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Abstract The circular restricted three-body problem, particularly its doubly averaged version, has been very well studied
in celestial mechanics. Despite its simplicity, circular restricted three-body systems are suited for modeling the motion
of various objects in the solar system, extrasolar planetary systems, and in many other dynamical systems that show
up in astronomical studies. In this context, the so-called Lidov–Kozai oscillation is well known and applied to various
objects. This makes the orbital inclination and eccentricity of the perturbed body in the circular restricted three-body
system oscillate with a large amplitude under certain conditions. It also causes a libration of the perturbed body’s argument
of pericenter around stationary points. It is widely accepted that the theoretical framework of this phenomenon was
established independently in the early 1960s by a Soviet Union dynamicist (Michail L’vovich Lidov) and by a Japanese
celestial mechanist (Yoshihide Kozai). Since then, the theory has been extensively studied and developed. A large variety
of studies has stemmed from the original works by Lidov and Kozai, now having the prefix of “Lidov–Kozai” or “Kozai–
Lidov.” However, from a survey of past literature published in late nineteenth to early twentieth century, we have confirmed
that there already existed a pioneering work using a similar analysis of this subject established in that period. This was
accomplished by a Swedish astronomer, Edvard Hugo von Zeipel. In this monograph, we first outline the basic framework
of the circular restricted three-body problem including typical examples where the Lidov–Kozai oscillation occurs. Then, we
introduce what was discussed and learned along this line of studies from the early to mid-twentieth century by summarizing
the major works of Lidov, Kozai, and relevant authors. Finally, we make a summary of von Zeipel’s work, and show that
his achievements in the early twentieth century already comprehended most of the fundamental and necessary formulations
that the Lidov–Kozai oscillation requires. By comparing the works of Lidov, Kozai, and von Zeipel, we assert that the
prefix “von Zeipel–Lidov–Kozai” should be used for designating this theoretical framework, and not just Lidov–Kozai or
Kozai–Lidov. This justifiably shows due respect and appropriately commemorates these three major pioneers who made
significant contributions to the progress of modern celestial mechanics.
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1. Introduction
Solar system dynamics has a large diversity of aspects. We

know that it encompasses many complicated and unsolved
problems. But we also know that it is filled with rich and in-
teresting characteristics of nonlinear dynamical systems. In
spite of the general complexity of solar system dynamics,
it is also true that the orbital motion of many of the solar
system objects can be fairly well approximated by perturbed
Keplerian motion, and the magnitude of perturbation is usu-
ally moderate or small. This is due to the existence of the
very strong gravity from a massive central body, the Sun.
The major source of the gravitational perturbation against the
two-body Keplerian motion is the planets.

Having the feature of this kind as a background, the re-
stricted three-body problem (hereafter referred to as R3BP),
a variant of the general three-body problem, often becomes a
good proxy in solar system dynamics. In R3BP, the mass of

one of the three bodies is assumed to be so small that it does
not affect the motion of the other two bodies at all. There-
fore, R3BP is particularly appropriate when we deal with the
orbital motion of small objects (such as asteroids, comets,
transneptunian objects, natural and artificial satellites) under
the perturbation resulting from the major planets.

When the massive two bodies compose a circular bi-
nary in R3BP, the problem is particularly called the circu-
lar restricted three-body problem (hereafter referred to as
CR3BP). In spite of its very simple setting, we can still use
CR3BP as a good proxy in many cases in solar system dy-
namics. This is mainly due to the moderate to very small
eccentricity of the major planets in the current solar system.
Thanks to its simple configuration and small degrees of free-
dom, CR3BP has played an important role in the develop-
ment of analytic perturbation theories, and it is still applied
to many subjects in modern celestial mechanics. As we will
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see later in greater detail, we can reduce the degrees of free-
dom of CR3BP into unity through the double averaging pro-
cedure of the disturbing function (a function that represents
the perturbing force). This makes the system integrable, and
it enables us to obtain a global picture of the perturbed (third)
body’s motion, even when the perturbed body’s eccentricity
or inclination is substantially large.

Based on the integrable characteristics of the doubly aver-
aged CR3BP, the theory of the so-called Lidov–Kozai oscil-
lation has emerged. This is the major subject of this mono-
graph. Chronologically speaking, a Soviet Union dynami-
cist, Michail L’vovich Lidov, found in 1961 that, when deal-
ing with the motion of Earth-orbiting satellites under the per-
turbation from other objects as CR3BP, the satellites’ argu-
ment of pericenter can librate around ±π

2 when their initial
orbital inclination is larger than a certain value. The eccen-
tricity and inclination of the perturbed body exhibit a syn-
chronized periodic oscillation under this circumstance. Al-
most at the same time, a Japanese celestial mechanist, Yoshi-
hide Kozai, dealt with the motion of asteroids orbiting inside
Jupiter’s orbit as CR3BP, and found in 1962 that, an aster-
oid’s argument of perihelion can librate around ±π

2 when
its initial orbital inclination is larger than a certain value.
The two works by Lidov and Kozai turned out to be theo-
retically equivalent, and the dynamical phenomenon is now
collectively referred to as the Lidov–Kozai oscillation. Note
that although we basically use the term “oscillation” in the
present monograph, many other different terms have been
used for the same phenomenon in the literature, such as
“mechanism,” “resonance,” “cycle,” “effect,” and so on. See
Section 6.2.5 for more detail about the choice of terms.

After the series of publications by Lidov and Kozai in the
1960s, this dynamical phenomenon became better known,
and found applications in the fields of astronomy, planetary
science, and astronautics. Their theories have been applied
not only to the long-term motion of Earth-orbiting satellites
that Lidov considered or the secular asteroidal dynamics that
Kozai pursued in their era, but also to the motion of other so-
lar system objects such as irregular satellites, various comets,
near-Earth asteroids, and transneptunian objects. In particu-
lar, the discovery of extrasolar planets and their orbital con-
figurations of a great variety resulted in a recognition that
the Lidov–Kozai oscillation has played a significant role in
the evolution of these dynamical systems. The development
of the Lidov–Kozai oscillation still goes on, incorporating
higher-order perturbations and more subtle and complicated
physical effects such as general relativity and the combina-
tion with mean motion resonances. Recent application of
the Lidov–Kozai oscillation even extends to stellar dynam-
ics, and its theory is employed for explaining various prob-
lems such as formation of some kind of binaries and triple
star systems, merger mechanism of binary black holes, mod-
eling the galactic tide, and so forth.

Part of the purpose of this monograph is to outline how
the Lidov–Kozai oscillation works, who developed the the-
ory, and in what way. We will briefly mention what kind
of applications have been considered since the era of Lidov
and Kozai up to the present. However, this is not our pre-

dominant aim. In this monograph, we wish to draw atten-
tion to the fact that a pioneering work in this line of study
had been carried out long before the era of Lidov and Kozai.
More specifically, most of the basic ingredients that Lidov or
Kozai presented for the doubly averaged CR3BP, including
the necessary condition of argument of pericenter’s libration,
had been already recognized, quantitatively investigated, and
published on journals by 1910. This was accomplished by a
Swedish astronomer, Hugo von Zeipel.

As far as our investigation shows, the work by von Zeipel
in 1910 has been ignored and buried in oblivion for a long
time, regardless of its substantial significance and excellent
foresight in solar system dynamics. The major purpose of
this monograph is to validate the correctness of von Zeipel’s
work, and to redirect the attention of the relevant commu-
nities to this pioneering study that was established and pub-
lished at the beginning of the twentieth century.

The complete table of contents for this monograph is in
its online version. Supplementary Information 1 also gives
the same table with specific page number information. For
readers who do not particularly specialize in the dynamical
aspects of astronomy or planetary science, Section 2 sum-
marizes what CR3BP is and what kind of phenomena the
Lidov–Kozai oscillation causes, employing simple numeri-
cal demonstrations. In the following sections, we will review
the achievements of Lidov and Kozai by summarizing two
classic papers: Kozai (1962) in Section 3, and Lidov (1961)
in Section 4. We will also browse through an earlier work
on CR3BP in the former Soviet Union (Moiseev, 1945a,b) in
Section 4. Finally in Section 5, we summarize von Zeipel’s
work published in 1910. This is the kernel of this mono-
graph. Section 6 presents discussions, but it also includes
additional matters of even earlier works by von Zeipel. Read-
ers that are already familiar with the work by Kozai or Lidov
may want to skip Sections 2, 3, 4, and proceed straight to
Section 5. Yet, readers should note that in Sections 5 and 6
we often refer to facts, equations, and figures described in
Sections 2, 3, 4. Also, note that Sections 3, 4, and 5 are not
placed in chronological order. We place them in the order
that these works gained recognition. Although Lidov (1961)
was published earlier than Kozai (1962), Kozai’s work began
gaining attention earlier than Lidov’s work. Whereas von
Zeipel’s work was published much earlier than the others, it
has not been recognized to this day.

In this monograph we basically use the conventional nota-
tion for the Keplerian orbital elements: a for semimajor axis,
e for eccentricity, and I or i for inclination. As for argument
of pericenter and longitude of ascending node, we prefer the
notation used for the Delaunay elements (g and h, respec-
tively), rather than the conventional ones (ω and �). But
sometimes we use ω and �, particularly in Section 4, be-
cause Lidov uses ω and �, not g and h. We use the standard
notations L , G, H for the actions of the Delaunay elements.
We use l for mean anomaly, and n for mean motion.

Note that there are several notations in this monograph that
may cause confusion among readers. Examples are:

• In von Zeipel’s work, therefore in our Section 5, he

doi:10.5047/meep.2019.00701.0001 c© 2019 TERRAPUB, Tokyo. All rights reserved.



T. Ito and K. Ohtsuka: The Lidov–Kozai Oscillation and Hugo von Zeipel 3

uses the symbol � for denoting one of the Delaunay
elements (� = G cos i), instead of the conventional
notation H . He uses the symbol H for denoting another,
different angle in his work.

• In Kozai’s work, therefore in our Section 3, � is used
for denoting an important, but totally different quantity.

• H, a calligraphic style of H , is sometimes used for de-
noting Hamiltonian in this monograph (e.g. Eq. (32)).

• G, a calligraphic style of G, denotes the gravitational
constant in this monograph (e.g. Eqs. (9) and (10)).

For avoiding potential clutter and confusion, we try to give
definitions of the variables used in this monograph as clearly
as possible whenever they first show up, or whenever they
are used in different meanings than before.

As for the equation numbering, we try to follow the ways
used in the original literature as much as possible. More
specifically, when we cite equations that show up in one of
the following literature, we give them the following designa-
tions in this monograph: “K” for Kozai (1962), “L” for Lidov
(1961), “Mb” for Moiseev (1945b), or “Z” for von Zeipel
(1910) + equation number in the original publication + “-”
+ sequential equation number in this monograph. Here are
some examples of our equation numbering:

• Eq. (28) in Kozai (1962) → (K28-84)

• Eq. (2.16) in Moiseev (1945b) → (Mb2.16-126)

• Eq. (7) in Lidov (1961) → (L07-136)

• Eq. (103) in von Zeipel (1910) → (Z103-341)

Other equations in this monograph that do not have a leading
K, L, M, or Z in their equation number are either those which
do not appear in the above literature, or those which appear
without equation number in the above literature. Also, some-
times we cite page numbers, section and subsection numbers,
and chapter numbers of the above literature in the same man-
ner such as “p. K592” (designating p. 592 of Kozai (1962))
or “Section Z1” (designating Section 1 of von Zeipel (1910)).

In this monograph we cite many publications written in
non-English language such as French, German, Swedish,
Russian, and Japanese. We basically reproduced their bib-
liographic information using their original language in the
References section (p. 102–112). However, use of the Cyril-
lic alphabets and the Japanese characters is prohibited in the
main body of the monograph due to a technical limitation
about font in the LATEX typesetting process by the publisher.
Because of this, for listing the literature that uses the Cyrillic
and Japanese characters in the Reference section, we trans-
lated their bibliographic information into English. But we
believe that the bibliographic information of the non-English
literature written in their original language is quite valuable
for the readers of this monograph. Another point to note
is that, some hyperlinks to the Uniform Resource Locators
(URLs) embedded in the References section do not properly
function, although the URLs themselves are correct. This is

due to another technical limitation in this monograph’s LATEX
typesetting process. For these two reasons we have created a
more complete, alternative bibliography for this monograph
using the Cyrillic and Japanese characters with fully func-
tional hyperlinks. We put it in Supplementary Information 2
which is free from the technical limitations.

This monograph minimizes the use of URLs in the text
mainly due to the technical limitation of embedded hyper-
links mentioned above. We also wanted to avoid clutter by
having many complicated URLs that often become sources
of distractions. Instead, in Supplementary Information 3 we
made a list of the URLs of relevant websites that we mention
in this monograph, such as orbital databases of the small so-
lar system bodies. On the other hand, most of the literature
listed in the References section of this monograph are ac-
companied by explicit URLs that are hyperlinked to each of
their online resources.

Now that the Lidov–Kozai oscillation has gained a great
popularity, a number of good review papers and textbooks
that deal with the fundamentals and applications of this
phenomenon in substantial depth have been published (e.g.
Morbidelli, 2002; Merritt, 2013; Davies et al., 2014; Naoz,
2016). A doctoral dissertation (Antognini, 2016) that en-
tirely devotes itself to the study of this phenomenon is also
publicly available. Readers who have a deeper interest in
the Lidov–Kozai oscillation, and those who want to seek fur-
ther applications of the theory, can consult these works. In
addition, a textbook that totally dedicates itself to the Lidov–
Kozai oscillation has been recently published (Shevchenko,
2017). As expected, we found that the contents of some part
of this monograph (particularly Sections 3 and 4) overlap
with Shevchenko (2017). We included these two sections
in this monograph to state our own view of what Kozai and
Lidov achieved, as well as what they did not, in the light of
von Zeipel’s publications. In other words, the major purpose
of this monograph is to sketch and highlight the similarities
and differences between the works of Kozai, Lidov, and von
Zeipel. Hence we need our Sections 3 and 4.

2. Preliminaries: What We Consider
This section presents a simple illustration of the system

that we deal with in this monograph—the circular restricted
three-body problem. Our intention is to facilitate readers’
understanding of what we discuss in later sections.

The two-body problem is integrable, and has an exact an-
alytic solution—the Keplerian motion described by various
conic sections. However, just by adding one more mass to
the system, the system ceases to have such a general solu-
tion. The three-body problem is not integrable, and we have
no exact analytic solution except in very few special cases.
This fact was already known at the end of the nineteenth
century. Bruns (1887) proved the algebraic non-integrability
of the general three-body problem. Poincaré (1890) soon
gave a proof of the non-existence of an integral in the re-
stricted three-body system: The analytic non-integrability of
the restricted three-body problem was proven. However, we
should recall that it is this very non-integrability of the three-
body problem that has resulted in a large number of interest-
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Fig. 1. Schematic illustrations of the three-body system that we consider in this monograph. a: Relative geometric configuration of a three-body system
centered at the primary mass (P). See Section 2.2 for the meanings of the symbols (rrr , r ′r ′r ′, m, m′, S). b: Three typical patterns of the restricted three-body
problem. (i) The inner problem where the perturbed body’s orbit (the green ellipse) lies inside the orbit of the perturbing body (the black ellipse). (ii)
The outer problem where the perturbed body’s orbit (the green ellipse) lies outside the orbit of the perturbing body (the black ellipse). (iii) When two
bodies behave like the rings of a chain. Note that the phrase “like the rings of a chain” is adopted from von Zeipel (1910, “comme les anneaux d’une
chaı̂ne” on p. 378, and “comme deux anneaux d’une chaı̂ne” on p. 413).

ing and important aspects of nonlinear dynamics published
in vast amount of the past literature, such as collisional sin-
gularities, periodic orbits, resonances, and chaos. It is also
the reason why the three-body problem has attracted many
scientists from a variety of fields over a long time, yielding
a great deal of achievement. For the modern progress of the
three-body problem in general, readers can consult many lit-
erature (e.g. Valtonen and Karttunen, 2006; Valtonen et al.,
2016; Musielak and Quarles, 2014). A short summary of the
development of studies of the three-body problem during the
late nineteenth and twentieth centuries is available in Ito and
Tanikawa (2007, their Section 3).

The dynamics of a three-body system is sometimes highly
chaotic. However, it can also be very regular and nearly in-
tegrable, depending on the mass ratio and the initial orbit
configurations between the three bodies. Fortunately in the
current solar system, a nearly-integrable hierarchical three-
body system often becomes a good proxy of dynamics. A
hierarchical three-body system comprises a massive central
primary (the mass m0) accompanied by a less massive sec-
ondary (the mass m1 < m0), as well as an even less massive
tertiary (the mass m2 < m1). The tertiary mass orbits inside
or outside the (m0, m1) binary. Unless the orbit of the sec-
ondary around the primary and that of the tertiary around the
primary get too close or intersect each other, the two bina-
ries, (m0, m1) and (m0, m2), usually behave in the nearly in-
tegrable manner (i.e. close to the Keplerian motion). In that
case, we can principally obtain their orbital solution through
perturbation methods. The (m0, m1) binary would make a
pure Keplerian motion if m2 � m1, not being disturbed by
m2 at all, while the motion of m2 is affected by the (m0, m1)

binary. This is the restricted three-body problem (R3BP). In

particular, when the orbit of m1 in the (m0, m1) binary is cir-
cular, the system results in the circular restricted three-body
problem (CR3BP). Note that the restricted three-body prob-
lem is often dealt with in a rotating coordinate system where
massive bodies (m0 and m1) always stay on the x-axis (e.g.
Quarles et al., 2012). However, we do not adopt the rotating
coordinate system in this monograph. Readers can consult
Szebehely (1967) for more general and detailed characteris-
tics of the restricted three-body problems, particularly those
considered in a rotating frame.

2.1 Relative motion
Let us briefly summarize how the basic equations of mo-

tion that describe the dynamics of a three-body system are
derived in a standard way. For making our descriptions in
this monograph consistent with conventional literature, we
use the relative coordinates centered on m0, instead of the Ja-
cobi coordinates (e.g. Plummer, 1960; Wisdom and Holman,
1991) or other canonical coordinates. The discussion in this
subsection follows Brouwer and Clemence (1961, Chapters
X and XII), Danby (1992, Subsections 9.4 and 11.12), Mur-
ray and Dermott (1999, Subsection 6.2), and Merritt (2013,
Subsection 4.8) on the whole.

We write the position vectors of the three bodies with
masses m0, m1, m2 with respect to a fixed origin in the
inertial reference frame as ξξξ 0, ξξξ 1, ξξξ 2. In addition, we denote
the relative position vector of the secondary mass m1 with
respect to the primary mass m0 as

rrr1 ≡ ξξξ 1 − ξξξ 0 =
 x1

y1

z1

 . (1)

Similarly, the relative position vector of the tertiary mass m2
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with respect to the primary mass m0 is denoted as

rrr2 ≡ ξξξ 2 − ξξξ 0 =
 x2

y2

z2

 . (2)

The distance between the secondary and tertiary masses is

|rrr2 − rrr1| =
√

(x2 − x1)
2 + (y2 − y1)

2 + (z2 − z1)
2. (3)

Using ξξξ 0, ξξξ 1, ξξξ 2 and rrr1,rrr2, we can determine and reduce
the equations of motion of the three bodies in the inertial
reference frame as follows:

m0
d2ξξξ 0

dt2
= Gm0m1

rrr1

r3
1

+ Gm0m2
rrr2

r3
2

, (4)

m1
d2ξξξ 1

dt2
= −Gm1m0

rrr1

r3
1

+ Gm1m2
rrr2 − rrr1

|rrr2 − rrr1|3
, (5)

m2
d2ξξξ 2

dt2
= −Gm2m0

rrr2

r3
2

+ Gm2m1
rrr1 − rrr2

|rrr1 − rrr2|3
, (6)

where G is the gravitational constant, t denotes time, r1 ≡
|rrr1|, and r2 ≡ |rrr2|.

Now, let us determine the equations of motion of the sec-
ondary mass expressed on the relative reference frame cen-
tered on the primary mass. From Eq. (1) we have

d2ξξξ 1

dt2
= d2rrr1

dt2
+ d2ξξξ 0

dt2
. (7)

Similarly, the equations of motion of the tertiary mass ex-
pressed on the relative reference frame centered on the pri-
mary mass are, from Eq. (2)

d2ξξξ 2

dt2
= d2rrr2

dt2
+ d2ξξξ 0

dt2
. (8)

We eliminate d2ξξξ 0

dt2 from the right-hand sides of Eqs. (7) and
(8) using the quantity in the right-hand side of Eq. (4):
substitution of d2ξξξ 0

dt2 = Gm1
rrr1

r3
1

+ Gm2
rrr2

r3
2
. Then, as for the

mass m1, we substitute d2ξξξ 1

dt2 of Eq. (7) into Eq. (5). As

for the mass m2, we substitute d2ξξξ 2

dt2 of Eq. (8) into Eq. (6).
Eventually we obtain their relative equations of motion as:

d2rrr1

dt2
+ G (m0 + m1)

rrr1

r3
1

= Gm2

(
rrr2 − rrr1

|rrr2 − rrr1|3
− rrr2

r3
2

)
, (9)

d2rrr2

dt2
+ G (m0 + m2)

rrr2

r3
2

= Gm1

(
rrr1 − rrr2

|rrr1 − rrr2|3
− rrr1

r3
1

)
. (10)

Now it is straightforward to confirm that the terms in the
right-hand side of Eqs. (9) and (10) can be rewritten as
gradients of certain scalar functions. Let us write them as
R1 and R2. Their actual forms are as follows:

d2rrr1

dt2
+ G (m0 + m1)

rrr1

r3
1

= ∇ R1, (11)

d2rrr2

dt2
+ G (m0 + m2)

rrr2

r3
2

= ∇ R2, (12)

where

R1 ≡ Gm2

|rrr2 − rrr1| − Gm2
rrr1 · rrr2

r3
2

, (13)

R2 ≡ Gm1

|rrr1 − rrr2| − Gm1
rrr2 · rrr1

r3
1

. (14)

R1 in Eq. (13) and R2 in Eq. (14) are called the disturbing
function for the mass m1 and the mass m2, respectively. They
represent the gravitational interaction between m1 and m2.
The major gravitational force exerted from the primary mass
m0 is expressed as the second term in the left-hand side of
Eq. (11) or Eq. (12). If we ignore the disturbing function R1

from the right-hand side of Eq. (11), the motion of the mass
m1 would be the pure Keplerian motion around m0. Similarly
if we ignore the disturbing function R2 from the right-hand
side of Eq. (12), the motion of the mass m2 would be the
pure Keplerian motion around m0.

The first terms of the disturbing functions (13) and (14)
are called the direct part, representing the major component
of the mutual perturbation between m1 and m2. The second
terms are called the indirect part, which originate from the
choice of the coordinate system. The indirect part would not
exist if we took the origin of the coordinate system to be the
center of mass (e.g. Murray and Dermott, 1999; Ellis and
Murray, 2000). Also, the indirect part vanishes or becomes
constant when we carry out an averaging of the system. Thus
they do not contribute to secular dynamics of the system
unless non-negligible mean motion resonances are at work
and the employment of averaging procedure is prohibited.

2.2 Disturbing function
Let us restate the equation of motion of the secondary

(11) and that of the tertiary (12) in a more convenient form.
Following the descriptions in conventional textbooks, we
change the notation as follows: m0 → M , m1 → m, m2 →
m ′, rrr1 → rrr , rrr2 → r ′r ′r ′, R1 → R, and R2 → R̃. We define
the angle between rrr and rrr ′ as S. We show the geometric
configuration of the system under this notation in a schematic
figure (Fig. 1a).

The rewritten equations of motion of the mass m (former
m1) become from Eq. (11)

d2rrr

dt2
+ G (M + m)

rrr

r3
= ∇ R, (15)

and the rewritten equations of motion of the mass m ′ (former
m2) become from Eq. (12)

d2rrr ′

dt2
+ G

(
M + m ′) rrr ′

r ′3 = ∇ R̃. (16)

The disturbing function for Eq. (15) is, from Eq. (13)

R = Gm ′

�
− Gm ′rrr · rrr ′

r ′3 , (17)

and the disturbing function for Eq. (16) is, from Eq. (14)

R̃ = Gm

�
− Gm

rrr ′ · rrr

r3
, (18)
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with the conventional notation for the mutual distance

� ≡ ∣∣rrr ′ − rrr
∣∣ = ∣∣rrr − rrr ′∣∣ . (19)

Note that R̃ in Eqs. (16) and (18) is often denoted as R′ in
the conventional literature.

In this monograph we will consider only the direct part of
the disturbing function (the first terms in the right-hand sides
of Eqs. (17) and (18)). The indirect part of the disturbing
function (the second terms in the right-hand sides of Eqs.
(17) and (18)) does not play any significant roles in the
doubly averaged system described below.

We can expand the disturbing function R or R̃ in an in-
finite series of orbital elements. There are several different
ways to do this. Here we consider one of the most straight-
forward ways: the expansion using the Legendre polynomi-
als. Applying the cosine formula to the triangle m–P–m ′ with
the angle S in Fig. 1a, we get∣∣rrr ′ − rrr

∣∣2 = r2 + r ′2 − 2rr ′ cos S. (20)

Using Eq. (20), we can expand � in Eq. (19) through the
Legendre polynomials Pj . When r < r ′, it becomes

1

�
= 1

r ′

(
1 − 2

r

r ′ cos S +
( r

r ′
)2

)− 1
2

= 1

r ′

∞∑
j=0

( r

r ′
) j

Pj (cos S).

(21)

On the other hand when r > r ′, it becomes

1

�
= 1

r

(
1 − 2

r ′

r
cos S +

(
r ′

r

)2
)− 1

2

= 1

r

∞∑
j=0

(
r ′

r

) j

Pj (cos S).

(22)

Let us regard the mass m as the perturbed body, and the
mass m ′ as the perturbing body. The orbital condition r <

r ′ required for the expression of � in Eq. (21) indicates
that the perturbed body’s orbit always stays inside that of
the perturbing body (see Fig. 1b(i)). We call it the inner
problem. In this case, the term with j = 0 in the expansion
of � in Eq. (21) does not depend on r at all. As we saw in the
equations of relative motion (15), what matters is not R itself,
but its derivative ∇ R. The j = 0 terms in Eq. (21) obviously
disappears through this differentiation, Henceforth we can
ignore the j = 0 terms in Eq. (21) from our discussion. In
addition, we have the relationship

rrr · r ′r ′r ′ = rr ′ cos S = rr ′ P1(cos S), (23)

and we can apply it to the indirect part of the disturbing
function (the second term in the right-hand side of Eq. (17)).
Then, we find that the indirect part of the disturbing function
cancels out the term of j = 1 in Eq. (21), and both of
them disappear in the expression of R. Therefore for the

disturbing function of the inner problem, we need to consider
only the j ≥ 2 terms in the expansions of � in Eq. (21) as

1

�
= 1

r ′

∞∑
j=2

( r

r ′
) j

Pj (cos S). (24)

When the other orbital condition (r > r ′) takes place with
the expression of � in Eq. (22), the perturbed body’s orbit
always stays outside that of the perturbing body (see Fig.
1b(ii)). We call it the outer problem. In this case, unlike
the inner case, the exact cancellation of the indirect part of
the disturbing function does not happen (see Murray and
Dermott, 1999, Eq. (6.23) on p. 229). Specifically writing
down all the relevant terms, R for the outer problem in Eq.
(17) becomes (omitting the coefficient Gm)

1

r

∞∑
j=2

(
r ′

r

) j

Pj (cos S) + 1

r
+ r ′

r2
cos S − r

r ′2 cos S. (25)

The second term
(

1
r

)
in Eq. (25) comes from the j = 0

term in Eq. (22), but it becomes a constant after we aver-
age the disturbing function over the fast-oscillating variables
(consult Section 2.3 of this monograph for the details of the
averaging procedure of the disturbing function). Therefore
we do not need to consider this term in the discussion. The
third term comes from the j = 1 term in Eq. (22), and the
fourth term originates from the indirect part in Eq. (17). Both
of these disappear after the averaging procedure. As a con-
sequence, it turns out that what we need to consider is only
the j ≥ 2 terms in the expansion of 1

�
in Eq. (22) for the

averaged outer problem.
When the orbit of the perturbed body and that of the per-

turbing body cross each other and behave like the rings of a
chain (i.e. when r can be either smaller or larger than r ′. See
Fig. 1b(iii)), the expansion of the disturbing function using
the Legendre polynomials in Eq. (21) or Eq. (22) does not
work out anymore. It is because r

r ′
(
or r ′

r

)
can exceed unity,

and the infinite series in Eq. (21) or Eq. (22) does not con-
verge. We will briefly mention this case later again (Section
5.5 or Section 5.8 of this monograph).

Carrying out literal expansions of the disturbing function
is a formidable task in general. But it is relatively simpler in
CR3BP, particularly in its doubly averaged version. We will
see some examples later in this monograph. In CR3BP, the
length of the position vector of the perturber (r ′) with respect
to the primary mass has a constant value that is equivalent to
its semimajor axis, a′. And when r ′ = a′, we do not need
to consider the odd terms ( j = 3, 5, 7, · · · ) in the expansion
of Eqs. (21) and (22) at all, because they all vanish after the
averaging procedure. Therefore the disturbing function for
the inner CR3BP (r < r ′) that we consider turns out as, from
Eqs. (17) and (21):

R = Gm ′

a′

∞∑
n=1

( r

a′
)2n

P2n(cos S). (26)

On the other hand for the outer CR3BP (r > r ′), R becomes
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from Eqs. (17) and (22) as

R = Gm ′

r

∞∑
n=1

(
a′

r

)2n

P2n(cos S). (27)

Although we do not show it here, it is clear that we can
carry out the expansion of R̃ in Eq. (18) in a similar manner
whenever necessary.

Let us note in passing that, in the inner problem, the di-
rect part of the disturbing function Gm ′

�
can be derived in a

different, more general way. Return temporarily to a gen-
eral three-body system with three masses: the primary m0,
secondary m1, and tertiary m2. Now let us use the Jacobi
coordinates where we measure m1’s position vector r̃rr1 from
m0, and measure m2’s position vector r̃rr2 from the barycen-
ter of m0 and m1 (here we assume r̃1 < r̃2 for the inner
problem). We define an angle S12 as the angle between the
vectors r̃rr1 and r̃rr2. In general, S12 is different from S in Fig.
1a, and the origins of rrr1 and rrr2 are different from each other.
Then, the equations of motion of the secondary mass m1 and
the tertiary mass m2 become (e.g. Smart, 1953; Brouwer and
Clemence, 1961; Jefferys and Moser, 1966)

m̃1
d2r̃rr1

dt2
= ∂ F

∂r̃rr1
, m̃2

d2r̃rr2

dt2
= ∂ F

∂r̃rr2
, (28)

where

m̃1 = m0m1

m0 + m1
, m̃2 = (m0 + m1) m2

m0 + m1 + m2
, (29)

are the reduced masses used in the Jacobi coordinates (e.g.
Wisdom and Holman, 1991; Saha and Tremaine, 1994).
Here F is the common force function

F = G
[

m0m1

r̃1
+ (m0 + m1)m2

r̃2

+ 1

r̃2

∞∑
j=2

M j

(
r̃1

r̃2

) j

Pj (cos S12)

]
,

(30)

and M j is the mass factor

M j =
m0m1m2

(
m j−1

0 − (−m1)
j−1

)
(m0 + m1)

j . (31)

Using the force function F , we can construct a Hamiltonian
that governs the dynamics of this system. Assuming a1 and
a2 to be the semimajor axes of the orbits of the secondary
and tertiary masses, the Hamiltonian H becomes (e.g. Har-
rington, 1968; Krymolowski and Mazeh, 1999; Beust and
Dutrey, 2006; Carvalho et al., 2013):

H = Gm0m1

2a1
+ G(m0 + m1)m2

2a2

+ G
r̃2

∞∑
j=2

M j

(
r̃1

r̃2

) j

Pj (cos S12).

(32)

The first term of H in Eq. (32) is responsible for the
Keplerian motion of the secondary mass, and the second term

is responsible for that of the tertiary mass. The third term
of H represents the mutual interaction of the secondary and
the tertiary, and does not include terms of j = 0 or j = 1.
This is an outcome of the use of the Jacobi coordinates which
subdivides the motions of the three bodies into two separate
binaries and their interactions.

