
GRAPE-6 User's Guide - Multi-Cluster version without

monolithic con�guration

Junichiro Makino

Department of Astronomy,

School of Sciences,

University of Tokyo,

Hongo 7-3{1, Bunkyo-Ku, Tokyo 113-0033, Japan

Phone : 81{3{5841{4276

Fax : 81{3{5841{7644

E-mail : makino@astron.s..u-tokyo.ac.jp

Version 0.0: March 29, 2000

Version 0.1: July 10, 2000

Version 0.1.1: July 12, 2000

Version 0.1.2: Sept 11, 2000

Version 0.1.3: Sept 28, 2000

Version 0.2: Feb 26, 2001

Version 0.3: May 8, 2001

Version 0.4: Sept 26, 2001

Version 0.5: Feb 3, 2002

Abstract

I give the full description of the GRAPE-6 interface software package for multi-cluster system,

but yet without the support for monolithic con�guration.

1

Contents

1 TODO 4

2 Changes 4

2.1 Version 0.0 . 4

2.2 Version 0.1 . 4

2.3 Version 0.1.1 . 4

2.4 Version 0.1.2 . 4

2.5 Version 0.1.3 . 4

2.6 Version 0.2 . 4

2.7 Version 0.3 . 5

2.8 Version 0.4 . 5

2.9 Version 0.5 . 5

3 Overview of GRAPE-6 and its operating principles 5

4 Getting started 7

4.1 Shared timestep . 7

4.2 Individual (block) timestep . 9

4.3 Athlon and JP bu�ering . 10

5 Reference Manual for subroutines 11

5.1 Overview . 11

5.2 Initialization . 13

5.2.1 g6 open . 13

5.2.2 g6 close . 13

5.2.3 g6 reinitialize . 13

5.2.4 g6 initialize jp bu�er . 13

5.3 Scaling . 13

5.3.1 g6 set tunit . 13

5.3.2 g6 set xunit . 14

5.4 Sending data to memory . 14

5.4.1 g6 set j particle . 14

5.4.2 g6 set j particle mxonly . 15

5.4.3 g6
ush jp bu�er . 16

5.5 Setting current time for individual timestep algorithm 16

5.5.1 g6 set ti . 16

5.6 Force calculation . 16

5.6.1 g6calc �rsthalf . 16

5.6.2 g6calc lasthalf . 17

5.6.3 g6calc lasthalf2 . 17

5.7 Neighbour list . 18

5.7.1 g6 read neighbour list . 18

5.7.2 g6 get neighbour list . 18

5.8 High-level function for shared-timestep algorithm . 18

5.8.1 calculate accel by grape6 separate trial noopen 18

5.8.2 calculate accel by grape6 noopen . 19

2

5.9 Low level functions . 19

5.9.1 g6 reset . 19

5.9.2 g6 reset fofpga . 19

5.9.3 g6 npipes . 20

5.9.4 g6 set nip . 20

5.9.5 g6 set njp . 20

5.9.6 g6 set i particle scales from real value . 20

5.9.7 g6 adjust ip scales . 21

5.9.8 g6 set i particle . 21

5.9.9 g6 get force . 22

5.9.10 g6 get force etc . 22

5.9.11 g6 guestimate acc etc . 22

5.9.12 g6 set calculate accel scaling mode . 23

6 Example 23

6.1 Shared timestep . 23

6.2 Block timestep . 24

6.2.1 Initialization . 24

6.2.2 Force calculation . 25

6.3 Update memory . 26

7 Error recovery 26

8 Neighbour list 27

9 TIMESHARING 28

10 LINKING (Local Information) 28

11 RUN-TIME SUPPORT 29

12 Sample programs 29

12.1 grape6 . 29

12.2 nbody1 . 34

12.3 Kira . 37

13 Known bugs and problems 37

13.1 g77 fails to link... 37

13.2 g6calc �rsthalf and/or g6calc lasthalf fails with SIGFPE 37

14 LIMITATIONS 37

15 FAQs 37

3

1 TODO

� Support and documentation for simulator library

� Installation Guide and Export Kit

� What else?

2 Changes

2.1 Version 0.0

� March 29, 2000 | created

� Neighbor list not supported in software yet.

2.2 Version 0.1

� July 10, 2000

� Neighbor list support added (Not much tested yet...)

2.3 Version 0.1.1

� July 12, 2000

� g6 npipes documented.

� a number of small corrections.

2.4 Version 0.1.2

� Sept 11, 2000

� Sections for local information added

� a number of small corrections.

2.5 Version 0.1.3

� Sept 28, 2000

� Sections for local information updated

2.6 Version 0.2

� Feb 26, 2001

� descriptions for g6 reset and g6 reset fofpga added

� example replaced to show the use of the �rsthalf/lasthalf pair.

4

Host
Computer GRAPE-6

Figure 1: Basic Single-Cluster con�guration of GRAPE-6

2.7 Version 0.3

� May 8, 2001

� \Getting started" section added.

� Reference section reorganized.

� As of May 8 2001, NOT consistent with actually installed library yet.

� g6 set calculate accel scaling mode added.

2.8 Version 0.4

� September 26, 2001

� Two BUG descriptions added.

2.9 Version 0.5

� Feb 3, 2002

� Athlon-speci�c infomations added.

3 Overview of GRAPE-6 and its operating principles

GRAPE-6 is the successor of GRAPE-4, designed for high-accuracy integration of gravitational N-

body system using the individual timestep and Hermite scheme. It works as a backend processor,

connected to a host computer through PCI interface. Thus, from the viewpoint of a user, GRAPE-6

system (single cluster) looks like that in �gure 1.

In the following, I �rst describe what is calculated how, �rst on this simple (single cluster, or

SC) con�guration. What GRAPE-6 SC calculates is the forces and their time derivative on 48

particles, from all particles loaded into its memory.

To be more precise, GRAPE-6 calculates the following

5

Particle
Memory

Predictor
Processor

tj, xj, vj... mj, xpj, vpj

xi, vi ai, ji, ϕi

Force/Jerk
processor

xi, vi ai, ji, ϕi

Force/Jerk
processor

xi, vi ai, ji, ϕi

Force/Jerk
processor

xi, vi ai, ji, ϕi

Force/Jerk
processor

xi, vi ai, ji, ϕi

Force/Jerk
processor

xi, vi ai, ji, ϕi

Force/Jerk
processor

Address
generator

t

Figure 2: GRAPE-6 SC from the application viewpoint

a

i

=

P

j

Gm

j

r

ij

(r

2

ij

+ �

2

)

3=2

(1)

_a

i

=

P

j

Gm

j

"

v

ij

(r

2

ij

+ �

2

)

3=2

�

3(v

ij

� r

ij

)r

ij

(r

2

ij

+ �

2

)

5=2

#

; (2)

�

i

=

P

j

Gm

j

1

(r

2

ij

+ �

2

)

1=2

; (3)

where

r

ij

= x

p;j

� x

i

; (4)

v

ij

= v

p;j

� v

i

: (5)

Here, x

i

, v

i

, a

i

, _a

i

are the position, velocity, acceleration, time derivative of acceleration of particle

i, G is the gravitational constant and m

j

is the mass of particle j. With GRAPE-6, G is �xed to

unity. The parameter � is the usual plummer softening parameter.

The position and velocity of particle j have additional su�x p to denote they are \predicted"

values at time t using the following formulae:

�t = t� t

j

(6)

x

p

=

�t

4

24

a

(2)

0

+

�t

3

6

_a

0

+

�t

2

2

a

0

+�tv

0

+ x

0

(7)

v

p

=

�t

3

6

a

(2)

0

+

�t

2

2

_a

0

+�ta

0

+ v

0

; (8)

Here, we dropped the subscript j for clarity. Position x

p

and velocity v

p

are the predicted values,

at time t, x

0

, v

0

, a

0

, _a

0

a

(2)

0

are true values of position etc at time t

j

.

Thus, from the viewpoint of the host computer (and the application program on the host), the

internal structure of GRAPE-6 SC looks like that in �gure 2.

If you have multiple clusters connected to a single host, they work just completely independently.

In all library functions that actually communicate with GRAPE-6 hardware, you simply specify

the identity of the cluster as an argument.

6

4 Getting started

As described in the previous section, from the point of the view of the host computer, a GRAPE-6

hardware consists of three components: memory, pipeline processors and control logic. The memory

stores the data of particles which exert the force. pipeline processors calculate the force on particles

which they received from the host, and send the calculated force back to the host computer. In the

following, I describe how the application programmer can actually use GRAPE-6 hardware.

4.1 Shared timestep

Though GRAPE-6 is designed for individual (block) timestep, many applications use it just with

shared timestep. In addition, shared timestep is simpler. So we start with the shared timestep

algorithm. Also, for simplicity we discuss only the direct summation method.

A typical sequence of using GRAPE-6 hardware with shared timestep algorithm is the following.

1. acquire the GRAPE-6 hardware.

2. set coordinate scaling etc.

3. write particle data to GRAPE-6 memory.

