の編集
 HYDRO_PRESSURE_SPH のコメントアウトを外す
 デフォルトで Cullen & Dehnen 2010 の人工粘性や人工熱伝導が入る
- make
- GIZMO を実行ディレクトリにコピー
- 実行ディレクトリに移動し、cp sedov.params sedov.psph.params と新しいパ ラメータファイルを作る
- sedov_psph.params を編集して SnapshotFileBase snapshot を snapshot_psph に
- バッチスクリプト run.sh を編集し sedov.params を sedov_psph.params に
- qsub run.sh

実習 2: 結果の解析と作図

- 解析サーバーにログイン
- 作業を行うディレクトリに移動
- 作図に必要なファイル sedov.txt と sedov.py を /home/okamtotk/hydro から入手
- sedov.py のファイルを読み込んでいる行を適切に編集
- python sedov.py
- sedov.png というファイルが出来るので表示
- ●皆,密度しか見せないが圧力の振る舞いの方がシビアなことが分かる

伺 ト イ ヨ ト イ ヨ ト ニ ヨ

注意:単位系について

シミュレーションで使われる単位系はパラメータファイル内の

- UnitLength_in_cm
- UnitMass_in_g
- UnitVelocity_in_cm_per_s

によって指定される. それぞれ 3.08568e+21, 1.989e+43, 100000 に なっていた場合, kpc, $10^{10} M_{\odot}$, km/s が code units であることが分か る. その他の物理量の単位はこれらの組み合わせから計算できる.

実習 3: その他のテスト問題

- Config.sh の HYDRO_PRESSURE_SPH をコメントアウトし直すことを忘れな いように
- おすすめのテスト問題は
 - The Noh (Spherical Implosion) Problem (noh.params) BOX_PERIODIC SELFGRAVITY_OFF
 - EOS_GAMMA=(5.0/3.0)
 - Kelvin Helmholtz Instabilities (kh_mcnally_2d.params) BOX_PERIODIC
 BOX_SPATIAL_DIMENSION=2
 PREVENT_PARTICLE_MERGE_SPLIT
 SELEGRAVITY_OFF
 - KERNEL_FUNCTION=3
 - EOS_GAMMA=(5.0/3.0)

実習 3: その他のテスト問題 (続き)

• The Blob Test (blob.params)

BOX_PERIODIC

BOX_LONG_X=1

BOX_LONG_Y=1

BOX_LONG_Z=3

SELFGRAVITY_OFF

EOS_GAMMA=(5.0/3.0)

• The Evrard (Spherical Collapse) Test (evrard.params)

EOS_GAMMA=(5.0/3.0)

- ► ADAPTIVE_GRAVSOFT_FORGAS をアクティブにし、bolob.paramsの SofteningGas と SofteningGasMaxPhysの値をずっと小さくして結果を比較 してみましょう
- ▶ 余裕があれば SPH との比較も

実習 4: SPH 近似の確認

• 適当な3次元の問題のスナップショットを使って, SPH 近似で

$$\sum_{j} \frac{m_j}{\rho_j} W(r_{ij}, h_i)$$

がどのくらい1からずれるか,いくつかの i 粒子に対して計算して みる

● ここで W(r_{ij}, h_i) は

$$W(r_{ij}, h_i) = \begin{cases} \frac{8}{\pi h_i^3} \left\{ 1.0 + 6.0(u - 1.0)u^2 \right\} & \text{for } u = r_{ij}/h_i \le 0.5 \\ \frac{8}{\pi h_i^3} \left\{ 2.0(1.0 - u)^3 \right\} & \text{for } 0.5 \le u \le 1.0 \\ 0 & \text{for } u > 1.0 \end{cases}$$

また、*h_i*はSmoothingLengthという名前でスナップショットに入っている

岡本 崇(北海道大学)

実習 5: 初期条件の作成

- SPH や Mesh-free 法では初期条件の作成が結構面倒
- これは粒子分布によって密度が与えられるから.
- GIZMO_hydro2019/scripts/make_IC.py にサンプルがあるので python に慣れて る人は挑戦してみてください.
 - 流体要素を grid 上に置かずに、一様密度場を作るにはどうすればいいか?
 - ② 中心からの距離 r に対して ρr ∝ r⁻² の密度構造をもつ等温球を作る には?