Now, consider a limit where the secondary mass m1 is
infinitesimally small. This corresponds to the restricted inner
three-body problem where m2 serves as the perturbing body.
In this case, we must divide the force function F in Eq. (30)
by m̃1 in Eq. (29) before taking the mass-less limit. The
normalized third term of F then becomes

F3rd

m̃1
=

Gm2

r̃2

∞∑
j=2

m j−1
0 − (−m1)

j−1

(m0 + m1)
j−1

(
r̃1

r̃2

) j

Pj (cos S12).

(33)

Now we can take the limit of m1 → 0. This would simul-
taneously yield the conversions rrr1 → rrr , rrr2 → rrr ′, S12 → S,
as well as a replacement of m2 for m ′ in the previous discus-
sions. Then we reach an expression equivalent to the direct
part of the disturbing function of the inner case written in
the relative coordinates, such as expressed in Eq. (24), or
particularly for CR3BP, Eq. (26).

On the other hand, deriving the disturbing function of the
outer case written in the relative coordinates such as Eq. (22)
or Eq. (27) by simply taking a mass-less limit of the Hamilto-
nian H is difficult, if not impossible (cf. Ito, 2016). This is an
example that shows a limitation of the use of the relative co-
ordinates when developing the disturbing function. Readers
can find newer, more sophisticated methods and techniques
for expanding the disturbing function without using the con-
ventional relative coordinates (e.g. Broucke, 1981; Laskar
and Boué, 2010; Mardling, 2013).

2.3 Double averaging
Now we calculate the double average of the disturbing

function R over mean anomalies of both the perturbed and
perturbing bodies. In general, averaging of the disturbing
function by fast-oscillating variables is carried out for reduc-
ing the degrees of freedom of the system. In many problems
of solar system dynamics, variation rate of mean anomaly is
much larger than that of other elements. Hence it is justified
to eliminate mean anomaly by averaging, assuming that the
other orbital elements do not change over a period of mean
anomaly. The elimination of mean anomaly by averaging
procedure can be regarded as a part of canonical transforma-
tion that divides system’s Hamiltonian into periodic and sec-
ular parts. Historically speaking, this procedure was devised
by Delaunay (1860, 1867), and substantially developed by
von Zeipel (1916a,b, 1917a,b). See Brouwer and Clemence
(1961, Notes and References in Chapter XVII, their pp. 591–
593) or Goldstein et al. (2002, Subsection 12.4) for a more
detailed background.

For carrying out the averaging procedure, we have to as-
sume that there is no major resonant relationship between
the mean motions of the perturbed and perturbing bodies. In
other words, the mean anomalies of the perturbed and per-
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turbing bodies (referred to as l and l ′, respectively) must be
independent of each other. Bearing this assumption in mind,
pick the n-th term of the disturbing function R for the inner
problem in Eq. (26), and call it R2n . We have

R2n = µ′

a′
( r

a′
)2n

P2n(cos S). (34)

We first average R2n by mean anomaly of the perturbing
body l ′. Using the symbols 〈 and 〉 for averaging, it is

〈R2n〉l ′ = µ′

a′
( r

a′
)2n 〈P2n〉l ′ , (35)

where

〈P2n〉l ′ = 1

2π

∫ 2π

0
P2n(cos S)dl ′. (36)

The angle S is expressed by orbital angles through a rela-
tionship (e.g. Kozai, 1962, Eq. (7) on p. 592)

cos S = cos( f + g) cos( f ′ + g′)
+ cos i sin( f + g) sin( f ′ + g′),

(37)

where f, f ′ are true anomalies of the perturbed and perturb-
ing bodies, g, g′ are arguments of pericenter of the perturbed
and perturbing bodies, and i is their mutual inclination mea-
sured at the node of the two orbits. We choose the orbital
plane of the perturbing body as a reference plane for the en-
tire system so that we can measure g and g′ from the mutual
node. Note that g′ is not actually defined in CR3BP. There-
fore, in Eq. (37) we regard f ′+g′ as a single, fast-oscillating
variable. In practice, we can simply replace

∫
dl ′ for

∫
d f ′

in the discussion here.
To obtain 〈P2n〉l ′ of Eq. (36), we calculate the time average

of cos2n S by l ′ as

〈
cos2n S

〉
l ′ = 1

2π

∫ 2π

0
cos2n Sdl ′. (38)

Then we average 〈R2n〉l ′ of Eq. (35) by mean anomaly of the
perturbed body l, as

〈〈R2n〉l ′ 〉l = µ′

a′
( a

a′
)2n 1

2π

∫ 2π

0

( r

a

)2n 〈P2n〉l ′ dl. (39)

If we switch the integration variable from mean anomaly
l to eccentric anomaly u, Eq. (39) becomes

〈〈R2n〉l ′ 〉l = µ′

a′
( a

a′
)2n

× 1

2π

∫ 2π

0
(1 − e cos u)2n+1 〈P2n〉l ′ du.

(40)

Eq. (39) or Eq. (40) is the final, general form of the n-
th term of the doubly averaged disturbing function for the
inner CR3BP. If we define the ratio of semimajor axes as
α = a

a′ < 1, this term has the magnitude of O
(
α2n

)
.

We can obtain the doubly averaged disturbing function for
the outer CR3BP in the same way. In what follows let us
denote the disturbing function for the outer CR3BP as R′.

From its definition previously expressed in Eq. (27), the
direct part of R′ becomes as follows:

R′ = µ′

r

∞∑
n=1

(
a′

r

)2n

P2n(cos S). (41)

Note that our definition of 1
�

for the outer case (22), and
hence also in Eq. (41), may be different from what is seen
in conventional textbooks (e.g. Murray and Dermott, 1999,
Eq. (6.22) on p. 229): The roles of the dashed quantities
(r ′, µ′) may be the opposite. This difference comes from the
fact that conventional textbooks always assume r

r ′ < 1 even
in the outer problem, while we assume r

r ′ > 1 for the outer
problem. In other words, we make it a rule to always use
dashed variables (r ′, a′, l ′, µ′, · · · ) for the perturbing body
whether it is located inside or outside the perturbed body.

Similar to the procedures that we went through for the in-
ner CR3BP, we again assume that there is no major resonant
relationship between mean motions of the perturbed and per-
turbing bodies. We then try to get the double average of R′

over mean anomalies of both the bodies. Let us pick the n-th
term of R′ in Eq. (41), and call it R′

2n . We have

R′
2n = µ′

r

(
a′

r

)2n

P2n(cos S). (42)

First we average R′
2n by mean anomaly of the perturbing

body l ′. Similar to Eq. (35), it is

〈
R′

2n

〉
l ′ = µ′

r

(
a′

r

)2n

〈P2n〉l ′ , (43)

where 〈P2n〉l ′ is already defined in Eq. (36).
Then we average

〈
R′

2n

〉
l ′ in Eq. (43) by mean anomaly of

the perturbed body l, as

〈〈
R′

2n

〉
l ′
〉
l
= µ′

a′

(
a′

a

)2n+1 1

2π

∫ 2π

0

(a

r

)2n+1 〈P2n〉l ′ dl.

(44)

If we switch the integration variable from l to true
anomaly f , Eq. (44) becomes

〈〈
R′

2n

〉
l ′
〉
l
= µ′

a′

(
a′

a

)2n+1 (
1 − e2

)−2n+ 1
2

2π

×
∫ 2π

0
(1 + e cos f )2n−1 〈P2n〉l ′ d f.

(45)

Eq. (44) or Eq. (45) is the final, general form of the n-th
term of the doubly averaged disturbing function for the outer
CR3BP. Note that this term has the magnitude of O

(
α′2n+1),

not O
(
α′2n), when we define α′ = a′

a < 1.
Let us make a couple of additional comments before we

move on to the next subsection. First, we evidently find that
argument of pericenter of the perturbing body (g′) is not in-
cluded in the disturbing function for CR3BP, because the per-
turbing body’s eccentricity e′ is zero. However, even when
the orbit of the perturbing body is not circular (e′ > 0), its
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g′ would not show up in the disturbing function as long as
we truncate the doubly averaged disturbing function at the
leading-order, O

(
α2

)
(note that the truncation of the disturb-

ing function at O
(
α2

)
is often referred to as the quadrupole

level (or the quadrupole order) approximation). This cir-
cumstance was named “a happy coincidence” by Lidov and
Ziglin (1976), and thus the system remains integrable even
though e′ > 0. This “coincidence” no longer stands if we
include the terms of O

(
α3

)
or higher in the doubly averaged

disturbing function (e.g. Farago and Laskar, 2010; Lithwick
and Naoz, 2011). The approximation at O

(
α3

)
is called the

octupole level (or the octupole order).
Our second comment is about the fact that the mass of the

perturber (m ′) does not at all act on the trajectory shape of the
perturbed body that the doubly averaged disturbing function
(39) or (44) yields. As we see from the function form of
〈〈R2n〉l ′ 〉l in Eq. (39), the perturber’s mass serves just as a
constant factor in the doubly averaged disturbing function,
and its influence is limited to controlling the timescale of the
motion of the perturbed body. This is obvious if we recall
the general form of the canonical equations of motion such
as d G

dt = ∂ R
∂g and d g

dt = − ∂ R
∂G . This statement is also true

even if we consider the doubly averaged general (i.e. not
restricted) three-body system, as long as the central mass is
much larger than the perturbing mass. We can confirm this
through the function form of M j shown in Eq. (31).

As we mentioned, the averaging procedure cannot not be
used when strong mean motion resonances are at work in the
considered system. Also, there may be some conditions that
the solution obtained through averaging procedure can devi-
ate from true solution due to the accumulation of short-term
oscillation (e.g. Luo et al., 2016). Nevertheless, the averag-
ing procedure yields a very good perspective in theoretical
studies, as well as a substantially large efficiency in the prac-
tical calculation. Therefore, the averaging procedure is more
and more frequently used on a variety of scenes in modern
celestial mechanics (e.g. Sanders et al., 2007).

2.4 Numerical examples
The analytic expression of the disturbing function for

CR3BP in Eqs. (26) and (27), in particular their lowest-order
term (n = 1), plays a central role in the discussions devel-
oped in the remainder of this monograph. Before we move
on, let us show some numerical examples of CR3BP for giv-
ing readers a rough picture of how typical CR3BP systems
behave on a long-term, secular timespan.

The first example is a Sun–planet–asteroid system where
the perturbing planet has the same mass and the semimajor
axis as Jupiter, but its orbital eccentricity (e′) is zero. We
consider the inner problem, and place three asteroid proxies
as the perturbed body orbiting inside this Sun–planet binary.
They are (4690) Strasbourg, (1373) Cincinnati, and (3040)
Kozai. Then we numerically propagate their orbital evolu-
tion over 100 kyr (105 years) in the future direction by di-
rectly integrating the equations of motion (15), and make a
set of plots of their orbital elements (Fig. 2). The nominal
stepsize that we use here is 1 day, and the data output in-
terval is 100 years. As for the numerical integrator, we use

the Wisdom–Holman symplectic map. We will explain our
numerical method later in more detail (Section 3.7).

Among the three sets of panels in Fig. 2, the motion of
(4690) Strasbourg shown in the panels at the left exhibits the
most typical behavior in the inner CR3BP. We find several
noticeable characteristics here:

• Semimajor axis (a) remains almost constant, although
it shows a short-term oscillation with a small amplitude.

• Eccentricity (e) and inclination (i) show regular, anti-
correlated oscillations. When e becomes large (or
small), i becomes small (or large).

• Argument of pericenter (g) circulates in the prograde
direction. Its circulation period has a correlation to the
e–i oscillation.

• Longitude of ascending node (h) circulates in the retro-
grade direction. Its circulation period does not seem to
have particular correlations to e, i , or g.

The first characteristic (a being almost constant) origi-
nates from the general fact that the semimajor axis of the per-
turbed body remains constant in the doubly averaged CR3BP
(i.e. 〈〈a〉〉 becomes a constant). The second and the third
characteristics (the regular and correlated oscillations of e, i ,
and g) typically exemplify the so-called Lidov–Kozai oscil-
lation in its circulation regime. We will explore the further
details of these characteristics in later sections.

On the other hand, the motions of other objects shown in
Fig. 2 (the middle and the right panels) look qualitatively
different from that of (4690) Strasbourg, although both of
them are regular and exhibiting the e–i anti-correlated os-
cillation as well. As for (1373) Cincinnati whose motion is
shown in the middle column panels, the argument of pericen-
ter g librates around π

2 , instead of circulating from 0 to 2π .
Its oscillation still seems correlated to the e–i couple. As
for (3040) Kozai whose motion is shown in the right column
panels, the argument of pericenter g seems to librate around
3π
2 with a similar correlation.

What makes these differences? The key to understanding
things here lies in the difference of their initial orbital incli-
nation. More specifically, the difference of the vertical com-
ponent of angular momentum matters. Looking at a quantity(
1 − e2

)
cos2 i which is proportional to the square of the ver-

tical component of the perturbed body’s angular momentum,
it is ∼ 0.91 for (4690) Strasbourg. On the other hand it is
∼ 0.55 for (1373) Cincinnati, and ∼ 0.45 for (3040) Kozai.
Considering the fact that the quantity

(
1 − e2

)
cos2 i takes

the value between 0 and 1 (as long as the motion is elliptic),
at this point we can deduce that the libration of the argument
of pericenter seen in the motion of (1373) Cincinnati and
(3040) Kozai takes place when the vertical component of the
asteroids’ angular momentum is small.

CR3BP is a simple dynamical model. However, it has the
capability to explain many of the fundamental properties ob-
served in the actual solar system dynamics. The e–i–g cor-
related oscillation seen in Fig. 2 is one of them. For com-
parison, we carried out another set of numerical propagation
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Fig. 2. Numerical solutions of the orbital evolution of three asteroid proxies under perturbation from a Jupiter-like planet on a circular orbit. Left: (4690)
Strasbourg. Middle: (1373) Cincinnati. Right: (3040) Kozai. From the top row, the object’s a, e, i , g, and h are displayed. The initial orbital elements of
the asteroid proxies are taken from the JPL Horizons web-interface as of June 7, 2017 (see Supplementary Information 3 for its specific website as well
as other relevant information provided by JPL). The perturbing planet has the same mass and the same semimajor axis with Jupiter, but its eccentricity
and inclination are both zero.

of the orbits of (1373) Cincinnati and (3040) Kozai starting
from the same initial condition as in Fig. 2, but under the
perturbation from all the eight major planets from Mercury
to Neptune with their actual orbital elements (we might want
to describe it as a restricted “8+1” or “8+2”-body system).
We pick the resulting time series of asteroids’ a, e, i , and g
in Fig. 3. Comparing the panels that show the motions of
(1373) Cincinnati and (3040) Kozai in Fig. 2 and in Fig. 3, it
is obvious that the CR3BP approximation that was employed
to draw Fig. 2 largely possesses the dynamical characteris-
tics that the system with the full planetary perturbation (Fig.
3) possesses: The anti-correlated oscillation between e and
i , the coherent oscillation of g with the e–i couple, the li-
bration of (1373) Cincinnati’s g at π

2 , and the libration of
(3040) Kozai’s g at 3π

2 . Their semimajor axes remain almost
constant during the integration period although we see occa-
sional enhancement of the oscillational amplitude of (3040)
Kozai’s a. This comparison literally tells us that CR3BP is
still useful in solar system dynamics in spite of its structural
simplicity. It helps us understand the dynamical nature of the

motion of various objects that compose hierarchical three-
body systems. This is particularly true for long term dynam-
ics where only the secular motion of objects matters.

Before closing this section, we would like to temporarily
and intentionally deviate from the scope of this monograph.
Let us explore just a little the world of non-circular (eccen-
tric) restricted three-body problem where the perturber’s ec-
centricity e′ is not zero. From a theoretical perspective, this
case is qualitatively different from CR3BP because the dou-
ble averaging procedure would not make the system inte-
grable. This means that, the system’s degrees of freedom
remain larger than unity even after the double averaging. As
a consequence, the dynamical behavior of the system can
be very different from CR3BP. As an example, we prepare
yet another Sun–planet–asteroid system where the perturb-
ing planet has the same mass and semimajor axis as Jupiter.
The difference from the examples shown in Fig. 2 is that we
give the perturbing planet a finite eccentricity: e′ = 0.2. The
perturbed body is a fictitious asteroid whose initial orbital el-
ements are a = 2.80 au, e = 0.1, i = 70◦, h = 143◦, and
g = 270◦ = 3π

2 . Therefore
(
1 − e2

)
cos2 i ∼ 0.12. We nu-
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merically propagate the orbital evolution of this three-body
system by directly integrating the equations of motion (15),
and present the time variation of a, e, i, g of the perturbed
asteroid in Fig. 4. In the first 100 kyr of time evolution (the
four panels in the left column of Fig. 4), the behavior of the
perturbed asteroid is somewhat similar to the CR3BP case:
the semimajor axis a remains almost constant except for the
occasional and small enhancement of amplitude. the eccen-
tricity e and inclination i have an anti-correlated oscillation.
The argument of pericenter g’s oscillation is also correlated
with the e–i couple. g librates around 270◦ during this pe-
riod. However, their oscillation is not as regular as what we
saw in Fig. 2. Also, we see that the amplitude of the eccen-
tricity variation is very large. These features become even
clearer when we extend the integration period to 2000 kyr
(the four panels in the right column of Fig. 4). The most
intriguing aspect concerns the oscillation of orbital inclina-
tion. Although its oscillation is still anti-correlated to that
of the eccentricity e, the inclination i frequently and irregu-
larly exceeds 90◦. This means that the orbit of the perturbed
body flips, and flips back. The amplitude of the eccentricity
variation is remarkably large, and the argument of pericen-
ter changes its status between libration and circulation. This
kind of behavior is never observed in CR3BP.

Fig. 3. Numerical solutions of the orbital evolution of two asteroids under
perturbation from all the eight major planets from Mercury to Neptune.
Left: (1373) Cincinnati. Right: (3040) Kozai. From the top row, the
object’s a, e, i , and g are displayed. The initial orbital elements of the
asteroids are the same as those used in Fig. 2. The planetary masses and
initial orbital elements are taken from the JPL Horizons web-interface as
of June 7, 2017.

The perturbed body’s stochastic behavior observed in Fig.
4 is typical of the so-called eccentric Lidov–Kozai oscilla-
tion. This provides us with many clues about the rich dynam-
ical characteristics that the non-circular (eccentric) restricted
three-body problem (ER3BP) has. It also helps us under-
stand certain dynamical structures of the solar and other
planetary systems that the simple CR3BP cannot explain.

However, ER3BP is clearly out of the scope of this mono-
graph. Also, we must have a firm and rigorous understanding
of CR3BP before moving on to the world of ER3BP. There-
fore in this monograph we concentrate on the description of
CR3BP where the perturbing body is always on a circular
orbit (e′ = 0). As a start, we first introduce the classic work
of Kozai in the following section.

Fig. 4. Numerical solutions of the orbital evolution of a fictitious aster-
oid under perturbation from a Jupiter-like planet on an eccentric orbit
(e′ = 0.2). Left: the evolution during the first 100 kyr. Right: the evolu-
tion during the entire integration period, 2000 kyr. From the top row, the
object’s a, e, i , and g are displayed. The perturbing planet has the same
mass and semimajor axis as Jupiter, and its inclination is zero. The initial
orbital elements of the asteroid are described in the main text.

3. The Work of Kozai
Yoshihide Kozai (1928–2018)1 was a Japanese celestial

mechanist who is famous for a variety of works on the dy-
namics of small solar system bodies, planetary satellites, and
artificial satellites around the Earth. Several oral history pub-
lications are available for Kozai’s research and life, such as
DeVorkin (1997, an online publication by American Insti-
tute of Physics) or Takahashi (2015a,b,c,d,e, a series of ar-
ticles written in Japanese with abstracts in English.). More
recently, Kozai made a brief summary of his academic ca-
reer and personal life (Kozai, 2016) including his work on
the present subject.

One of Kozai’s achievements that made him renowned
was his work on the gravitational potential of the Earth.
Through a detailed analysis of artificial satellite motion,
Kozai showed that the gravitational potential of the Earth has
a non-negligible north-south asymmetry (e.g. Kozai, 1958,

1Yoshihide Kozai passed away on February 5, 2018, at the age of 89. It
was just two days after we completed the initial submission of this mono-
graph to the MEEP editorial office. Obituaries have come from many in-
stitutes and organizations such as American Astronomical Society, Inter-
national Astronomical Union, or the Japan Academy. See Supplementary
Information 3 for their electronic versions.
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1959a,b,c, 1960, 1961). Another of his achievements that
made him famous in astronomy worldwide was his work
on the very subject of this monograph: the secular motion
of asteroids that have large inclination in the framework of
CR3BP. His celebrated work on this (Kozai, 1962) was enti-
tled “Secular perturbation of asteroids with high inclination
and eccentricity,” and was published in The Astronomical
Journal. The full text of this paper can be accessed through
SAO/NASA Astrophysics Data System (hereafter referred to
as ADS). This paper deals with a restricted three-body sys-
tem including the central mass (Sun), a small perturbed body
(asteroid), and a large perturbing body (Jupiter) orbiting on a
circular orbit. The section structure of Kozai (1962) is as fol-
lows: I. Introduction, II. Equations of motion, III. Stationary
point, IV. Disturbing function, V. Case for small α, VI. Tra-
jectory, and VII. Remarks. This paper was more widely and
quickly recognized than any other literature that dealt with a
similar subject, and consequently, the influence of this paper
on later studies is huge. As a result, the citation frequency
of this paper is very high, and is still increasing now (see the
descriptions later such as in Section 6.2.3). Kozai (1962) was
also selected as one of the 53 “Selected Fundamental Papers
Published this Century in the Astronomical Journal and the
Astrophysical Journal,” (Abt, 1999).

3.1 Purpose, method, findings
Kozai’s purpose, method, and findings in his work are

concisely summarized in his abstract. Though it may be
unnecessary for some readers, we reproduce it here:

“Secular perturbations of asteroids with high
inclination and eccentricity moving under the at-
traction of the sun and Jupiter are studied on the
assumption that Jupiter’s orbit is circular. After
short-periodic terms in the Hamiltonian are elim-
inated, the degree of freedom for the canonical
equations of motion can be reduced to 1.

Since there is an energy integral, the equations
can be solved by quadrature. When the ratio of the
semimajor axes of the asteroid and Jupiter takes
a very small value, the solutions are expressed by
elliptic functions.

When the z component of the angular mo-
mentum (that is, Delaunay’s H ) of the asteroid is
smaller than a certain limiting value, there are both
a stationary solution and solutions corresponding
to libration cases. The limiting value of H in-
creases as the ratio of the semimajor axes in-
creases, i.e., the corresponding limiting inclination
drops from 39◦.2 to 1◦.8 as the ratio of the axes
increases from 0.0 to 0.95.” (abstract, p. K591)

We will see what each of his points means in what fol-
lows. Note that the specific value of “limiting inclination”
(39◦.2) that Kozai mentions in the above third paragraph cor-

responds to cos−1
√

3
5 , as we will see soon.

The first section (“I. Introduction”) seems like an ex-
tended abstract, where Kozai explains more about each of the

major points mentioned in the abstract. In the first paragraph
of this section, Kozai mentions the fact that conventional per-
turbation theories such as those exploiting the Laplace coef-
ficients basically assume that the eccentricity and inclination
of objects are small. He writes:

“The stability of the solar system has been proved
in the sense that no secular change occurs in the
semimajor axes of planetary orbits, and that sec-
ular changes of the eccentricities and inclinations
are limited within certain small domains. How-
ever, the classical theory of secular perturbations
for the eccentricity and inclination is based on the
assumption that the squares of the eccentricity and
inclination are negligible. Although this assump-
tion may be reasonable for major planets, it may
not be for some asteroids.” (p. K591)

As Kozai wrote in the above, the major planetary orbits
exhibit quasi-periodic oscillations with eccentricities and in-
clinations remaining reasonably small for billions of years
(e.g. Ito and Tanikawa, 2002; Batygin and Laughlin, 2008;
Laskar and Gastineau, 2009; Batygin et al., 2015). But this
is not always the case for the small solar system bodies. In
the second paragraph of this section Kozai points this fact
out, using some symbolic notations (A or B) as follows:

“The assumption in the classical theory means
that a term such as Be2 sin2 i cos 2g is negligi-
bly small as compared with the principal term
A(e2 − sin2 i) in the secular part of the disturb-
ing function. However, as the value of B increases
much more rapidly than does that of A with the ra-
tio of the semimajor axes of the asteroid and the
perturbing planet, the B term cannot be neglected
when the eccentricity and inclination assume large
values. For example, the rate of change of the
argument of perihelion, which is proportional to
A + B sin2 i cos 2g, may vanish at a certain point
when the inclination of the asteroid takes a reason-
ably large value.” (p. K591)

Readers will later encounter more specific expressions of
each of the terms in the disturbing function. A point to note
in the above paragraph is that, Kozai mentions a possibility
for argument of perihelion of an asteroid to stay around a
fixed value when its inclination is large enough.

After mentioning a few relevant studies (including Lidov’s
work) in the third paragraph of this section, Kozai states his
method in the fourth paragraph:

“The present paper treats an analytical theory on
secular perturbations of asteroids with high in-
clination and eccentricity by assuming that only
Jupiter, moving in a circular orbit, is the disturb-
ing body. This theory may, of course, be applied
also to comets or satellites disturbed by the sun.”
(p. K591)

The fifth paragraph is about the advantage of Kozai’s way
to expand the disturbing function into a power series of the
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ratio of semimajor axes, α. He writes:

“The conventional technique for developing the
disturbing function cannot be adopted here, since
neither the eccentricity nor the inclination is con-
sidered small. Nor can numerical harmonic analy-
sis be adopted, since variations of orbital elements
may not be regarded as small quantities. There-
fore, the disturbing function has to be developed
into a power series of α, the ratio of the semimajor
axes of the asteroid and Jupiter, although conver-
gence of the series may be slow.” (p. K591)

The sixth paragraph depicts the possibility to reduce the
degrees of freedom of the system by double averaging. This
procedure makes the system integrable, and we can then
obtain a formal solution by quadrature:

“Short-periodic terms depending on the two mean
anomalies can be eliminated from the disturbing
function by Delaunay’s transformations. The lon-
gitudes of the ascending nodes of Jupiter and the
asteroid disappear by the theorem on elimination
of nodes. Therefore, the equations of motion for
the asteroid are reduced to canonical equations of
one degree of freedom with a time-independent
Hamiltonian. Therefore, the equations can be
solved by a quadrature.” (p. K591)

In the seventh paragraph, after mentioning the existence
of an analytic solution of the system expressed by an elliptic
function, Kozai states the major conclusion of his work:
A stationary solution of (e, g) shows up when a constant
parameter

(
1 − e2

)
cos2 i is smaller than 0.6:

“In fact, the solutions can be expressed by elliptic
functions approximately when α takes a very small
value. For this case there are both one stationary
and some libration solutions when

(
1 − e2

)
cos2 i ,

which is constant, is smaller than 0.6.” (p. K591)

Finally in the eighth paragraph, Kozai states another major
conclusion that he obtained: Dependence of the limiting
value of

(
1 − e2

)
cos2 i for the stationary solutions to exist

on the semimajor axes ratio, α. Here is what he wrote:

“As α increases, the upper limit of
(
1 − e2

)
cos2 i

for the existence of a stationary solution increases.
When α is 0.85, the limit is as large as 0.90.” (p.
K591)

3.2 Equations of motion
Unlike his well-organized abstract and introduction (Sec-

tion I), we have to say that Kozai’s following four sections
(Sections II, III, IV, V) are poorly organized. Not only is
it not easy to follow the formulations there, but some de-
scriptions are too terse (or too conceptual) that we do not
follow his intention. However, now that most readers are fa-
miliar with the method and conclusion of Kozai’s work, let
us briefly summarize these sections.

The section “II. Equations of motion” is devoted to de-
scribing the canonical equations of motion. In this section

Kozai briefly mentions that the doubly averaged CR3BP has
just one degree of freedom, and the equations of motion can
be solved by quadrature. This section starts from Kozai’s
definition of the variables. He denotes m as asteroid’s mass,
and m ′ as Jupiter’s mass. The solar mass is set to unity. Kozai
uses the Delaunay elements defined as follows:

L = ka
1
2 , l = mean anomaly,

G = L
(
1 − e2

) 1
2 , g = argument of perihelion,

H = G cos i, h = longitude of ascending node,
(K01-46)

where l, g, h are the canonical coordinates and L , G, H
are the corresponding conjugate momenta. k is the Gaussian
gravitational constant, which is practically equivalent to

√
G

that we used in our Section 2 (cf. Brouwer and Clemence,
1961, their p. 57). Note that Kozai’s definition of L in
Eq. (K01-46) seems slightly different from those in standard
textbooks, L = √

µa (e.g. Boccaletti and Pucacco, 1996, p.
161), although they are fundamentally equivalent.

Kozai expresses all the quantities of Jupiter with primes
such as L ′ and l ′. Also, a variable k′ is defined as

k′2 = k2

1 + m ′
m ′2

m2
= k2µ′2 1 + m ′

m2
, (K02-47)

where µ′ is the reduced mass of Jupiter,

µ′ = m ′

1 + m ′ . (48)

Next, Kozai defines the coordinates of Jupiter with the Sun
at the origin, and that of the asteroid with the barycenter
of Jupiter and the Sun at the origin. It is nothing but the
Jacobi coordinates that we mentioned in Section 2.2, but
note that Kozai assumes that the asteroid’s orbit is located
inside Jupiter’s orbit (i.e. r < r ′). Then, Kozai expresses the
Hamiltonian F of the system as follows:

F = k4

2L2
+ m

µ′
k′4

2L ′2

+ k2µ′


[

r2 − 2rr ′ s

1 + m ′ +
(

r ′

1 + m ′

)2
]− 1

2

− r

r ′
s

1 + m ′

}
,

(K03-49)

where

s = xx ′ + yy′ + zz′

rr ′ . (K04-50)

Readers should find the equivalence between the Hamilto-
nian F in Eq. (K03-49) and H in Eq. (32). The third term
of the right-hand side of Eq. (K03-49) is not yet expanded
into the Legendre polynomials. Since s in Eq. (K04-50) cor-
responds to cos S12 in Eq. (32) (or cos S in Eq. (23)), the
last term of the right-hand side of Eq. (K03-49) is equiva-
lent to the indirect part of the disturbing function expressed
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in Eq. (17). Also, keep in mind that the indirect part cancels
out with the P1 term in the expansion using the Legendre
polynomials, as we already saw in Eq. (32).

After expressing the Hamiltonian F in Eq. (K03-49),
Kozai tries to reduce the degrees of freedom of the system
through two steps. First, Kozai applies “Jacobi’s elimina-
tion of the nodes” to the Hamiltonian F . It is known that
the Hamiltonian in the system considered includes h and h′

only in the form of h − h′ (e.g. Nakai and Kinoshita, 1985).
By choosing the invariable plane as a reference plane, the
Hamiltonian F acquires the rotation symmetry around the to-
tal angular momentum vector (e.g. Jacobi, 1843a,b; Charlier,
1902, 1907; Jefferys and Moser, 1966). This circumstance is
typically expressed by a relationship

h − h′ = π. (51)

This relationship enables us to eliminate both h and h′ from
the Hamiltonian, therefore the conjugate momenta H and H ′

become constants of motion. As a consequence, the origi-
nal Hamiltonian F(L , G, H, L ′, G ′, H ′, l, g, h, l ′, g′, h′) in
Eq. (K03-49) with six degrees of freedom is converted into
F(L , G, L ′, G ′, l, g, l ′, g′) with four degrees of freedom.

Note that Kozai actually assumed

h = h′, (K05-52)

as a consequence of Jacobi’s elimination of the nodes, not
Eq. (51) that is widely recognized. Eq. (K05-52) certainly
eliminates both h and h′ from the Hamiltonian as long as it
contains h and h′ just in the form of h−h′, and the conclusion
that Kozai stated would not be affected. However, we have
not found any expressions similar to Eq. (K05-52) in other
literature, and we do not know Kozai’s intention.