4. repeat the steps 5 to 8 until forces on all particles are obtained

5. send 48 particles (48 is the logical number of pipelines on GRAPE-6) to GRAPE-6 force

calculation pipelines and let them start calculation

6. wait until calculation ends and force are returned

7. If GRAPE-6 returns hardware error, go back to step 1 and start over again.

8. If the application needs the list of the neighbours, let GRAPE-6 sends back the neighbor lists

and receive the data.

9. go back to step 4

10. release the GRAPE-6 hardware

To acquire the GRAPE-6 hardware, one call g6 open(clusterid). The argument, clusterid

indicates which of the GRAPE-6 cluster is to be used, when multiple GRAPE-6 hardwares are

connected to a single host. In most of sites, only one hardware is connected, and in this case you

just supply 0 as argument. It is probably a good idea to make this argument a global variable

within program which you can set through command line option or something like that.

If someone else is using the requested hardware, this routine put the process into sleep. It is

automatically waken up when the GRAPE-6 hardware becomes available.

After you get GRAPE-6, the �rst thing you need to do is to set the scaling. GRAPE-6 stores

both position and time with �xed point format. So you need to specify the scaling so that the range

of time and distance used in the application program is correctly expressed within GRAPE-6. These

scaling factors are used by other library routines to convert the data to and from GRAPE-6 internal

format.

Time is not used with shared timestep, so we start with the position scaling.

7

Position scaling is set by g6 set xunit(xunit). The integer argument xunit gives the number

of bits used to express the fractional part. The default is 51, which should be �ne if the application

program is written using nondimensional units.

Let me give an example. If you do the cosmological simulation which cover several Gpcs and

you use parsecs as unit, you need around 33 bits to express the integral part. The bit length for

position is 64. So give 64� 33 = 31, or something a bit smaller like 28 or so, as xunit.

Beware that no error check is performed for over
ow or under
ow. It's application programmer's

responsibility to provide a proper scaling.

Now that we speci�ed the scaling. W set particle data to GRAPE-6 memory. This is achieved

by calling

int g6_set_j_particle_mxonly(int clusterid,

int address,

int index,

double mass,

double x[3])

Args address and index probably need further explanation. Address speci�es the (logical) location

within GRAPE-6 memory to which this particle is stored. If you send n particles to the hardware,

address must be in the range of [0; n] and should not overlap. If you send the data to same

address twice, the former data is simply overwritten. If you do not write to some address j, the

data in that location is of course garbage. GRAPE-6 always calculates the force from particles in

consecutive addresses. So particle data in the speci�ed range must all be valid.

Index is a new feature of GRAPE-6, which was not used in any of previous GRAPE hardwares.

This is an integer value assigned to each particle data, which is used for the following two purposes.

� The neighbor list hardware stores this index, not the memory address in hardware.

� Each pipeline use this index to avoid self interaction.

With simple direct summation, this is not particularly useful since you almost always set index

equal to address. However, if you use treecode, address are not same as the identity of the particles

in your code.

The capability to avoid self-interaction is only important in the case of the individual timestep.

So we do not discuss it further here.

After you store all necessary particle data to the memory, you can now let the GRAPE-6

hardware actually start calculation. From the point of view of an application, a GRAPE-6 always

look like a collection of 48 pipelines. So you send one particle to each pipeline and let all of them

calculate the force from particles in the memory.

To achieve this, you call

void g6calc_firsthalf(int clusterid,

int nj,

int ni,

int index[],

double xi[][3],

double vi[][3],

double fold[][3],

double j6old[][3],

double phiold[],

8

double eps2,

double h2[])

Here, nj is the number of particles stored in GRAPE-6 memory. Ni is the number of particles you

want to send, which should not exceed 48. Other args are the actual data of particles to be sent.

Index is here to be used to avoid self-interaction. Xi and vi are position and velocity, eps2 and

h2 are the softening and the radius of the neighbor sphere (both squared). For convenience, eps2

is a scalar value, though the hardware can set di�erent values to each pipeline.

Here, one important thing is that you need to send fold, j6old and phiold, which are used to

determine the internal scaling for force, jerk and potential for each pipeline.

GRAPE-6, unlike GRAPE-4, accumulates the result in �xed point format, which greatly re-

duced the complexity of the overall design of hardware. Unfortunately, this simpli�cation does not

come free. In order to avoid over
ow or under
ow, GRAPE-6 hardware should know beforehand

roughly how large is the result. It (actually the library functions) determines the scaling accordingly

for each pipeline. Fold and other two args are just used to determine the scaling.

Except for the �rst timestep at which you do not know what the force in the previous timestep

is, you can just supply the force in the previous timestep, since it would not change by a large

factor in one timestep.

For the �rst timestep, you need to give some \educated guess" for the magnitude of the force.

For example, if you are working with the standard units (M = 1 etc), to supply order-of-unity

values would be �ne.

This firsthalf routine send the data to GRAPE-6 and let it start calculation.

The next step is to wait GRAPE-6 to �nish the calculation and receive the data. This is achieved

by calling lasthalf routine, which takes almost the same arguments as firsthalf. When called,

it �rst checks if the calculation is completed, and if not, it just waits until the calculation �nishes.

Then it receives the data sent from GRAPE-6, performs the necessary scaling, and returns the

results.

If the over
ow occurs, this lasthalf routine tries to change the scaling and let GRAPE-6 do

the calculation again. This is the reason why positions and velocities are still passed to this routine.

Note that, at least at the time of this writing, GRAPE-6 hardware is not 100% reliable. The

library routine detects various kind of hardware error. If lasfhalf returns non-zero value, that

means it detected some hardware error which is not corrected. At this point, the application

program should reinitialize the hardware and start over. The routine to reinitialized GRAPE-6

is g6 reinitialize(clusterid). It resets the GRAPE-6 hardware, releases it, and reattachs it.

Thus, somebody else might use the GRAPE-6 hardware. Therefore, the content of the GRAPE-6

memory may have been changed after your call to g6 reinitialize(clusterid), and you have

to send particles to the memory again.

If lasthalf returns zero, you can proceed to calculate the forces on next set of 48 particles, or

you can retrieve the neighbor list if you need.

You read the neighbor list in two steps. First, you call g6 read neighbour list, which just

transfer the content of the hardware neighbour memory to internal storage of the library. Then,

you call g6 get neighbour list to obtain the list for a speci�ed particle. In case of the over
ow

of the list, the read function returns 1. The recovery from over
ow will be discussed in more detail

in section 8

4.2 Individual (block) timestep

A typical sequence of using GRAPE-6 hardware with block timestep algorithm is the following.

9

1. acquire the GRAPE-6 hardware.

2. set coordinate scaling etc.

3. write all particle data to GRAPE-6 memory.

4. �nd the particles in the current blockstep.

5. repeat the steps 8 to 13 until you get the forces on all particles in the current block

6. send 48 particles (48 is the logical number of pipelines on GRAPE-6) to GRAPE-6 force

calculation pipelines and let them start calculation

7. wait until calculation ends and force are returned

8. If GRAPE-6 returns hardware error, go back to step 1 and start over again.

9. If the application needs the list of the neighbours, let GRAPE-6 sends back the neighbour

lists and receive the data.

10. go back to step if there are still more particles in the current block

11. update the orbit, time, timestep etc.

12. send updated particles to GRAPE-6 memory.

13. If you have not reached the time to stop, go back to step 4.

14. release the GRAPE-6 hardware

One can see there is not really much change. The �rst two steps are the same. To write data to

GRAPE-6 memory, now you need to specify the full predictor data. So you use g6 set j particle,

which accepts all the necessary data for predictor.

The force calculation, neighbour list read, and error recovery procedures are the same as those

in the case of shared timestep.

The �nal small di�erence from the shared-timestep version is that at the end of the each

blockstep, you send the particles which are integrated to GRAPE-6 memory. You need not send

all particles at the beginning of the each timestep. You only send the updated ones at the end.

4.3 Athlon and JP bu�ering

The AMD Athlon processor o�ers performance signi�cantly better than what o�ered by Intel

Pentium X, in particular with GCC compilers. However, almost all existing motherboards for

AMD Athlon processors share one common problem: The bandwidth achieved with PCI PIO

access is very low, even though the DEC Alpha box, which uses exactly the same chipset (AMD

750/760), o�ers very good performance.

In order to get reasonable performance on AMD, we need to activate DMA transfer for all three

major data transfers: sending i- and j-particles and getting result. DMA is by default used to get

data on x86 box, since Intel processors are also slow in PIO read. However, since PIO write is very

fast on Intel processors, DMA is not used by default for sending particles.

To use DMA in sending particles, one need to do the followings:

� Get the EPROM and libraries newer than DEC 2001.

10

� Make sure the con�guration �le contains the lines:

JPSPACE 10

IJPDMA 1

The number after keyword JPSPACE may be di�erent from 10 after installation. If so, DO

NOT CHANGE THAT VALUE.

� With the above change, DMA is used to send i-particles, but to send j-particles using DMA,

you need to modify your code. Before calling g6 set j particle, call, just once,

int g6_initialize_jp_buffer(int clusterid, int size)

The second number is the size of the bu�er, which should be something reasonably large

(10000 or so should be okay). With this function called, g6 set j particle just set the data

to the internal bu�er on the host memory. When the bu�er becomes full, it is automatically

ushed. However, before you calculate the force using �rsthalf/lasthalf pair, you need to

explicitly call the function to
ush the bu�er:

int g6_flush_jp_buffer(int clusterid)

so that all j-particle data are actually sent to GRAPE-6.

