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Abstract

We developed a parallelized version of the extrapolation method to integrate ordinary di�er-

ential equations. A simple technique made its load balance among processors equal. In case

of a computer with 4 processors, our method runs roughly 3 to 3.5 times as fast as the original

method without any loss of accuracy. This method is suitable to study the orbital dynamics

by personal computers or workstations with 2{4 processors which will be widely available in

the near future.

1. Introduction

The extrapolation method is one of the most powerful methods to integrate numerically the

ordinary di�erential equations [1]. It is often used in the orbital and rotational dynamics where

an extremely high precision is required [2]. We note that calculation for di�erent stepsizes can be

executed by di�erent processors independently. Namely, the extrapolation method can be well

parallelized. In this paper we present a parallelized extrapolation method and show its application

to the orbital dynamics of the solar system.

Extrapolation method [3] solves the ordinary di�erential equations of �rst order in two stages:

(1): Determine the order p and the basic stepsize H. Set the sub stepsizes h

i

(i = 1; 2; . . . ; p) as

h

i

= H=(2n

i

). Integrate the equation using h

i

by an appropriate integration method, and obtain

the corresponding solutions Y

i

. (2): Using Y

i

and h

i

(i = 1; 2; . . . ; p), extrapolate the true solution

Y

1

where h

i

! 0 by a certain extrapolation technique (we used the polynomial extrapolation of

Aitken-Neville [4] here). As for the integration method in the stage (1), the modi�ed mid-point

rule is often utilized since it has a character of h

i

2

-convergence. As for the selection of n

i

, the

harmonic sequence n

i

= 1; 2; 3; 4; . . . ; is generally recommended [5]. In addition, we can reduce

round-o� errors as much as a few digits by rewriting the formula of increment of y

j

[6].

2. Implementation

The implementation of the extrapolation method for parallel computers is simple. Each Y

i

can be

calculated in parallel because all the calculations to obtain Y

i

is completely independent with each

other. The computational load of Y

i

is roughly proportional to i when the harmonic sequence of

n

i

is selected. To achieve the equal load balance among processors, we use folding of sequence

of tasks and distribute load equally to each processor. For example in the case of 4-processor

machine, Y

1

and Y

8

are for processor 1, Y

2

and Y

7

are for processor 2, and so on. For the numerical

integration of planetary motions in double precision, p is usually set as 8. We performed all the

calculations as p = 8 below.
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Fig.1: Acceleration by Parallel Execution of Test Integrations
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Fig.2: System Size Dependence of Acceleration

Figure 1. Acceleration by parallel execution of test integrations. E�ect of the number of processors (left)

and system size dependence of acceleration (right).

We can easily estimate an ideal acceleration factor by the parallelism. Let n

p

be the number of

processors used. Suppose that the total load is 1 + 2 + � � � + 8 = 36. When n

p

< 4, the ideal

acceleration is just n

p

owing to the equal load balance. When n

p

� 5, the bottleneck to assign

a processor to Y

8

keeps the acceleration factor 36=8 = 4:5 independently of n

p

. Our numerical

results shows a similar trend as this estimation.

3. Numerical results

We applied the parallelized extrapolation method to the numerical integration of celestial bodies in

the solar system by using the vector/parallel supercomputer FUJITSU VPP300/16R in National

Astronomical Observatory, which has 16 processors. We performed the numerical experiments

using 2{8 processors, and compared the total computational time in the sense of elapsed time

with that of single processor. Typical results are shown in Figure 1 left together with the ideal

acceleration factors mentioned above. The system we considered consists of Sun, Jupiter, and

asteroids in the main belt. We adjusted the total number of celestial bodies N by changing the

number of asteroids. In Figure 1 left, the acceleration factor, which we de�ne by the ratio of the

computational time of parallel execution to that of sequential one, increases almost proportionally

to the number of processors n

p

when n

p

= 2; 3, and 4. In these cases, the load balance becomes

equal. However in the case of n

p

� 5, the load balance becomes worse. Since the heaviest load Y

8

is the bottleneck, the acceleration factors for the case of n

p

= 5; 6; 7 and 8 are nearly the same;

they do not increase even if n

p

is increased. In short, there is no need to prepare 8-processor

machines to calculate the 8-th order extrapolation method. A 4-processor machine is su�cient

for the 8-th order method.

Dependence on system size: The size of system is another important factor on the e�ciency

of the parallel algorithm. To inspect it, we changed the number of celestial bodiesN and compared

the computational time between the sequential calculation and the parallel calculation using 4-

processors. The dependence is clear in Figure 1 right. The larger the system size (N) is, the

higher the e�ciency of parallelism is. This is quite a natural result, because the mostly time-

consuming part in the extrapolation method is which takes O(N

2

) amount of calculation, while

the other parts take only O(N) amount of calculation.
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Fig.3: Acceleration by Parallel Extrapolation
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Fig.4: Effect of Adaptive Control of Stepsize
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Figure 2. Acceleration by parallel extrapolation (left) and the e�ect of adaptive control of stepsize (right).

E�ect of parallelism in the extrapolation stage: In addition to parallelize the tasks of force

evaluation (stage (1)), we can also parallelized the extrapolation stage (2) with respect to the

number of celestial bodies N , instead of the sub stepsizes h

i

. Figure 2 left shows the ratio of the

acceleration factor using the parallel extrapolation to that using the sequential extrapolation in

the case of 4-processor calculation. The amount of speed-up is not so large, but apparently the

e�ect is signi�cant in cases of small N .

E�ect of adaptive control of stepsize: In the case of the highly eccentric orbits such as

those of the long-periodic comets, we need adaptive methods where H and/or p vary in the midst

of integration. To inspect the e�ciency of parallelization in the adaptive (variable H) cases, we

performed numerical experiments including a celestial body with a highly eccentric orbit. Their

results are shown in Figures 2 right. The e�ciency of parallelism is hardly dependent on whether

the extrapolation method is adaptive or not. This is quite reasonable because the computational

amount of the procedure to determine a new H is only of O(N). As for the determination of new

H, we have adopted the method of Hairer et al. (1993).

4. Conclusion

By means of the technique described here, the extrapolation method is well parallelized even for

small systems. Even in the small scale scalar-multiprocessor machines as 4-processor without

vector units, the method described here can well be applicable. In addition, accuracy of the

method does not change at all by the parallelism. The prominent character of extrapolation

method | extremely high accuracy | is kept unaltered.
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