The second step that Kozai took in order to reduce the
degrees of freedom of the system is double averaging. As
we already summarized its concept in Section 2.3, fast-
oscillating variables can be eliminated from Hamiltonian by
averaging. In the present case, the mean anomalies of as-
teroid (l) and Jupiter (l ′) can be eliminated. Then their
conjugate momenta L and L ′ become constants of motion.
As we mentioned in Section 2.3, the elimination of fast-
oscillating variables by an averaging procedure is a part of
canonical transformation. Therefore Kozai puts a super-
script ∗ on the variables that have gone through averaging
as being canonically transformed. Now, the Hamiltonian
F(L , G, L ′, G ′, l, g, l ′, g′) with four degrees of freedom is
transformed into a new Hamiltonian F∗(G∗, G ′∗, g∗, g′∗)
with two degrees of freedom. Kozai expresses the new
Hamiltonian F∗ as follows:

F∗ = k4

2L∗2 + m ′W ∗, (K08-53)

with

W ∗ = k2

4π2

∫ 2π

0

∫ 2π

0

1(
r ′2 − 2rr ′s + r2

) 1
2

dldl ′. (K09-54)

Note that in the original work by Kozai, the left-hand side
of Eq. (K09-54) is W , not W ∗. However, we believe this is a

simple typographic error because the right-hand side of Eq.
(K09-54) is doubly averaged, as is the new Hamiltonian F∗

appearing in Eq. (K08-53). Therefore we replace W for W ∗

in the following discussion.
F∗ in Eq. (K08-53) does not include the Hamiltonian that

drives the Keplerian motion of Jupiter. W ∗ in Eq. (K09-54)
expresses the perturbation Hamiltonian, but it contains just
the direct part of the disturbing function; the indirect part
(i.e. the last term of the right-hand side of Eq. (K03-49))
is omitted. Kozai then assumes that Jupiter’s eccentricity is
negligibly small, and that its argument of perihelion g′∗ and
its conjugate momentum G ′∗ disappear from F∗. This makes
the degrees of freedom unity, and Kozai gives the canonical
equations of motion of the asteroid as

d G∗

dt
= m ′ ∂ W ∗

∂g∗ ,
d g∗

dt
= −m ′ ∂ W ∗

∂G∗ , (K10-55)

with an integral

W ∗ = const. (K11-56)

As Kozai writes at the end of this section, in principle we can
solve Eq. (K10-55) by quadrature.

3.3 Stationary point
Next in “III. Stationary point,” Kozai gives his estimate on

the location of the stationary points that the perturbation part
of the doubly averaged Hamiltonian W ∗ can have. At these
stationary points, g∗ and e∗ (therefore G∗) of the perturbed
body are supposed to be constant. What Kozai employs here
is a numerical analysis, not an analytical treatment. This is
perhaps not what many readers would anticipate him to do.

Kozai first states that, W ∗ in Eq. (K09-54) takes the
following form when e′ = 0:

W ∗ =
∑
j=0

A j
(
α, G∗, H

)
cos 2 jg∗, (K12-57)

with

α =
(

k′L∗

kL ′∗

)2

. (K13-58)

It is clear that α in Eq. (K13-58) is practically equivalent
to the ratio of semimajor axes between the perturbed and
perturbing body, a

a′ . Meanwhile A j in Eq. (K12-57) is a
coefficient depending on α, G∗, and H . Kozai did not give
any proof of Eq. (K12-57) or specific function form of A j

at all at this point. Its function form, however, is revealed in
later sections when he presents an analytic expansion of W ∗.

Once admitting that the expansion form of Eq. (K12-57)
is valid, we can accept Kozai’s statement that d g∗

dt vanishes
when sin 2g∗ = 0 owing to the canonical equations of mo-
tion (K10-55). More specifically writing, from Eq. (K12-57)
and the first equation of Eq. (K10-55) we have

∂ W ∗

∂g∗ =
∑
j=0

A j
(
α, G∗, H

) ∂

∂g∗ cos 2 jg∗

= −
∑
j=0

2 j A j
(
α, G∗, H

)
sin 2 jg∗,

(59)

doi:10.5047/meep.2019.00701.0001 c© 2019 TERRAPUB, Tokyo. All rights reserved.



T. Ito and K. Ohtsuka: The Lidov–Kozai Oscillation and Hugo von Zeipel 15

Table 1. Reproduction of Table I of Kozai (1962, p. K592). The values
in the column named as “i0” are obtained from Kozai’s “numerical har-
monic analysis.” The values in the column named as “i0 approx” are
from the analytic expansion of W ∗ that Kozai accomplished in the later

section (see our p. 14 for detail).
(

H0
L∗

)2
is related to cos i0 through Eq.

(K17-64). The values of i0 that are numerically obtained are later plotted
as our Fig. 15 (p. 57) for a comparison with von Zeipel’s achievement.

α
( H0

L∗
)2

i0
i0

approx

0.00 0.60 000 39◦.231 39◦.231

0.05 0.60 116 39◦.164 39◦.164

0.10 0.60 464 38◦.960 38◦.960

0.15 0.61 043 38◦.620 38◦.620

0.20 0.61 849 38◦.146 38◦.146

0.25 0.61 880 37◦.536 37◦.535

0.30 0.64 133 36◦.791 36◦.790

0.35 0.65 599 35◦.911 35◦.905

0.40 0.67 274 34◦.894 34◦.875

0.45 0.69 154 33◦.738 33◦.694

0.50 0.71 230 32◦.437 32◦.355

0.55 0.73 495 30◦.986 30◦.860

0.60 0.75 940 29◦.374 29◦.239

0.65 0.78 556 27◦.586 27◦.566

0.70 0.81 330 25◦.600 25◦.925

0.75 0.84 252 23◦.380 24◦.410

0.80 0.87 305 20◦.874 23◦.078

0.85 0.90 488 17◦.964 21◦.926

0.90 0.94 581 13◦.460 20◦.963

0.95 0.99 900 1◦.811 · · ·

which indicates that sin 2g∗ = 0 is a condition for W ∗ to be
stationary somewhere in phase space. sin 2g∗ = 0 means
cos 2g∗ = +1 or cos 2g∗ = −1. Then, from the second
equation of Eq. (K10-55) we get

∂ W ∗

∂G∗ =
∑
j=0

∂ A j (α, G∗, H)

∂G∗ cos 2 jg∗. (60)

This result means that the considered system has a stationary
point under either of the following conditions:∑

j=0

∂ A j

∂G∗ = 0 (when cos 2g∗ = +1), (K14-61)

∑
j=0

(−1) j ∂ A j

∂G∗ = 0 (when cos 2g∗ = −1). (K15-62)

Here Kozai also puts another inequality

H ≤ G∗ ≤ L∗, (K16-63)

which seems obvious for us because
√

1 − e2 ≤ 1 and
| cos i | ≤ 1 as long as we consider elliptic orbits.

When cos 2g∗ = +1, Kozai claims that W ∗ does not have
any stationary points according to his numerical analysis.
Literally citing his description:

“It has been proved numerically that Eq. (K14)
does not have such a solution except for H =
G∗ = 0 and the equation dg∗/dt = 0 has no
meaningful solution other than sin 2g∗ = 0, at
least when α is less than 0.8.” (p. K593)

However, details of Kozai’s numerical analysis are not
presented in his paper at all. Note also that we changed
the original expression “Eq. (14)” into “Eq. (K14)” in the
above citation for clarifying that this equation denotes Eq.
(K14-61). We will continue to adopt this manner throughout
the rest of this monograph.

When cos 2g∗ = −1, Kozai describes the condition for
W ∗ to have stationary points as follows:

“Equation (K15) has a solution when H is equal
to or smaller than a limiting value H0. When H
is equal to H0, the stationary solution appears at
G∗ = 1. As H decreases, Eq. (K14) has a smaller
value of G∗ as the root, and when H is zero, G∗ =
0 corresponds to the stationary value. When H
is equal to H0, the corresponding inclination is
derived by

H0 = L∗ cos i0. (K17-64)

Both H0 and i0 depend on α and are derived by
numerical harmonic analysis of dW ∗/dG∗. The
results are given in Table I and as a solid line in
Fig. 1.” (p. K593)

For facilitating reader’s understanding of the above quoted
part, we have reproduced Kozai’s Table I as our Table 1. By
mentioning his results obtained through the analytic expan-
sion of W ∗ up to O

(
α8

)
which is not yet presented at this

point in his paper, Kozai continues as follows:

“Besides the numerical harmonic analysis, values
of i0 are derived analytically by developing the
disturbing function into power series of α up to the
eighth degree, shown in the last column of Table I
and as a broken line in Fig. 1. Comparison of
the two lines in Fig. 1 shows that the analytical
method can provide rather good values for i0 up to
α = 0.7.” (p. K593)

We have to say that, we do not feel that there will be
many readers who correctly understand Kozai’s logic and
intention at this point, as his explanations are lame. Also,
the sudden appearance of the result obtained from his own
analytic expansion of the disturbing function at this point
seems odd. We believe that readers of this monograph who
return to this section after going through Kozai’s paper will
find that their understanding is much deeper.

Kozai concludes this section with the following paragraph.
It mentions an important, quantitative conclusion on the
largest value of i0 and its dependence on α. However, at
this point there is no explanation as to how Kozai reached
this result, or what kind of value “39◦.2” means:

“In the first approximation, i0 and H0 do not de-
pend on Jupiter’s mass m ′. The value of i0 drops
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from 39◦.2 to 1◦.8 as α increases from 0.0 to
0.95. However, there are few asteroids that have
H smaller than H0. When α is larger than 0.95,
there may be a stationary solution for any value of
H .” (p. K593)

3.4 Disturbing function
In the next section “IV. Disturbing function,” Kozai

presents his detailed calculation on the analytic expansion
of the disturbing function up to O

(
α2

)
. He uses the notation

R for the direct part of the disturbing function. Its definition
is the same as in our Section 2:

R = k2m ′(
r2 − 2rr ′s + r ′2) 1

2

= k2m ′

r ′

∞∑
j=0

Pj (s)
( r

r ′
) j

,

(K18-65)

where s, which is seen in Eq. (K03-49) and is equivalent to
cos S in our Section 2.2, is expressed as

s = cos( f + g) cos( f ′ + g′)
+ cos i sin( f + g) sin( f ′ + g′).

(K07-66)

Note that the expression of s in Eq. (K07-66) is an outcome
of the assumption that the reference plane of the system
coincides with the perturber’s orbit.

As we mentioned in our Section 2, the P1 term can be
dropped from Eq. (K18-65). Also, after the averaging pro-
cedure using the mean anomaly l ′ of the perturbing body, all
the odd-order terms ( j = 3, 5, 7, . . . ) disappear if the per-
turbing body is on a circular orbit (e′ = 0). Hence Kozai
describes the major part of the disturbing function R1 that is
averaged by l ′ as follows:

R1 = 1

2π

∫ 2π

0
(R)e′=0dl ′

= k2m ′

a′

∞∑
j=0

P2 j (s1)
( r

a′
)2 j

.

(K19-67)

Recall that r ′ is now equal to a′, the perturbing body’s semi-
major axis. Note also that Kozai did not give any definitions
of s1 in Eq. (K19-67). We can say it is a symbolic expres-
sion for the averaged value of s by the mean anomaly l ′ of
the perturbing body such as

s1 ≡ 1

2π

∫ 2π

0
sdl ′ = 〈s〉l ′ , (68)

which is practically equivalent to 〈cos S〉l ′ seen in our Sec-
tion 2.2 (see Eq. (38) for comparison). A confusing point in
Kozai’s notation here is that, the averaged values of s never
actually show up in the form of Eq. (68): They show up in
the form of even powers such as

〈
s2

〉
l ′ ,

〈
s4

〉
l ′ ,

〈
s6

〉
l ′ ,

〈
s8

〉
l ′ , but

Kozai denotes them as s2
1 , s4

1 , s6
1 , s8

1 .
After introducing Eq. (K19-67), Kozai presents the spe-

cific function forms of s2
1 , s4

1 , s6
1 , s8

1 in Eq. (K20) together
with the averaged values of the Legendre polynomials of the
corresponding order, P2(s1), P4(s1), P6(s1), P8(s1) in Eq.

(K21). Kozai did not show the specific definition of P2 j (s1),
but it is as follows:

P2 j (s1) ≡ 〈
P2 j (s)

〉
l ′ = 1

2π

∫ 2π

0
P2 j (s)dl ′. (69)

We do not reproduce the specific forms of s2
1 , s4

1 , s6
1 , s8

1 and
P2(s1), P4(s1), P6(s1), P8(s1) in this monograph because of
their complexity. See Eqs. (K20) and (K21) for the detail.

The next step is to average the disturbing function by the
mean anomaly l of the perturbed body. Kozai carried this
task out using one of the formulas devised by Tisserand
(1889, see Eq. (K22) which we do not reproduce here).
The resulting doubly averaged disturbing function W ∗ is
very complicated, but we venture to reproduce it here. First,
remark Kozai’s abbreviated notations

θ = H

G∗ , η = G∗

L∗ . (K24-70)

It is obvious that θ is practically equivalent to cos i , and
η is practically equivalent to

√
1 − e2, if we ignore their

difference denoted by ∗. Using the notations defined by Eq.
(K24-70), W ∗ becomes up to O

(
α8

)
as

W ∗ = k2

a′ α
2

{
1

16

[− (
1 − 3θ2

) (
5 − 3η2

)
+15

(
1 − θ2

) (
1 − η2

)
cos 2g∗]

+ 9

212
α2

[(
3 − 30θ2 + 35θ4

) (
63 − 70η2 + 15η4

)
− 140

(
1 − θ2

) (
1 − 7θ2

) (
1 − η2

) (
3 − η2

)
cos 2g∗

+735
(
1 − θ2

)2 (
1 − η2

)2
cos 4g∗

]
+ 5

217
α4

[−10
(
5 − 105θ2 + 315θ4 − 231θ6

)
× (

429 − 693η2 + 315η4 − 35η6
)

+ 315
(
1 − θ2

) (
1 − 18θ2 + 33θ4

) (
1 − η2

)
× (

143 − 110η2 + 15η4
)

cos 2g∗

− 4158
(
1 − θ2

)2 (
1 − 11θ2

) (
1 − η2

)2

× (
13 − 3η2

)
cos 4g∗

+99099
(
1 − θ2

)3 (
1 − η2

)3
cos 6g∗

]
+ 175

228
α6

× [
7

(
35 − 1260θ2 + 6930θ4 − 12012θ6 + 6435θ8

)
× (

12155 − 25740η2 + 18018η4 − 4620η6 + 315η8
)

− 27720
(
1 − θ2

) (
1 − 33θ2 + 143θ4 − 143θ6

)
× (

1 − η2
) (

221 − 273η2 + 91η4 − 7η6
)

cos 2g∗

+ 396396
(
1 − θ2

)2 (
1 − 26θ2 + 65θ4

) (
1 − η2

)2

× (
17 − 10η2 + η4

)
cos 4g∗

− 490776
(
1 − θ2

)3 (
1 − 15θ2

) (
1 − η2

)3

× (
17 − 3η2

)
cos 6g∗

+15643485
(
1 − θ2

)4 (
1 − η2

)4
cos 8g∗

]}
. (K23-71)
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Through our own algebraic manipulation (Ito, 2016), we
have confirmed that there is no miscalculation or typographic
error in the expansion of W ∗ in Eq. (K23-71).

For reference, let us take just the terms in the leading-order
O

(
α2

)
out of the expression of W ∗ in Eq. (K23-71). Trans-

lating θ and η into the standard notations of orbital elements
using e and i , and using G instead of k, and ignoring all ∗
from the symbols for simplicity, this quantity becomes

W ∗
O(α2)

= G
a′

( a

a′
)2

× 1

16

[
15e2 sin2 i cos 2g − (

3e2 + 2
) (

3 sin2 i − 2
)]

,

(72)

which we often find in modern literature (e.g. Naoz, 2016,
Eq. (15) on p. 448).

Using the leading-order terms of the disturbing function
described in Eq. (72), we can write down the canonical
equations of motion for G and g as follows:

d G

dt
= m ′

∂ W ∗
O(α2)

∂g

= −Gm ′

a′
( a

a′
)2

· 15

8
e2 sin2 i sin 2g, (73)

d g

dt
= −m ′

∂ W ∗
O(α2)

∂G

= Gm ′

a′
( a

a′
)2

· 3

8G

[(
5 cos2 i − (

1 − e2
))

−5
(
cos2 i − (

1 − e2
))

cos 2g
]
. (74)

The set of equations (73) and (74) is a simplified version
of the canonical equations of motion whose general form is
Eq. (K10-55). They are also seen in conventional literature
(e.g. Kinoshita and Nakai, 1999, Eqs. (5) and (6) on their p.
127). Note that we ignored all ∗ from the symbols in Eqs.
(73) and (74) except for W ∗

O(α2)
.

In Section 3.3 (p. 14 of this monograph) we introduced
Kozai’s estimate that W ∗ can have stationary points when
cos 2g∗ = −1. Let us see where they are located at the
O

(
α2

)
level approximation using Eq. (74).

At the stationary points, we have d g∗
dt = 0. From Eq. (74),

this means

10 cos2 i − 6
(
1 − e2

) = 0. (75)

Here let us notify readers that Kozai defined an important
parameter in his discussion at the end of his Section IV . It is
denoted as �, and expressed as follows:

� =
(

H

L∗

)2

. (K26-76)

This variable is roughly equivalent to
(
1 − e2

)
cos2 i and a

constant, because both H and L∗ are constant as we saw in
the previous discussion. Using � in Eq. (K26-76), we can
rewrite the condition (75) as follows:(

1 − e2
)2 = 5

3
�. (77)

Since we have 0 ≤ (
1 − e2

)2 ≤ 1 as long as we consider
elliptic orbits, the condition (77) holds true only when

� ≤ 3

5
. (78)

In other words, the doubly averaged disturbing function
W ∗

O(α2)
in Eq. (72) cannot have stationary points unless

the condition (78) is satisfied. Recalling the definition of
� in Eq. (K26-76), Eq. (78) means that there is a threshold
value of H only below which the system can have stationary
points. Kozai designated it as H0 (see his p. K593 and p. 15
of this monograph), and its actual expression is

H0 =
√

3

5
L∗, (79)

from Eqs. (K26-76) and (78).
The threshold value H0 can be translated into a threshold

value of orbital inclination of the perturbed body, i0. As we
showed before, Kozai defined i0 in Eq. (K17-64) as the value
that realizes G∗ = 1. This obviously happens when e = 0.
Kozai also defined the corresponding threshold �0 just after
Eq. (K26-76). They yield the relationship

�e=0 = �0 =
(

H0

L∗

)2

= cos2 i0. (80)

Substituting Eq. (79) into Eq. (80), the actual value of i0 is
calculated as

i0 = cos−1

√
3

5
= 39.◦2315205 · · · , (81)

at the O
(
α2

)
approximation. Kozai develops the same dis-

cussion at the O
(
α8

)
approximation based on his calculation

result, Eq. (K23-71). He writes:

“The limiting value of H is derived from the equa-
tion (

∂ W ∗

∂G∗

)
cos 2g∗=−1,η=1

= 0,

that is

− 5� + 3 + 15

32

(−49�2 + 46� − 5
)
α2

+ 175

512

(−297�3 + 417�2 − 143� + 7
)
α4

+ 18375

65536

(−1573�4 + 2974�3 − 1738�2

+320� − 9) α6 = 0, (K25-82)

” (p. K594)

Note that in Eq. (K25-82), all � should be replaced for �0

due to the condition η = 1 (or e = 0).
Kozai then continues:

“Equation (K25-82) gives the limiting value �0

corresponding to H0 as a function of α. When α is
zero, �0 is equal to 0.6.” (p. K594)
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Equation (K25-82) is still complicated, and it is not easy
to derive an inverse form such as �0(i0) = f (α) where f
is some function. It may be possible to solve Eq. (K25-82)
as a cubic equation of α2, but we do not know how Kozai
obtained the list of the values tabulated in his Table I (in the
“i0 approx” column in Table 1).

Let us symbolically write Eq. (K25-82) as f1(α, �0) = 0.
Instead of directly solving Eq. (K25-82), we have made
a plot of equi-value contours that f1(α, �0) creates on the
(α, �0) plane (Fig. 5). Among the contours seen in Fig.
5, we marked a particular contour that denotes the region
f1(α, �0) = 0 with red. We have confirmed that the values
plotted on the red curve in Fig. 5 is consistent with those
tabulated in the “i0 approx” column in Kozai’s Table I.

The thick red line in Fig. 5, which denotes the ap-
proximate analytic solution of Eq. (K25-82), tells us that
the threshold inclination i0 monotonically decreases from

cos−1
√

3
5 ∼ 39.◦2 to much lower values as α increases. This

is consistent with Kozai’s statement that we cited on p. 16 of
this monograph. This fact means that in the doubly averaged
inner CR3BP, the larger α gets, the more easily the station-
ary points of the motion of the perturbed body can take place
even with smaller i . We will see this feature later again in
von Zeipel’s work (Section 5 of this monograph).

3.5 Solution at quadrupole level
In Kozai’s next section “V. Case for small α,” he just picks

the lowest-order O
(
α2

)
terms of the doubly averaged dis-

turbing function (72), and discusses its characteristics. This
is the quadrupole level approximation, and it is valid only
when α � 1. Kozai’s main interest in this section is to de-
rive an analytic, time-dependent solution of orbital elements
governed by the doubly averaged disturbing function at the
quadrupole level approximation. On the way he gives con-
siderations on possible solutions in several special cases, and
in particular, on their trajectory shapes. Frankly speaking,
we feel that this part of the section is poorly organized, partly
because of too many conversions of variables and too terse
literal descriptions. Therefore we just make a brief summary
of Kozai’s categorization of trajectories, and return to the
same subject again when we introduce Lidov’s work (Sec-
tion 4 of this monograph).

Kozai begins this section with a simple statement:

“When a is small enough so that we can neglect
α2 in the braces {} in W ∗ (K23-71), Eqs. (K10-55)
can be integrated by using an elliptic function of
Weierstrauss.” (p. K594)

Then Kozai transforms the canonical equation of motion
for d G∗

dt in Eq. (K10-55) into a form that uses different
variables. He shows that the energy integral W ∗ in Eq.
(K11-56) is expressed in the following form

−
(

1 − 3�

x

)
(5 − 3x)

+ 15

(
1 − �

x

)
(1 − x) cos 2g∗ = C, (K27-83)

Fig. 5. Equi-value contours plotted on the (α, i0) plane produced from the
left-hand side of Eq. (K25-82). The values of i0 are translated from those
of �0 through Eq. (80). The thick red line indicates the location of the
solution of Eq. (K25-82), f1(α, �0) = 0. Note that we have added the
labels “min” and “max” near the locations of local minima and local
maxima of the function f1(α, �0), because it is hard to recognize them
just from the grayscale contours.

with a new variable x defined as

x = η2. (K28-84)

In other words, x = 1 − e2. He also defines its initial value
x0 as follows:

x0 = x |g∗=0 . (85)

Then the constant C is expressed by x0 and � as

C = 10 − 12x0 + 6�. (K29-86)

Kozai also introduces another variable y as

y = 3x2 − x (5 + 5� − 2x0) + 5�. (K31-87)

Applying Eqs. (K27-83), (K29-86) and (K31-87) to the
equation of motion for d G∗

dt in Eq. (K10-55), Kozai obtains
the following ordinary differential equation for x :

d x

dt
= ∓3

2
nα3m ′√2 (x − x0) y, (K30-88)

where n is the mean motion of the perturbed body. In the
right-hand side of Eq. (K30-88), the negative sign corre-
sponds to the positive values of sin 2g∗, and the positive sign
corresponds to the negative values of sin 2g∗.
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Kozai claims that the solution of the differential equation
(K30-88) is categorized into four types, depending on the
value of x0 (i.e. the initial eccentricity value at g∗ = 0).
Kozai carries this procedure out by solving an equation

y = 0, (89)

which leads to d x
dt = 0 from Eq. (K30-88). Let us put brief

descriptions of what he wrote for the four cases:

Case 1. (when x0 = �)
In this case, the solution of Eq. (89) is either x = � or
x = 5

3 . As x cannot exceed 1, this means x is always
equal to �. Since x = 1 − e2 and � = (

1 − e2
)

cos2 i by
their definitions, cos2 i is always unity. This means that
the inclination i of the perturbed body is always zero.

Case 2. (when x0 = 1)
In this case, the solution of Eq. (89) is either x = 1 or
x = 5

3�. If x = 1, perturbed body is always on a circular
orbit (e = 0). On the other hand if x = 5

3�, there is a
stationary point at cos 2g∗ = −1 only when � < �0 = 3

5 .

Case 3. (when � < x0 < 1)
In this case, one of the solutions of Eq. (89) lies in the
range of � ≤ x ≤ 1, and the other is x > 1 (which is not
valid). This case embraces the most ordinary trajectories
where g∗ makes a circulation from 0 to 2π .

Case 4. (when x0 > 1)
In this case, both the solutions of Eq. (89) lie in the range
of 5

3� ≤ x ≤ 1. So a dynamically meaningful solution
can exist only when � < �0 = 3

5 . However, x cannot
exceed 1 by its definition (K28-84), neither can x0 by its
definition (85). Therefore we do not exactly understand
Kozai’s assumption (x0 > 1) in this case.

After these categorization of characteristic solutions,
Kozai slightly changes the course of discussion. He begins
introducing time-dependent analytic solution of the equa-
tions of motion expressed by an elliptic function. First, Kozai
makes the following statement:

“In each case Eq. (K30-88) can be solved by an
elliptic function of Weierstrauss ℘,” (p. K595).

More specifically, Kozai introduces another set of variable
conversions (x, t) → (z, t∗) as

z = x − 5

9
(1 + �) − 1

9
x0,

t∗ = −3
√

6

4
nm ′α3t,

(K38-90)

and he converts the differential equation (K30-88) into the
following one:

d z

dt∗ = ±
√

4 (z − z0) (z − z1) (z − z2), (K39-91)

where

−z0 = z1 + z2

= 5

9
(1 + �) − 8

9
x0,

z1z2 = −50

81
(1 + �)2

+ 25

81
x0 (1 + �) + 7

81
x2

0 + 5

3
�.

(K41-92)

Then Kozai says that solution of Eq. (K39-91) can be ex-
pressed using Weierstrass’s elliptic function ℘ as

z = ℘(t∗). (K40-93)

Consult Southard (1965) or Weisstein (2017) for more de-
tailed information on the function ℘.

Note that the original Eqs. (K38-90) and (K41-92) contain
typographic errors in Kozai (1962), and we have already
rectified them in the above: The original Eq. (K38-90)
has + 1

9 x0 instead of the correct − 1
9 x0 in its right-hand side.

Also, the second equation of the original Eq. (K41-92) has
+ 5

81 x0 (1 + �) instead of the correct + 25
81 x0 (1 + �) in its

right-hand side. Hiroshi Kinoshita kindly notified us of the
typographic errors, and we have confirmed the correctness of
this information through our own algebra.

The solution z of the differential equation (K40-93) must
be translated into the solution x of Eq. (K30-88) as x(t∗).
x(t∗) is supposed to express the time-dependent solution of
e as e(t∗). Then, the solution for g∗ is subsequently obtained
from Eqs. (K27-83) and (K29-86) as

cos 2g∗ = Q(x)

5 (x − �) (1 − x)
, (K42-94)

where

Q(x) = −x2 + [5 (1 + �) − 4x0] x − 5�. (K43-95)

We can obtain the time-dependent solution for i from the
conservation of � such as

i = cos−1 H

G∗ . (K44-96)

Note again that the original Eq. (K43-95) in Kozai (1962)
contains a typographic error: The first term of the right-
hand side of the original Eq. (K43-95) is expressed as x2,
as opposed to the correct −x2. This information was also
communicated by Hiroshi Kinoshita.

Kozai also gives a set of differential equations for obtain-
ing time-dependent solutions for the mean anomaly l∗ and
the longitude of ascending node h∗ of the perturbed body.
They are as follows:

dl∗

dt
= n + 3

8

nm ′α3

η

(
x − 3� − Q(x)

1 − x

)
, (K45-97)

d h∗

dt
= −3

8

nm ′α3θ

η

[
5 − 3x − 5 (1 − x) cos 2g∗]

= −3

8

nm ′α3θ

η

[
5 − 3x − Q(x)

x − �

]
. (K46-98)
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Note that Kozai uses the variable t in the left-hand side
of Eqs. (K45-97) and (K46-98) instead of t∗. Also, al-
though we guess that he reached these solutions through an-
alytic quadrature, there is no mention of the detail as to how
Kozai derived Eqs. (K45-97) and (K46-98). Readers can
consult later studies along this subject for more detail (e.g.
Vashkov’yak, 1999; Kinoshita and Nakai, 2007). There is
also a short discussion about this subject later in this mono-
graph (Section 6.1.1 on p. 86).

3.6 Equi-potential trajectories
We presume that one of the features that makes Kozai’s

work a historic standard is his use of the so-called equi-
potential contours described in his section “VI. Trajectory.”
Drawing equi-potential contours (trajectories) of the aver-
aged disturbing function helps us grasp a global picture of
the perturbed body’s motion in phase space without actually
seeking specific time-dependent solutions. On diagrams with
equi-potential contours, we can see the existence or non-
existence of stationary points, the oscillating amplitude of
orbital elements, and the location of separatrix if any, at a
glance. Kozai describes what he did as follows:

“Trajectories of Eqs. (K10-55) can be plotted on
the

(
2g∗, 1 − e2

)
plane by using the energy inte-

gral W ∗ (K23-71). In Figs. 2 through 5 the trajec-
tories are shown for α = 0.” (p. K596)

Needless to say, this procedure is possible because the
doubly averaged CR3BP has just one degree of freedom, and
because the energy integral W ∗ (K23-71) itself is constant.
We reproduced Kozai’s Figs. K2, K3, K4, K5, and K8 as the
left column panels of our Fig. 6. Note that Kozai did not
mention anything on his Fig. K8 in his paper. We do not
know why, and we have no idea either as to why only Fig.
K8 is isolated, placed beyond Figs. K6 and K7.

Kozai’s Fig. K2 (corresponding to our reproduction
shown in the top panel in the left column of Fig. 6) is for
a system with � = 0.8 where stationary points would not
show up at the quadrupole level approximation. All the tra-
jectories exhibit circulation of 2g∗ from 0 to 2π . Note that
Kozai added arrows on each of the contours in his original
figures so that readers can understand the direction of mo-
tion. Our reproduction does not include these arrows.

Kozai’s Fig. K3 (corresponding to our reproduction
shown in the second panel from the top in the left column
of Fig. 6) is for a system with � = 0.6, the limiting value
that changes the dynamical characteristics of the system at
the quadrupole level approximation. Past the limiting value,
we come to visually recognize stationary points on the di-
agram. An example result with � = 0.5 is presented in
Kozai’s Fig. K4 (corresponding to our reproduction shown
in the third panel from the top in the left column of Fig.
6). In Kozai’s original Fig. K4, it is noticeable that one of
the contours reaches the upper boundary of the panel where
x = 1 − e2 = 1. This means that this contour denotes a
separatrix of the motion. Note that our reproduction in Fig.
6 does not have an explicit separatrix on it because of the
automatic choice of contour interval by the plotting applica-

tion that we used. The existence of stationary points and the
separatrix get more obvious as � gets smaller. An example
result when � = 0.3 is presented in Kozai’s Fig. K5 (corre-
sponding to our reproduction shown in the fourth panel from
the top in the left column of Fig. 6).

In Kozai’s Figs. K4, K5, and K8, he added the bound-
aries where d g∗

dt = 0 as broken lines. We reproduced the
boundaries in red in the corresponding panels of Fig. 6.
Here is how Kozai calculated the location of the boundaries.
From the canonical equation of motion for g∗ (74) at the
quadrupole level approximation, d g∗

dt vanishes when the fol-
lowing relationship is satisfied:

cos 2g∗ = 5� − x2

5
(
� − x2

) . (K36-99)

Eq. (K36-99) yields the condition that realizes d g∗
dt = 0 as

x =
√

5� (1 − cos 2g∗)
1 − 5 cos 2g∗ . (100)

Equation (100) denotes the location of the boundaries on the
(2g∗, x) plane shown in Fig. 6.