5 Reference Manual for subroutines

All subroutines are written in C language. However, for simple and uni�ed treatment of Fortran

and C application programs, most of routines are written in the form which is directly callable from

both Fortran and C. HOWEVER, THIS DUAL FORM IS NOT YET AVAILABLE ON

THE BABY-GRAPE6 LIBRARY. On the BABY-6, you need to use the Fortran interface

even if you use C/C++. This means that all functions have trailing underscore and all arguments

are pointers.

5.1 Overview

Initialization routines

� g6 open: acquires the GRAPE-6 hardware.

� g6 close: releases the GRAPE-6 hardware.

� g6 reinitialize: reinitialize the GRAPE-6 hardware in the case of hardware error.

� g6 initialize jp bu�er: Initialize the DMA work area for sending j-particles.

Scaling

� g6 set tunit: Speci�es the binary point for time.

� g6 set xunit: Speci�es the binary point for position.

11

Sending data to memory

� g6 set j particle: sends one j-particle data to memory.

� g6 set j particle mxonly: sends one j-particle data (pos

� g6
ush jp bu�er:
ush the DMA bu�er for j-particles. and mass only) to memory.

Setting current time for individual timestep algorithm

� g6 set ti; sets the current time for prediction.

Force calculation

� g6calc �rsthalf: sets scales for i particles, sends i particles, sets the numbers of i- and j-

particles, and starts the calculation on GRAPE-6.

� g6calc lasthalf: waits GRAPE-6 to �nish calculation and receives the results.

� g6calc lasthalf2: similar to the above but get the indices for the nearest neighbour as well.

Neighbour list

� g6 read neighbour list: stores the content of the hardware neighbor list to host memory.

� g6 get neighbour list: retrieves the neighbour list for one particle.

High-level function for shared-timestep algorithm

� calculate accel by grape6 separate trial noopen: simple interface for shared-timestep code.

� calculate accel by grape6 noopen: similar to the above but with more stricr error checks.

Low-level functions ... (you need not use these stu�... Well, then why are they listed here?)

� g6 reset: reset the GRAPE-6 hardware.

� g6 reset fofpga: force reinitialization of the GRAPE-6 hardware.

� g6 set nip: sets the number of i-particles.

� g6 set njp: sets the number of j-particles.

� g6 set i particle scales from real value: sets scalings for force calculation.

� g6 adjust ip scales: adjusts the scaling in cases of over
ow.

� g6 set i particle: sends one i particle data.

� g6 get force: receives one force.

� g6 get force etc: similar to the above but returns more.

� g6 guestimate acc etc: Internal function. Listed for completeness only.

� g6 set calculate accel scaling mode: More internal function...

Note that functions g6 set nip through g6 get force etc are called internally from g6calc firsthalf

and g6calc lasthalf, and therefore one need not to use these routines, unless one wants direct

access to the low-level functionalities of the GRAPE-6 hardware.

12

5.2 Initialization

5.2.1 g6 open

int g6_open(int clusterid)

subroutine g6_open(clusterid)

integer clusterid

Initializes the GRAPE-6 hardware and interface package for the speci�ed cluster. If multiple

clusters are available on the system, they are numbered from zero. The function which returns

the available number of clusters is not implemented yet.... If someone else is using the requested

GRAPE-6 cluster, it put the process in the queue and sleep, using the lockf(2) system call.

Note that currently this function takes several seconds to complete when called for the �rst

time.

5.2.2 g6 close

int g6_close(int clusterid)

subroutine g6_close(clusterid)

This function releases the speci�ed GRAPE-6 cluster and allows other users to acquire it.

5.2.3 g6 reinitialize

int g6_reinitialize(int clusterid)

subroutine g6_reinitialize(clusterid)

This function performs a hard reset on the GRAPE-6 hardware. The user need to reload all

data to GRAPE-6 after this function is called.

5.2.4 g6 initialize jp bu�er

int g6_initialize_jp_buffer(int clusterid, int size)

subroutine g6_initialize_jp_buffer(clusterid)

This function initialized the DMA bu�er for sending j-particles. The size argument should be

something reasonably large, around 10

4

or so. Note that DMA for sending j-particles is only used

when speci�ed in the con�guration �le. However, the bu�er itself is used if this function is called

even when DMA is not used. In such cases, the content of the bu�er is sent to GRAPE using PIO

write.

5.3 Scaling

5.3.1 g6 set tunit

void g6_set_tunit(int newtunit)

subroutine g6_set_tunit(newtunit)

integer newtunit

13

GRAPE-6 handles the time for predictor in 64 bit �xed point format. Thus, one need to specify

where to put the binary point. The argument newtunit gives the point of the binary point counted

from LSB. Thus, the value zero means the time expressed in GRAPE-6 is truncated to integral

values, while, say, 50 means the resolution is 2

�50

. The default value is 51.

What value should be used depends on the system of units that the application uses. If one

uses the \standard" or so-called Heggie units, the default value should be �ne, but one must be

careful that the time would not over
ow (there are only 13 bits available above the binary point).

If the simulation covers the time much longer than 10

3

, the default should be changed.

If you are using GRAPE for, say, galactic simulation and use real physical unit such as Myr as

the time unit, you might want to use smaller value for newtunit than the default, since the default

does not cover the Hubble time, and the resolution is too high (around 1 milliseconds).

When time unit is changed through the call to this function, the content of the GRAPE-6

memory becomes inconsistent with the time unit, and if individual timestep is used, all \j-particles"

should be resent.

5.3.2 g6 set xunit

void g6_set_xunit(int newxunit)

subroutine g6_set_xunit(newxunit)

integer newxunit

Similar to g6 set tunit, but gives the binary point for space coordinate. The default is again

51, which is good if the size of the system is order unity. If your system is much larger or much

smaller, you should change the default value accordingly.

5.4 Sending data to memory

5.4.1 g6 set j particle

int g6_set_j_particle(int clusterid,

int address,

int index,

double tj, /* particle time */

double dtj, /* particle time */

double mass,

double a2by18[3], /* a2dot divided by 18 */

double a1by6[3], /* a1dot divided by 6 */

double aby2[3], /* a divided by 2 */

double v[3], /* velocity */

double x[3] /* position */)

integer function g6_set_j_particle(clusterid, address, index, tj, dtj, mass,

a2by18, a1by6, aby2, v, double x)

integer clusterid, address, index

double precision tj, dtj, mass, a2by18(3), a1by6(3), aby2(3), v(3), x(3)

This function sends the so-called j-particle data to the memory unit of GRAPE-6. x, v, aby2,

a1by6, a2by18 are position, velocity, half of the acceleration, 1/6 of the �rst time derivative of the

14

acceleration, and 1/18 of the second time derivative. These must all be the arrays of size three.

tj, dtj and mass are the time, timestep and mass of the particle. address is the location in the

GRAPE-6 memory to store the particle, starting from index 0, and index is the identi�er for the

particle itself, which may be di�erent from address above.

The time and timestep must be acceptable for the blockstep algorithm, which means that the

timestep must be the powers of two (negative values allowed, but smaller than the time resolution

set by g6 set tunit should result in an error). Also the time must be an exact integer multiple of

the timestep.

Note that the GRAPE-6 predictor unit can make use of the second time derivative of the force,

unlike the GRAPE-4 predictor unit which can use only up to the �rst time derivative. If the

application program cannot provide the second time derivative, it must give the pointer of the

array with size three �lled with zeros.

The parameter index is introduced to GRAPE-6 to achieve

� Inhibition of the self-interaction base on particle identity

� Easier use of the neighbor list than GRAPE-3/4/5

The function g6calc firsthalf also has this index as an argument. Thus, if the indices are

the same, the accumulation of the result is skipped on hardware. Thus, e�ectively, one can achieve

something like the following:

C calculate the force on particle i from all other particles

do j = 1, n

if (index(i) .ne. index(j)) then

C do the actual force calculation

endif

enddo

The functions for the neighbor list will return the list of particles using this index, and not the

location of the particles in the memory as used to be so on older GRAPE systems. This should

make the application program somewhat simpler, in particular when the number of particles is

larger than what �ts on the memory of GRAPE-6.

5.4.2 g6 set j particle mxonly

int g6_set_j_particle_mxonly(int clusterid,

int address,

int index,

double mass,

double x[3] /* position */)

integer function g6_set_j_particle_mxonly(clusterid, address, index, mass,x)

integer clusterid, address, index

double precision mass, x(3)

This function works in the same way as g6 set j particle except that it sets only mass and

position. This is handy if the application does not uses the predictor.

15

5.4.3 g6
ush jp bu�er

int g6_flush_jp_buffer(int clusterid, int size)

subroutine g6_flush_jp_buffer(clusterid)

This function
ushes the data in the DMA bu�er for j-particles. Should be called before

fasthalf/lasthalf pair, if any j-particle was sent using g6 set j particle (or its variant) in DMA

mode (g6 initialize jp buffer called).

