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Stability of the solar system has been a terribly challenging problem over several hundred

years. We performed long-term numerical experiments to inspect the stability of the solar

system by using a fast computation algorithm, mixed variable symplectic integrator. Our

results show that the inner planets, as well as outer planets, exhibit the macroscopic stability

over the timespan of �2:5�10

8

years; variational amplitudes and mean values of the orbital

elements are almost the same during the integration period, though the system appear

chaotic in the viewpoint of Lyapunov characteristic exponent. From now on we have to

investigate how stable the solar system is, and what made the solar system so stable, by

using some kinds of semi-analytical numerical simulations.

Introduction

Although stability of the solar system has been discussed over several hundred years, since

the era of Newton, we do not yet have any de�nite answer whether it is stable or not. It is

partly due because the de�nition of the phrase \stability" is quite vague when it is used on the

problem of planetary motion in the solar system. Actually it is pretty di�cult to give a rigorous

de�nition of the stability of the solar system, and as Poincar�e showed a century ago, there is

no quasi-periodic solution of the equations of motion of the planets over the in�nite timespan.

Besides, the planetary motion of the solar system is recently being reputed chaotic (Sussman &

Wisdom, 1992; Laskar, 1990), and there occurs terrible confusion that \since planetary system

is chaotic, it is not stable."

However, there seems to be no explicit relationship between the stability and the chaotic

character of the planetary motion (Kinoshita & Nakai, 1995). And more, only we want to know

is the stability of the �nite timespan, �5 � 10

9

years. So in this paper, we only concentrate

on the variational width of the orbital elements, especially eccentricity e and inclination I. For

example, if the variational width of the eccentricity �e (maximum e � minimum e during the

period T

1

from the present) is not so di�erent from �e after a long interval T

2

(T

2

� T

1

),

and the mean value of e does not vary much during T

2

, we say that the motion of the planet

is stable (of course the inclination I must satisfy such conditions). In this paper, we put the

total integration period T

2

= �2:5 � 10

8

years, and performed numerical experiments of the

gravitational few-body problem to inspect the stability of the solar system planets. In the

case of outer planets it is already well done (cf. Kinoshita and Nakai (1995), �5:5 � 10

9

-year

calculation has been done), and it end up with that the outer planetary system is completely

stable in the timespan of the age of the solar system (Fig. 1). However, the case of inner planets

has not been fully inspected due to its heavy task of numerical computation.
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Methods

Physical models we have used to describe the planetary system is the simplest one; planets

are represented by point masses, and only classical gravitational force is considered. We took

nine planets from Mercury to Pluto into account. E�ect of the moon is restricted and bunched

into the mass of the earth. Initial conditions are taken from the development ephemeris of

JPL, DE245 (cf. Standish (1990)). Detailed con�guration of our numerical experiments are

summarized in Table 1.

As the numerical integration method to solve the equations of motion, we utilized MVS,

mixed variable symplectic integrator (Kinoshita et al., 1991; Wisdom & Holman, 1991). MVS

utilizes the separation character of Hamiltonian H = H

Kepler

+H

interaction

, and is quite suitable

integration method for the actual planetary motion which is very close to the Keplerian problem

(i.e. perturbation between planets is very small). It is an order of magnitude faster than the

former integration methods. Low-pass �ltering to smooth out the short periodic terms (Quinn

et al., 1991) is not used.
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Figure 1. Plots of the orbits of outer �ve planets during past �5:5 � 10

9

years (Kinoshita &

Nakai, 1995). Ascending node of Pluto is �xed on the x-axis in this �gure. From innermost,

Jupiter, Saturn, Uranus, Neptune, and Pluto respectively. Spatial unit of each axis is AU. Time

interval of each plot is 2� 10

7

days (about 54757 years).
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Table 1. Detailed con�guration of our numerical experiments.

Objects nine planets (Mercury to Pluto) and Sun

Physical models point masses, only classical gravitation

Earth-moon system point mass on baricenter of the earth-moon system

Integration period about �2:5� 10

8

years

Integration method MVS, second order

Time step 10 days

Initial conditions DE245

Solver of Kepler equation Halley's method, third order

Output interval 200000 days (about 547 years)

Output �ltering none

Machines JCC JP4/133 (PowerPC 604 133MHz)

Language ANSI C

Total calculation time about 6 months

Data amount about 2Gbyte

Results

Results of our calculations are shown form Figure 2 to 10. In a word, planetary systems,

both outer and inner, are quite stable in the sense we mentioned before. It is typically shown

in the frequency domain, Figure 7 to 10. Though you can see some peaks in the high frequency

(short periodic) region, typical frequencies which characterize the quasi-periodic motion of the

planets indicate little changes of over the integration period. In addition, they well agree with

the results of the secular perturbation theory of Laskar (1985, 1986, 1988).