Kozai also gave the maximum oscillation amplitude of
2g∗ utilizing Eq. (K36-99). When � < 3

5 and the dou-
bly averaged disturbing function has stationary points, g∗ li-
brates between the two points that realize d g∗

dt = 0 centered
at 2g∗ = π . At these two points, 2g∗ is bound by the condi-
tion (K36-99). And from the function form of Eq. (K36-99),
the smallest value of 2g∗ (or the largest value of π − 2g∗)
takes place when x2 = 1. Substitution of x2 = 1 into Eq.
(K36-99) yields the largest oscillation amplitude of 2g∗ cen-
tered at 2g∗ = π as

2

(
π − cos−1 5� − 1

5 (� − 1)

)
. (K37-101)

In Fig. 6, we can visually confirm some of the characteris-
tic trajectories that Kozai categorized in his previous section
(see p. 19 of this monograph). Case 1 (x0 = �) which
corresponds to the status of i = 0 is realized at the lower
boundaries of the panels in Kozai’s Figs. K2, K3, K4, K5,
K8. As � = (

1 − e2
)

cos2 i is a constant, i = 0 automati-
cally means that e takes its maximum and also is a constant.
Since x = 1−e2, this trajectory occupies the lower boundary
of each panel.

As for Case 2 (x0 = 1), particularly when x = 1, the per-
turbed body is always on a circular orbit (e = 0). Therefore
the inclination i is also a constant. This trajectory corre-
sponds to the upper boundary of each of the panels, as x = 1
is its maximum value. Note that when � < 3

5 , the upper
boundary of x = 1 is divided into two parts: where 2g∗ cir-
culates from 0 to 2π , and where 2g∗ librates with the ampli-
tude given by Eq. (K37-101). Hence it can be misunderstood
that the upper boundary of the (2g∗, x) diagram composes a
singularity, but it is not. Citing Kozai’s words:

“Two bifurcation points on a line x = 1 are not ac-
tual singularities since they disappear when the co-
ordinates are transformed into polar ones (e, g∗).

doi:10.5047/meep.2019.00701.0001 c© 2019 TERRAPUB, Tokyo. All rights reserved.



T. Ito and K. Ohtsuka: The Lidov–Kozai Oscillation and Hugo von Zeipel 21

Fig. 6. Equi-potential contours of the doubly averaged disturbing function for the inner CR3BP calculated through the analytic expansion that Kozai
(1962) gave. The horizontal axis is 2g∗, and the vertical axis is x = 1 − e2. The five panels in the left column are the results assuming α = 0 with
� = 0.8, 0.6, 0.5, 0.3, 0.05. They are reproductions of Kozai’s original figures (Figs. K2, K3, K4, K5, K8) where only the lowest-order terms of Kozai’s
expansion (K23-71) is included. The red lines in the bottom three panels indicate the location where d g∗

dt = 0 is realized. On the other hand, the five
panels in the right column are those when α = 0.6 for the same values of �. We placed them for comparison with the panels in the left column. In this
case all the terms appearing in Kozai’s expansion (K23-71) up to O

(
α8

)
are used. Note that the smallest value of x is always equal to �. This is evident

from their definitions (x = 1 − e2, and � = x cos2 i) and the fact that the minimum of x is realized when cos2 i = 1, i.e. when x = �.

In fact, for x = 1, the circular orbit, g∗ cannot be
defined. At the bifurcation points d g∗

dt vanishes.”
(p. K596)

Note that what Kozai refers to as “the bifurcation points”
above are the contact points of the separatrix and the upper
boundary of the panels.
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In relation to his Figs. K4, K5, and K8, Kozai left a
description on the circumstance when � is small:

“As the value of � decreases, the libration region
becomes wide. Even when � is zero, there are tra-
jectories of both libration and complete revolution.
For an extreme case the orbit oscillates between a
circular perpendicular one and a parabolic one of
zero inclination. Although the assumption α = 0
may not be valid for this case, the results may con-
firm Lidov’s numerical work (1962).” (p. K597)

It is interesting that Kozai cites Lidov’s numerical work
here. We will mention this issue later in this monograph
(Section 6.2.4 on p. 90). As for the � = 0 case, see
Lidov’s discussion that we summarize in Section 4.8 of this
monograph (p. 35).

When making his Figs. K2, K3, K4, K5, K8, Kozai as-
sumed α � 1. This is equivalent to the quadrupole level
approximation that ignores all the higher-order terms than
O

(
α2

)
in the disturbing function. When the higher-order

terms in the disturbing function are included, the limiting
value of � as well as the shape of the equi-potential trajec-
tories change. This is what Kozai previously mentioned in
“III. Stationary point” (see p. 15 of this monograph). He
describes it again as follows:

“As the value of α increases, for a fixed value of
�, amplitudes of x become large and the libration
region expands as is expected.” (p. K597)

By comparing the panels in the left column (for α = 0) and
those in the right column (for α = 0.6) in Fig. 6, we can
easily see that Kozai’s above statement is true.

There is a point to notice in the bottom right panel of
Fig. 6 which is for (α, �) = (0.6, 0.05). In this panel we
recognize several local extremums in the region of x � 0.1
along 2g∗ = 180◦, in addition to the major local minimum
located around (2g∗, x) = (180◦, 0.25). We presume they
are artificial features, not real. x ∼ 0.1 means e ∼ 0.95.
It is known that the analytically expanded doubly averaged
disturbing function for CR3BP can sometimes give spurious
local extremums when the eccentricity of the perturbed body
is very large, even if its truncation order is as high as α8 (e.g.
Ito, 2016). The apparent local extremums seen in this panel
are probably one of these.

3.7 Actual asteroids
Kozai then moves on to drawing equi-potential contours

for actual objects in the solar system. His objects are two
asteroids, (1036) Ganymed and (1373) Cincinnati, whose α

values are not negligibly small (α > 0.5).
Kozai presented the resulting equi-potential plots in his

Figs. K6 and K7 (p. K597), and we reproduce them in our
Fig. 7. His description on the motion of these asteroids are
short. As for (1036) Ganymed, he writes:

“It is not in the libration region. The eccentricity
and inclination oscillate, respectively, between 0.3
and 0.55 and between 23◦ and 48◦, whereas the
present values are 0.5 and 27◦.” (p. K597)

Fig. 7. Reproduction of Kozai’s Figs. K6 (upper) and K7 (lower).
The upper panel shows the equi-potential contours of the doubly av-
eraged disturbing function for an asteroid (1036) Ganymed, and the
lower panel shows that for another asteroid (1373) Cincinnati. They
are calculated through the analytic expansion of the doubly averaged
disturbing function up to O

(
α8

)
presented in Eq. (K23-71). The

axes are common to Fig. 6 except that the range of 2g∗ is just be-
tween 0 and 180◦ (following Kozai’s way). The parameters � and α

are adopted from Kozai’s description: (�, α) = (0.5979, 0.5123) for
Ganymed, and (�, α) = (0.5325, 0.6569) for Cincinnati. The red points
in each of the panels indicate the “present” location of the asteroids
that Kozai mentioned: (2g∗, x) = (246◦, 0.7510) for Ganymed, and
(2g∗, x) = (207◦, 0.9184) for Cincinnati. However, note that the actual
location of the asteroids’ 2g∗ in these panels are not the written values,
but 114◦(= 360◦ − 246◦) for Ganymed, and 153◦(= 360◦ − 207◦) for
Cincinnati. This is also what Kozai did in his paper.

This means that, while the doubly averaged disturbing func-
tion for Ganymed has a stationary point, its argument of per-
ihelion does not actually librate, but circulates. On the other
hand as for (1373) Cincinnati, Kozai writes:

“The present values of the eccentricity and incli-
nation are, respectively, 0.29 and 42◦. and they os-
cillate between 0.25 and 0.6 and between 25◦ and
42◦. The motion of the argument of perihelion is
limited between 60◦ and 120◦.” (p. K597).

Note that the period placed in “0.29 and 42◦. and they · · · ’
must be Kozai’s typographic error. It should be replaced for
a comma as “0.29 and 42◦, and they · · · .”

Kozai’s above description on (1373) Cincinnati is now
considered to be the first “discovery” of a small solar system
body whose argument of pericenter librates (Marsden, 1999).
The behavior difference between the two asteroids, although
their disturbing potentials both have stationary points (local
minima) as seen in the right edge of Fig. 7, comes from
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the difference of the asteroids’ initial orbital energy. Kozai
did not explicitly mention this point. The libration of Cincin-
nati’s g was later confirmed by a direct numerical integration
of equations of motion including perturbation from four gi-
ant planets and Pluto (Marsden, 1970, p. 210, although no
figure or table was given).

At this point let us somewhat deviate from what Kozai
achieved, and let us reproduce his result through a different
method in different coordinates. This is to confirm the cor-
rectness and accuracy of Kozai’s analytic theory.

As for the method, we resort to numerical quadrature de-
fined in Eq. (K09-54). Numerical quadrature is expected to
yield a more accurate result than a truncated analytic expan-
sion of the disturbing function, particularly when α is large.
Technically speaking, by using the fact that perturber’s or-
bit is circular in CR3BP, we can turn the double integral
(K09-54) into a single integral by employing the complete
elliptic integral of the first kind (e.g. Bailey, 1983; Quinn
et al., 1990; Bailey et al., 1992). This conversion makes the
quadrature (K09-54) faster and more accurate. Our numer-
ical quadrature including the calculation of the elliptic inte-
gral was achieved using the functions implemented in GNU
Scientific Library (Galassi et al., 2009, GSL 1.16). Note that
as we already mentioned on p. 15, Kozai himself seemed to
carry out the numerical quadrature under the name of “nu-
merical harmonic analysis.” Kozai wrote that he used it for
calculating the values listed in his Table K1.

As for the coordinate system, we use polar coordinates
(e cos g∗, e sin g∗) instead of Kozai’s rectangular coordinates(
2g∗, 1 − e2

)
. The polar coordinates of this type have sev-

eral advantages over rectangular coordinates. First, peri-
odic trajectories appear as closed curves, not being intersect
by diagram borders which happens with rectangular coor-
dinates. Second, the e = 0 area is represented by a sin-
gle point at the origin (0, 0), and not extended into a line
as in rectangular coordinates. Since g∗ is an angle that in-
trinsically rotates, we believe that the polar coordinates of
this type are more appropriate in this problem than rectan-
gular coordinates. The polar coordinates of this type have
often been used in prior literature along these lines (e.g.
Froeschlé et al., 1991; Michel and Thomas, 1996; Michel
and Froeschlé, 1997; Michel, 1997; Michel et al., 1998;
Hamilton and Krivov, 1997; Wan and Huang, 2007). We can
also regard the coordinates (e cos g∗, e sin g∗) as a variant of
Poincaré coordinates (e.g. Šubr and Karas, 2005; Chenciner,
2015). A disadvantage of using this type of coordinates is
that, equi-potential contours sometimes get too crowded and
difficult to see in the large e region near the outer bound-
ary. Rectangular coordinate diagrams such as

(
2g∗, 1 − e2

)
or

(
g∗,

√
1 − e2

)
have an advantage in this case. Later in this

monograph we will show some of our calculation results in
the

(
g∗,

√
1 − e2

)
rectangular coordinates (p. 77). Note that

in what follows in this monograph, we write g∗ just as g for
simplicity. Therefore, the coordinate system we most often
employ in this monograph is (e cos g, e sin g).

We chose three asteroids as examples of our demonstra-
tion: (1036) Ganymed, (1373) Cincinnati, and (3040) Kozai.
As we have seen, Ganymed and Cincinnati are what Kozai

dealt with. (3040) Kozai is what we dealt with in our Fig. 2
(p. 10). Incidentally, (3040) Kozai was named after Yoshi-
hide Kozai. The name was proposed by James G. Williams
who found that the argument of perihelion of this asteroid is
in libration. See MPC (Minor Planet Circulars) 9770 (1985
July 2) and Milani et al. (1989) for more detail. Note also
that Milani et al. (1989, in his abstract) introduced the term
“Kozai class,” and used it for the objects whose orbital be-
havior seems to “be protected from node crossing by secular
resonances and e–ω coupling (Kozai class).”

We show our calculation results in Fig. 8. The trajecto-
ries seen in the upper three panels a, b, c are those obtained
through Kozai’s analytic expansion of the doubly averaged
disturbing function up to O

(
α8

)
, Eq. (K23-71). The trajec-

tories seen in the lower three panels d, e, f are those obtained
from the numerical quadrature. Overall, these two sets of
equi-potential contours look very similar, indicating the high
accuracy of Kozai’s analytic theory. We may see a small dis-
crepancy in the locations of the equilibrium points for (1373)
Cincinnati along the direction of g = ±π

2 (the panels a and
d). This kind of discrepancy would possibly be eliminated if
we use even higher-order analytic expansions of the disturb-
ing function than O

(
α8

)
.

We see red and blue partial circles in the panels for (1373)
Cincinnati (a and d). As we will see in more detail later (Sec-
tions 5.5 and 5.8 of this monograph), they correspond to the
condition of orbit intersection where the orbits of the perturb-
ing and perturbed bodies intersect each other. The disturbing
function becomes non-holomorphic on these lines, and they
form a set of borders on the (e cos g, e sin g) plane. The nu-
merical quadrature (the panel d) clearly yields these borders,
while the analytic expansion of the disturbing function (the
panel a) does not. This difference typically shows the limita-
tion of the simple analytic expansion of the disturbing func-
tion in this type. The line of orbit intersection in the panels
e and f are out of the panel ranges, and we do not have any
visual confirmations.

For comparing the equi-potential trajectories that the dou-
bly averaged disturbing function creates with what the ac-
tual, unaveraged “raw” CR3BP yields, we carried out a set
of direct numerical integration of the equations of motion
of these three asteroids. The equations of motion we inte-
grated correspond to Eq. (15) in Section 2 (see p. 5 of this
monograph). The system we considered includes asteroids
(as mass-less particles), the Sun with its current mass, and
Jupiter with its current mass on a circular orbit with semi-
major axis a′ = 5.2042 au. As for the numerical integra-
tion scheme, we employed the so-called Wisdom–Holman
symplectic map (Wisdom and Holman, 1991, 1992) imple-
mented as the SWIFT package (Levison and Duncan, 1994).
We have modified this code and used it in our previous works
(e.g. Strom et al., 2005; Ito and Malhotra, 2010), so we can
be assured of the correctness of our numerical integration.
The nominal stepsize of the numerical integration here is 1
day, and the total integration time is 5 million years with a
data output interval of 500 years.

The resulting numerical trajectories are shown as green
dots in each of the panels of Fig. 8. Overall they seem well
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Fig. 8. The equi-potential trajectories of three asteroids plotted on the (e cos g, e sin g) plane in the CR3BP framework. Top (a, b, c): Equi-potential
contours calculated through the analytically expanded doubly averaged disturbing function up to O

(
α8

)
presented in Eq. (K23-71). Bottom (d,

e, f): Equi-potential contours calculated through numerical quadrature defined in Eq. (K09-54). a and d are for (1373) Cincinnati, b and e are
for (1036) Ganymed, and c and f are for (3040) Kozai. Consult the caption of Fig. 7 as for the (�, α) values of (1373) Cincinnati and (1036)
Ganymed. (3040) Kozai’s values used here are (�, α) = (0.452, 0.354). The green dots are the actual trajectories of the asteroids obtained through
direct numerical integration of the equations of motion. Note that the green numerical trajectories shown in the panel set (a, b, c) and those in the
panel set (d, e, f) are identical. In the numerical integration, the initial values of the asteroids’ orbital elements are taken from the JPL Horizons
web-interface as of February 16, 2016. The initial locations of each of the asteroids are as follows: (e, g) = (0.3151321, 99◦.948105) for Cincinnati,
(e, g) = (0.5338748, 129◦.934759) for Ganymed, and (e, g) = (0.2005303, 288◦.967682) for Kozai. Note also that the numerical data for (1373)
Cincinnati and (3040) Kozai is equivalent to what was used in Fig. 2, except that the integration period is longer here (5 million years). The red and the
blue partial circles in a and d represent the conditions where the orbits of the perturbed and perturbing bodies intersect each other at the ascending node
(red) and at the descending node (blue) of the perturbed body. The black dashed circles represent the theoretically largest eccentricity of the perturbed
body in each system. See Section 5.5 for more rigorous definitions of the red and blue partial circles as well as the black dashed circles.

suited on the equi-potential contours obtained from the dou-
bly averaged disturbing function. Here, let us recall several
characteristic features exhibited in Fig. 2 (p. 10). Among
the features, the coupled oscillation of e and g is reasonably
explained by the trajectories that the green dots make on Fig.
8. The coupling of e and i is now obvious from the fact that
� = (

1 − e2
)

cos2 i remains constant in the doubly averaged
CR3BP as we saw in Section 3.4.

All the asteroids’ equi-potential diagrams shown in Fig. 8
possess stationary points because their � values are smaller
than the critical value

(
� = 3

5

)
of the quadrupole level ap-

proximation. Let us bring up another example where � is
larger. The object is the asteroid (4690) Strasbourg which we
already dealt with in the left panels of Fig. 2. In Fig. 9 we
plotted the equi-potential contours for this asteroid through
the numerical quadrature. Then we superposed the trajectory
obtained from direct numerical integration over the equi-

potential contours in green. The numerical integration data
are identical to what was shown in the left panels of Fig. 2.
As is indicated in the caption of Fig. 9, � of this asteroid is
as large as 0.9. With this parameter value, the asteroid’s equi-
potential diagram on the (e cos g, e sin g) plane does not pos-
sess any local extremums except for a minimum at the origin
(0, 0). Naturally, the asteroid’s argument of perihelion g just
circulates quite regularly from 0 to 2π .

3.8 Remarks on future prospects
In his last section “VII. Remarks,” after briefly mentioning

the similarity and difference between his work and a previous
work (Brouwer, 1947), Kozai makes the following comment
in its second paragraph:

“The theory discussed in the present paper can be
applied to the actual asteroid motion with some re-
strictions, as Jupiter’s eccentricity and other per-
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Fig. 9. The motion of the asteroid (4690) Strasbourg on the
(e cos g, e sin g) plane in the CR3BP framework. The black curves are
the equi-potential contours calculated from the numerical quadrature
defined by Eq. (K09-54). The parameter values employed here are
(�, α) = (0.9045, 0.3726). The green dots are the actual trajectories
of the asteroid obtained through direct numerical integration of the equa-
tions of motion. The numerical data is identical to what was shown in the
left panels of Fig. 2. The initial values of the asteroids’ orbital elements
are adopted from the JPL Horizons web-interface as of June 7, 2017, and
the initial location is (e, g) = (0.1089756, 105◦.515364).

turbing planets have been ignored.” (p. K598)

From the next paragraph Kozai begins stating several is-
sues that he did not take care of in his theoretical model:
(i) potential influence of Jupiter’s eccentricity e′, (ii) indi-
rect perturbation from other planets, (iii) motion of satel-
lites around an oblate planet, and (iv) motion of satellites
for which the orbital period of the Sun may not be regarded
as short. We think some of his comments are suggestive, and
they foresee future prospects. Let us make a brief summary
of Kozai’s statements.

As for the issue (i) of non-zero e′, the major part of Kozai’s
statement is as follows:

“When Jupiter’s eccentricity is included, the
canonical equations with two degrees of freedom
must be solved, whereas H is still constant and
there is an energy integral. However, it may be
very difficult to find any meaningful stationary so-
lution because of an apparent rapid motion of g′∗

due to a very small inclination. And l+g+h, g+h,
and h should be adopted instead of l, g, h. Then
Jupiter’s orbit can be regarded as known, although
there is no integral corresponding to H = const
for this case.” (p. K598)

Recalling that H is one of the Delaunay elements
(
H =

L
√

1 − e2 cos i
)
, the way Kozai wrote “When Jupiter’s ec-

centricity is included, . . . whereas H is still constant,” makes
us guess that he is talking about the quadrupole level approx-
imation with “the happy coincidence” which reduces H to a
constant even when e′ > 0 (see p. 8 of this monograph).
However at the quadrupole level approximation, the doubly
averaged disturbing function does not contain g′. Hence we
do not know what he meant by “an apparent rapid motion of
g′∗.” In addition, this description seems inconsistent with the
later sentence “although there is no integral corresponding
to H = const for this case.” We do not exactly understand
Kozai’s intention here.

As for the issue (ii) of indirect perturbation from other
planets, Kozai makes a statement as follows:

“When indirect perturbations due to other planets
are considered, the integral of the elimination of
nodes does not hold in the form h = h′. How-
ever, since Jupiter’s orbital plane deviates very lit-
tle from the invariable plane, H may be regarded
as a stable constant, especially when the inclina-
tion of the asteroid is high.” (p. K598)

Kozai later solved the problem, and found a way to incor-
porate more than one perturber in this line of calculations,
although their orbits must be circular.

As for the issue (iii) of the inclusion of planetary oblate-
ness, Kozai writes as follows:

“When the motion of a satellite around an oblate
planet is considered, the perturbations due to the
sun and the oblateness should be taken into consid-
eration. When the equator of the planet coincides
with the ecliptic, the present theory can be applied
with little modification, since both H and W ∗ are
constant. However, since a term of cos 2g does not
appear in the first-order disturbing function due to
the oblateness, the limiting value of H for the ex-
istence of a stationary solution becomes smaller or
even disappears according to the ratio of the dis-
turbing forces of the sun and the oblateness.” (p.
K598)

The possibility that Kozai brought up above (the diminishing
or disappearance of the limiting value of H due to the plane-
tary oblateness) is investigated in Lidov’s work as well as in
some later studies. See p. 38 for more detail.

As for the issue (iv), Kozai did not give much description.
He just stated:

“Sometimes, in the case of a satellite for which
the period of one revolution of the sun may not be
regarded as short, the solar mean anomaly l ′ may
not be dropped. It is impossible, therefore, to make
an exact study of a general case.” (p. K598)

Although Kozai did not bring up any actual examples, we
presume that this kind of circumstance would happen when
a satellite’s secular orbital variation occurs so quickly that
we cannot regard the orbital period of the perturbing body

doi:10.5047/meep.2019.00701.0001 c© 2019 TERRAPUB, Tokyo. All rights reserved.



26 T. Ito and K. Ohtsuka: The Lidov–Kozai Oscillation and Hugo von Zeipel

(for instance, the Sun) to be negligibly short compared with
the secular timescale. In this case, the double averaging
procedure would be certainly inapplicable, as Kozai writes.
He then continues as follows to conclude the paper:

“If, however, only the principal terms are taken in
the disturbing function, stationary solutions can be
derived. Lunar orbits provide us with especially
interesting problem.” (p. K598)

Though Kozai’s statement may contain material directing
future prospects, we do not go into its detail any further.

Later, Kozai extended his own work on this subject into
various directions (e.g. Kozai, 1963c, 1969a, 1979, 1985).
Also, it is worth noting that the number of asteroids whose
argument of perihelion librates around g = ±π

2 has signifi-
cantly increased in Kozai’s publications. In Kozai (1962) it
was just one: (1373) Cincinnati. In Kozai (1979) it went up
to four: (944) Hidalgo, (1373) Cincinnati, (1866) Sisyphus,
and (1981) Midas. In Kozai (1980) it further increased to
eight (see his Table I on p. 91). Much later Kozai published
a concise summary of his work on this subject (Kozai, 2004)
where he reviewed the theoretical framework, not only of the
doubly averaged inner CR3BP but also of the outer problem
where α = a

a′ > 1. See Section 6.1.1 of this monograph (p.
86) for more descriptions about it.

4. The Work of Lidov
The core achievement of Kozai’s work that we browsed

through in the previous section, as is summarized in Marsden
(1999), is that Kozai discovered the existence of stationary
points of argument of pericenter g of perturbed body in the
framework of the doubly averaged inner CR3BP. Kozai also
quantified the condition for g to be in libration around the
stationary points as � < 3

5 . Marsden begins his article with
the following statement:

“The significance of Kozai’s (1962) paper lies in
his showing, for the first time, that there are cir-
cumstances where the argument of pericenter in a
perturbed orbit librates rather than circulates.” (p.
934)

However, nowadays it is well known that “for the first
time” in Marsden’s above statement is not entirely correct—
more and more people have come to know that there is a
study published slightly earlier than Kozai’s work, and it
deals with fundamentally the same problem (the doubly av-
eraged inner CR3BP) and obtained fundamentally the same
result as Kozai. The author of this work is Michail L’vovich
Lidov (1926–1993), a scientist who worked on celestial me-
chanics and astronautics in the former Soviet Union. Details
of his academic achievement are concisely summarized in
his obituary (Lidov’s colleagues and disciples, 1994) and in
many other articles (e.g. Egorov, 2001).

Before going into the details of Lidov’s work, we would
like readers to be aware that there has been a rich flow of
studies of the three-body problem in the Russian academic
community since long before Lidov. Among these, a pair
of publications (Moiseev, 1945a,b) occupies the position of

a landmark. We begin this section with a brief introduction
of these landmark papers. Note that there is a publication
(Vashkov’yak, 2008) which serves as an excellent review
of this line of studies in the former Soviet Union including
Moiseev’s and Lidov’s work.

4.1 Moiseev’s work on CR3BP
Nikolay Dmitriyevich Moiseev (1902–1955) was a celes-

tial mechanist in the former Soviet Union who produced
a large number of publications on the three-body problem
from the 1930s to the 1950s. Among his work, a pair of pa-
pers written in 1940 and published in 1945 about the general
framework of CR3BP is still regarded as a classical stan-
dard, particularly in the field of averaged CR3BP. There is
no English translation of these papers as far as we know, but
the titles may be translated as “About some primary simpli-
fied schemes of celestial mechanics, obtained by means of
averaging of restricted circular problem of three bodies, 1.
About averaged variants of restricted circular planar problem
of three bodies” (Moiseev, 1945a), and “2. About averaged
variants of spatial restricted circular problem of three bod-
ies” (Moiseev, 1945b), respectively. The section structure of
the two papers is exactly the same as each other. Their only
difference is that Moiseev (1945a) deals with a planar (two-
dimensional) CR3BP, while Moiseev (1945b) deals with a
spatial (three-dimensional) CR3BP. Let us quickly browse
through the contents of these papers.

Moiseev first describes the basic equations of motion of
CR3BP in Sections 1 (“Primary equations of restricted pla-
nar circular problem of three bodies” of the 1945a paper and
“Primary equations of restricted spatial circular problem of
three bodies” of the 1945b paper). Then in Sections 2 (“Dou-
bly averaged Gaussian problem”) he moves on to the doubly
averaged CR3BP, and illustrates the equations of motion and
conserved quantities. Moiseev names this problem as the
doubly averaged Gaussian problem. The differential equa-
tions for the orbital elements of the perturbed body in the
spatial (three-dimensional) CR3BP that Moiseev described
in Section 1 of his 1945b paper are equivalent to what we
see in modern textbooks, and they are as follows:

da

dt
= 2

√
a

k
√

ms

∂ Wj

∂ M
, (Mb1.28-102)

d p

dt
= 2

√
p

k
√

ms

∂ Wj

∂ω
, (Mb1.29-103)

d i

dt
= cot i

k
√

ms
√

p

∂ Wj

∂ω
− 1

k
√

ms
√

p sin i

∂ Wj

∂
,

(Mb1.30-104)

d M

dt
= k

√
ms

a
√

a
− 2

√
a

k
√

ms

∂ Wj

∂a
, (Mb1.31-105)

dω

dt
= − 2

√
p

k
√

ms

∂ Wj

∂p
− cot i

k
√

ms
√

p

∂ Wj

∂i
, (Mb1.32-106)
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d

dt
= 1

k
√

ms
√

p sin i

∂ Wj

∂i
, (Mb1.33-107)

where ms is the central mass of the system, k is used for de-
scribing the gravitational constant

(
k2 = G

)
, ω is argument

of pericenter (designated as g in Kozai’s work),  is longi-
tude of ascending node (designated as h in Kozai’s work),
and M is mean anomaly (designated as l in Kozai’s work).
Note that Moiseev uses semilatus rectum defined as

p = a
(
1 − e2

)
, (108)

instead of eccentricity e. We conjecture that Moiseev proba-
bly followed a custom to use this element in the Soviet Union
academic community at that time.

Wj in Eq. (Mb1.33-107) is the disturbing function whose
general form is

Wj = k2m j

 1√
a2

j + R2 − 2ajR cos θ
− R cos θ

a2
j

 ,

(Mb1.11-109)

where R is the radial distance of the perturbed body from
the central mass (designated as r in Kozai’s work), aj is the
radius of the circular motion of the perturbing body (desig-
nated as a′ in Kozai’s work), and θ is the angle between the
positional vector of the perturbed body and that of the per-
turbing body (equivalent to the angle S in our Fig. 1). The
subscript j in Eq. (Mb1.11-109) implicitly means that the
perturbing body that Moiseev considered is Jupiter, while the
perturbed body is regarded to be an asteroid.

Moiseev states on p. 104 of his 1945b paper that, unless
the distance between the perturbed and perturbing bodies
becomes zero and if the distance R remains finite, Wj can
be expanded into a triple Fourier series as

Wj =
∞∑

q=0

∞∑
r=−∞

∞∑
s=−∞

Cqrs(a, p, i) cos
(
q M + r + sω

)
,

(Mb1.45-110)

where

 =  − lj, (Mb1.39-111)

is the longitude of ascending node of the perturbed body
relative to the (true) longitude of the perturbing body, lj.
The conversion (Mb1.39-111) and its use in Wj practically
turns the coordinate system into a rotating frame with the
perturbing body (Jupiter), and eliminates the explicit time-
dependence of the disturbing function Wj that is included in
lj. Note that Kozai did not explicitly take care of this kind of
coordinate conversion in his work.

Now in Moiseev’s Section 2, the double averaging proce-
dure is carried out against the disturbing function Wj of Eq.
(Mb1.11-109). This yields the result as follows:

[Wj] = 1

4π2

∫ 2π

M=0

∫ 2π

lj=0
Wjd Mdlj. (Mb2.1-112)

From Eq. (Mb1.45-110) we know that the doubly aver-
aged disturbing function has the general form

[Wj] =
∞∑

s=−∞
C00s(a, p, i) cos sω, (Mb2.5-113)

with the coefficients C00s as functions of a, p, and i . Then,
the differential equations for the doubly averaged orbital ele-
ments with the doubly averaged disturbing function become:

da

dt
= 0, (Mb2.6-114)

d p

dt
= 2

√
p

k
√

ms

∂ [Wj]

∂ω
, (Mb2.7-115)

d i

dt
= cot i

k
√

ms
√

p

∂ [Wj]

∂ω
, (Mb2.8-116)

dω

dt
= − 2

√
p

k
√

ms

∂ [Wj]

∂p
− cot i

k
√

ms
√

p

∂ [Wj]

∂i
, (Mb2.10-117)

d

dt
= 1

k
√

ms
√

p sin i

∂ [Wj]

∂i
. (Mb2.11-118)

Note that in the right-hand side of the equations for d ω
dt

that was originally presented in Moiseev (1945b, Eq. (2.10)
on p. 106), the negative sign at the ∂ [Wj]

∂p term is somehow
missing. We believe it is just a typographic error, and added
the negative sign in the above Eq. (Mb2.10-117).

Note also that on p. 106 of his 1945b paper, we find yet
another differential equation in the same section:

d M

dt
= k

√
ms

a
√

a
− 2

√
a

k
√

ms

∂ [Wj]

∂a
. (Mb2.9-118)

However, we do not think this equation is practically
meaningful after the averaging procedure defined as Eq.
(Mb2.1-112). The averaging procedure would eliminate the
mean anomaly of the perturbed body M out of description
of the system. So we think Eq. (Mb2.9-118) just has an
implication to express the formal dependence of mean mo-
tion (n = d M

dt ) of the perturbed body on the doubly averaged

disturbing function and its partial derivative, ∂ [Wj]
∂a .

The first constant of integration in this system is semima-
jor axis a, which is obtained from Eq. (Mb2.6-114). This
is equivalent to the (canonically transformed) constant De-
launay element L∗ in Kozai’s work. Then, by dividing Eq.
(Mb2.7-115) by Eq. (Mb2.8-116) Moiseev obtains

d p

di
= 2p tan i, (Mb2.13-119)

which can be simply integrated as∫
1

2p
dp =

∫
tan idi, (120)
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which yields

ln |p| 1
2 = ln C | cos i |−1, (121)

with an arbitrary constant C . Thus we find the second con-
stant of integration from Eq. (121) as

√
p cos i = C = constant. (Mb2.14-122)

We presume p ≥ 0 and 0 ≤ i ≤ π
2 . From the defini-

tion of semilatus rectum in Eq. (108), the quantity in Eq.
(Mb2.14-122) turns out to be the vertical component of the
angular momentum of the perturbed body. This is obviously
equivalent to Kozai’s

√
�.