5.5 Setting current time for individual timestep algorithm

5.5.1 g6 set ti

void g6_set_ti(int clusterid, double ti)

subroutine g6_set_ti_(clusterid, ti)

integer clusterid

double precision ti

This function sets the present time (t

i

) for the predictor unit.

5.6 Force calculation

5.6.1 g6calc �rsthalf

void g6calc_firsthalf(int clusterid,

int nj,

int ni,

int index[],

double xi[][3],

double vi[][3],

double fold[][3],

double j6old[][3],

double phiold[],

double eps2,

double h2[])

subroutine g6calc_firsthalf(clusterid, nj, ni, index, xi, vi, fold,

j6old, phiold, eps2, h2)

integer clusterid, nj, ni, index(*),

double precision xi(3,*), vi(3,*), fold(3,*), j6old(3,*), phiold(*),

eps2, h2(*)

This function just calls g6 set ip scales, g6 set i particle, g6 set nip and g6 set njp in that

order. In other words, it sets the necessary scalings for i-particles, sends them to GRAPE-6, set

number of particles (both i and j) and starts the calculation. Note that fold, j6old and phiold

are used to determine the scaling. Therefore, they should have the value corresponding to the

particle.

The application program can calculate the force by calling this function and g6calc lasthalf

in that order.

16

5.6.2 g6calc lasthalf

int g6calc_lasthalf(int clusterid,

int nj,

int ni,

int index[],

double xi[][3],

double vi[][3],

double eps2,

double h2[],

double acc[][3],

double jerk[][3],

double pot[])

integer function g6calc_lasthalf(clusterid, ni, nj, index, xi, vi,

eps2, h2, acc, jerk, pot)

integer clusterid, nj, ni, index

double precision xi(3,*), vi(3,*), eps2, h2(*), acc(3,*), jerk(3,*), pot(*)

This function waits for the end of calculation and retrieves the calculated result. In the case

of the scaling error, this function tries to adjust the scaling factors appropriately and retries the

calculation. If some hardware error occurs and is detected, this function returns non-zero value.

Otherwise the return value is zero.

5.6.3 g6calc lasthalf2

int g6calc_lasthalf2(int clusterid,

int nj,

int ni,

int index[],

double xi[][3],

double vi[][3],

double eps2,

double h2[],

double acc[][3],

double jerk[][3],

double pot[],

int nnbindex[])

integer function g6calc_lasthalf2(clusterid, ni, nj, index, xi, vi,

eps2, h2, acc, jerk, pot, nnbindex)

integer clusterid, nj, ni, index, nnbindex(*)

double precision xi(3,*), vi(3,*), eps2, h2(*), acc(3,*), jerk(3,*), pot(*)

Same as g6calc lastfalf except that this function returns nnbindex, the indices for the

nearest neighbours.

17

5.7 Neighbour list

5.7.1 g6 read neighbour list

int g6_read_neighbour_list(int clusterid)

integer function g6_read_neighbour_list(clusterid)

integer clusterid

This function transfers the content of the hardware neighbor list of GRAPE-6 to the working

memory of the interface library. Return value of zero means successful completion, �1 some internal

error and 1 over
ow of the hardware neighbour list memory. This function must be called only

once after g6 calc (or g6calc lasthalf) is called.

5.7.2 g6 get neighbour list

int g6_get_neighbour_list_(int clusterid,

int ipipe,

int maxlength,

int * nblen,

int nbl[])

integer function g6_get_neighbour_list(clusterid, ipipe, maxlength, nblen, nbl)

integer clusterid ipipe maxlength nblen, nbl(*)

This function extracts the actual neighbor list of particle calculated for particle ipipe from

the working memory of the interface library prepared by g6 read neighbour list. The argument

maxlength gives the size of the array nbl. Return value of zero means successful completion and

1 over
ow. On successful return, nblen has the length of the neighbour list and nbl actual list

(sorted by the indices).

5.8 High-level function for shared-timestep algorithm

5.8.1 calculate accel by grape6 separate trial noopen

int calculate_accel_by_grape6_separate_trial_noopen(int clusterid,

int ni,

double xi[][3],

double vi[][3],

int nj,

double xj[][3],

double vj[][3],

double m[],

double a[][3],

double jerk[][3],

double pot[],

double eps2)

This function, for historical compatibility reasons, does not have Fortran interface. This function

is designed as a quick shortcut to use GRAPE-6 with simple shared-timestep code, which do not

18

need predictors and time derivatives of accelerations. Ni, xi, vi are the number of particles,

position and velocity on which the accelerations are calculated, and here ni can be arbitrary large

number (not limited to 48). Nj, xj, vj, m are the number of particles, position, velocity and

mass of the particles that exert accelerations. A, jerk, pot are the calculated results and eps2

is the softening parameter.

This routine, as well as calculate accel by grape6 noopen, use g6 guestimate acc etc in-

ternally. So use them with care. You can control the use of g6 guestimate acc etc by calling

g6 set calculate accel scaling mode

5.8.2 calculate accel by grape6 noopen

int calculate_accel_by_grape6_noopen(int clusterid,

int n,

double x[][3],

double v[][3],

double m[],

double a[][3],

double jerk[][3],

double pot[],

double eps2)

This is similar to calculate accel by grape6 separate trial noopen, but calculates the self-

interaction in direct summation and see if the force symmetry is achieved (if the total acceleration

of the system is zero or not). If the test failed, it assumes that there may be some hardware error,

and retry the same calculation.

5.9 Low level functions

5.9.1 g6 reset

int g6_reset_(int *clusterid)

subroutine g6_reset(clusterid)

integer clusterid

Performs the hardware reset. Usually one need not use this function, except for error recovery.

5.9.2 g6 reset fofpga

int g6_reset_fofpga_(int *clusterid)

subroutine g6_reset_fofpga(clusterid)

integer clusterid

Force the reinitialization of all FPGA devices on board at the next call of g6 open. See the

section of error recovery for details.

19

5.9.3 g6 npipes

int g6_npipes_()

integer function g6_npipes

Returns the number of pipelines available on the particular GRAPE-6 system in use. In most

cases, it just returns 48, the number of physical pipelines per chip. In future, there may be some

version of multi-cluster library which returns di�erent numbers.

5.9.4 g6 set nip

void g6_set_nip_(int * clusterid, int * nip)

subroutine g6_set_nip(clusterid, nip)

integer clusterid, nip

Set the number of particles on which the forces (etc) are calculated. The maximum value for

nip is 48, which is the number of virtual pipelines per chip. At least currently, the range of the

arguments are not checked. So the application programmer has the responsibility to put them

within the allowed range.

5.9.5 g6 set njp

void g6_set_njp_(int * clusterid, int * njp)

subroutine g6_set_njp(clusterid, njp)

integer clusterid, njp

This function sets the number of the particles on the memory to on-chip registers of GRAPE-6.

As a side e�ect, it let GRAPE-6 start the calculation.

5.9.6 g6 set i particle scales from real value

void g6_set_ip_scales_(int * clusterid,

int *address,

double acc[3],

double jerk[3],

double *phidouble *jfactor,

double *ffactor)

subroutine g6_set_ip_scales(clusterid, address, acc, jerk, phi,

jfactor, ffactor)

integer clusterid, address

double precision acc(3), jerk(3), phi, jfactor, ffactor

This function sets the binary point for the internal accumulator for force etc. GRAPE-6 per-

forms the accumulation of the force etc is done in �xed-point format, in order to simplify the

hardware and yet extend e�ective accuracy. Therefore, the hardware should know where to place

the binary point before starting the calculation, and in order to do so the library function should

know approximate size of force (etc). A good guess is the values at the previous timestep, and

therefore within the time integration routine one can just pass the actual values of acceleration,

jerk and potential to this routine.

20

Two additional parameters, jfactor and ffactor, are both used to allow more subtle control

on the scaling of jerk. While acceleration and potential are accumulated in 64-bit format, jerk is

accumulated in 32 bit. Thus, in order to allow reasonable accuracy, I chose the margin for jerk

much smaller than that for acceleration and potential. The parameter jfactor is used to change

the margin. The passed values of jerk is multiplied by jfactor before being used to calculate the

scale. Thus, suppling jfactor larger than unity signi�cantly reduce the chance of over
ow, but

might result in slightly less accurate value of jerk. I do not recommend the use of jfactor > 10.

The parameter ffactor is used to calculate the scale for jerk from the acceleration. To be

speci�c, the scaling factor is calculated by

jmax = fabs(jerk[k])*(*jfactor) + fabs(acc[k])*(*ffactor);

This parameter is used to further reduce the chance of over
ow. Since the jerk is the time derivative

of the acceleration, acceleration divided by the timestep would give pretty good upper limit for the

jerk.

For the �rst call, the use of this function is a bit problematic, since the application program

might not have good knowledge on how larger is the force on a particle. In this case, I'd recommend

to initialize the arrays for acceleration etc with fairly large values and then do the force calculation

twice. In the �rst call, a good guess for the actual value is obtained. However, the calculated force

itself should not be used, since the binary point might be inappropriate.

5.9.7 g6 adjust ip scales

void g6_adjust_ip_scales_(int * clusterid,

int *address,

int * flagp)

subroutine g6_adjust_ip_scales(clusterid, address, flagp)

integer clusterid, address, flagp

Even if the scaling factors is set according to the previous values, the calculated result might still

over
ow in some rare cases, and if you integrate N -body system long enough, every \rare case"

would show up. This function adjust the scaling factors for particular (i-)particle, according to the

ag returned by the function g6 get force.