Error estimation

Total energy and angular momentum are very well preserved when we use the symplectic

integrators. In our calculations, relative error of total energy

dE

E

0

= O(10

�10

) and relative

error of angular momentum

dL

L

0

= O(10

�14

). As for the error estimation of the longitude,

we performed a time-reversal numerical experiment for 300000 years. A measure calculation

is done using a time step of 0:125 days, and the result of time-reversal test for this measure

calculation is �l

Earth

' 0:0015

�

on the mean longitude of the earth, which can be extrapolated

to �l

Earth

' 25

�

for 5 Gyr calculation. Using this result, we can estimate the longitude error

of main experiments for 5 Gyr calculation as �l

Earth

' 20 rotations. Similarly, longitude error

of Pluto can be estimated as �l

Pluto

' 12

�

, which is much better than that of Kinoshita and

Nakai (1995) where �l

Pluto

' 60

�

.

Although error of 20 rotations seems rather large, what we are interested in is not the accu-

rate positions of the orbits but the variational amplitudes of the elements. In this viewpoint,

longitude error of several tens of rotations may be tolerable in our calculations.
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Figure 2. Plots of inner four planets for each �ve million years. From innermost, Mercury,

Venus, Earth, and Mars, respectively. (a)+50 million years after present, (b)present, (c)�50

million years ago, (d)�100 million years ago, (e)�150 million years ago, (f)�200 million years

ago. Spatial unit of each axis is AU. Time interval of each plot is about 20000 years.
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Figure 7. Spectrum diagram of eccentricity and inclination of Mercury. Horizontal axis denotes

period (years). Top ones are the results of secular perturbation theory of Laskar (1988). Middle

ones are +220 myr future, and bottom ones are �270 myr past. Duration of data acquisition

is about �ve million years.
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Figure 8. Spectrum diagram of eccentricity and inclination of Venus. Horizontal axis denotes

period (years). Top ones are the results of secular perturbation theory of Laskar (1988). Middle

ones are +220 myr future, and bottom ones are �270 myr past. Duration of data acquisition

is about �ve million years.
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Figure 9. Spectrum diagram of eccentricity and inclination of Earth. Horizontal axis denotes

period (years). Top ones are the results of secular perturbation theory of Laskar (1988). Middle

ones are +220 myr future, and bottom ones are �270 myr past. Duration of data acquisition

is about �ve million years.
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Figure 10. Spectrum diagram of eccentricity and inclination of Mars. Horizontal axis denotes

period (years). Top ones are the results of secular perturbation theory of Laskar (1988). Middle

ones are +220 myr future, and bottom ones are �270 myr past. Duration of data acquisition

is about �ve million years.
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Discussion

From the long-term numerical calculation described here, we can conclude that the planetary

motions (both inner and outer) are macroscopically stable, at least in a timespan of �2:5� 10

8

years. We have done two kinds of experiments using di�erent kinds of initial condition, and

the results are almost the same; though the system is chaotic in the viewpoint of Lyapunov

characteristic exponent, variable ranges and the mean values of each orbital element are virtually

the same during the integration period, i.e., the system is macroscopically stable.

From now on we have to tackle with remaining problems. First, physical models must be

improved toward more realistic ones. E�ect of the general relativity, tidal force from the moon

should be included in the next calculation. Second, it is necessary to speed up the numerical

computation. Since a �2:5�10

8

-year calculation took over half a year using the fastest worksta-

tion we can use here, �5� 10

9

-year calculation requires several years, which is not durable. In

addition, we must not degrade the accuracy of the calculation. Though these two are ambivalent

tasks for any numerical experiments, it is necessary to achieve them to decode the dynamical

evolution of the solar system.

There are some important points to notice. From these calculations, what we can get is the

information of the ancient (or future) �gure of the solar system under the present boundary

conditions. We do not know how stable it is, nor why it became so stable, even if the calculational

results show the macroscopic stability over a very long timespan. We are now planning to

perform new experiments to inspect how stable the planetary system is by using the semi-

analytical secular perturbation theory (Kozai, 1985; Nakai & Kinoshita, 1985; Yoshikawa, 1989).

And more, our ultimate interest reaches to the question why the solar system became so stable,

or in another word, what the making process of such a stable planetary system was. Answers

to these question are beyond our hands for now, but numerous researches are now started in

various ways (cf. Gladman (1993)). It is also quite signi�cant to solve the problem of the

stability of the planetary system in view of the existing probability of terrestrial planets on

which life can survive and evolve.
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