The third constant of integration is the doubly averaged
disturbing function [Wj] itself. We can confirm the fact that
[Wj] in Eq. (Mb2.1-112) or (Mb2.5-113) is a constant by
constructing the following total derivative

d [Wj]

dt
= ∂ [Wj]

∂p

d p

dt
+ ∂ [Wj]

∂i

d i

dt
+ ∂ [Wj]

∂ω

dω

dt
, (123)

using the equations from Eq. (Mb2.6-114) to Eq.
(Mb2.11-118). Then, let us pick the expression of d p

dt from
Eq. (Mb2.7-115), that of d i

dt from Eq. (Mb2.8-116), and that
of d ω

dt from Eq. (Mb2.10-117). Substituting these expres-
sions into Eq. (123), we reach the conclusion

d [Wj]

dt
= 0, (124)

which automatically means

[Wj] = constant. (Mb2.15-125)

Note that in this system d [Wj]
dt does not depend on . This

is due to the averaging procedure (Mb2.1-112) with the re-
lation (Mb1.39-111). As a result, the total derivative (123)
does not include the term ∂ [Wj]

∂
d 
dt .

Now we have the three constants of integration in a system
with three degrees of freedom. This brings us the conclusion
that the doubly averaged CR3BP is integrable by quadrature.
Note that in Moiseev’s discussion it does not matter whether
the system composes the inner problem or the outer one, as
he did not place any specific conditions on Wj (and therefore
on [Wj]) except that the orbits of the perturbed and perturbing
bodies do not intersect each other.

Although it is not quite relevant to the main discussion, let
us incidentally mention that Moiseev also derived an expres-
sion of the Jacobi integral of the doubly averaged CR3BP in
a form using orbital elements as

k2ms

2a
+ k

√
msn j

√
p cos i + [Wj] = constant.

(Mb2.16-126)

A similar expression for the doubly averaged planar CR3BP
is seen in his 1945a paper (Eq. (2.11) on p. 82).

Needless to say, the fact that the system is integrable does
not mean that the actual procedure of quadrature is simple
or easy. Moiseev just describes the formal solutions that

would be calculated by quadrature as follows. The relation-
ship (Mb2.14-122) tells us that there is a formal dependency
p = p(i). Also, the relationship (Mb2.15-125) tells us that
there is a formal dependency ω = ω(i). Then, by formally
integrating Eq. (Mb2.8-116) we get

t − t0 =
∫ i

i=i0

k
√

ms
√

p tan i
∂ [Wj]
∂ω

di, (Mb2.17-127)

where i0 is the value of i at t = t0. Equation (Mb2.17-127)
can be formally processed by quadrature, ending up with a
function form of i = i(t). We can obtain formal solutions
p(t), ω(t), and (t) in a similar way.

The remaining part of Moiseev’s papers (his Sections 3–
6) is about another class of averaging schemes, called the
singly averaged problems. In the singly averaged CR3BP,
the disturbing function is averaged only once either by lon-
gitude of the perturbed body or that of the perturbing body,
depending on which varies faster. Sections 3 (“External vari-
ant of the singly averaged Fatou problem”) are about a vari-
ant of the singly averaging scheme called the external “Fa-
tou” problem (Fatou, 1931). In this scheme, the disturbing
function is averaged just over the longitude of the perturbing
body whose orbital motion is assumed to be faster than that
of the perturbed body. Therefore we deduce that the orbit
of the perturbed body is located outside that of the perturb-
ing body, hence the problem is called external. On the other
hand, Sections 4 (“Internal variant of the singly averaged
problem”) are about the other variant of the singly averaged
CR3BP, called the internal problem. In this case the disturb-
ing function is averaged just by longitude of the perturbed
body whose orbital motion is faster than that of the perturb-
ing body. This implies that the orbit of the perturbed body is
located inside that of the perturbing body, hence the problem
is called internal. The last two sections (Section 5 “Singly
averaged Delaunay–Hill problem” and Section 6 “General-
ized singly averaged Delaunay–Hill problem”) are about the
singly averaged schemes extended to systems with a mean
motion commensurability between the mean motions of the
two objects using the so-called Delaunay–Hill method (cf.
Grebenikov, 1970; Singh, 1977).

Although the singly averaged CR3BP may be theoretically
interesting, it seems that they are not very often considered
in modern celestial mechanics anymore. A possible reason
is that, since the singly averaged CR3BP in three dimen-
sions is not generally integrable, people would choose di-
rect numerical integration rather than analytic method. This
is a difference from the doubly averaged CR3BP which is
principally integrable. Thus we put the singly averaged
CR3BP out of the scope of this monograph. Interested read-
ers may consult a recent study that deals with the eccen-
tric R3BP in the singly averaged method (Domingos et al.,
2013). Shevchenko (2017, Subsection 3.1, his p. 28) also
has a description of the singly averaged R3BP.

4.2 Publications by Lidov
Equipped with the knowledge of the doubly averaged

CR3BP in its general form that Moiseev summarized, let us
move on to the introduction of Lidov’s work.
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Michail L’vovich Lidov’s landmark paper (Lidov, 1961)
was published in the Russian language, sixteen years after
the work by Moiseev. It was soon translated into English
and published in two different journals. The first one, which
seems much better known than the other, is entitled “The
evolution of orbits of artificial satellites of planets under the
action of gravitational perturbations of external bodies,” pub-
lished in Planetary and Space Science (Lidov, 1962). Com-
pared with this, the existence of the second translation is
much less known. It is entitled “Evolution of orbits of arti-
ficial satellites of planets as affected by gravitational pertur-
bations of external bodies,” published in AIAA Journal Rus-
sian Supplement (Lidov, 1963a). See the References section
of this monograph for more detailed bibliographic records
of these translations. From our own personal point of view,
the second translation (Lidov, 1963a) seems more accurate
and closer to the original version (Lidov, 1961) than the first
translation (Lidov, 1962), in terms of its English presentation
as well as its choice of technical terms used in celestial me-
chanics. For example, the very first sentence of Lidov (1961)
is translated as follows in Lidov (1962):

“Until recently, in works devoted to the evolution
of the orbits of artificial satellites, investigations
have been made in detail of the influence, on the
orbit of the satellite, of the difference of the gravi-
tational field of the Earth and the central and the in-
fluence of the braking of the satellite in the Earth’s
atmosphere.”

while the same sentence is translated in Lidov (1963a) as:

“Until very recently, the writers of papers on the
evolution of the orbits of artificial satellites studied
in detail the influence exerted by the departure of
the earth’s gravitational field from a central field
and by atmospheric drag.”

We prefer the latter, and our summary of Lidov’s (1961)
work is based on the descriptions given in Lidov (1963a).
The original section titles that we sometimes refer to are also
transcribed from Lidov (1963a).

Incidentally, it is interesting to note that the AIAA version
of the English translation (Lidov, 1963a) has five additional
paragraphs between the front matter (title and the author list)
and the first paragraph of the main text (see his p. 1985). The
original paper (Lidov, 1961) does not contain these, neither
does the other English translation (Lidov, 1962). Judging
from the contents of the additional five paragraphs, they
seem to be a kind of general summary of the paper added
by the translators or the reviewer of the translation. Later we
briefly mention this point (p. 90 of this monograph).

Let us also note that there is a pair of subsequent publi-
cations that has a very close relationship to Lidov’s original
paper. One of them (Lidov, 1963b, written in Russian) is
a chapter of a proceedings volume (Subbotin et al., 1963).
The other (Lidov, 1963c, written in English) is also a chap-
ter of another proceedings volume (Roy, 1963). The con-
tents of the two articles are almost identical to each other,
and they practically serve as a supplement of Lidov (1961):

Both of them contain several subjects that Lidov (1961) did
not discuss, such as the equi-potential diagram for perturbed
body or the effect of planetary oblateness on the motion of
satellites. Hence in this monograph we essentially bunch
the achievements by Lidov (1961) and Lidov (1963b,c) to-
gether, regarding them as a series of work. Section 4.10 of
this monograph is a brief summary of what Lidov has further
achieved in these two publications.

4.3 Lidov’s motivation and background
In the introductory part that appears before Section 1 of

his paper, Lidov emphasizes the importance of including the
gravitational influence of other celestial bodies than the Earth
on the change of artificial satellites’ orbit. This was of less
serious concern at that time, compared with the effect of the
Earth’s atmospheric drag or higher-order harmonics of the
Earth’s gravitational field. Lidov mentions the fact that the
perigee height of an American artificial satellite (Vanguard
I) exhibited a non-negligible change (Musen et al., 1960).
Lidov then mentions that a Soviet Union spacecraft Luna-3
(Sedov, 1960) bound for the Moon significantly reduced its
perigee height compared with its initial value after orbiting
the Earth eleven times, and eventually hit the Earth’s atmo-
sphere. Lidov also conjectures that another American or-
biter, Explorer VI (Sonett et al., 1960), may have been under
a similar influence of the Moon and the Sun.

Among the above-mentioned three spacecrafts, the inci-
dent concerning Luna-3 is probably the best known (e.g.
Batygin, 2018). Lidov describes the incident as follows:

“In practice, the first space flight in which orbital
variation was seen to be influenced to any notable
degree by the gravitational attraction of the moon
and the sun was that of the Soviet automatic in-
terplanetary station (Lunik III) launched on Octo-
ber 4, 1959. The earth orbit into which the station
transferred after approaching the moon evolved,
such that in spite of the fact that the initial perigee
height had been of the order of 47 × 103 km, by
the time 11 revolutions had been completed the
perigee height predicted by computation was less
than the radius of the earth and the station had re-
entered the earth’s atmosphere.” (Lidov, 1963a,
the first paragraph in the left column on p. 1986)

Note that “Lunik III” in the above is equivalent to Luna-3.
This spacecraft was also known as the “automatic interplan-
etary station” at that time (e.g. Harvey, 2007, p. 34). There is
a more detailed literal description about its orbital evolution
in Sedov (1960, pp. 9–10)2.

2Let us cite two paragraphs from Sedov (1960) that are about the orbital
evolution of Luna-3 (“third space rocket”) from its launch on October 4,
1959, to the end state at the end of March, 1960. The following English
translation is adopted from Sedov (1961):

“During the flight of the automatic interplanetary station from
Earth to Moon the orbital inclination to the equatorial plane
was 65◦. After perturbation by the Moon the further path
under influence of the Earth’s gravity followed on orbit near
to elliptical with an inclination to the equator approximately
80◦. Calculation of the further path shows that the Sun and
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After giving the historic background, Lidov states his ba-
sic assumption throughout his paper as follows:

“The basic assumption made in this paper is that
there is a small enough ratio between the height of
the apocenter of the satellite and the distance from
the perturbing body to the central body around
which the satellite is revolving. This assumption
naturally restricts the class of orbits to which our
formulas can be applied;” (Lidov, 1963a, the sixth
paragraph in the left column on p. 1986)

We can rephrase that Lidov assumes the ratio between the
orbital distance of perturbed body r from the central mass
and that of perturbing body rk is small. Although Lidov did
not use any specific equations when stating this assumption,
it would be expressed as follows:

r

rk
� 1. (128)

As long as the eccentricity of perturbing body can be
ignored, the assumption expressed by Eq. (128) is practically
equivalent to α = a

a′ � 1 that Kozai presumed. In this
regard, Lidov’s discussion is limited to the quadrupole level
approximation at O

(
α2

)
.

4.4 Basic equations, force components
Lidov’s Sections 1 (“Formulation of the problem and sys-

tem of notation,”) and 2 (“Basic equations and perturbing
forces”) are devoted to the formulation of the basic equations
of motion used in his work. Unlike Kozai, Lidov did not use
the Hamiltonian formalism in this study. Instead, Lidov’s

Moon influence the orbit of the automatic interplanetary station
in such a way that the orbital inclination varies irregularly and
gradually diminishes. At the tenth loop the inclination is 48◦.
At the eleventh loop, under the influence of the Moon the
orbital inclination increases again to 57◦. It is a striking fact that
the minimum distance from the Earth as a result of the influence
of the Sun and Moon falls off from loop to loop. Calculation
shows that after completing the eleventh revolution at the end
of March 1960 the automatic interplanetary station entered the
Earth’s atmosphere in the northern hemisphere and terminated
its existence.
This fact is connected with the shape of the orbit and the nature
of its situation relative to the Earth and the Sun. This effect,
unexpected at first sight, is subject only to Newtonian forces. It
is obvious that similar effects must be taken into account in the
theoretical analysis of problems of the structure of planetary
systems and of orbital characteristics of different planets and
their satellites in the solar system. As a result of perturbations
set up by the Sun there is an evolution of the orbit which may
lead to collision of the satellite with the parent planet; hence
only satellites with certain specific types of orbit may persist
over a prolonged period.” (Sedov, 1961, his pp. 112–113)

A point to note here is that the long-term orbital evolution of Luna-3
including its final fate to hit the Earth’s atmosphere at the end of 1960
March was not actually observed, despite that some later literature states
it was. This is due to the fact that the communication to Luna-3 was lost
just a few weeks after its launch (e.g. Johnson, 1979, p. 19). As Sedov
mentioned above, and as Lidov wrote “predicted by computation” above,
Lunar-3’s dynamical evolution was predicted by later calculations except
for the radical change of its inclination observed in the early phase of the
mission. Due to the lack of observational evidence, there is even a claim
that the spacecraft kept drifting around the Earth until late 1961 or later
(Caidin, 1963, p. 181). Shevchenko (2017, p. 9) explicitly ascribed Luna-
3’s incident to the Lidov–Kozai oscillation.

work starts from the so-called Gauss’s form of equations
(e.g. Brouwer and Clemence, 1961; Battin, 1987) where the
time derivative of the orbital elements are expressed through
three components of the perturbing force, S, T , and W . S is
the force component projected on the radius vector, T is the
component projected on a perpendicular direction to S in the
plane of the osculating ellipse, and W is the component pro-
jected on a perpendicular direction to the plane of the oscu-
lating ellipse. In what follows let us transcribe the equations
of motion from Lidov’s Section 2. Note that the independent
variable is not the time t in the following equations, but the
true anomaly ϑ of the perturbed body:

d p

dϑ
= 2r3γ

µ
T,

de

dϑ
= r2γ

µ

[
S sin ϑ +

(
1 + r

p

)
T cos ϑ + e

r

p
T

]
,

dω

dϑ
= r2γ

µe

[
−S cos ϑ +

(
1 + r

p

)
T sin ϑ

−e
r

p
W cot i sin u

]
,

d

dϑ
= r3γ

µp
W

sin u

sin i
,

d i

dϑ
= r3γ

µp
W cos u,

(L01-129)

where

γ = 1

1 + r2

µe S cos ϑ − r2

µe

(
1 + r

p

)
T sin ϑ

, (L02-130)

is a parameter close to 1, u is argument of latitude (sum
of argument of pericenter and true anomaly: u = ω + ϑ),
and µ is equal to G×central mass. Lidov then develops the
perturbing force components (S, T, W ) into powers of r

rk
,

and picks terms in the order of r
rk

and
(

r
rk

)2
. In principle, the

perturbing force FFF (k) acting on a satellite staying at a position
rrr from the central body under the influence of a perturbing
body with a potential factor µk (= G×mass of the perturbing
body) and a position rrrk is expressed as

FFF (k) = µk

(
rrrk − rrr

|rrrk − rrr |3 − rrrk

|rrrk |3
)

. (L03-131)

Now, assume in Eq. (L03-131) that FFF (k) can be expanded
in terms of r

rk
as

FFF (k) =
∞∑

i=1

FFF (k)
i . (132)

Then the first-order (i = 1) term of FFF (k) becomes

FFF (k)

1 = µk

r2
k

[
3

rrrk

rk

(rrr · rrrk)

r2
k

− rrr

rk

]
, (L04-133)
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and the second-order term becomes

FFF (k)

2 =
µk

r2
k

[(
−3

2

r2

r2
k

+ 15

2

(rrr · rrrk)
2

r4
k

)
rrrk

rk
− 3

(rrr · rrrk)

r2
k

rrr

rk

]
.

(L05-134)

Lidov then introduces a new coordinate system. The axis 1
of this system starts from the central mass to the pericenter of
the satellite (= the perturbed body), the axis 2 is orthogonal
to the axis 1 and directed along the motion of the satellite and
lies in the plane of the orbit, and the axis 3 is oriented normal
to the plane of the satellite’s orbit. ξ1, ξ2, ξ3 are the direction
cosines of the position vector rrrk in this coordinate system.
Then, the force components (S, T, W ) in the first-order of r

rk

are expressed as follows:

S(k)

1 = µk

r2
k

r

rk

[
3ξ 2 cos2

(
ϑ − ϑξ

) − 1
]
,

T (k)

1 = −3
µk

r2
k

r

rk
ξ 2 cos

(
ϑ − ϑξ

)
sin

(
ϑ − ϑξ

)
,

W (k)

1 = 3
µk

r2
k
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rk
ξ3ξ cos

(
ϑ − ϑξ

)
.

(L06-135)

In the second-order they become

S(k)

2 = 15

2

µk

r2
k

r2

r2
k

[
ξ 3 cos3

(
ϑ − ϑξ

) − 3

5
ξ cos

(
ϑ − ϑξ

)]
,

T (k)

2 = −15

2

µk

r2
k

r2

r2
k

[
ξ 3 cos2

(
ϑ − ϑξ

)
sin2

(
ϑ − ϑξ

)
−1

5
ξ sin

(
ϑ − ϑξ

)]
,

W (k)

2 = 15

2

µk

r2
k

r2

r2
k

ξ3

[
ξ 2 cos2

(
ϑ − ϑξ

) − 1

5

]
,

(L07-136)

where ξ is defined as ξ =
√

ξ 2
1 + ξ 2

2 , and ϑξ is the projected
true anomaly of the vector rrrk on the plane of the satellite
orbit. We have the pair of relationships

sin ϑξ = ξ2

ξ
, cos ϑξ = ξ1

ξ
. (137)

Lidov then introduces two variables as3

∆k = 1 + ek cos ϑk, ∆ = 1 + e cos ϑ, (138)

where ϑk is true anomaly of the perturbing body. Note
that at this point Lidov does not assume anything about the
perturbing body’s eccentricity, ek .

Using ∆k and ∆ in Eq. (138), rk and r are expressed as

rk = pk

∆k
, r = p

∆
, (139)

3Lidov’s use of the large triangle symbol in this section is very confus-
ing, because he uses the same symbol � for several different purposes such
as in Eqs. (138), (139), (143), (L11-144), and (L15-145). For minimiz-
ing the possible confusion, in this monograph we use a slanted ∆ for the
symbols defined in (138) and (139), and a roman � for others.

with semilatus rectums pk and p. Applying Eqs. (137),
(138), (139) to the expressions of S(k)

1 , T (k)

1 , W (k)

1 , S(k)

2 , T (k)

2 ,
W (k)

2 in Eqs. (L06-135) and (L07-136), Lidov obtained an-
other form of the force components as

S(k)

1 = 3
µk

p2
k

p

pk

[
β1 cos2 ϑ + 2β3 cos ϑ sin ϑ

−β6

3
+ β2 sin2 ϑ

]
1

∆
,

T (k)

1 = −3
µk

p2
k

p

pk
[(β1 − β2) cos ϑ sin ϑ

+β3
(
sin2 ϑ − cos2 ϑ

)] 1

∆
,

W (k)

1 = 3
µk

p2
k

p

pk
[β5 cos ϑ + β4 sin ϑ]

1

∆
,

(L08-140)

and

S(k)

2 = 15

2

µk

p2
k

p2

p2
k

[
γ1 cos3 ϑ + 3γ3 cos2 ϑ sin ϑ

+3γ6 cos ϑ sin2 ϑ + γ2 sin3 ϑ

−3

5
α1 cos ϑ − 3

5
α2 cos ϑ

]
1

∆2
,

T (k)

2 = −15

2

µk

p2
k

p2

p2
k

[−γ3 cos3 ϑ

+ (γ1 − 2γ6) cos2 ϑ sin ϑ + (2γ3 − γ2) cos ϑ sin2 ϑ

+γ6 sin3 ϑ − 1

5
α1 sin ϑ + 1

5
α2 sin ϑ

]
1

∆2
,

W (k)

2 = 15

2

µk

p2
k

p2

p2
k

[
γ4 cos2 ϑ + 2γ7 cos ϑ sin ϑ

+γ5 sin2 ϑ − α3

5

] 1

∆2
,

(L09-141)

with a new set of coefficients αi , βi , γi which are functions
of ξi (i = 1 . . . ) and ∆k :

α1 = ξ1∆
4
k, α2 = ξ2∆

4
k, α3 = ξ3∆

4
k,

β1 = ξ 2
1 ∆2

k, β2 = ξ 2
2 ∆3

k, β3 = ξ1ξ2∆
3
k,

β4 = ξ2ξ3∆
3
k, β5 = ξ1ξ3∆

3
k, β6 = ∆3

k,

γ1 = ξ 3
1 ∆4

k, γ2 = ξ 3
2 ∆4

k, γ3 = ξ 2
1 ξ2∆

4
k,

γ4 = ξ 2
1 ξ3∆

4
k, γ5 = ξ 2

2 ξ3∆
4
k, γ6 = ξ 2

2 ξ1∆
4
k,

γ7 = ξ1ξ2ξ3∆
4
k .

(L10-142)

4.5 Three assumptions
In his Section 3 (“Basic assumptions for obtaining approx-

imate formulas”), Lidov describes three basic assumptions
that are required for deriving the averaged equations of mo-
tion in his later sections.

Assumption 1. The first assumption is that γ in Eq.
(L02-130) is always unity. We think it is rather easy for read-
ers to understand his intention by literally citing his words:
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”It follows from Eqs. (L02) and (L06) that the
maximum deviation of the value of γ from unity
is defined to the first-order by a parameter pro-

portional to µk

µ

(
a
rk

)3
1
e in the case of small ec-

centricities and by a parameter proportional to
µk

µ

(
a
rk

)3
1

1−e in the case of eccentricities close to

unity (here a is the semimajor axis of the orbit).
For example, consider the case of perturbation by
the moon of an earth satellite whose semimajor
axis is of the order of 30–40 × 103 km. In this
case

µk

µ

(
a

rk

)3

∼ 10−5

This estimate shows that for a broad class of
satellite orbits, with practically all values of eccen-
tricity, we can set with a certain degree of approx-
imation γ = 1. The derivations that follow will
be based on equations in which γ = 1.” (Lidov,
1963a, p. 1988)

Assumption 2. Lidov’s second assumption is quite linguis-
tically described. Our understanding about it is as follows.
The variation component of orbital elements of the satel-
lites (such as �p, �e, · · · ) over its one revolution can be
expressed in series such as

�p =
∑

j

� j p, �e =
∑

j

� j e, · · · , (143)

and their j-th order terms (such as � j p or � j e in Eq. (143))
are derived only from the j-th order component of the ex-
panded perturbing force FFF j on the right-hand side of Eq.
(132). For example, �1 p is derived just from FFF1, �2e is
derived just from FFF2, and so on. Let us cite Lidov’s words
concerning the second assumption:

“In the approximate treatment we have adopted,
the equations describing the process become linear
with a linear dependence on the perturbing forces.
Thus in determining the secular change of the ele-
ments for one revolution of the satellite under the
influence of a sum of accelerations

∑n
i=1 FFFi from

a wide variety of perturbing factors, we can inde-
pendently determine the deviations under the in-
fluence of each of such factors, and obtain the gen-
eral result by the simple summation �p = ∑

�pi ,
�e = ∑

�ei , . . . . In particular, we can also con-
sider as independent the deviations of the elements
under the influence of each term of series (L03)
of the expansion of the perturbing acceleration in
powers of r

rk
.” (Lidov, 1963a, p. 1988)

Assumption 3. Lidov’s third assumption is that the coeffi-
cients αi , βi , γi that show up in Eq. (L10-142) can be Taylor-
expanded by a small time interval �t , and that the first two
terms of the series yield approximations accurate enough for
the purpose of his discussion. Let us cite Lidov’s words con-
cerning the third assumption. In the following, t∗ is the time

when satellite’s true anomaly satisfies ϑ = π , i.e. the time
corresponding to satellite’s position at its apocenter:

“The variability in the course of one revolution of
the quantities αi , βi , γi , determined by formulas
(L10-142), with fixed orbital elements, is related
to the motion of the perturbing body in absolute
space.

The third important assumption we shall make
in developing our approximate formulas is that the
values αi , βi , γi , can be represented in the form of
the series

αi = α∗
i +

(
dαi

dt

)∗
�t + 1

2

(
d2αi

dt2

)∗
(�t)2

+ · · ·

βi = β∗
i +

(
dβi

dt

)∗
�t + 1

2

(
d2βi

dt2

)∗
(�t)2

+ · · ·

γi = γ ∗
i +

(
dγi

dt

)∗
�t + 1

2

(
d2γi

dt2

)∗
(�t)2

+ · · ·
(L11-144)

We also assume that in an interval of time equal
to half the period of revolution of the satellite,
with a degree of approximation adequate for study
purposes, we can approximate αi , βi , γi , by the
small number of terms in the series (by two, in
the present paper). Here �t = t − t∗, where t∗

is a fixed instant of time interval corresponding to
the given orbit.” (Lidov, 1963a, p. 1988. A more
specific definition of t∗ shows up in p. 1989)

4.6 Averaged equations of motion
In his Section 4 (“Formulas for the variation in orbital

elements for one revolution of the satellite”), Lidov car-
ries out an averaging of the satellite’s orbital elements over
its one revolution. This procedure is practically equivalent
to the single averaging procedure described in Moiseev’s
work. The procedure begins with substituting the expanded
force components S, T , W expressed as Eqs. (L08-140)
and (L09-141) into the equations of motion (L01-129), and
then integrating them from 0 to 2π with respect to the true
anomaly of the satellite. It may sound odd for readers to hear
that Lidov employed true anomaly (actually, argument of lat-
itude) as the integration variable. However in Lidov’s aver-
aging procedure, the actual integration procedures using the
argument of latitude are ingeniously encapsulated through
a Taylor-expanded conversion formula involving the true
anomaly ϑ and the time increment �t (Eqs. (L13) and (L14),
although we do not reproduce them here). We presume this
conversion turns the integrations equivalent to those using
mean anomaly as the integration variable. As a result, we
can obtain integral formulas for the variation of the satel-
lite’s orbital elements for its one revolution such as �

(k)

1 p in
the first-order approximation, and �

(k)

2 p in the second-order
approximation. Example expressions are shown in Lidov’s
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Eq. (L12) although we do not reproduce them in this mono-
graph due to their complexity.

Next, Lidov assumes that the variations of orbital elements
in each order such as �

(k)

1 p or �
(k)

2 p can be Taylor-expanded
into a power series of the time increment, �t . This is related
to the aforementioned assumption 3 that the coefficients αi ,
βi , γi can be Taylor-expanded in the form of Eq. (L11-144).
As a result, the variation of the satellite’s orbital element, for
example p, is expressed as

�
(k)

1 p = �
(k)

11 p + �
(k)

12 p + �
(k)

13 p + · · · ,

�
(k)

2 p = �
(k)

21 p + �
(k)

22 p + �
(k)

23 p + · · · ,
(L15-145)

where the second terms in the right-hand sides (�(k)

12 p and
�

(k)

22 p) correspond to the terms of O (�t) in Eq. (L11-144),
and the third terms (�(k)

13 p and �
(k)

23 p) correspond to the
terms of O

(
�t2

)
. Lidov shows in his Section 4 the specific

forms of all the relevant terms (�11a, �11e, �11i , �11,
�11ω, �12a, �12e, �12i , �12, �12ω, �21a, �21e, �21i ,
�21, �21ω) as Eqs. (L17), (L18) and (L19), which we
do not reproduce here due to their complexity. Note that the
superscript (k) on �

(k)

1 , �
(k)

12 , �
(k)

13 , · · · , denotes the influence
from the k-th perturber. But now that Lidov considers just
one perturber, the superscript (k) is omitted, and �

(k)

11 a is
just written as �11a, and so forth.

At the end of his Section 4, Lidov gave several considera-
tions on the results that he obtained in this section. The most
important one we think is that both �11a and �21a become
zero. Lidov depicts the reason as follows:

“1. The increments �11a and �21a are equal to
zero because the increments �11x and �21x are for
a perturbing point [that are] motionless in absolute
space. For a motionless perturbing body the mo-
tion of the satellite occurs in a conservative field
of force. Since it is assumed in addition that the
orbital elements do not vary in the course of one
revolution, then on completion of the revolution
the satellite is at the same point in space and the
increment of the total energy will therefore equal
to zero.” (Lidov, 1963a, p. 1990. We added the
content in [] for better clarity)

Although there is no mention on what �11x and �21x in
the above quotation are in Lidov’s original description, we
suspect that they are generalized symbols that denote the
satellite’s orbital elements. If we generalize Eq. (L15-145)
using x , it would become (removing all superscripts k):

�1x = �11x + �12x + �13x + �14x + · · · ,

�2x = �21x + �22x + �23x + �24x + · · · .
(146)

We presume that Lidov’s above statement, particularly the
“motionless” part, comes from the fact that the first terms
in the right-hand side of Eq. (146) (�11x and �21x) are in
the order of (�t)0 = O(1). In other words, these quantities
(belonging to the perturbing body) are �t-independent: no
matter how long or short �t is, these quantities would not
change. Therefore, the circumstance is equivalent to having

a perturbing body that is fixed in absolute space without any
motion, which leads to Lidov’s above conclusion. Note that
the variation components of other orbital elements such as
� j1 p, � j1i, � j1ω, � j1, . . . ( j = 1, 2, 3, . . . ) are not zero
because of the integrated force (or moment) exerted on the
satellite over its one revolution.

After some mathematical preparations in his Section 5
(“Computation of the parameters αi , βi , and γi and their
derivatives for the case in which the perturbing body moves
in an ellipse”) based on the assumption that the orbital mo-
tion of the perturbing body is Keplerian, Lidov extends the
formulation of orbital change of the satellite over its several
(N ) revolutions in his Section 6 (“Formulas for variation in
orbital elements during several revolutions of the satellites”).
The mathematical expositions in these two sections are quite
detailed and lengthy. We will not go into them because they
are out of the scope of this monograph. Major results exhib-
ited in Lidov’s Section 6 are summarized in the form of finite
integrals using the perturbing body’s u (argument of latitude)
from u0 to uN , corresponding to the time from t0 to tN , such
as Eqs. (L45), (L46) and (L47).

The preparations carried out in his Sections 5 and 6 al-
low Lidov to move on to the next step of his approximation:
deriving the secular change of the satellite’s orbital elements
during one revolution of the perturbing body. This procedure
is carried out in his Section 7 (“Treatment of the equations
for secular variation in elements during the period of revolu-
tion of the perturbing body”). This section starts with deriv-
ing the doubly averaged equations of motion of the satellite
based on the achievement obtained in the previous two sec-
tions (Sections 6 and 7). More specifically, substitution of
uN = u0 + 2π into the finite integrals calculated in Section
6, from

∫ uN

u0
to

∫ u0+2π

u0
, is applied. After deriving the dou-

bly averaged differential equations for the satellite’s orbital
elements, Lidov moves on to an analysis of the characteris-
tics of the satellite’s orbital motion. He particularly focuses
on the conserved quantities of the three-body system that he
considers. At this point, we finally find ourselves able to
compare Lidov’s and Kozai’s results in detail.

Let us show the resulting doubly averaged differential
equations of the satellite’s orbital elements in Lidov’s Sec-
tion 7. He depicted them as “the equations for the variation
in the orbital elements [of satellite] for one revolution, av-
eraged for the period of revolution of the perturbing body”
(Lidov, 1963a, p. 1994). Their actual forms are:

δa

δN
= 0,

δe

δN
= Ae

√
ε

2
sin2 i sin 2ω,

δi

δN
= − A

2

1 − ε√
ε

sin i cos i sin 2ω,

δ

δN
= − A cos i√

ε

[
(1 − ε) sin2 ω + ε

5

]
,

δω

δN
= A√

ε

[(
cos2 i − ε

)
sin2 ω + 2ε

5

]
,

(L54-147)
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where

ε = 1 − e2, εk = 1 − e2
k , pk = akεk, (148)

A = 15π

2

µk

µ

(
a

pk

)3

ε
3
2
k . (L55-149)

Recall that N denotes the number of revolutions of the
satellite during one revolution of the perturbing body. The
increment of the satellite’s longitude over its N revolutions
is 2π N . It advances the satellite’s time by 2π N/n (where n
is the satellite’s mean motion). Therefore we see that the
differentiation δ

δN in Eq. (L54-147) is directly associated
with the ordinary time differentiation d

dt as

δ

δN
= 2π

n

d

dt
. (150)

Using the relationship (150), it is straightforward to show
that the differential equation for the satellite’s argument of
pericenter ω (the last one in Eq. (L54-147)) is equivalent
to the canonical equation of motion for g at the quadrupole
level (Eq. (74) on p. 17 of this monograph). It is also easy

to construct a differential equation for G =
√

µa
(
1 − e2

)
from Eq. (L54-147), and to confirm its equivalence to the
canonical equation of motion, Eq. (73).