5.9.8 g6 set i particle

void g6_set_i_particle_(int * clusterid,

int *address,

int *index,

double x[3], /* position */

double v[3], /* velocity */

double * eps2,

double * h2)

subroutine g6_set_i_particle(clusterid, address, index, x, v, eps2, h2)

integer clusterid, address, index,

double precision x(3), v(3), eps2, h2

21

T his function sends the data of particles on which the force etc are to be calculated. The argument

address is the location within GRAPE-6 register �les, and it should be within the range of [0; 47].

The meaning of the index is described in the section for g6 set j particle. Eps2 is the softening

parameter squared. Setting this zero would not cause error, if index is correctly handled, since the

self-interaction is avoided through this index. H2 is the radius of the neighbor sphere.

5.9.9 g6 get force

int g6_get_force_(int * clusterid,

double acc[][3],

double jerk[][3],

double phi[],

int flag[])

integer function g6_get_force(clusterid, acc, jerk, phi, flag)

integer clusterid, flag(*)

double precision acc(3,*),jerk(3,*), phi(*)

This function returns the calculated result. If the calculation is not �nished, it waits until the end.

If non-zero value is returned, it means some error and that the recalculation is required. The

meaning of the non-zero error code is not speci�ed yet. Arguments acc, jerk, phi are the

calculated acceleration, jerk and potential, respectively. Flag indicates the status. The function to

analyze and report
ags will be supplied soon.

5.9.10 g6 get force etc

int g6_get_force_etc_(int * clusterid,

double acc[][3],

double jerk[][3],

double phi[],

int nnbindex[],

int flag[])

integer function g6_get_force_etc(clusterid, acc, jerk, phi, nnbindex, flag)

integer clusterid, flag(*), nnbindex(*)

double precision acc(3,*),jerk(3,*), phi(*)

Essentially the same as g6 get force, except that this function returns the indices of the

nearest neighbours in nnbindex as well. Note that the returned indices are NOT the memory

memory address but the index set by g6 set i particle.

5.9.11 g6 guestimate acc etc

void g6_guestimate_acc_etc(int n,

double eps2,

double m[],

double a[][NDIM],

double j[][NDIM],

double p[])

22

This function is not really for public use, but listed here for completeness. The only thing this

function does is to assign some \reasonable" values for force, jerk and potential so that they would

not cause
oating point error when they passed to actual GRAPE-6 library. The use of this function

is discouraged. As stated before, the application programmer should provide a good guess for force

etc. before passing them to g6calc firsthalf .

5.9.12 g6 set calculate accel scaling mode

int g6_set_calculate_accel_scaling_mode(int mode);

As stated earlier, by default calculate accel by grape6 separate** functions calls g6 guestimate acc etc

internally. You can suppress the call by calling g6 set calculate accel scaling mode with

mode=0 before calling calculate accel by grape6 separate**. By calling this function with

mode=1 you can restore the default mode.

6 Example

6.1 Shared timestep

The following code evaluates accelerations on NI particles from other NJ particles by direct sum-

mation.

int calculate_accel_by_grape6_separate_trial_noopen(int clusterid,

int ni,

double xi[][3],

double vi[][3],

int nj,

double xj[][3],

double vj[][3],

double m[],

double a[][3],

double jerk[][3],

double pot[],

double eps2)

{

#define IPLIMIT MAXPIPELINESPERCHIP

double ajtmp[3];

double jjtmp[3];

double j2jtmp[3];

double ti, tj, dtj;

int j0, i0;

int i,k,ii, iend;

int flag[MAXPIPELINESPERCHIP+1];

int index[MAXPIPELINESPERCHIP+1];

double h2[MAXPIPELINESPERCHIP+1];

double eps2array[MAXPIPELINESPERCHIP+1];

int nharderror = 0;

int ipmax = g6_npipes();

ti = 0.0;tj =0.0; dtj = 0.0078125;

for(k=0;k<3;k++){

ajtmp[k] = 0.0;

jjtmp[k] = 0.0;

23

j2jtmp[k] = 0.0;

}

START:

g6_set_ti(clusterid, 0.0);

for(i=0;i<nj;i++){

g6_set_j_particle_mxonly(clusterid,i,i,m+i,xj[i]);

}

for(i=0;i<ipmax;i++){

h2[i] = eps2;

eps2array[i] = eps2;

}

g6_flush_jp_buffer(clusterid);

for(i=0;i<ni;i+=ipmax){

int error;

iend = ipmax; if (iend+i > ni) iend = ni-i;

for(ii=0;ii<iend;ii++)index[ii]=i+ii;

g6calc_firsthalf(clusterid, nj, iend,index,&(xi[i]),&(vi[i]),&(a[i]),&(jerk[i]),

pot+i,eps2, h2);

if (error = g6calc_lasthalf(clusterid,nj,iend,index,&xi[i],&vi[i],eps2,h2,

&a[i], &jerk[i], pot+i)){

nharderror ++;

fprintf(stderr,"(calculate_accell_trial_noopen) hard error %d\n", error);

g6_reinitialize(clusterid);

if (nharderror < 10){

goto START;

}else{

fprintf(stderr,"(calculate_accell_trial_noopen) too many errors... %d returning -1\n", nharderror);

return -1;

}

}

}

return 0;

}

6.2 Block timestep

The following is a C++ example to show some idea...

6.2.1 Initialization

g6_open(0);

g6_initialize_jp_buffer(0,nbody);

for(int i=0;i<nbody;i++)if (pb[i].get_grape_index() == -1) {

pb[i].set_timestep(0.0078125);

pb[i].set_grape_index(i);

}

vector j218 = vector(0.0,0.0,0.0);

particle * bi = pb;

for(int i = 0; i<nbody; i++){

vector j6 = bi->get_old_jerk()*ONE_SIXTH;

vector a2 = bi->get_old_acc()*0.5L;

g6_set_j_particle(grape6_id,bi->get_grape_index(),

bi->get_index(),

24

bi->get_time(),

bi->get_timestep(),

bi->get_grape_mass(),

(real*)&j218,

(real*)&j6,

(real*)&a2,

(real*)bi->pget_vel(),

(real*)bi->pget_pos());

bi++;

}

}

6.2.2 Force calculation

void calculate_acc_and_jerk_for_list_on_grape6(particle_system* ps,

particle* pb,

int nbody,

int nbh,

node_time* nt,

int n_next,

real eps2)

{

int error;

do{

error = 0;

if (grape6_open == 0) {

// actual initialization should be performed here...

}

real sys_t = nt[0].next_time;

for (int i = 0; i < n_next; i++) {

particle *bi = nt[i].pptr;

bi->predict_loworder(sys_t);

}

g6_set_ti(grape6_id,sys_t);

for (int i = 0; i < n_next; i+= npipes) {

particle *bi = nt[i].pptr;

int np = npipes;

if (i+np > n_next) np = n_next - i;

for (int ii = 0; ii < np; ii++){

particle *bi = nt[i+ii].pptr;

gindex[ii] = bi->get_index();

xi[ii] = bi->get_pred_pos();

veli[ii] = bi->get_pred_vel();

acci[ii] = bi->get_acc();

jerki[ii] = bi->get_jerk();

poti[ii] = bi->get_pot();

}

if ((np > 0) && (error == 0))

g6calc_firsthalf(grape6_id,nbody, np, gindex,

cvector xi, cvector veli, cvector acci, cvector jerki,

poti, eps2, h2i);

if ((np > 0) && (error == 0)){

error = g6calc_lasthalf(grape6_id, nbody, np, gindex,

25

cvector xi, cvector veli, eps2, h2i,

cvector acci, cvector jerki, poti);

if (error){

error = 1;

}else{

for (int ii = 0; ii < np; ii++){

particle *bi = nt[i+ii].pptr;

bi->set_acc(acci[ii]);

bi->set_jerk(jerki[ii]);

bi->set_pot(poti[ii]);

}

}

}

}

if (error){

cerr << "GRAPE hardware error" <<endl;

grape6_reinitialize(grape6_id);

grape6_open = 0;

}

}while (error);

}

6.3 Update memory

void particle_system::update_grape_data(int n_next)

{

vector j218 = vector(0.0,0.0,0.0);

for (int i = 0; i < n_next; i++) {

particle *bi = nt[i].pptr;

vector j6 = bi->get_jerk()*ONE_SIXTH;

vector a2 = bi->get_acc()*0.5L;

g6_set_j_particle(grape6_id,bi->get_grape_index(),

bi->get_index(),

bi->get_time(),

bi->get_timestep(),

bi->get_grape_mass(),

(real*)&j218,

(real*)&j6,

(real*)&a2,

(real*)bi->pget_vel(),

(real*)bi->pget_pos());

}

g6_flush_jp_buffer(grape6_id);

}

7 Error recovery

As you can see in the previous example and in some of the routines, they might return error, and

the application program has to handle these errors to continue calculation.