4.7 Constants of motion
Of all ten sections of Lidov’s paper in 1961, we regard

Section 7 to contain the most important contents. In this
section, Lidov first presents three constants of motion that
the doubly averaged inner CR3BP possesses. Then he gives
considerations on the solutions of the doubly averaged equa-
tions of motion (L54-147) for several special cases, based on
the three constants of motion.

As Lidov writes, and as is clear from the first equation of
Eq. (L54-147), the satellite’s semimajor axis a is constant in
his approximation. This is the first constant of motion. The
second constant is what Lidov calls c1 defined as

c1 = (
1 − e2

)
cos2 i, (151)

or in Lidov’s original expression, it is defined as

ε = c1

cos2 i
. (L58-152)

This quantity is equivalent to Kozai’s � (see Eq. (K26-76)
on p. 17 of this monograph) as well as to the square of Moi-
seev’s C (see Eq. (Mb2.14-122) on p. 28 of this monograph).
It is easy to confirm that c1 is actually a constant in the frame-
work of Lidov’s approximation as follows:

1) Differentiate c1 of Eq. (L58-152) by the time t to obtain
d c1
dt .

2) Convert δe
δt and δi

δt into d e
dt and d i

dt using the relationship
(150) .

3) Substitute d e
dt and d i

dt into d c1
dt .

And we will find d c1
dt = 0.

The third constant of motion, which Lidov calls c2, makes
his work unique and distinguished from other classic studies.
In the work of Kozai and that of Moiseev, the third constant
of motion is the doubly averaged disturbing function itself.
In Kozai’s work, it is W ∗ in Eq. (K23-71) or Eq. (72) in
the quadrupole level approximation. In Moiseev’s work, it
is [Wj] in Eq. (Mb2.15-125). In contrast, Lidov defines his
third constant c2 as follows:

c2 = (1 − ε)

(
2

5
− sin2 i sin2 ω

)
, (153)

or in Lidov’s original expression, it is defined as

1 − ε = c2
2
5 − sin2 i sin2 ω

. (L59-154)

Actually, we have not found any information or descriptions
as to how Lidov devised, derived, or reached the function
form of Eq. (L59-154) in any of the relevant publications.
An interesting point about c2 is that, c2 is not independent
from c1. c1 and c2 are connected to each other through the
following relationship:

c2 =
(

1 − c1

cos2 i

) (
2

5
−

(
1 − c1

ε

)
sin2 ω

)
. (155)

Similar to the discussion about c1, it is again straightforward
to confirm that c2 is a constant of motion in the framework
of Lidov’s approximation as follows:

1) Differentiate c2 of Eq. (L59-154) by the time t to obtain
d c2
dt .

2) Convert δe
δt , δi

δt , δω
δt into d e

dt , d i
dt , d ω

dt using the relationship
(150).

3) Substitute d e
dt , d i

dt , d ω
dt into d c2

dt .

And we will find d c2
dt = 0. The actual values of c1 and c2 are

determined by the initial values of ε, i , and ω as

c1 = ε0 cos2 i0,

c2 = (1 − ε0)

(
2

5
− sin2 i0 sin2 ω0

)
,

(L60-156)

where ε0, i0, ω0 are the initial values of ε, i , ω, respectively.
After introducing c1 and c2, Lidov briefly mentions how

to obtain a time-dependent solution for the orbital elements.
Lidov states that the equations (L58-152) and (L59-154) de-
termine the dependencies of two functions as

ε = f1(ω), cos i = f2(ω). (157)

Note that f1 is mistyped as fi in Lidov (1963a, p. 1994,
below Eq. (L60)). Then Lidov expresses the solution by def-
inite integrals, in other words, by quadrature. Literally citing
his words, “the solution of the entire problem is obtained by
using the two definite integrals,” (Lidov, 1963a, the right col-
umn on p. 1994). Their actual forms are as follows:

N − N0 = 1

A

∫ ω

ω0

√
ε(

cos2 i − ε
)

sin2 ω + 2ε
5

dω, (L61-158)
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 − 0 = −A
∫ N

N0

cos i√
ε

[
(1 − ε) sin2 ω + ε

5

]
d N .

(L62-159)

The formal operation of the quadrature depicted by Eqs.
(L61-158) and (L62-159) are principally equivalent to what
Moiseev showed by his Eq. (Mb2.17-127) and the discussion
that follows it (see p. 28 of this monograph).

4.8 The Lidov diagram
As is better known today, there is a major advantage to

exploit c2 as the third constant of motion of the doubly av-
eraged inner CR3BP compared with the use of the aver-
aged disturbing function itself. At the quadrupole level ap-
proximation, we can immediately predict if the perturbed
body’s argument of pericenter librates around ±π

2 or circu-
lates from 0 to 2π just from its c2 value without producing
an equi-potential diagram. This prediction is not straight-
forward if we use the averaged disturbing function itself as
the third constant of motion. In this subsection let us con-
sider this issue in more detail along with Lidov’s discussion.
Shevchenko (2017, his Section 3.2.3 on p. 36) also has a
dedicated description for this subject.

From its definition (L58-152), c1 takes the value from 0
to 1. From its definition (L59-154), c2 takes the value from
− 3

5 to 2
5 . However since c2 depends on c1 as seen in Eq.

(155), the dynamically possible area on the (c1, c2) plane is
not a simple rectangle, and it shapes the cyan-hatched region
A–B–O–E–D–A shown in Fig. 10. The coordinates of each
of the points are A

(
1, 0

)
, B

(
0, 2

5

)
, O

(
0, 0

)
, E

(
0, − 3

5

)
, and

D
(

3
5 , 0

)
. Let us call this type of plot on the (c1, c2) plane as

the Lidov diagram, as it first appeared in Lidov’s work.
The borders of the closed shape A–B–O–E–D–A in Fig.

10 are defined by the solutions of Eqs. (L54-147) in sev-
eral special cases. The descriptions on these special cases in
Lidov (1961, p. L26–L30) are quite elaborate and well orga-
nized. These solutions also help us understand the dynamical
characteristics of the system described by Eq. (L54-147) in
non-special, ordinary cases. We first follow Lidov’s descrip-
tion concerning the function form of the borders.

The straight line A–B This line represents the maxi-
mum of c2 as a function of c1. From Eqs. (L58-152)
and (L59-154), we know that c2 takes the maximum when
sin2 i = 0. This yields the maximum value of e through Eq.
(L58-152), and it is a constant because c1 is constant. As a
result, the line A–B indicates a planar motion (i = 0 or π ) of
the perturbed body with a fixed eccentricity. From Eq. (155),
we can see that c2 and c1 are connected to each other along
this line via the following relationship:

c2 = 2

5
(1 − c1) . (160)

Note that the motion of the perturbed body along this line
corresponds to what takes place at the outer boundary of
the (e cos g, e sin g) diagram that we showed in the previous
section such as Fig. 8 on p. 24. It also corresponds to the
lower boundaries in Kozai’s Figs. K2–K8. See Figs. 6, 7,
and the discussion on p. 20 of this monograph.

Fig. 10. The Lidov diagram that indicates the possible range of (c1, c2) in
the doubly averaged inner CR3BP at the quadrupole level approximation.
This figure is practically a reproduction of what Lidov (1961, Fig. 1 on
p. L29) showed. The line c2 = 0 (the line A–D–O) makes an important
boundary of the perturbed body’s secular motion. When the parameter
set (c1, c2) of the perturbed body is above the boundary and located in
the triangle �AOB, its argument of pericenter exhibits a circulation from
0 to 2π . Meanwhile it makes a libration around + π

2 or − π
2 when the

parameter set (c1, c2) of the perturbed body is below the boundary and
located in the concave triangle �DOE (except when it is just on the line
O–D). The red dots show the locations of the parameter sets (c1, c2) of the
three asteroids presented in Fig. 8: (1036) Ganymed, (1373) Cincinnati,
and (3040) Kozai. Their orbital elements are as of February 16, 2014,
00:00:00 CT, adopted from the JPL Horizons web-interface.

The vertical straight line B–O–E This line is realized
when c1 = 0. As c1 is proportional to the perpendicular
component of the angular momentum vector of the perturbed
body, c1 = 0 means that the motion of the perturbed body
takes place on a plane orthogonal to the orbital plane of the
perturbing body (cos i = 0), except in the case of the very
special configuration of e = 1 which we do not consider in
this monograph. Lidov gave a detailed consideration on this
class of satellite orbits with cos i = 0 (p. L26–L28), and
concluded that in most cases these orbits will turn into ex-
tremely eccentric ones until the satellite falls onto the central
body within a finite length of time. Lidov (1963b,c) gave
a supplemental illustration for elucidating the evolution of
these type of orbits (see Section 4.10 of this monograph).

The curved line E–D This curve represents the minimum
of c2 as a function of c1 between 0 ≤ c1 ≤ 3

5 . From the
dependency of c2 on c1 seen in Eq. (155), we can derive the
function form of c2 on this line through the following two
steps. Lidov considers c2 as a function of two variables, ε

(= 1 − e2) and ω. He first fixes ε and searches for the value
of ω that gives a local minimum of c2. Then Lidov varies ε

and searches for its value that gives the minimum of c2.
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When ε is fixed as a constant, we know that the lowest
value of c2 occurs when sin2 ω = 1 from Eq. (155). In this
case, Eq. (155) becomes as follows:

c2 = − (1 − ε)

(
3

5
− c1

ε

)
. (161)

Then, consider c2 in Eq. (161) as a function of ε, and search
for its local extremums by expressing the partial derivative
of c2 with respect to ε as

∂c2

∂ε
= 3

5
− c1

ε2
. (162)

Putting ∂ c2
∂ε

= 0 tells us that c2 takes a local extremum at

ε =
√

5

3
c1. (163)

This turns out to be a minimum, because from Eq. (162) we
always have

∂2c2

∂ε2
= 2c1

ε3
> 0. (164)

For ε to satisfy Eq. (163), c1 cannot be larger than 3
5 because

ε cannot exceed 1. Substituting ε of Eq. (163) into Eq. (161),
we have the function form of c2 on the curve E–D as

c2 = −
(

√
c1 −

√
3

5

)2

. (165)

Having ε in the form of Eq. (163) in hand, it is straightfor-
ward to confirm that δω

δN in Eq. (L54-147) vanishes when ini-
tially sin2 ω = 1. This fact means that the perturbed body’s
argument of pericenter ω stays stationary at ω = ±π

2 when
the system’s parameter set (c1, c2) lies somewhere on the line
E–D. δe

δN also becomes zero at these points, indicating that
the satellite’s eccentricity e stays stationary too. From Eq.
(163) or Eq. (L54-147) we have cos2 i = 3

5ε in this case.
As we mentioned above, the range of c1 should be between
0 and 3

5 for this case to happen. This is equivalent to the
condition that Kozai gave as Eq. (78) on p. 17, � ≤ 3

5 .
In short, motion of the perturbed body on the line E–D in

the Lidov diagram is equivalent to the motion at the station-
ary points with g = ±π

2 on the (e cos g, e sin g) plane such
as Fig. 8 (p. 24 of this monograph). Since the perturbed
body’s eccentricity and argument of pericenter are both con-
stant in this case, the secular motion of its orbit would be
a simple precession around the normal vector of the refer-
ence place (i.e. the perturbing body’s orbital plane). Lidov
literally describes the circumstance as follows:

“4. When ω0 and i0 satisfy the conditions cos ω0 =
0 and cos2 i0 = 3

5ε0 and ε0 is arbitrary, system
(L54) has a solution representing, on the aver-
age, an orbit with constant elements ω = ω0 =
±(π/2), ε = ε0, i = i0 = ϕ = ϕ0 where
sin2 ϕ0 = 1 − 3

5ε0. [· · · ] In this case the entire
evolution, on the average, consists in the rotation
of the orbit around a normal to the plane of the
motion of the perturbing body.” (Lidov, 1963a, p.
1995, the point 4 in the right column)

The horizontal line O–D–A This line is realized when
c2 = 0. From the definition of c2 in Eq. (L59-154), we
know that there can be two subcases here. It is either when

sin2 i sin2 ω = 2

5
, (166)

or when

ε = 1. (167)

In the first subcase when Eq. (166) holds true, we have

sin2 ω = 2

5 sin2 i
≥ 2

5
, (168)

and

sin2 i = 2

5 sin2 ω
≥ 2

5
. (169)

Also, by Eq. (166) δω
δN in Eq. (L54-147) can be written as

δω

δN
= A

1 − ε√
ε

(
sin2 ω − 2

5

)
. (L73-170)

From Eq. (L73-170) and Eq. (168), we know that δω
δN ≥ 0 is

always true in this subcase.
Meanwhile from the equation of δe

δN in Eq. (L54-147),
the satellite’s e would increase while ω < π

2 , and it would
take its maximum at ω = π

2 . At this point, the satellite’s
inclination takes its minimum value that satisfies

sin2 i = 2

5
, (171)

from Eq. (169), and ε also takes its minimum value as

ε = 5

3
ε0 cos2 i0, (172)

from (L58-152), where ε0 and i0 denote the initial values of
ε and i , respectively. The maximum value of eccentricity e
in this case is calculated from Eq. (172). Past this point, e
decreases while ω > π

2 , and it would gradually approach the
point of e = 0. However, since the variation rates δe

δN in Eq.
(L54-147) and δω

δN in Eq. (L73-170) both become small when
e → 0 (or ε → 1), the secular motion of the satellite in phase
space near the point e = 0 would be very slow. Formally, it
takes an infinite amount of time to reach the point e = 0.

From today’s perspective, this subcase corresponds to the
motion on a separatrix that separates the motion of the satel-
lite’s argument of pericenter into libration and circulation.
Note that this subcase is realized only on the line O–D while
c1 ≤ 3

5 . Actually when Eq. (166) holds true, c1 is written as

c1 = ε − 2ε

5 sin2 ω
. (173)

Partial derivatives of c1 by ε and by sin2 ω become

∂c1

∂ε
= 1 − 2

5 sin2 ω
,

∂c1

∂
(
sin2 ω

) = 2ε

5 sin4 ω
.

(174)
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Both quantities are always greater than or equal to zero be-
cause of Eq. (168). This means that c1 becomes its maximum
when both ε and sin2 ω take their largest values: ε = 1 and
sin2 ω = 1. Substituting these values into Eq. (173), we see
that the maximum value of c1 in this subcase is 3

5 .
On the other hand, the second subcase expressed by Eq.

(167) takes place when initially ε = 1 (or e = 0). In this
case both δe

δN and δi
δN in Eq. (L54-147) become zero, and the

orbit of the satellite remains circular with a fixed inclination.
This status can be realized anywhere on the line O–D–A,
whatever value c1 takes between 0 to 1. The motion of the
satellite along this line corresponds to the origin (0, 0) in the
(e cos g, e sin g) diagrams such as Fig. 8 on p. 24. It also
corresponds to the upper boundaries in Kozai’s Figs. K2–
K8 (see our Figs. 6 and 7). Also, note that Kozai left brief
descriptions on perturbed body’s motion in several cases (see
Kozai’s p. K594–K595 or p. 19 of this monograph) which
include the two subcases discussed here.

4.9 c2 as a flag of ω-libration
In the later part of his Section 7, Lidov presents a descrip-

tion of the satellite’s secular motion on the (c1, c2) plane in
more general cases, not only on the border of the hatched
shape A–B–O–E–D–A of Fig. 10. Lidov explains that c2

can be used as a flag as to whether the satellite’s argument of
pericenter librates or circulates.

When c2 < 0 This case is easy to understand. From the
definition of c2 in Eq. (L59-154), we have

sin2 i sin2 ω >
2

5
. (175)

Similar to the discussion when we derived Eqs. (168) and
(169), the inequality (175) naturally yields

sin2 ω >
2

5 sin2 i
≥ 2

5
. (176)

The inequality (176) means that ω is confined in a range cen-
tered at the position that satisfies sin ω = ±1 (i.e. ω = ±π

2 ),
and it cannot complete a circulation from 0 to 2π . There-
fore we conclude that the motion of the satellite’s argument
of pericenter ω librates when c2 < 0. On the Lidov dia-
gram (Fig. 10) this happens in the lower concave triangle
�DOE (recall that this triangle does not include the line O–
D). As we mentioned before, the range of c1 inside the trian-
gle �DOE is between 0 and 3

5 . Therefore we can state that
ω exhibits libration only when both the conditions c1 < 3

5
and c2 < 0 are satisfied at the same time, as long as the
quadrupole level approximation is applied.

When c2 > 0 In this case we focus on the sign of δω
δN in

Eq. (L54-147). From the last equation of Eq. (L54-147), it
is clear that the quantity(

cos2 i − ε
)

sin2 ω + 2ε

5
, (L75-177)

is equal to
√

ε

A
δω
δN , and

√
ε

A is always positive. Hence the
quantity (L75-177) determines the sign of δω

δN . Here Lidov

introduces two subcases: when c1
ε2 ≥ 1, and when c1

ε2 < 1.
The first subcase (when c1

ε2 ≥ 1) is easier to understand.
From the definition of c1 in Eq. (L58-152), the first term
of Eq. (L75-177) can be rewritten as(

cos2 i − ε
)

sin2 ω = ε
( c1

ε2
− 1

)
sin2 ω. (178)

The right-hand side of Eq. (178) is larger than, or equal to,
zero if c1

ε2 ≥ 1. This means that δω
δN ≥ 0 is always true in this

subcase, and ω monotonically circulates without a libration.
There is no restriction on the value of c1 here.

In the second subcase (when c1
ε2 < 1), it is wiser to once

return to the definitions of c1 in Eq. (L58-152) and c2 in Eq.
(L59-154). Then, sin2 i and sin2 ω can be expressed by using
c1, c2, ω as follows:

sin2 i = 1 − c1

ε
,(

1 − cos2 i
)

sin2 ω = 2

5
− c2

1 − ε
.

(179)

Substituting the expressions of sin2 i and sin2 ω in Eq. (179)
into Eq. (L75-177), Lidov found that the following inequal-
ity must hold for δω

δN ≥ 0 to be true:

2
5 − c2

1−ε

1 − c1
ε

≤
2
5

1 − c1
ε2

. (L76-180)

Now that we assume c1
ε2 < 1, and 0 ≤ ε ≤ 1 by the definition

of ε, we have the following relationship:

1 − c1

ε
≥ 1 − c1

ε2
> 0. (181)

From Eq. (181), we see that the inequality (L76-180) holds
always true as long as c2 > 0. This means that, in this sub-
case too, δω

δN ≥ 0 is true regardless of the value of c1. Thus
ω monotonically circulates without libration when c2 > 0.

By now, we see that it is proven that the satellite’s argu-
ment of pericenter ω librates when c2 < 0 and c1 < 3

5 , while
it circulates when c2 > 0. c2 = 0 is a special case that hap-
pens exactly on the line O–D–A in the Lidov diagram, as we
have already seen. We might want to say that ω still librates
on the separatrix that overlaps with the line O–D.

The following explains how to utilize the Lidov diagram.
In Fig. 10, we plotted the actual parameter values (c1, c2)

of the three asteroids as a set of examples whose trajectories
we integrated in Fig. 8: (1373) Cincinnati, (1036) Ganymed,
and (3040) Kozai. The locations of their (c1, c2) are desig-
nated by the red points in Fig. 10. We see that Ganymed is
clearly located inside the triangle �AOB, indicating that this
asteroid’s argument of pericenter circulates. It is consistent
with the numerical results presented in Fig. 8. On the other
hand, Cincinnati and Kozai are located inside the concave
triangle �DOE (although they are very close to the bound-
ary O–D–A). This indicates that arguments of pericenter of
these asteroids librate around ω = π

2 or −π
2 . As we saw, this

is exemplified by the numerical results presented in Fig. 8
where we see ω of Cincinnati librates around ω = π

2 , and
that of Kozai librates around ω = 3π

2 .
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Here let us note two things. First, the parameter values
of (c1, c2) of the three asteroids plotted in Fig. 10 may not
be perfectly precise. The hatched shape in Fig. 10 was
drawn from the doubly averaged disturbing function. Mean-
while, the location of the red points of the actual asteroids
were calculated using their osculating, non-averaged orbital
elements taken from the JPL Horizons web-interface. The
short-term oscillation of the asteroids’ osculating elements
blurs the location of their (c1, c2) in general. Second, even if
we use averaged orbital elements of the asteroids for locat-
ing their (c1, c2) combinations, we should be aware that the
borders c2 ≶ 0 may not rigidly work out for distinguishing
their motion between libration and circulation. This is be-
cause the Lidov diagram of Fig. 10 is produced based on the
quadrupole level approximation. It uses the truncated dou-
bly averaged disturbing function at O

(
α2

)
. Actually, α2 of

the three asteroids with respect to Jupiter is not negligibly
small. Specifically, α2 ∼ 0.13 for (3040) Kozai, α2 ∼ 0.26
for (1036) Ganymed, and α2 ∼ 0.43 for (1373) Cincinnati.
Therefore their secular motion may not be well represented
by the quadrupole level approximation.

In the remaining part of his Section 7, Lidov calculates the
maximum and minimum values of ε and their dependence
on c1 and c2 when c2 > 0 (Eqs. (L77)–(L80), although we
do not reproduce them here). In this case the maximum of
ε (and the minimum of e) occurs when ω = 0 or π , and
the minimum of ε (and the maximum of e) occurs when
ω = ±π

2 . Lidov also presented similar equations for the
case of c2 < 0 (Eqs. (L82)–(L85), not reproduced here). The
end part of Section 7 is devoted to presenting several plots of
extreme values of the satellite’s eccentricities and arguments
of pericenter as c1 and c2 being parameters (Figs. L2, L3, L4
on pp. L32–L33, not reproduced here).

Lidov’s last three sections are as follows: Section 8 “Es-
timates of oscillations in the pericenter height of a satellite
orbit during the period of revolution of the perturbed body,
Section 9 “Method of computing the revolution of the orbit of
an artificial Earth satellite using approximate formulas, and
Section 10 “Comparison of the results of computation by ap-
proximate formulas with the precise solution of the problem
by numerical integration of the differential equations. They
are largely devoted to descriptions of the practical compu-
tation method of the satellite’s orbital evolution, as well as
a comparison of the results from Lidov’s analytic approx-
imation and that of the direct numerical integration of the
equations of motion. Although these sections probably had
practical importance in satellite dynamics at that time, nowa-
days we think that most of these sections can be replaced for
more efficient numerical procedures. Therefore we do not
deal with these sections in this monograph.

4.10 Newly added issues in Lidov (1963b,c)
At the end of this section, let us mention a few issues that

show up only in Lidov’s supplementary publications (Lidov,
1963b,c), and not in his main paper in 1961.

One of them is the treatment of a special case when the
orbital inclination i of the perturbed body (satellite) is just
90◦ (Lidov, 1963c, p. 174). This corresponds to the mo-

tion that happens on the line B–O–E of the Lidov diagram
(Fig. 10). For this case, Lidov gave a detailed illustration
as to the dependence of the motion of argument of pericen-
ter ω of the perturbed body on its initial value, ω0. He even
gave an analytic solution that represents the time evolution
of ω using an elliptic integral of the first kind (Lidov, 1963c,
Eq. (15) and a table on p. 175). As an actual example, Li-
dov succeeded in obtaining a quantitative estimate that an
Earth-orbiting satellite whose semimajor axis and eccentric-
ity are the same as those of the Moon and whose inclination
with respect to the ecliptic is 90◦, can fall back to the sur-
face of the Earth within ∼52 revolutions (∼4 years). Lidov
also carried out the numerical integration of the equations of
motion of the satellite. He did a similar calculation using the
singly averaged approximation. Both calculations demon-
strate how quickly the minimum distance from the satellite
to the Earth’s surface becomes reduced (Lidov, 1963c, Fig.
7 on p. 178). His numerical result (54 or 55 revolutions until
the fall of the satellite) agrees well with his analytic estimate
(∼52 revolutions). This anecdote is cited by Beletsky (1972,
see p. 95–100 of its English translation, Beletsky (2001)), by
Vashkov’yak (2008, his p. 9–10), and by Shevchenko (2017,
his p. 7–8) with a famous cartoon where a man (a caricature
of Lidov) is about to release the Moon on the i = 90◦ orbit
around the Earth.

Another subject that Lidov (1963b,c) newly added is the
treatment of oblateness of the central mass (Lidov, 1963c,
Section “3. The influence of the noncentricity of the gravi-
tational field,” p. 176–177). The set of equations of motion
that Lidov introduced includes the effect of oblateness of the
central body through parameters δ and β (Lidov, 1963c, Eqs.
(1) and (2) on p. 169). As a consequence, although no detail
is given, Lidov claimed that he found that the existence or
non-existence of stationary points of perturbed body’s argu-
ment of pericenter ω depends on β, i.e. on the oblateness of
the central body. He concluded that the stationary points of
ω happen only when the effect of oblateness is weak. Read-
ers must remember that Kozai also mentioned this point (see
p. 25 of this monograph) but without showing anything spe-
cific or quantitative. However, we do not know how Lidov
derived the terms that represent the oblateness of the central
body appearing in his equations of motion, because Lidov
did not give any details about the derivation.

5. The Work of von Zeipel
Edvard Hugo von Zeipel (1873–1959) was a Swedish sci-

entist in astronomy and mathematics. As is mentioned in
his biographical sketches such as Solc (2014), von Zeipel is
famous for his pioneering achievements in many fields of
theoretical astronomy, in particular, for his early work on
the singularities of the N -body problem (von Zeipel, 1908).
Diacu and Holmes (1996) made a brief but excellent re-
view of his achievement on this subject. von Zeipel’s name
is also embedded in a theorem called the von Zeipel theo-
rem related to his later work on the calculation of radiative
equilibrium of a rotating star (e.g. von Zeipel, 1924a,b,c).
Nowadays, we are probably aware of his name most of-
ten in celestial mechanics, particularly related to perturba-
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tion theories: von Zeipel constructed a canonical perturba-
tion method (von Zeipel, 1916a,b, 1917a,b) which is now
called the von Zeipel method. In this series of work, he de-
vised a method for introducing generating functions to carry
out canonical transformations proposed by Delaunay (1860,
1867) in order to systematically reduce the degrees of free-
dom of systems by the averaging procedure (for more detail,
see Brouwer and Clemence, 1961; Meffroy, 1966; Boccaletti
and Pucacco, 1998). These works are fundamental mile-
stones in modern celestial mechanics, followed by numerous
confirmations and extensions (e.g. Brown and Shook, 1933;
Hori, 1966, 1967; Musen, 1968; Deprit, 1969; Yuasa, 1971).

von Zeipel’s work on perturbation theory in celestial me-
chanics is very popular, and its reputation is well established.
However it is almost not known at all that, while making the
epoch-making achievements mentioned above, von Zeipel
also worked on a theoretical subject that is equivalent to what
we have already discussed in this monograph—the doubly
averaged CR3BP, in particular when inclination of the per-
turbed body is large. In this section we will summarize the
major contents of one of von Zeipel’s publications about this
subject. Our aim is to show that the basic theoretical struc-
ture of the Lidov–Kozai oscillation was already established
in the early twentieth century almost at the same depth or
deeper. The publication that we are going to focus on from
now is von Zeipel (1910), entitled “Sur l’application des
séries de M. Lindstedt à l’étude du mouvement des comètes
périodiques,“ written in French and published in Astronomis-
che Nachrichten. The full text of this paper is available on
ADS. As far as we know from the records on ADS and on
Web of Science (hereafter referred to as WoS), this paper has
been cited only once in a modern science context, only by
Bailey and Emel’yanenko (1996, through which we learned
of the existence of von Zeipel’s contribution).

Note that as far as we can ascertain, von Zeipel did not
mention his first name (Edvard) at all in any of his own pub-
lications. We follow his way and refer to him as Hugo von
Zeipel in the title of this monograph. Note also that his name
is sometimes mentioned and cited just as Zeipel (e.g. Mer-
man, 1982; Orlov, 1965b; Bailey and Emel’yanenko, 1996).
But we call him von Zeipel throughout the monograph. See
Supplementary Information 4 for a more detailed discussion
and consideration on this subject.

5.1 Purpose, method, findings
As is obvious from its title (which can be translated into

English as “On the application of the Lindstedt series to
study the motion of periodic comets”), von Zeipel’s major
objective in this publication is to establish a mathematical
representation of the motion of periodic comets as precisely
as possible using a method called the Lindstedt series. von
Zeipel’s interests particularly lies in the orbital variation of
comets that have a large orbital inclination. The beginning
part of the paper entitled “Introduction” (pp. Z345–Z347,
before his Chapter I begins) well summarizes von Zeipel’s
purpose, method, and important findings. For facilitating
an understanding of von Zeipel’s intentions, we believe that
literally citing several paragraphs from the “Introduction” is

appropriate. Note that the English translation from French
appearing in what follows are all due to the present authors
of this monograph. We have added several expressions in [ ]
for supplementing an understanding of the translation.

At the beginning, von Zeipel states the standard method
for constructing analytic solutions of planetary motion at his
time and its limitation:

“It is well known that in calculating the motion
of planets, some series, called by Mr. Poincaré,
the Lindstedt series, can be used. Elements of the
planets are thus developed in powers of a small
quantity µ of the order of planetary masses. The
coefficients of the various powers of µ are Fourier
series of a number of linearly dependent arguments
of time. In the series, it is essentially assumed that
the masses of the planets are relatively small com-
pared with that of the Sun. But in the applications
made so far, it was also recognized that eccentric-
ities and inclinations of the orbits are small.” (p.
Z345)

Let us just say at this point that calculating the Lindstedt
series is a way of constructing approximate periodic solu-
tions. We will see more detail about this in Section 5.3.

There, von Zeipel mentions the difficulty of constructing
general theories of planetary orbital motion when their ec-
centricity e and inclination I are arbitrary:

“Trying to study, by means of series that analogues
the motion of a planetary system, when eccentrici-
ties and inclinations are arbitrary, we face the diffi-
culty in solving the equations of secular variations
in a general way.” (p. Z345)

Next, von Zeipel states a possible direction for solving
this problem. In what follows R denotes the secular part
of the disturbing function. He claims that he shows a pos-
sibility of constructing the Lindstedt series around R’s local
extremums, not just around R’s minimum at e = 0 and I = 0
when an object’s e and I are as small as the major planets,
but at other places in phase space even when object’s e or I
is not small. Here is von Zeipel’s statement:

“We know that the function R is minimum when
the eccentricities and inclinations becomes zero.
Because of this property of the function R, it is
possible to form the series of Lindstedt represent-
ing the motion of the planets, whose eccentricities
and inclinations are small. But, the function R of-
ten owns other maxima and minima. When the
value of R is close to such a maximum or mini-
mum value, it is still possible to calculate the Lind-
stedt series representing the motion. In the orbits
thus obtained, the eccentricities and inclinations
can be considerable. This is what I propose to
show in this memoire.” (p. Z345)

Now, von Zeipel describes the dynamical model that he
employs in this study—CR3BP. He also mentions the inte-
grability of the secular version of this problem:
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“In order not to complicate the exposition, I will
confine myself first to a special case assuming that
an infinitely small mass (asteroid, comet, meteorite
or satellite) is attracted to the Sun and a perturbing
planet moving around the Sun in a circle. In the
study of the motion of such a body, it shall be re-
duced to a system of canonical differential equa-
tions with three degrees of freedom, and falling
within the general type of equations, which has
been studied by Mr. Poincaré in his work �Les
Méthodes Nouvelles de la Mécanique Céleste�,
vol. II, Chapter XI. The equations of secular vari-
ations form a canonical system, whose degree of
freedom is unity. They can therefore be integrated
by a quadrature and by trigonometric series of a
single argument.” (pp. Z345–Z346)

However, as we are already aware, formal integrability
of the doubly averaged CR3BP does not mean that we can
immediately obtain actual time-dependent solutions with ex-
plicit function forms. von Zeipel mentions this point, and
claims that in this study he limits himself to only finding ap-
proximate solutions around the local extremums of R:

“But, although the existence of these series is
demonstrated, we do not know in general how to
form their coefficients analytically. Thus, trying to
calculate the Lindstedt series, we are forced, even
in this relatively simple case, to limit the problem
and assume that we are in the vicinity of a maxi-
mum or minimum value of the secular part of the
disturbing function.” (p. Z346)

After briefly mentioning the contents of his Chapters II
and III, von Zeipel describes the contents of his Chapter
IV that contains the most important aspects of his study. It
begins with the following sentence:

“Research on the maxima and minima of the sec-
ular part of the disturbing function, described in
Chapter IV, shows that orbits with large inclina-
tions and always having small eccentricities can
exist only outside the disturbing planet.” (p. Z346)

We find this statement true if we remember the studies by
Lidov and Kozai. When the inclination of the perturbed body
is larger than a certain value (i0 in Kozai’s work), stationary
points of the argument of pericenter appear with separatrix.
In this case, the eccentricity of the perturbed bodies cannot
always stay small (see Fig. 8a on p. 24 of this monograph).
Therefore it is concluded that, for the perturbed body to
always have both a large inclination and a small eccentricity,
it cannot be in an inner CR3BP system. In other words, von
Zeipel’s statement above depicts the circumstance that the
outer CR3BP realizes. We will later return to this point in
Section 5.7 of this monograph.

Immediately after the above sentence, von Zeipel contin-
ues his statement as follows. We are certain that readers of
this monograph will notice the equivalence of this statement
to what was obtained by Lidov and Kozai:

“At inside the orbit of this planet, there can be as-
teroids with inclinations exceeding a certain limit,
depending on the ratio α of the two major axes.
This limit is about 39◦ from the Sun, and it de-
creases when α increases, and it vanishes when
α = 1. For orbits with large inclinations and inside
the disturbing planet, the upper limit of the eccen-
tricity is considerable—even if the lower limit is
small—and it [the upper limit] approaches unity
when the inclination is close to 90◦. Such an orbit
will be, under certain conditions, disrupted by the
disturbing planet.” (p. Z346)

The above phrase “about 39◦” must ring a bell with read-
ers, because it is equivalent to the limiting inclination that

Lidov and Kozai discussed: cos−1
√

3
5 ∼ 39◦.23.

Then, von Zeipel moves on to stating his findings about a
categorization of stable cometary orbits along with the mo-
tion of their argument of perihelion g. Note that his follow-
ing statement depicts three patterns of g’s motion: Libration
around ±π

2 , libration around 0 or π , and circulation from 0
to 2π . This means that his statement is not only about the in-
ner CR3BP but also about the outer CR3BP, and also about
the systems with orbit intersection:

“The studies mentioned in Chapter IV also helped
me establish that there can be orbits of comets in
stable motion, dependent on 6 arbitrary constants
of integration. [. . . ] As for the distance g from
the perihelion to the node, there is a first type of
comets in stable motion, for which g is always
close to ±90◦, a second type, where g is always
close to 0◦ or 180◦, and finally a third type, where
this angle g is driven by a mean motion.” (pp.
Z346–Z347)

von Zeipel also mentions the possible extension of his
theory to more general systems that contain more than one
perturbers whose orbits are nearly circular and planar:

“The results, which we have arrived [at] in the sim-
ple case, where there is only one disturbing planet,
are also valid in the more general case, where an
infinitely small mass is attracted to the Sun and
a number of planets, whose masses, eccentricities
and inclinations are small.” (p. Z347)

von Zeipel states the following theorem at the end of his
“Introduction.” Here he mentions the dependence of the
limiting inclination on the ratio of the semimajor axes, α:

“The study of secular perturbations in this general
case leads us to the following theorem:

For the eccentricity of the orbit of the infinitely
small mass, being small at some point, is still
small, it is necessary and sufficient that the incli-
nation is situated within certain limits, which are
functions of the planetary masses and the ratio of
the major axes.

A slight resistance against the motion, which
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has the effect of reducing the major axis and ec-
centricity, also tends to establish limits for the in-
clination. ” (p. Z347)

5.2 Equations of motion of perturbed body
Following the Introduction, von Zeipel presents four ma-

jor chapters (Chapters I, II, III, IV) and a short, additional
chapter at its end (Chapter V). From the viewpoint of com-
parison between von Zeipel’s work and Lidov’s or Kozai’s
work, we would say that the most important aspects of von
Zeipel’s work are in its Chapter IV where he searches lo-
cal extremums of the doubly averaged disturbing function of
CR3BP with specific forms. Other chapters do not particu-
larly deal with the disturbing function with specific forms.
von Zeipel’s Chapter I is placed for describing the general
equations of motion for CR3BP. In Chapter II von Zeipel de-
velops general framework to apply the Lindstedt series to the
disturbing function. Chapter III serves as a general study of
the secular part of the CR3BP disturbing function including
the case of orbit intersection. In what follows we summarize
von Zeipel’s Chapter I in our Section 5.2, Chapter II in Sec-
tions 5.3 and 5.4, Chapter III in Section 5.5, Chapter IV in
Sections 5.6, 5.7, 5.8, and Chapter V in Section 5.9.

von Zeipel’s first chapter “Chapitre I. Equations
différentielles du mouvement,” contains four sections (Z1–
Z4). This chapter is devoted to describing the equations of
motion of the perturbed body in CR3BP using the Hamil-
tonian formalism. von Zeipel first describes the canonical
equations of motion using the ordinary Delaunay elements.
Then he introduces another set of equations of motion using
a set of Poincaré-like canonical variables. At this point, no
averaging is applied to any variables or equations.

Throughout his paper, the unit of length that von Zeipel
uses is the constant distance between Jupiter and the Sun.
The unit of mass is the total mass of Jupiter and the Sun. The
unit of time is defined so that the Gauss constant becomes
1. In what follows, µ denotes the mass of Jupiter, and H
appearing in the disturbing function designates the angle
between the radius vectors of the perturbed body and that
of the perturbing body at the Sun (equivalent to the angle S
in our Fig. 1). The resulting equations of motion are:

d x

dt
= −∂�

∂x ′ ,
d x ′

dt
= ∂�

∂x
,

d y

dt
= −∂�

∂y′ ,
d y′

dt
= ∂�

∂y
,

d z

dt
= −∂�

∂z′ ,
d z′

dt
= ∂�

∂z
,

(Z01-182)

with

� = −1

2

(
x ′2 + y′2 + z′2

)
+ 1

r

+ µ

(
1√

1 − 2r cos H + r2
− r cos H − 1

r

)
,

(183)

where x, y, z are the coordinates of the perturbed body,
x ′, y′, z′ are their time derivatives (i.e. velocity), and r is
the radial distance of the perturbed body from the Sun.

Readers may find it slightly odd here to find a second term(+ 1
r

)
and the last one in the parentheses of the third term(− 1

r × µ
)

in Eq. (183). Indeed from these two terms, we
can make up a new term 1−µ

r . By the definition of the unit
of mass, 1 − µ is the Sun’s mass. This new term can be
considered as a potential that drives the Keplerian motion
of the perturbed body around the Sun. However, the time
average of 1

r becomes
〈

1
r

〉 = 1
a , which is a constant in the

doubly averaged CR3BP. Therefore, the terms proportional
to 1

r in Eq. (183) merely serve as additional constants, and
they have no influence on the following discussions.

Next, von Zeipel introduces a set of canonical equations of
motion of the perturbed body using the Delaunay elements
L , G, �, l, g, θ . Note that von Zeipel uses a variable θ for
longitude of ascending node, instead of the modern standard
notation, h. He also uses a variable � instead of the conven-
tional notation, H . The equations are:

d L

dt
= +∂�

∂l
,

dl

dt
= −∂�

∂L
,

d G

dt
= +∂�

∂g
,

d g

dt
= −∂�

∂G
,

d�

dt
= +∂�

∂θ
,

dθ

dt
= −∂�

∂�
,

(Z02-184)

where

� = �0 + µ�1, (185)

�0 = 1

2L2
, (186)

�1 = 1

�
− r cos H − 1

r
. (187)

Definition of � in Eq. (187) somehow does not show up in
this section (it shows up much later in Section Z13 in Chapter
III, p. Z368). But we see �’s specific form in the third term
in Eq. (183): it is the distance between the perturbing body
and the perturbed body as follows:

� =
√

1 − 2r cos H + r2. (188)

Since the length of the positional vector of the perturbing
body (r ′) is fixed to unity in von Zeipel’s work, � in Eq.
(188) looks slightly different from what we usually see in
the modern literature. von Zeipel’s unit definition (a′ = 1)

thus sometimes causes confusion. We may rather want to
understand that quantities concerning length are implicitly
normalized by Jupiter’s semimajor axis in von Zeipel’s de-
scriptions, such as a = a

a′ or r = r
a′ .

Then, von Zeipel points out that the longitude of the per-
turbing body is expressed as ±t in this system, as is obvious
from his definition of units. Here +t corresponds to the pro-
grade orbital motion of the perturbing planet, and −t corre-
sponds to the retrograde orbital motion. As is well known,
the disturbing function of this kind of system contains ±t
(for the perturbing body) and θ (for the perturbed body) only
as the combination of θ − (±t) = θ ∓ t (e.g. Brouwer
and Clemence, 1961; Nakai and Kinoshita, 1985). There-
fore von Zeipel defines a new variable θ ′ = θ ∓ t instead of
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θ , and brings it into the equations of motion. Let us cite von
Zeipel’s original description:

“The angle θ and the longitude of the disturbing
planet are reckoned on the plane of the orbit of this
planet in a sense that, at the nodes, [they] make
the acute angle I with the direction of angles l
and g. The longitude of the disturbing planet is
represented by ±t , following whether this planet
orbits in the direct way or in the indirect way.

That being so, it is obvious that the disturbing
function contains two longitudes θ and t in combi-
nation of θ ∓ t . We consequently assume

θ ′ = θ ∓ t.

Equations (Z02) still survives if we write θ ′ and
� ± � instead of θ and �.” (pp. Z348–Z349)

From the modern viewpoint, the conversion from θ to θ ′

is equivalent to a coordinate conversion of the inertial frame
into the rotating frame of the perturber’s orbital motion (e.g.
Szebehely, 1967). This conversion generates an additional
term in the Hamiltonian of the system (such as ±x2 in F0 in
Eq. (193)). However, terms of this kind would not affect the
secular motion of the perturbed body at all.

Next in Section Z2, von Zeipel introduces another series
of canonical equations of motion using a new set of canonical
variables (x1, x2, x3, y1, y2, y3) that are a combination of the
conventional Delaunay elements as:

x1 = L , x2 = �, x3 = L − G,

y1 = l + g, y2 = θ ′, y3 = −g,
(189)

together with

ξ =
√

2x3 cos y3, η =
√

2x3 sin y3. (190)

The variables in Eq. (189) and Eq. (190) satisfy the
following canonical equations of motion:

d xν

dt
= ∂ F

∂yν

,
d yν

dt
= − ∂ F

∂xν

,

dξ

dt
= ∂ F

∂η
,

dη

dt
= −∂ F

∂ξ
,

(Z03-191)

where ν = 1, 2 with

F = F0 + µF1, (192)

F0 = 1

2x2
1

± x2, (193)

F1 = 1

�
− r cos H − 1

r
. (194)

He then states that the perturbation Hamiltonian F1 in Eq.
(194) can be formally expanded in a Fourier series as

F1 =
∑

Cm1,m2 (ξ, η) cos (m1 y1 + m2 y2)

+
∑

Sm1,m2 (ξ, η) sin (m1 y1 + m2 y2) .
(Z04-195)

Note that the coefficients Cm1,m2 and Sm1,m2 depend also on
the variables x1 and x2.

In Section Z3, von Zeipel introduces yet another set of
canonical variables

(
x ′

1, x ′
2, x ′

3, y′
1, y′

2, y′
3

)
as

x ′
1 = L , x ′

2 = L − �, x ′
3 = G − �,

y′
1 = l + g + θ ′, y′

2 = −g − θ ′, y′
3 = g,

(196)

together with

ξ ′ =
√

2x ′
3 cos y′

3, η′ =
√

2x ′
3 sin y′

3, (197)

and a relationship that shows their canonical equivalence

x ′
1 y′

1 + x ′
2 y′

2 + x ′
3 y′

3 = Ll + Gg + �θ ′. (198)

The variables in Eqs. (196) and (197) may come in handy
when the orbital inclination of the perturbed body is small.
von Zeipel later uses them in his Section Z25, Chapter IV, p.
Z413 (see also p. 79 of this monograph). The variables x ′

1,
x ′

2, y′
1, y′

2, ξ ′, η′ meet the following equations of motion:

d x ′
ν

dt
= ∂ F

∂y′
ν

,
d y′

ν

dt
= − ∂ F

∂x ′
ν

,

dξ ′

dt
= ∂ F

∂η′ ,
dη′

dt
= −∂ F

∂ξ ′ ,
(Z05-199)

where ν = 1, 2 with

F = F0 + µF1, (200)

F0 = 1

2x ′2
1

± x ′
1 ∓ x ′

2, (201)

F1 = 1

�
− r cos H − 1

r
. (202)

Again, von Zeipel shows a Fourier-expanded formal form
of F1 of Eq. (202) as follows

F1 =
∑

C ′
m ′

1,m
′
2

(
ξ ′, η′) cos

(
m ′

1 y′
1 + m ′

2 y′
2

)
+

∑
S′

m ′
1,m

′
2

(
ξ ′, η′) sin

(
m ′

1 y′
1 + m ′

2 y′
2

)
.

(Z06-202)

Section Z4 is devoted to describing some symmetric char-
acteristics of the coefficients Cm1,m2 , Sm1,m2 , C ′

m ′
1,m

′
2
, S′

m ′
1,m

′
2

seen in Eqs. (Z04-195) and (Z06-202), although we do not
reproduce them here. Section Z4 also contains several con-
version formulas between the variables defined in Sections
Z2–Z3 and the conventional Kepler orbital elements a, e, I ,
g (we do not reproduce them here. See Eqs. (Z07) on p.
Z351). Incidentally, note that von Zeipel uses the notation I
for orbital inclination, not i .

5.3 The Lindstedt series
In his next chapter entitled “Chapitre II. Calcul des séries

de M. Lindstedt,” von Zeipel brings the Lindstedt series into
the equations of motion described in his Chapter I. Eventu-
ally, a set of secular equations of motion with just one degree
of freedom is derived. This chapter contains eight sections
(Z5–Z12), and its latter part is filled with detailed mathe-
matical expositions of the Lindstedt series without specify-
ing the function form of the disturbing function. The struc-
ture of this chapter is as follows. von Zeipel first assumes
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that the secular disturbing function R has a local minimum
or maximum somewhere in phase space. Then, he gives
a general proof that it is possible to formulate a periodic
solution around the local minimum or maximum using the
Lindstedt series. von Zeipel does not specify the function
form of the disturbing function throughout the procedure,
so his result applies to the general CR3BP. The validity of
the assumption—whether or not R has a local minimum or
maximum other than at the origin (ξ, η) = (0, 0), and if it
does, where the local extremums are—is discussed later in
his Chapters III and IV. Readers who want to quickly see
von Zeipel’s major conclusion on the existence of periodic
solutions in CR3BP that can be directly compared with Li-
dov’s and Kozai’s work might want to skip Sections 5.3, 5.4,
5.5, and jump to Section 5.6 or 5.7 where we summarize the
contents of von Zeipel’s Chapter IV.

Before we go into von Zeipel’s Chapter II, let us briefly re-
view what the Lindstedt series is. The study of this series be-
gan with a publication by a Swedish scientist, Anders Lind-
stedt (1854–1939). It is a short paper of less than five pages,
entitled “Üeber die Integration einer für die Störungstheorie
wichtigen Differentialgleichung,” published in Astronomis-
che Nachrichten (Lindstedt, 1882a). This work was immedi-
ately followed by a series of publications by Lindstedt him-
self (e.g. Lindstedt, 1882b, 1883, 1884) and others, such as
Poincaré (1886), Bohlin (1888), and Gylden (1891, 1893).
See also Gårding (1998, p. 102) for the interrelationships of
these authors. Eventually Poincaré organized and published
the theoretical method (Poincaré, 1892), and the method
is now also known as the Lindstedt–Poincaré method (e.g.
Amore and Aranda, 2005; Yu et al., 2017) or the Poincaré–
Lindstedt method (e.g. Khrustalev and Vernov, 2001). Read-
ers can consult Boccaletti and Pucacco (1998, their Section
6.6 on p. 33) or Marinca and Herisanu (2011, their Chap-
ter 2 on p. 9) for brief but excellent reviews about what the
Lindstedt series is, as well as how it was developed in the
history of perturbation theory studies. As for the interrela-
tionship of the Lindstedt series to Poincaré’s work, a long re-
view (Chenciner, 2015) in a book (Duplantier and Rivasseau,
2015) is very thorough and worth a read.

The general objective to employ the Lindstedt series in
this line of study is to obtain a time-dependent solution of an
autonomous conservative dynamical system without generat-
ing the so-called artificial mixed secular terms. For example,
consider a one-dimensional system controlled by a variable
� described by the differential equation

d2�

dt2
+ � = ε f (�, ε), (203)

with a small constant parameter ε. f is a function of �

including ε. In the original publication by Lindstedt, f in
Eq. (203) shows up as an expanded form in an infinite series
from the beginning. In recent times, the so-called simplified
Duffing equation is often employed for explaining how the
Lindstedt series works, putting f = −ε�3 (e.g. Nayfeh,
1973; Grimshaw, 1991; Bush, 1992). In any case, we want
to obtain the time-dependent solution �(t) of Eq. (203) that
is free of mixed secular terms. For this purpose, the system’s

frequency ω is expanded using the small parameter ε as

ω = 1 + εω1 + ε2ω2 + ε3ω3 + · · · . (204)

Using the expansion (204) the time variable t can be
“stretched” to a new variable τ as

τ = ωt. (205)

The usual expansion of the variable � by ε becomes

� = �0 + ε�1 + ε2�2 + ε3�3 + · · · , (206)

and a Taylor-expansion of f by ε is also necessary. Substi-
tuting these expansions into the original equation (203), a se-
ries of differential equations for each order of O(ε0), O(ε1),
O(ε2), . . . , are obtained.

The solution of the zero-th order (�0) is often trivially ob-
tained without difficulty. When solving the differential equa-
tion of the next order O(ε1), we carefully determine ω1 so
that no mixed secular term shows up in the first-order so-
lution (�1). Repeating similar procedures, we can princi-
pally obtain asymptotic solutions �2, �3, . . . , together with
the frequency components ω1, ω2, . . . , without any mixed
secular terms appearing in the final form.

Nowadays, the use of the Lindstedt series is so common in
modern celestial mechanics that people may be unaware of
using it even when the series is embedded in the perturbation
method that is employed. As an example to illustrate this
situation, let us quote from Mardling (2013) that mentioned
Hori’s (1966) famous canonical perturbation theory:

“In fact, Hori’s averaging process is simply a
version of the better-known Lindstedt–Poincaré
method for correcting the frequencies of a forced
non-linear oscillator.” (the third paragraph of p.
2189)

In passing, let us mention that the Lindstedt series is
often discussed intensively in connection with the KAM
(Kolmogorov–Arnold–Moser) theorem (e.g. Lichtenberg
and Lieberman, 1992; Gentile and Mastropietro, 1999; Jorba
et al., 1999; Merritt, 1999).

5.4 Secular equations of motion
In his Chapter II, von Zeipel formally exploits the Lind-

stedt series in order to derive the secular equations of mo-
tion of the perturbed body. On the path where he follows
the method of Lindstedt, the small parameter that he uses
for the expansions is Jupiter’s mass, µ. In his Section Z5
(pp. Z351–Z353), von Zeipel expands the orbital variables
defined in Eqs. (189) and (190) by µ as follows:

xν = x0
ν + µx1

ν + µ2x2
ν + · · · ,

yν = wν + y0
ν + µy1

ν + µ2 y2
ν + · · · ,

ξ = ξ 0 + µξ 1 + µ2ξ 2 + · · · ,

η = η0 + µη1 + µ2η2 + · · · ,

(Z08-207)

where ν = 1, 2. Note that not all the superscripts (1, 2, · · · )
in Eq. (Z08-207) denote powers of the variable. For exam-
ple, x2

ν �= (xν)
2, η2 �= (η)2. The superscripted variables such
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as x1
0 , y2

1 , ξ
1, η2, are new, independent variables except for µ

(e.g. µ2 ≡ (µ)2). This is a confusing notation which is used
throughout von Zeipel (1910).

Now, von Zeipel states that the variables xi
ν , yi

ν , ξ i , ηi

(i = 1, 2, · · · ) expressed as Eq. (Z08-207) are Fourier series
with the following three arguments

w1 = nt + c1, (208)

w2 = (q ∓ 1)t + c2, (209)

w = σ t + c. (210)

As we will see shortly, each of w1, w2, w implies different
timescales that the system possesses. The quantities c1, c2, c
are arbitrary constants, and n is a constant independent of µ.
He expands the coefficients q and σ as follows:

q = µq1 + µ2q2 + · · · ,

σ = µσ 1 + µ2σ 2 + · · · .
(Z09-211)

Note again that q2 �= (q)2 and σ 2 �= (σ )2.
von Zeipel then determines the value of unknown vari-

ables by substituting the above expansions into the equations
of motion (Z03-191), and equating the members of the same
order with respect to µ—the standard procedure when em-
ploying the Lindstedt series. As a result, the zero-th order
terms give the following equations:

n
∂ x0

1

∂w1
∓ ∂ x0

1

∂w2
= 0,

n
∂ x0

2

∂w1
∓ ∂ x0

2

∂w2
= 0,

n + n
∂ y0

1

∂w1
∓ ∂ y0

1

∂w2
= 1(

x0
1

)3 ,

∓1 + n
∂ y0

2

∂w1
∓ ∂ y0

2

∂w2
= ∓1,

n
∂ξ 0

∂w1
∓ ∂ξ 0

∂w2
= 0,

n
∂η0

∂w1
∓ ∂η0

∂w2
= 0.

(212)

At this point, von Zeipel brings up two assumptions (p.
Z352). Assumption (i): x0

1 is a constant so that

n = (
x0

1

)−3
. (213)

By its definition in Eq. (189), we know that x1 is just a
function of semimajor axis a of the perturbed body. And, as
we are already well aware of, a of the perturbed body is one
of the conserved quantities in the doubly averaged CR3BP.
Hence we believe this assumption is valid. Assumption (ii):
The zero-th order part of each of the variables x0

2 , y0
1 , y0

2 , ξ 0,
η0 are functions just of w, not of w1 or w2. To check whether
this assumption is valid or not, we need to give consideration
to the timescales that each of w, w1, w2 has. As for w1, from
Eq. (208), Eq. (213), and the assumption (i) we know its
variation timescale is as follows:

1

n
= (

x0
1

)3 ∼ L3. (214)

We can regard that the dimension of this quantity is O(1),
since there is no small parameter µ included in x0

ν in Eq.
(Z08-207). Now it is clear that n in Eq. (208) has a meaning
of the mean motion of the perturbed body, and the timescale
n−1 is related to its orbital period.

As for w2, the timescale of w2 is 1
q∓1 from the definition

(209). And, since q is a small quantity of O (µ) by Eq.
(Z09-211), we find the timescale of w2 close to 1. We can
consider that the quantity 1

q∓1 has a relation to the mean
motion of Jupiter, because Jupiter’s mean motion nJ is 1 as
follows. First, from Kepler’s third law we have

n2
J a3

J = G (mSun + µ) , (215)

where mSun is the Sun’s mass. However, both G and Jupiter’s
semimajor axis aJ are set to 1 by von Zeipel’s definition (see
p. 41 of this monograph). Also, the sum of the solar mass
and Jupiter’s mass (mSun + µ) is set to 1 by his definition.
These facts yield nJ = 1 through Eq. (215).

On the other hand, the timescale of w is σ−1 by Eq. (210).
This is a quantity of O

(
µ−1

)
according to Eq. (Z09-211).

This means that the variable w changes much more slowly
than w1 or w2. The variation timescale of w is related to
the perturbation from Jupiter on the perturbed body, and it
would be infinitely long when µ → 0. Therefore we can say
that the variable w describes the secular orbital change of the
perturbed body. Thus, von Zeipel’s assumption (ii) indicates
that the zero-th order quantities x0

2 , y0
1 , y0

2 , ξ 0, η0 are slow-
oscillating variables having a timescale of O

(
µ−1

)
. In the

doubly averaged CR3BP where the motion of the perturbed
body is just under weak to moderate perturbation as von
Zeipel considers, this assumption is justified.

von Zeipel now moves on to the first-order solution. By
equating the terms of O

(
µ1

)
appearing in the expanded Eq.

(Z03-191), he obtains the following set of equations:

n
∂ x1

1

∂w1
∓ ∂ x1

1

∂w2
= ∂ F0

1

∂y0
1

,

n
∂ x1

2

∂w1
∓ ∂ x1

2

∂w2
+ σ 1 ∂ x0

2

∂w
= ∂ F0

1

∂y0
2

,

n
∂ y1

1

∂w1
∓ ∂ y1

1

∂w2
+ σ 1 ∂ y0

1

∂w
= − 3(

x0
1

)4 x1
1 − ∂ F0

1

∂x0
1

,

q1 + n
∂ y1

2

∂w1
∓ ∂ y1

2

∂w2
+ σ 1 ∂ y0

2

∂w
= −∂ F0

1

∂x0
2

,

n
∂ξ 1

∂w1
∓ ∂ξ 1

∂w2
+ σ1

dξ 0

dw
= ∂ F0

1

∂η0
,

n
∂η1

∂w1
∓ ∂η1

∂w2
+ σ1

dη0

dw
= −∂ F0

1

∂ξ 0
,

(Z10-216)

where F0
1 is the zero-th order part of F1 in Eq. (Z04-195):

F0
1 =

∑
Cm1,m2

(
x0

1 , x0
2 , ξ

0, η0
)

× cos
[
m1

(
w1 + y0

1

) + m2
(
w2 + y0

2

)]
+

∑
Sm1,m2

(
x0

1 , x0
2 , ξ

0, η0
)

× sin
[
m1

(
w1 + y0

1

) + m2
(
w2 + y0

2

)]
.

(217)
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From the function form of F0
1 in Eq. (217), and from the

above mentioned two assumptions (i) and (ii), we can say
that F0

1 is a periodic function of the fast-oscillating variables
w1 and w2. In addition, von Zeipel states as follows:

“Since x1
ν , y1

ν , ξ 1, η1, F0
1 are periodic functions of

w1 and w2 of period 2π , the derivatives of these
functions with respect to w1 or w2 contain no term
independent of w1 and of w2.” (p. Z352)

We understand that the above statement is a common as-
sumption to make when exploiting the Lindstedt series: The
zero-th order part of the variables are functions only of w

(with a slow variation), while their higher-order parts are
functions only of w1 and w2 (with a fast variation). Then,
according to the standard procedure when using the Lindst-
edt series, von Zeipel equates the terms that do not contain
w1 or w2 in Eq. (Z10-216). As a consequence, he obtains
the following set of equations:

σ 1 d x0
2

dw
= 0,

σ 1 d y0
1

dw
= − 3(

x0
1

)4 [x1
1 ] − ∂ R

∂x0
1

,

q1 + σ 1 d y0
2

dw
= − ∂ R

∂x0
2

,

σ 1 dξ 0

dw
= ∂ R

∂η0
,

σ 1 dη0

dw
= − ∂ R

∂ξ 0
,

(Z11-218)

where [x1
1 ] denotes the secular part of x1

1 that is independent
of w1 or w2. R is defined as

R = C0,0
(
x0

1 , x0
2 , ξ

0, η0
)
, (219)

and it is nothing but the secular disturbing function. The
substitution of m1 = m2 = 0 into Eq. (217) yields this.

It is evident that x0
2 is a constant from the first equation in

(Z11-218), σ 1 d x0
2

dw
= 0. It is also important to recall that x0

2 is
defined as the secular part of one of the Delaunay elements,
�, which is proportional to

√
1 − e2 cos I (see Eqs. (189)

and (Z08-207) for the definitions).
So far, von Zeipel has found two constants of integration

(x0
1 and x0

2 ) in the considered system. In addition, we should
recall that the secular disturbing function R in Eq. (219)
is also a constant due to the conservative characteristics of
mutual potentials between the three bodies. As a result, the
degrees of the system’s freedom can be reduced to one, and
the system becomes integrable. The equations of motion for
the considered system with one degree of freedom are the
last two in Eq. (Z11-218):

σ 1 dξ 0

dw
= ∂ R

∂η0
, σ 1 dη0

dw
= − ∂ R

∂ξ 0
, (Z12-220)

with the secular disturbing function R.
In the short Section Z6 (pp. Z353–Z354), von Zeipel

repeats what he has already said. He writes:

“The integration of this system is theoretically
very simple. It may, indeed, be carried out by a
quadrature under the integral

R = const.

However in practice, it is difficult to integrate
equations (Z12) in any generality, since the func-
tion R is very complicated. But fortunately there
are extended cases where the integration is even
practically simple enough. This happens if the
original values of ξ 0 and η0 are in the vicinity of a
maximum or minimum value of R regarded as [a]
function of ξ 0 and of η0.

It is well known that R
(
x0

1 , x0
2 , ξ, η

)
, regarded

as a function of ξ and η, possesses a minimum
value for ξ = η = 0 at least for small inclinations,
that is to say, if the ratio x0

1 : x0
2 is close to unity.

This minimum corresponds to series of the form
(Z08), which represents the motion of asteroids
with small eccentricities and small inclinations.”
(p. Z353)

von Zeipel then makes a quick summary of what will be
discussed in the remaining part of Chapter II: Calculation of
possible periodic orbits of comets using the Lindstedt series
around new local extremums of R that were not known at his
time. Let us cite his words again:

“A thorough study of the function R, to which we
will dedicate Chapter IV, first shows that the func-
tion R has, for all the values of the parameters x0

1
and x0

2 in the domain 0 < x0
2 < x0

1 , a minimum
value at the point ξ = η = 0. However, this study
shows on the other hand that the function R pos-
sesses other minima that are yet unknown. The
positions of these new minima depend on the val-
ues of the parameters x0

1 and x0
2 . They are located

either on the axis of ξ or on the axis of η, so that
the line of [cometary] apsides coincides with, or
is perpendicular to, the line of nodes, in the corre-
sponding orbits. These new minimum values cor-
respond, as we will show, to the series of the form
(Z08) that is easy to calculate, representing the mo-
tion of comets, whose perihelia are approximately
fixed relative to the nodes.” (pp. Z353–Z354)

At the end of Section Z6 von Zeipel mentions a possible
periodic cometary orbit with zero inclination as follows:

“Finally, we also show that the function R some-
times reaches a maximum value, if the inclination
is zero. In the vicinity of this maximum there ex-
ist series similar to the series (Z08) of a very sim-
ple form, which can be applied to the study of the
motion of comets, whose orbits are always only
slightly inclined and whose perihelia turn under
secular perturbations.” (p. Z354)

von Zeipel spends the rest of Chapter II (Sections Z7–Z12)
on extensive calculations that aim at applying the Lindstedt
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series to the equations of motion that have been derived
so far. As we previously mentioned, the function form of
the disturbing function is not specified here. Therefore von
Zeipel’s result here is applicable to general, arbitrary cases of
doubly averaged CR3BP, irrespective whether it is the inner
problem or the outer problem.

In Section Z7, von Zeipel considers a general case when
R has a local maximum or minimum at (ξ, η) = (ξ 0.0, 0),
where ξ 0.0 is the main term of ξ 0 when σ 1, ξ 0, η0 are ex-
panded using the Lindstedt series as

σ 1 = σ 1.0 + ε2σ 1.2 + ε4σ 1.4 + · · · ,

ξ 0 = ξ 0.0 + εξ 0.1 + ε2ξ 0.2 + · · · ,

η0 = εη0.1 + ε2η0.2 + · · · .

(Z13-221)

He shows that in this case it is possible to construct approxi-
mate periodic solutions for ξ 0 and η0.