In particular, if non-zero value is returned by g6calc lasthalf, it almost always implies an

intermittent hardware error. The following code fragment shows the error recovery section of

26

nbody1 with multi-cluster support.

do ic = 1, g6ncluster

if (g6error(ic) .eq. 1) then

write(6,*) 'GRAPE-6 hard error on cluster', ic

do jj = 1, g6ncluster

call g6_reinitialize(jj-1)

call g6_set_ti(jj-1,time)

enddo

do i = nbh+1, n

call g6_set_j_particle(g6jcid(i),g6jcloc(i), i,

$ t0(i), step(i), mharp(i), j2,

$ fdot(1,i), f(1,i), x0dot(1,i), x0(1,i))

enddo

goto 1500

endif

enddo

The idea is just to reset the hardware and send all data again if any error occurred. Since the

error is intermittent, on the second try the error would normally vanish. If there is real hardware

problem, well, contact your friend with hardware knowledge...

8 Neighbour list

As it was with previous GRAPE hardwares, GRAPE-6 also has the hardware support to construct

the list of neighbours for each particle. The use of this function, however, is not \fool-proof".

The basic use is quite simple. When calling firsthalf/lasthalf pair, you specify the radius

for the neighbour search. The GRAPE-6 hardware then constructs the list during calculation, and

tt read neighbourfget neighbour pair returns the actual neighbour list.

The problem is what one should do if the neighbour list over
ows. You should check for the

over
ow by testing the return value of the function g6 read neighbour list. If the return value

is 1, the list is probably not correct.

Well, it is di�cult to give a universal procedure to recover from the over
ow, since there are

variety of reasons why the over
ow occurs.

So let me here explain how the GRAPE-6 hardware handles the neighbour list. Though from

the application's viewpoint there is only 48 pipelines, a single GRAPE-6 cluster might consist of

up to 256 GRAPE-6 chips. Logically, each of these 256 chips have 48 pipelines, and all of them

calculate the forces on the same set of 48 particles, but from di�erent subset of particles you send

to the memory of GRAPE-6. In other words, the \GRAPE-6 memory" is actually partitioned to

small memories which are local to each GRAPE-6 chip.

The storage for the neighbour list is also local to each chip. Each chip has three memory units

for the neighbour list, each of which is shared by 16 pipelines. They can hold up to 256 particles.

Thus, if any of the memory units in any of the processor chip is over
own, at least the lists for the

16 particles which share the memory unit in question can be incomplete.

In most cases, this is not a very severe limitation. A single board with 32 chips can store 8192

neighbours for 16 particles. So even if there is no overlap between the neighbour lists for these 16

particles, one particle can, on average, up to 512 neighbours without causing over
ow. This is true

only if the neighbours are distributed evenly on di�erent chips, which, I hope, is mostly the case.

If you need, on average, more than 16n neighbours per particle on n-chip system, the only safe

way is to reduce the number of particles you send with firsthalf. If you send just one particle, it

27

can use all memories which is normally shared by 16 particles. So it can have up to 256n neighbours,

which should be okay for most applications. If you need even more, well, it is probably faster if

you construct the neighbour list on frontend using tree...

If you need, say, less than 4n neighbours on average, the over
ow must be very rare. The

simplest solution (well, at least for me, but probable also for you) is to construct the neighbour

lists on frontend. If the over
ow is su�ciently rare, O(N) operation on host should not cause much

performance penalty.

If you want to be smarter, you could have a routine which set h2 to be all zero but for one

particle, and calculate the force and neighbour list for that particle. In this way, the probability

of over
ow is very small, but still not zero. So you still need a next level of backup routine which

calculates the neighbour list on the frontend.

Unless you see performance problem, I'd recommend the simple solution of to construct the

neighbour list on the frontend when over
ow occurs.

9 TIMESHARING

The grape6 interface o�ers a rather primitive method for sharing the GRAPE-6 hardware by several

programs running simultaneously. A program acquires GRAPE-6 by calling g6 open. If someone

is already using GRAPE-6, g6 open prints some message and put the process into the sleep state.

When the hardware is released, the process is waken up and g6 open returns. A program can

release GRAPE-6 by calling g6 close. Thus, a program occupies GRAPE-6 hardware between the

calls to g6 open and g6 close.

In order to attain the sharing of GRAPE-6 between multiple users, therefore, programmers

must write their program so that it releases GRAPE-6 at an reasonable time interval, which is

around 1 minutes.

10 LINKING (Local Information)

On EV6 machines (In Hongo, currently neomuscat and alexandria), use:

-L/usr2/makino/disk3src/harplibs -lg6 -lg6sim2 -lm

Alexandria is a Linux box. In order to run a program on this machine, compile and link your

program on neomuscat, port or margaux , with -non shared
ag passed to ld. This binary should

also work on neomuscat, which is a Tru64 UNIX (aka Digital UNIX) box. You can also compile on

neomuscat.

On EV5 machines (In Hongo, currently bourgogne only), use:

-L/usr2/makino/disk3src/harplibs -lg6_ev5 -lg6sim2 -lm

On Linux-x86 machines (In Hongo, currently g6hostx), use:

-L/usr2/makino/disk3src/harplibs -lg6lx -lg6lxsim2 -lm

Currently, only g++/g77 compilers are available on x86 Linux boxen. I plan to try Intel or

PGI.

These are temporary and subject to change.

28

Note that bourgogne *does not* have a f77 compiler. You can compile fortran programs on

neomuscat. If you want to run your program on bourgogne, which is currently an EV5 box, you'd

better to supply \-arch ev5 -tune ev5" options to prevent EV6 native instructions to be emitted

by the compiler.

11 RUN-TIME SUPPORT

The present library reads the system con�guration �le during initialization. This feature makes it

possible to use the same executable on machines with di�erent number of chips or boards. The

con�guration �le has the information of defective (or nonexistent) chips on board. In addition, the

number of processor boards is supplied from the environment variable. The necessary environment

variables are set by sourcing the �le /usr2/makino/disk3src/harplibs/set envs. Add in your

.cshrc �le the line

source /usr2/makino/disk3src/harplibs/set envs

DO NOT make your local copy of this �le, since the content of this �le may change without

notice.

12 Sample programs

So far, three programs which make use of GRAPE-6 exist.

12.1 grape6

grape6 is a simple shared-timestep direct-summation program. Its source �les live in /usr2/makino/src/grape.

The make�le for this program is Makefile.grape6. The source �le is not too easy to read, since

it's the result of the evolution since the days of GRAPE-1...

Anyway, you can run the program by:

/usr2/makino/src/grape/grape6 /usr2/makino/src/grape/testparm2x

The output would look like:

(read_config_file) MAXCHIP, NCHIP = 16 16, CHIPS:

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

testing LED ...

LED test end.

(send_fpga_data) file to open: /usr2/makino/src/grape6board/processor_board/fo_unit_with_fifo_2p.ttf

(send_fpga_data) file to open: /usr2/makino/src/grape6board/processor_board/fo_unit_2p.ttf

(send_fpga_data) file to open: /usr2/makino/src/grape6board/processor_board/fo_unit_2p.ttf

(send_fpga_data) file to open: /usr2/makino/src/grape6board/pb_jp/cbfin.ttf

(send_fpga_data) file to open: /usr2/makino/src/grape6board/processor_board/fo_unit_with_fifo_rh.ttf

(send_fpga_data) file to open: /usr2/makino/src/grape6board/processor_board/fo_unit_with_fifo_rh.ttf

(send_fpga_data) file to open: /usr2/makino/src/grape6board/processor_board/fo_unit_with_fifo_rh.ttf

(send_fpga_data) file to open: /usr2/makino/src/grape6board/processor_board/fo_unit_with_fifo_rh.ttf

(send_fpga_data) file to open: /usr2/makino/src/grape6board/processor_board/fo_unit_with_fifo_rh.ttf

enter n, dt, tstop, dtout, dtsnapout, eps, pesample:

LONG F format read

Enter out_snap file name(~ for no output)

29

enter scales for x and v:enter power index for rho = r\^\{-p\}:enter omega:CPU sec.= 7.43

T= 0.000 E = -0.266529909

DE= 0.00000000e+00 V.R. = 0.244443

initialize_grape6, retcode = 0

argc = 2, argv[1]=/usr2/makino/src/grape/testparm2x

Readinf DOUBLE parameters....

n=8192 dt= 0.0312 tstop= 5.000 dtout= 0.250 dtsnapout= 0.031

eps= 0.25000 pesample=8

output snap = ~

x, v scale factor = 1.000000 0.200000 power = 0.000000 omega=0.800000

Etot = -0.404249 1.616996 0.786404

Enter diag:CPU sec.= 7.43

T= 0.000 E = -0.266529909

DE= 0.00000000e+00 V.R. = 0.244443

CM : 1.87567e-17 -2.35949e-17 2.78504e-17

CMV:-1.39456e-17 -6.74916e-18 -8.18234e-19

AM : 2.44037e-03 -8.75096e-04 -4.04957e-01

Exit diag:CPU sec.= 7.44

CPU sec.= 8.52

T= 0.250 E = -0.266529875

DE=-1.28383736e-07 V.R. = 0.246534

Enter diag:CPU sec.= 8.52

T= 0.250 E = -0.266529875

DE=-1.28383736e-07 V.R. = 0.246534

CM : 2.64545e-17 -3.08998e-17 2.51061e-17

CMV:-2.38524e-18 -1.23057e-17 -1.66357e-18

AM : 2.44037e-03 -8.75096e-04 -4.04957e-01

Exit diag:CPU sec.= 8.52

CPU sec.= 9.60

T= 0.500 E = -0.266529766

DE=-5.34901433e-07 V.R. = 0.253028

Enter diag:CPU sec.= 9.60

T= 0.500 E = -0.266529766

DE=-5.34901433e-07 V.R. = 0.253028

CM : 8.55164e-18 -4.96294e-17 3.81842e-17

CMV:-1.08556e-17 8.26704e-19 -5.11947e-18

AM : 2.44037e-03 -8.75096e-04 -4.04957e-01

Exit diag:CPU sec.= 9.61

CPU sec.= 10.69

T= 0.750 E = -0.266529566

DE=-1.28686658e-06 V.R. = 0.264026

Enter diag:CPU sec.= 10.69

T= 0.750 E = -0.266529566

DE=-1.28686658e-06 V.R. = 0.264026

CM : 1.21295e-17 -3.98173e-17 1.91633e-17

CMV:-1.27123e-17 -1.13164e-17 4.09964e-19

AM : 2.44037e-03 -8.75096e-04 -4.04957e-01

Exit diag:CPU sec.= 10.69

30

CPU sec.= 11.78

T= 1.000 E = -0.266529238

DE=-2.51785768e-06 V.R. = 0.279704

Enter diag:CPU sec.= 11.78

T= 1.000 E = -0.266529238

DE=-2.51785768e-06 V.R. = 0.279704

CM : 1.30646e-17 -3.74321e-17 2.04914e-17

CMV: 5.57009e-18 -7.43356e-18 -1.31121e-18

AM : 2.44037e-03 -8.75096e-04 -4.04957e-01

Exit diag:CPU sec.= 11.78

CPU sec.= 12.86

T= 1.250 E = -0.266528718

DE=-4.46870731e-06 V.R. = 0.300321

Enter diag:CPU sec.= 12.86

T= 1.250 E = -0.266528718

DE=-4.46870731e-06 V.R. = 0.300321

CM : 8.13152e-20 -5.15267e-17 2.80131e-17

CMV:-7.42678e-18 -7.54198e-18 2.98494e-18

AM : 2.44037e-03 -8.75096e-04 -4.04957e-01

Exit diag:CPU sec.= 12.87

CPU sec.= 13.95

T= 1.500 E = -0.266527893

DE=-7.56231468e-06 V.R. = 0.326237

Enter diag:CPU sec.= 13.95

T= 1.500 E = -0.266527893

DE=-7.56231468e-06 V.R. = 0.326237

CM : 6.92873e-18 -4.38560e-17 2.48791e-17

CMV:-9.89334e-18 -5.29226e-18 -2.58514e-18

AM : 2.44037e-03 -8.75096e-04 -4.04957e-01

Exit diag:CPU sec.= 13.95

CPU sec.= 15.04

T= 1.750 E = -0.266526574

DE=-1.25127809e-05 V.R. = 0.357927

Enter diag:CPU sec.= 15.04

T= 1.750 E = -0.266526574

DE=-1.25127809e-05 V.R. = 0.357927

CM : 9.88657e-18 -1.52330e-17 2.93226e-17

CMV:-4.43168e-18 -1.79097e-17 -6.33581e-19

AM : 2.44037e-03 -8.75096e-04 -4.04957e-01

Exit diag:CPU sec.= 15.04

CPU sec.= 16.12

T= 2.000 E = -0.266524499

DE=-2.02997490e-05 V.R. = 0.395985

Enter diag:CPU sec.= 16.12

T= 2.000 E = -0.266524499

DE=-2.02997490e-05 V.R. = 0.395985

CM : 2.45563e-17 -6.04172e-17 2.43209e-17

CMV: 1.04354e-18 2.92057e-18 -1.01712e-17

31

AM : 2.44037e-03 -8.75096e-04 -4.04957e-01

Exit diag:CPU sec.= 16.13

CPU sec.= 17.21

T= 2.250 E = -0.266521847

DE=-3.02470587e-05 V.R. = 0.440989

Enter diag:CPU sec.= 17.21

T= 2.250 E = -0.266521847

DE=-3.02470587e-05 V.R. = 0.440989

CM : 1.48875e-17 -5.50775e-17 2.72044e-17

CMV:-1.58836e-17 -3.45589e-19 -4.31648e-18

AM : 2.44037e-03 -8.75096e-04 -4.04957e-01

Exit diag:CPU sec.= 17.21

CPU sec.= 18.29

T= 2.500 E = -0.266524723

DE=-1.94587790e-05 V.R. = 0.492597

Enter diag:CPU sec.= 18.29

T= 2.500 E = -0.266524723

DE=-1.94587790e-05 V.R. = 0.492597

CM :-6.35614e-18 -5.10117e-17 1.12926e-17

CMV: 4.55365e-18 -1.06049e-17 1.79571e-18

AM : 2.44037e-03 -8.75096e-04 -4.04957e-01

Exit diag:CPU sec.= 18.30

CPU sec.= 19.38

T= 2.750 E = -0.266569675

DE= 1.49178145e-04 V.R. = 0.544339

Enter diag:CPU sec.= 19.38

T= 2.750 E = -0.266569675

DE= 1.49178145e-04 V.R. = 0.544339

CM :-3.93023e-18 -5.45760e-17 1.72761e-17

CMV:-1.30985e-17 5.14996e-18 3.81842e-18

AM : 2.44037e-03 -8.75096e-04 -4.04957e-01

Exit diag:CPU sec.= 19.38

CPU sec.= 20.46

T= 3.000 E = -0.266596553

DE= 2.49980823e-04 V.R. = 0.576093

Enter diag:CPU sec.= 20.46

T= 3.000 E = -0.266596553

DE= 2.49980823e-04 V.R. = 0.576093

CM :-8.60585e-18 -7.16929e-17 2.26056e-17

CMV:-1.44199e-17 -6.89824e-18 -1.09132e-17

AM : 2.44037e-03 -8.75096e-04 -4.04957e-01

Exit diag:CPU sec.= 20.47

CPU sec.= 21.55

T= 3.250 E = -0.266566256

DE= 1.36352907e-04 V.R. = 0.586571

Enter diag:CPU sec.= 21.55

T= 3.250 E = -0.266566256

DE= 1.36352907e-04 V.R. = 0.586571

32

CM : 1.58971e-17 -5.20010e-17 4.50994e-17

CMV: 4.58075e-18 4.91957e-18 7.93839e-18

AM : 2.44037e-03 -8.75096e-04 -4.04957e-01

Exit diag:CPU sec.= 21.55

CPU sec.= 22.63

T= 3.500 E = -0.266572612

DE= 1.60192107e-04 V.R. = 0.591606

Enter diag:CPU sec.= 22.63

T= 3.500 E = -0.266572612

DE= 1.60192107e-04 V.R. = 0.591606

CM : 2.15079e-17 -7.04122e-17 2.40998e-17

CMV:-1.62224e-17 -4.33681e-18 5.67512e-18

AM : 2.44037e-03 -8.75096e-04 -4.04957e-01

Exit diag:CPU sec.= 22.64

CPU sec.= 23.72

T= 3.750 E = -0.266583967

DE= 2.02781044e-04 V.R. = 0.591086

Enter diag:CPU sec.= 23.72

T= 3.750 E = -0.266583967

DE= 2.02781044e-04 V.R. = 0.591086

CM : 5.27193e-18 -7.40493e-17 1.45080e-17

CMV:-4.45878e-18 -8.29415e-18 -5.85808e-18

AM : 2.44037e-03 -8.75096e-04 -4.04957e-01

Exit diag:CPU sec.= 23.72

CPU sec.= 24.81

T= 4.000 E = -0.266573960

DE= 1.65247645e-04 V.R. = 0.580252

Enter diag:CPU sec.= 24.81

T= 4.000 E = -0.266573960

DE= 1.65247645e-04 V.R. = 0.580252

CM :-9.96111e-18 -7.44711e-17 1.76318e-17

CMV:-7.45389e-19 -6.91179e-18 -2.19890e-18

AM : 2.44037e-03 -8.75096e-04 -4.04957e-01

Exit diag:CPU sec.= 24.81

CPU sec.= 25.90

T= 4.250 E = -0.266555207

DE= 9.49058810e-05 V.R. = 0.560385

Enter diag:CPU sec.= 25.90

T= 4.250 E = -0.266555207

DE= 9.49058810e-05 V.R. = 0.560385

CM : 1.63579e-17 -6.38460e-17 2.36339e-17

CMV:-2.85145e-17 -9.93400e-18 5.25499e-18

AM : 2.44037e-03 -8.75096e-04 -4.04957e-01

Exit diag:CPU sec.= 25.90

CPU sec.= 26.98

T= 4.500 E = -0.266542816

DE= 4.84248779e-05 V.R. = 0.536870

Enter diag:CPU sec.= 26.98

33

T= 4.500 E = -0.266542816

DE= 4.84248779e-05 V.R. = 0.536870

CM :-7.83336e-18 -7.74120e-17 2.45445e-17

CMV:-9.85269e-18 -1.29020e-17 -4.65190e-18

AM : 2.44037e-03 -8.75096e-04 -4.04957e-01

Exit diag:CPU sec.= 26.98

CPU sec.= 28.07

T= 4.750 E = -0.266538246

DE= 3.12788341e-05 V.R. = 0.514305

Enter diag:CPU sec.= 28.07

T= 4.750 E = -0.266538246

DE= 3.12788341e-05 V.R. = 0.514305

CM :-1.46367e-18 -6.38053e-17 1.26218e-17

CMV:-5.25838e-18 -5.43456e-18 -1.29867e-17

AM : 2.44037e-03 -8.75096e-04 -4.04957e-01

Exit diag:CPU sec.= 28.07

CPU sec.= 29.15

T= 5.000 E = -0.266539550

DE= 3.61696770e-05 V.R. = 0.494341

Enter diag:CPU sec.= 29.15

T= 5.000 E = -0.266539550

DE= 3.61696770e-05 V.R. = 0.494341

CM :-9.41731e-18 -6.57027e-17 1.44555e-17

CMV:-4.45878e-18 7.45389e-19 2.54449e-18

AM : 2.44037e-03 -8.75096e-04 -4.04957e-01

Exit diag:CPU sec.= 29.16

Errors: jp, ip, ecc, ecc(u), cm = 0 0 0 0 0

12.2 nbody1

nbody1 is a basic individual- (block-) timestep integrator. The particular version of nbody1 with

GRAPE-6 support lives in source �les live in /usr2/makino/src/bhnbody1. The make�le for this

program is Makefile.grape6. The source �le is again not too easy to read, since it's the result of

the evolution since the days of GRAPE-2...

Anyway, you can run the program by:

/usr2/makino/src/bhnbody1/nbody1_g6 < /usr2/makino/src/bhnbody1/samplein

The output would look like:

G6NCLUSTER = 1

N NBH NRAND ETA DELTAT TCRIT QE CUTOFF

200 0 42 0.02 0.1 0.5 0.00001 0.00

34

OPTIONS 0 2 0 2 1 0 0 0 0 1

data n = 2048

Body end

X end

V end

exit data

call g6open

(read_config_file) MAXCHIP, NCHIP = 16 16, CHIPS:

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

testing LED ...

LED test end.

(send_fpga_data) file to open: /usr2/makino/src/grape6board/processor_board/fo_unit_with_fifo_2p.ttf

(send_fpga_data) file to open: /usr2/makino/src/grape6board/processor_board/fo_unit_2p.ttf

(send_fpga_data) file to open: /usr2/makino/src/grape6board/processor_board/fo_unit_2p.ttf

(send_fpga_data) file to open: /usr2/makino/src/grape6board/pb_jp/cbfin.ttf

(send_fpga_data) file to open: /usr2/makino/src/grape6board/processor_board/fo_unit_with_fifo_rh.ttf

(send_fpga_data) file to open: /usr2/makino/src/grape6board/processor_board/fo_unit_with_fifo_rh.ttf

(send_fpga_data) file to open: /usr2/makino/src/grape6board/processor_board/fo_unit_with_fifo_rh.ttf

(send_fpga_data) file to open: /usr2/makino/src/grape6board/processor_board/fo_unit_with_fifo_rh.ttf

(send_fpga_data) file to open: /usr2/makino/src/grape6board/processor_board/fo_unit_with_fifo_rh.ttf

return g6open

fpoly0, eps2 = 1.000000000000000E-006 npipe = 48

ic, nj = 1 2048

Errors: jp, ip, ecc, ecc(u), cm = 0 0 0 0 0

T = 0.000 Q = 0.50 STEPS = 0 0 0

DE= 0.000E+00 0.000E+00 E = -0.25066

CM : -0.130498E-07 -0.978288E-08 -0.265915E-07

CMV : 0.510450E-08 -0.886712E-09 -0.433698E-09

AM : -0.838052E-02 -0.543369E-03 0.823090E-02

new eta = 2.200000000000000E-002

CPU min = 0.122586

Number of pipes = 48

intgrt, 0.125244140625000 0.125000000000000

CPU min = 0.141260

Errors: jp, ip, ecc, ecc(u), cm = 0 0 0 0 0

T = 0.125 Q = 0.50 STEPS = 55332 774 0

DE= 2.535E-08 -5.050E-08 E = -0.25066

CM : 0.196896E-08 -0.416279E-08 -0.218563E-08

CMV : 0.439653E-08 -0.483714E-09 -0.118700E-08

AM : -0.838052E-02 -0.543364E-03 0.823092E-02

new eta = 2.420000000000000E-002

CPU min = 0.141276

Number of pipes = 48

intgrt, 0.250488281250000 0.250000000000000

35

CPU min = 0.157315

Errors: jp, ip, ecc, ecc(u), cm = 0 0 0 0 0

T = 0.250 Q = 0.50 STEPS = 103030 1600 0

DE= 1.270E-08 -7.582E-08 E = -0.25066

CM : -0.272468E-08 -0.172687E-07 0.233900E-08

CMV : 0.372973E-08 -0.493510E-08 -0.741453E-08

AM : -0.838052E-02 -0.543359E-03 0.823092E-02

new eta = 2.662000000000000E-002

CPU min = 0.157331

Number of pipes = 48

intgrt, 0.375122070312500 0.375000000000000

CPU min = 0.171825

Errors: jp, ip, ecc, ecc(u), cm = 0 0 0 0 0

T = 0.375 Q = 0.50 STEPS = 146129 2218 0

DE= 1.458E-08 -1.049E-07 E = -0.25066

CM : 0.238592E-08 -0.286509E-09 -0.960970E-08

CMV : 0.273282E-08 0.490193E-08 -0.218992E-07

AM : -0.838054E-02 -0.543361E-03 0.823092E-02

new eta = 2.928200000000001E-002

CPU min = 0.171841

Number of pipes = 48

intgrt, 0.500244140625000 0.500000000000000

CPU min = 0.185635

Errors: jp, ip, ecc, ecc(u), cm = 0 0 0 0 0

T = 0.500 Q = 0.50 STEPS = 186832 2713 0

DE= 2.113E-08 -1.471E-07 E = -0.25066

CM : 0.366066E-08 -0.332199E-08 -0.149043E-07

CMV : 0.225550E-08 0.159237E-08 -0.219382E-07

AM : -0.838053E-02 -0.543371E-03 0.823092E-02

new eta = 3.221020000000001E-002

CPU min = 0.185668

Number of pipes = 48

intgrt, 0.625122070312500 0.625000000000000

CPU min = 0.198616

Errors: jp, ip, ecc, ecc(u), cm = 0 0 0 0 0

T = 0.625 Q = 0.50 STEPS = 224995 3309 0

DE= 7.072E-09 -1.612E-07 E = -0.25066

CM : -0.215099E-08 -0.329190E-08 -0.834841E-08

CMV : -0.187221E-08 -0.532395E-08 -0.378905E-07

AM : -0.838054E-02 -0.543368E-03 0.823092E-02

new eta = 3.543122000000001E-002

TIME = 0.63 TCOMP = 0.20 KZ(1) = 0

36

12.3 Kira

Kira is a rather fancy N -body integration program specialized to star clusters, with the capability

to handle stellar evolution, binary evolution, stellar collisions, galactic tidal �elds and all the

\realistic" additional physics. This program will however need some separate documentation...

13 Known bugs and problems

13.1 g77 fails to link...

g77 fails to link the library, complaining that there is no such functions like g6 open .

This is because of a rather unusual feature of g77, which adds additional second underscore to

names of functions which has one or more underscores in the middle. To avoid this problem, use

the option -fno-second-underscore when compiling your Fortran programs.

13.2 g6calc �rsthalf and/or g6calc lasthalf fails with SIGFPE

Libraries with date before Sept 26, 2001 contains this bug. If you are using older library, please

update it to newer one.

14 LIMITATIONS

Maximum number of particles which can be stored is 262144�n, where n is the number of boards

in a cluster.

15 FAQs

Q1: My program produces a lot of messages like the following:

(g6_test_flag) scaling error 2da00

(g6calc_lasthalf) overflow for 3 2da00 24 16165 48-- change scales

(adjust_ip_scales) decrimenting scale for jerk-333

Is this something I should care?

A: This message means that the initial guess for force, jerk or potential (in the above case, it's

jerk) was too small and it caused the over
ow of the result. The lasthalf routine automatically

recalculates the force after decrementing the scaling index by 5 (increasing the scale factor by 32).

In the above message, \3" and \2da00" are things I do not quite want to explain, and \24" is

the index (within i-particle array) of the particle which resulted the over
ow. \16165" is the index

of that same particle speci�ed in the argument of �rsthalf, and \48" is the number of i-particles.

The last number, \-333" is the new value of the scale factor (which by itself is not too useful).

It's hard to avoid the scaling error completely since jerk sometimes changes by very large factor

even if time integration goes �ne. However, if you see too many of them, in particular the repeated

one for one force calculation, it is likely that your initial guess is too far from the true one. You

might want to try a better way to make the initial guess.

AUTHOR

Junichiro Makino

37