In Section Z8, von Zeipel further moves on to a general
procedure to obtain q1 and y0

2 that are related to the longitude
of ascending node (θ) of the perturbed body (comet). In Sec-
tion Z9, he shows a general demonstration in order to prove
the theoretical possibility of successively determining all the
coefficients that appear in the Lindstedt series (Z08-207) and
(Z09-211) up to any orders under the assumption stated in
Sections Z7 and Z8. The resulting solution indicates that
argument of perihelion of the perturbed body librates with a
small amplitude around g = 0 or π if R has a local extremum
at the point (ξ, η) = (ξ 0.0, 0).

Section Z10 goes to a similar exposition as in Section Z7.
von Zeipel shows the existence of the Lindstedt series when
R has a local extremum at (ξ, η) = (0, η0.0). Here, η0.0 is
the main term of η when it is expanded as

ξ 0 = εξ 0.1 + ε2ξ 0.2 + · · · ,

η0 = η0.0 + εη0.1 + ε2η0.2 + · · · .
(222)

The resulting solution indicates that the comet’s argument of
perihelion librates with a small amplitude around g = ±π

2
in this case. Note that von Zeipel did not explicitly show the
expansion forms of Eq. (222).

In Section Z11, von Zeipel describes the case when R has
a maximum or minimum at ξ = η = 0. In this case, the
comet’s g has a mean motion, i.e. g circulates from 0 to 2π .
In Section Z12, von Zeipel mentions a special case when the
cometary inclination becomes zero. In this case the comet’s
g exhibits circulation from 0 to 2π .

Considering von Zeipel’s viewpoint and purpose, we can
say that the existence of the Lindstedt series in the problem
that he dealt with is practically equivalent to the theoretical
possibility of constructing approximate, periodic solutions of
the cometary motion. His aim in his Chapter II is to quan-
titatively demonstrate that the Lindstedt series exists around
local extremums of the secular disturbing function R of the
doubly averaged CR3BP, even when the perturbed body’s ec-
centricity or inclination is substantially large. Nowadays, we
are well aware of this result through the works of Lidov and
Kozai who rigorously showed the existence of periodic solu-
tions around the local extremums of R. But this fact was not
obvious in von Zeipel’s era.

In modern celestial mechanics, the Lindstedt series is cat-
egorized as a method employed in classical perturbation
theory, rather than in canonical perturbation theory (e.g.
Boccaletti and Pucacco, 1998). Since von Zeipel’s discus-
sion began with the canonical equations of motion (see Eq.
(Z01-182) or Eq. (Z02-184)), introducing the Lindstedt se-
ries might seem odd in the modern viewpoint. However,
several years later von Zeipel devised the canonical version
of his perturbation method, which is now called the von
Zeipel method. As is well recognized, his accomplishment
was published as a series of publications over more than
300 pages in total (von Zeipel, 1916a,b, 1917a,b). In this
regard, the detailed mathematical expositions described in
von Zeipel’s Chapter II can be regarded as a prototype study
that was eventually developed into the canonical von Zeipel
method. Note, however, that our strongest interest in this
monograph does not lie in the detailed mathematical expo-
sitions presented in von Zeipel’s Chapter II. Our interest is
focused on what he achieved in his Chapter IV which has a
direct relevance to the later studies by Lidov or Kozai. There-
fore we do not go into von Zeipel’s Chapter II any further.

5.5 Secular disturbing function: General case
von Zeipel’s next chapter is entitled “Chapitre III. Étude

de la partie séculaire de la fonction perturbatrice,” contain-
ing three sections (Z13–Z15). Here he describes the general
characteristics of the secular disturbing function for CR3BP.
His particular emphasis lies on the relationship between the
function form of the disturbing function and its dependence
on the relative orbital configuration of the perturbing and per-
turbed bodies. von Zeipel’s treatment of the disturbing func-
tion still remains rather general in this chapter, and does not
deal with any kind of specific expansion of the disturbing
function by a series. This means that his result in this chap-
ter is applicable to general cases of doubly averaged CR3BP,
irrespective whether it is the inner or the outer problem.

The first section in this chapter (Section Z13) seems a
preparation for the rest of the chapter. First, he introduces
an important parameter k as follows:

x0
2

x0
1

=
√

1 − e2 cos I = k. (Z42-223)

The parameter k is constant because both x0
1 and x0

2 are
constant in von Zeipel’s approximation (see Eqs. (213) and
(Z11-218)). Later in this monograph, k in Eq. (Z42-223)
turns out to be a key parameter which determines the fun-
damental characteristics of the doubly averaged disturbing
function. We can express k using Moiseev’s C in Eq.
(Mb2.14-122) as k = C√

a
. Since the perturbed body’s semi-

major axis a is constant in the considered system, it means
that k is only proportional to C . And, k2 = (

1 − e2
)

cos2 I
is equivalent to Kozai’s � in Eq. (K26-76) as well as to Li-
dov’s c1 in Eq. (L58-152). Since von Zeipel assumes that the
perturbed body’s inclination I is not dull (i.e. I ≤ π

2 ), both
k and k2 range between 0 and 1.

From its definition in Eq. (219), we know that the secular
disturbing function R is a function of x0

1 , x0
2 , ξ 0, η0 only.

And, from the definitions of x1, x2, ξ , η in Eqs. (189) and
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(190), R turns out to be a function of a0, e0, I 0, and g0.
They are the zero-th order quantities of a, e, I , g when they
are expanded in the Lindstedt series with µ. But we already
know that semimajor axis a becomes a constant in the secular
system that we consider. Also, e and I depend on each other
through the constant parameter k defined in Eq. (Z42-223).
We then know that R is a function just of e and g with two
constant parameters, a and k. von Zeipel points out that the
range of e is as follows:

0 ≤ g ≤ 2π, 0 ≤ e ≤ k ′ ≡
√

1 − k2, (Z43-224)

where k ′ is the largest value of e when cos I = 1. Since
R = R(e, g) itself is a constant of motion (see the discussion
following Eq. (219)), R becomes independent from g when
e = k ′; in other words, when e is a constant.

The secular disturbing function R is formally obtained by
averaging the perturbation Hamiltonian F1 in Eq. (194). von
Zeipel points out that F1’s second term (−r cos H) does not
leave any secular component after the averaging procedure.
Averaging F1’s third term

(− 1
r

)
just leaves a constant, − 1

a .
Hence he expresses the secular disturbing function R just by
using the first term in Eq. (194) as

R = 1

4π2

∫ 2π

0

∫ 2π

0

dldθ ′

�

= 1

4π2

∫ 2π

0

∫ 2π

0

1 − e cos u

�
dudθ ′,

(Z44-225)

where � is defined in Eq. (188) and θ ′ is the longitude of
the perturbed body defined in his Chapter I (see p. 42 of this
monograph). R in Eq. (Z44-225) is equivalent to the doubly
averaged direct part of the disturbing function that we dealt
with in Sections 2.2 and 2.3 of this monograph.

At the end of Section Z13, von Zeipel makes the following
statement about the regularity of R in the region where orbit
intersection between the perturbed body and the perturbing
body does not happen:

“The function R is, without ambiguity, given by
the formula (Z44) whenever the orbits do not inter-
sect. Obviously R is holomorphic for all values of
e, g, a, k in the domain (Z43), which corresponds
to an orbit that does not encounter that of Jupiter.”
(p. Z368)

Section Z14 is devoted to describing the characteristics of
R when the orbits of the perturbed and perturbing bodies in-
tersect. Since von Zeipel mentions this subject later again
in Section Z24 in Chapter IV, let us just make a brief sum-
mary. The orbit intersection between the perturbing body on
a circular orbit and the perturbed body can happen at the he-
liocentric distance of a′ (the semimajor axis of the perturbing
body). Let us cite von Zeipel’s original words on this subject:

“It is important to study the character of the func-
tion R if the orbits intersect. Obviously, for the or-
bits that intersect, it is necessary and sufficient that

one or other of the following conditions is met:

1) 1 = a
(
1 − e2

)
1 ± e cos g

2) e = k ′

and that, moreover, a satisfies the inequality

1

1 + k ′ < a <
1

1 − k ′ .

The first of these conditions expresses that r = 1
when w = −g or when w = π − g.” (p. Z369)

Recall that w seen in von Zeipel’s above statement is true
anomaly. Note also that by the definition of the unit of
mass, his above equation uses “1” on the left-hand side of
the condition “1)” instead of a′. This distance condition is
seen in modern literature (e.g. Babadzhanov and Obrubov,
1992; Farinella et al., 2001; Jopek and Bronikowska, 2017)
in a more general form such as

a′ = a
(
1 − e2

)
1 ± e cos g

. (226)

In the denominator of the right-hand term of Eq. (226), the
positive sign applies when the orbit intersection occurs at the
ascending node of the perturbed body (when w = −g). The
negative sign applies when the orbit intersection occurs at the
descending node of the perturbed body (when w = π − g).

As for the condition “2) e = k ′” in von Zeipel’s descrip-
tion, we do not follow him well. He wrote “for the orbits
that intersect, it is necessary and sufficient that one or other
of the following conditions is met.” However, the condition
e = k ′ just describes the maximum eccentricity of the per-
turbed body, not making any constraints on the orbit (in other
words, semimajor axis) of the perturbing body. Therefore we
have no idea why von Zeipel described e = k ′ as one of the
necessary and sufficient conditions for an orbit intersection
to happen between the perturbed and perturbing bodies.

The inequality that von Zeipel leaves in the above state-
ment can also be more generally rewritten using the semi-
major axis a′ of the perturbing body as

a′

1 + k ′ < a <
a′

1 − k ′ . (227)

We can interpret the condition (227) as follows. For an
orbit intersect to occur, the smallest value of the perihelion
distance of the perturbed body a

(
1 − k ′) must be smaller

than the semimajor axis of the perturber a′ (i.e. a < a′
1−k ′ ),

and the largest value of the aphelion distance a
(
1 + k ′) of

the perturbed body must be larger than a′ (i.e. a′
1+k ′ < a).

Here von Zeipel introduces a pair of new variables x =
e cos g and y = e sin g for rewriting the above condition “1)”
(equivalent to Eq. (227)). Let us literally cite his words:

“By introducing the variables

x = e cos g, y = e sin g
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Fig. 11. A transcription of von Zeipel’s Figs. Z1–Z5 on his pp. Z369–Z370 (Credit: John Wiley and Sons. Reproduced with permission). a is von Zeipel’s
Fig. Z1, b is Z2, c is Z3, d is Z4, and e is Z5. Each of the panels represents the trajectories that the circles (Z45-228) and (Z46-229) make on the
(x, y) = (e cos g, e sin g) plane. Note that the symbol “I” in the numerators of the figure labels designates perturbing body’s semimajor axis

(
a′) which

is defined as 1 in von Zeipel (1910). On the other hand, the same symbol “I” in the denominators is a non-dimensional number, just equivalent to 1. For
example, I

I+k′ in a actually means a′
1+k′ . Note also that in this figure von Zeipel assumes k′ = 1

2 for an expository purpose.

the relation 1) can be written

(
x ± 1

2a

)2

+ y2 =
(

1 − 1

2a

)2

. (Z45-228)

This is the equation of two circles whose cen-
ters are at the points x = ∓ 1

2a , y = 0 and which
pass, one by the point x = −1, y = 0, the other by
the point x = 1, y = 0.

The position of the circle (Z45) relative to the
circle

x2 + y2 = k ′2 (Z46-229)

that limits the domain (Z43), depends on the values
of a and k.” (pp. Z369–Z370)

As before, Eq. (Z45-228) can be rewritten in a more
general form using a′ as

(
x ± a′

2a

)2

+ y2 =
(

1 − a′

2a

)2

. (230)

As von Zeipel writes, Eq. (230) produces a pair of circles
on the (x, y) plane whose center and radii depend just on
a
a′ . The geometric circumstance of the orbit intersection is
expressed on the (x, y) plane through the locations of the
circles (Z45-228) and another circle (Z46-229). The circle
(Z46-229) represents the outermost boundary of the possible
motion range of the perturbed body on the (x, y) plane.

von Zeipel graphically illustrates the circumstance that the
circles (Z45-228) and (Z46-229) depict in his Figs. Z1–Z5
(pp. Z369–Z370), using k ′ = 1

2 as an example (note that the
value of k ′ just affects the circle (Z46-229), not the circles
(Z45-228)). We transcribed these figures as Fig. 11. Let
us explain, in a more general way, the geometric condition
that each panel of Fig. 11 implies. Recalling the fact that k ′

denotes the maximum of the perturbed body’s eccentricity in

the considered system, we use the following notation:

Qmax = a
(
1 + k ′) , (231)

qmin = a
(
1 − k ′) , (232)

�min = a
(

1 − k ′2
)

, (233)

where Qmax is the largest value of the perturbed body’s apoc-
enter distance, qmin is the smallest value of the perturbed
body’s pericenter distance, and �max is the smallest value of
the perturbed body’s semilatus rectum.

• Fig. 11a: 0 < a < a′
1+k ′ . We can interpret this as 0 < a

and Qmax < a′. 0 < a is obvious, and Qmax < a′ is
satisfied if the perturbed body’s orbit always lies inside
that of the perturbing body. Hence in this case, the two
orbits never intersect. This orbit configuration is sim-
ilar to that between the Atira asteroids (also known as
interior-Earth objects) and the Earth’s orbit (e.g. Green-
street et al., 2012; Ribeiro et al., 2016; de la Fuente
Marcos and de la Fuente Marcos, 2018).

• Fig. 11b: a′
1+k ′ < a < a′. We can interpret this as

a′ < Qmax and a < a′. In this case, the two orbits
can intersect. This orbit configuration is similar to that
between the Aten near-Earth asteroids and the Earth’s
orbit (e.g. Shoemaker et al., 1979; Bottke et al., 2002a).

• Fig. 11c: a′ < a < a′

1−k ′2 . We can interpret this as
a′ < a and �min < a′. In this case, the two orbits can
intersect each other.

• Fig. 11d: a′

1−k ′2 < a < a′
1−k ′ . We can interpreted

this as a′ < �min and a′ > qmin. If we combine the
two conditions c and d, and write them as a′ < a and
a′ > qmin, this orbit configuration is now close to that
between the Apollo near-Earth asteroids and the Earth’s
orbit (e.g. Shoemaker et al., 1979; Bottke et al., 2002a).

• Fig. 11e: a′
1−k ′ < a < ∞ . We can interpret this

as a′ < qmin and a < ∞. a < ∞ is obvious, and
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the perturbed body’s orbit always lies outside that of
the perturbing body if a′ < qmin. Hence in this case,
the two orbits never intersect each other. This orbit
configuration is close to that between the Amor near-
Earth asteroids and the Earth’s orbit (e.g. Shoemaker
et al., 1979; Bottke et al., 2002a).

To facilitate the reader’s understanding, based on Eqs.
(Z45-228) and (Z46-229) we present, as Fig. 12, diagrams
of this kind with several more values of α. We adopted
k ′ = 1

2 following von Zeipel’s figures. Now we can better
see the relation between the α values and the topological
configurations of circles. Among the nine values of α = a

a′
in Fig. 12, the following four depict configurations when the
relative topology of the three circles changes: α = 2

3 = 1
1+k ′ ,

α = 1, α = 4
3 = 1

1−k ′2 , and α = 2 = 1
1−k ′ .

Fig. 12. Similar to Fig. 11, we depict circles described by Eqs.
(Z45-228) and (Z46-229) with several more values of α on the
(x, y) = (e cos g, e sin g) plane. The circles drawn in red correspond to
the negative sign in the first term of the left-hand side of Eq. (Z45-228).
The circles drawn in blue correspond to the positive sign in the first term
of the left-hand side of Eq. (Z45-228). The black solid circles at the
center are a representation of Eq. (Z46-229). The parameter k′ = 1

2 is
common to all the panels.

As seen in Fig. 11, von Zeipel named each of the domains
as A, A′, B, B ′, C . In the rest of Section Z14, he tries to
prove the following theorem:

“The function R is represented in various domains
A, B, C, A′, B ′ by different analytic functions.
Each of these functions is holomorphic in the cor-
responding domain and on its borders (except the
circle e = k ′).” (p. Z369)

The doubly averaged disturbing function R is originally
defined as the double integral expressed in Eq. (Z44-225).

As a preparation to prove the above theorem, von Zeipel
expresses R in a single integral by performing the integration
with respect to θ ′. Although we do not go into his proof of
the theorem in this monograph, let us quickly introduce his
preparation part because the result is used in a later section
(Section Z20; discussed on p. 59 of this monograph).

von Zeipel first introduces a pair of parameters τ and V as(
1 + r2

)
τ cos V = 2r cos(w + g), (234)(

1 + r2
)
τ sin V = 2r sin(w + g) cos I, (235)

and expresses � in the denominator of Eq. (Z44-225) as
follows:

�2 = (
1 + r2

) [
1 − τ cos

(
θ ′ + V

)]
. (Z47-236)

Then the following equation for τ 2

τ 2 = 4r2(
1 + r2

)2

[
1 − sin2 I sin2(w + g)

]
, (Z48-237)

or that for τ ′2 ≡ 1 − τ 2

τ ′2 = 1 − τ 2 =
(
1 − r2

)2 + 4r2 sin2 I sin2(w + g)(
1 + r2

)2 ,

(Z49-238)

are derived. Now von Zeipel defines a function F(τ ) as

1

2π

∫ 2π

0

√
1 + r2

�
θ ′

= 1

2π

∫ 2π

0

dθ ′
√

1 − τ cos (θ ′ + V )
= F(τ ).

(Z50-239)

Note that F(τ ) is newly defined in Eq. (Z50-239), but
the notation may be confusing. This F is different from the
Hamiltonian in Eq. (192). Also, note that F is a function of
τ only, not that of V , due to the relation between V and τ

shown in Eqs. (234) and (235).
Now von Zeipel adopts F(τ ) defined in Eq. (Z50-239) for

the literal definition of R. Changing the integration variable
used in the averaging procedure from mean anomaly l to true
anomaly w through the commonly used relationship

dl = r2

a2

dw√
1 − e2

, (240)

he obtains R in the form of a single integral as

R = 1

2π

∫ 2π

0

r2

a2

F(τ )√
1 − e2

√
1 + r2

dw. (Z51-241)

Note that in Eqs. (240) and (Z51-241) we use a, not
α = a

a′ . This is for explicitly displaying the quantity r
a as

being non-dimensional. However this is just for a formal
consistency, because we can practically regard a and r are
both non-dimensional from the beginning in von Zeipel’s
theory. We already mentioned this point in the discussion
following Eq. (188) on p. 41 of this monograph.

von Zeipel continues as follows:
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“It is well known and easy to verify that F is
represented, if 0 ≤ τ < 1, by the hypergeometric
series,

F(τ ) = F

(
1

4
,

3

4
, 1, τ 2

)
, (Z52-242)

or by the [complete] elliptic integral of the first
kind,

F(τ ) = 2

π

1√
1 + τ

∫ π
2

0

dϕ√
1 − 2τ

1+τ
sin2 ϕ

.”

(Z53-243)

(p. Z371)

von Zeipel still continues:

“It is also known (see Picard: Traité d’Analysis
vol. III, page 273) that F(τ ) is of the form

F(τ ) = A
(
τ ′2

)
log τ ′2 + B

(
τ ′2

)
, (Z54-244)

in the neighborhood of τ = 1, and both A and B
are developed in powers of τ 2 with

A(0) �= 0. (Z55-245)

Then A, B and log τ ′2 are real, if τ 2 is real and
> 0. Finally we evidently have

A(0) < 0 (Z56-246)

because, if A(0) > 0, we would have F(τ ) = −∞
for τ = 1, which is impossible since F(τ ) > 0.”
(p. Z371)

Nowadays, approximating complete elliptic integrals by
a logarithmic function like this is a common idea (e.g.
Hastings, Jr., 1955; Cody, 1965a,b). Note that although we
found an expression similar to Eq. (Z54-244) in Picard
(1896, Chapter XI, sub-chapter II, Section 13, p. 273, as
suggested by von Zeipel), Picard’s original equation is in a
more general form. Also, the function that von Zeipel de-
picted as “log” in Eq. (Z54-244) turned out to be a natural
logarithm (ln) in Picard’s original expression.

Let us wrap up our introduction of von Zeipel’s Section
Z14 by citing one of his paragraphs on pp. Z374–Z375. It
is about the general characteristics of the secular disturbing
function that he deals with:

“According to the formula (Z66), the function R is
thus given by two different analytic functions R′

and R′′ in the two domains A and B in Fig. Z2. Of
these functions, R′′ is holomorphic in the domain
A, and R′′ [is holomorphic] in the domain B. Sub-
sequently, the functions R′ and R′′ are holomor-
phic also on the arcs of the circles (Z45), which
separate the domains A and B from each other,
except at the points of intersection of the curves
(Z45) and (Z46). Finally, we have R′ = R′′ on the
boundary that separates the domains A and B.

In the previous demonstration we have assumed

1

1 + k ′ < a < 1.

But it is obviously possible to use the same
method almost without change for dealing with

1 < a <
1

1 + k ′2

and
1

1 − k ′2 < a <
1

1 − k ′

represented by Figs. Z3 and Z4 on page Z369. To
calculate R, it is necessary to use different analytic
functions in the domains A, B, C , A′, B ′. These
functions are holomorphic in each of the domains
A, B, C , A′, B ′ which they belong to, and also on
the borders of this area with an exception of the
circle (Z46).” (pp. Z374–Z375)

Note that we have not transcribed von Zeipel’s Eq. (Z66)
in this monograph. Note also that in all the three inequalities
in the above quotation, “1” in the numerators (not in the
denominators) designates the perturbing body’s semimajor
axis, a′. Therefore, the three inequalities can be respectively
rewritten as either of the following combinations:

a′
1+k ′ < a < a′, a′ < a < a′

1+k ′2 ,
a′

1−k ′2 < a < a′
1−k ′ ,

or

1
1+k ′ < α < 1, 1 < α < 1

1+k ′2 ,
1

1−k ′2 < α < 1
1−k ′ .

See also Fig. 11’s caption and the ensuing discussion.
In the final section (Z15) of Chapter III, von Zeipel men-

tions the behavior of R close to the outer boundary circle
represented by e = x2 + y2 = k ′ (Z46-229) in a very gen-
eral way. Although in this monograph we do not go into the
contents of this section, we will return to this subject later
(Section 5.9.1 on p. 79) with a more specific function form
of R and numerical examples.

Readers should recall that in his Chapter III, von Zeipel’s
description is still general. No function form is specified for
the secular disturbing function R. von Zeipel mentions the
specific function form of R for the first time in the following
chapter (Chapter IV).

5.6 Secular disturbing function: Inner case
Among von Zeipel’s work in 1910, the chapter “Chapitre

IV. Maxima et minima de la partie séculaire de la fonction
perturbatrice” comprises the most important component for
us. In this chapter he shows an analysis of the doubly av-
eraged disturbing function R with specific function forms.
This is what we can directly compare with the later work of
Lidov and Kozai in detail.

This chapter is very long, occupying half of the entire
article (37 pages out of 74 pages) including ten sections
(from Z16 to Z25). We would like to categorize the sections
into three parts. For this purpose, we think it is best to cite
the beginning part of this chapter in Section Z16:
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“In Chapter II we have shown that the integration
of the equations (Z12) of the secular variations is
much simplified in the vicinity of a maximum or
minimum value of the function R. It is therefore
important to find the points (e, g) of the domain
(Z43) for which the function R reaches its maxima
and minima.

In the study, that we have in view, it is advanta-
geous to distinguish three cases, characterized by
the position of the nodes of the orbit of the in-
finitesimal mass:

1) Both nodes are located inside the orbit of
Jupiter, so that the orbit of the comet remain-
ing in its plane can be reduced to the Sun
without intersecting Jupiter’s orbit.

2) Both nodes are located outside the orbit of
Jupiter, so that the orbit of the comet remain-
ing in its plane can be reduced to an infinitely
large circle around the Sun as the center with-
out touching the orbit Jupiter.

3) Of the two nodes, one is located inside, [and]
the other [is located] outside, the orbit of
Jupiter. The two orbits behave like the rings
of a chain.”

(p. Z378)

In the above, the case 1 is about the inner CR3BP which is
discussed in Sections Z16–Z21. The case 2 is about the outer
CR3BP which is discussed in Sections Z22–Z23. The case
3 corresponds to a system where orbit intersection between
the perturbed and perturbing bodies can happen. This is
discussed in Sections Z24–Z25. In the present subsection
(Section 5.6), we will summarize von Zeipel’s Sections Z16–
Z21 that deal with the case 1.

5.6.1 Expansion of R by α von Zeipel first assumes
in Section Z16 that α = a

a′ is very small. This is equiva-
lent to adopting the quadrupole level approximation, and the
expansion of R in the series of α can be truncated at lower-
order without losing accuracy. The method that he took for
the expansion of R follows Tisserand (1889) that exploits the
Hansen coefficients X2m,2i

0 . Omitting the detail, let us tran-
scribe von Zeipel’s expansion result as follows:

R =
[

1

�

]
l,θ ′

= 1 +
∞∑

m=1

(
A(2m)

0.0 X2m,0
0

+ 2
m∑

i=1

A(2m)
i. j X2m,2i

0 cos 2ig
)
α2m,

(Z72-247)

where
[

1
�

]
l,θ ′ means that the quantity 1

�
is averaged both by

l and by θ ′. This operation is equivalent to
〈〈

1
�

〉
l ′
〉
l

that we
employed on p. 8 of this monograph.

The Hansen coefficients are expressed as

X2m,2i
0 = (2m + 2i + 1)!

(2m + 1)!(2i)!

(
e2

4

)i

× F

(
i − m, i − m − 1

2
, 2i + 1, e2

)
,

(Z71-248)

with

A(2m)
i, j = k(2m)

i, j

(
sin2 I

4

)i

× F

(
i − m, i + m + 1

2
, 2i + 1, sin2 I

)
,

(Z74-249)

and

k(2m)
i, j = (2m + 2i)!(2m)!

24m(2i)!(m + i)!(m − i)!(m!)2
. (Z73-250)

Note that F in Eq. (Z71-248) and Eq. (Z74-249) is the
hypergeometric series of Gauss.

von Zeipel regards the expansion (Z72-247) as a series of
α2, and writes down R as

R = 1 + R2α
2 + R4α

4 + · · · , (Z75-251)

where R2, R4, · · · are functions of e and g. The lowest-order
term of R (except for the constant 1) becomes

R2 = A(2)

0.0 X2.0
0 + 2A(2)

1.1 X2.2
0 cos 2g

= 1

4

(
1 − 3

2
sin2 I

) (
1 + 3

2
e2

)
+ 15

16
sin2 I · e2 cos 2g

= 1

8

(
−1 + 3k2

1 − e2

) (
1 + 3

2
e2

)
+ 15

16

(
1 − k2

1 − e2

)
e2 cos 2g.

(Z76-252)

It is clear that R2 in Eq. (Z76-252) is equivalent to what
we saw in Kozai’s work (Eq. (72) of this monograph).

Note that von Zeipel actually used a instead of α = a
a′

throughout his discussion of the inner problem. For example,
the original form of Eq. (Z75-251) is written as follows:

R = 1 + R2a2 + R4a4 + · · · . (253)

The apparent difference between Eq. (Z75-251) and Eq.
(253) comes from the fact that von Zeipel fixes the per-
turber’s semimajor axis

(
a′) as 1 (the unit of length in his

theory). However, for keeping the generality and compati-
bility with the later studies by Lidov and Kozai, we use the
variable of α instead of just a.

Next, using the polar coordinate variables x = e cos g and
y = e sin g, von Zeipel expands R of Eq. (Z75-251) into a
two-variable Taylor series of x2 and y2 as

R = R0,0 + R2.0x2 + R0.2 y2 + · · · . (Z77-254)
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The coefficients R2.0 and R0.2 are expanded into the power
series of α2 as

R2.0 = 3

4
α2 + P4α

4 + P6α
6 + · · · ,

R0.2 = 15

8

(
k2 − 3

5

)
α2 + Q4α

4 + Q6α
6 + · · · ,

(Z78-255)

where P2i and Q2i (i = 2, 3, · · · ) are polynomials of k2,
although von Zeipel did not show their actual forms.

von Zeipel did not show the specific form of the first term
R0.0 in Eq. (Z77-254). But we can calculate it by actually
carrying out the two-variable Taylor expansion. We get:

R0.0 = 1 + 3k2 − 1

8
α2 + · · · . (256)

However, constant terms such as R0.0 do not matter in the
following discussions. This is because von Zeipel’s major
goal was to search for local extremums of R by calculating
its partial derivatives such as ∂ R

∂x or ∂ R
∂y .

Now von Zeipel defines a new quantity k2
0.2 as the root of

the following equation

R0.2 = 0. (257)

When α � 1 (i.e. the quadrupole level approximation), we
know k2

0.2 = 3
5 from Eq. (Z78-255). This number must

already be familiar to the readers. von Zeipel further expands
k2

0.2 into the power series of α2 as

k2
0.2 = 3

5
+ K2α

2 + K4α
4 + · · · , (Z79-258)

where K2, K4, · · · are some numerical coefficients whose
actual form von Zeipel did not show. k2

0.2 later plays a fun-
damental role in locating the local extremums of R.

5.6.2 Search for local extremums In the rest of Sec-
tion Z16, von Zeipel tries to find local extremums of R on the
(x, y) = (e cos g, e sin g) plane by assuming α � 1. This
means that he assumes k2

0.2 = 3
5 . His general approach here

is divided into two stages:

1) He first locates local extremums of R by calculating its
first derivatives, such as ∂ R

∂x .

2) He then determines whether the discovered local ex-
tremum is a local minimum, a local maximum, or a
saddle point by inspecting the sign of the second deriva-
tives of R such as ∂2 R

∂x2 .

As we see in what follows, von Zeipel’s search areas for the
local extremums are the origin (x, y) = (0, 0), the outer
boundary x2 + y2 = k ′2, and the y-axis.

At the origin von Zeipel first considers the behavior of R
at the origin, (x, y) = (0, 0). His conclusion is as follows:

• The origin is a local minimum of R when k2 > k2
0.2.

• The origin is a saddle point of R when k2 < k2
0.2.

von Zeipel confirms this as follows. At the origin, from Eqs.
(Z77-254) and (Z78-255) we have

∂ R

∂x
= ∂ R

∂y
= 0. (259)

Also, we have

∂2 R

∂x2
= 2R2.0 ∼ 3

2
α2, (260)

∂2 R

∂y2
= 2R0.2 ∼ 15

4

(
k2 − 3

5

)
α2, (261)

at (x, y) = (0, 0) when α � 1. The relationships (260)
and (261) hold true at the origin because the higher-order
expansion terms appearing in the Taylor series (Z77-254) all
vanish in the second derivatives, just leaving the terms of
2R2.0 and 2R0.2 as in Eqs. (260) and (261).

Now from Eqs. (260) and (261), when k2 > k2
0.2 we have

∂2 R

∂x2
> 0,

∂2 R

∂y2
> 0. (262)

This indicates that R has a local minimum at the origin. It is
obvious from Eq. (260) that ∂2 R

∂x2 > 0 is true regardless of the
value of k2 in this approximation.

On the other hand when k2 < k2
0.2, from Eqs. (260) and

(261) we have at (x, y) = (0, 0)

∂2 R

∂x2
> 0,

∂2 R

∂y2
< 0. (263)

From Eqs. (262) and (263) we know that R has a saddle
point (“minimax” in von Zeipel’s terminology) at the origin.

At the outer boundary von Zeipel then moves on to a
consideration of R on its outer boundary. As we saw before
(Section 5.5 on p. 47), R has a constant value on the outer
boundary x2 + y2 = k ′2, and it is independent of g on
this circle. By calculating the partial derivative ∂ R

∂(e2)
and

substituting e2 = k ′2 = 1 − k2 into it, on the boundary circle
von Zeipel obtains (p. Z381)

∂ R

∂
(
e2

) ∣∣∣∣∣
e2=k ′2

= α2 ∂ R2

∂
(
e2

) ∣∣∣∣∣
e2=k ′2

+ · · ·

= α2 3

16k2

[
5 − k2 − 5

(
1 − k2

)
cos 2g

] + · · · .

(264)

As long as α is small and the higher-order terms than α2

can be ignored, it is clear that the right-hand side of Eq. (264)
is always positive (with the smallest value of 4k2). Hence, at
the quadrupole level approximation we have

∂ R

∂
(
e2

) ∣∣∣∣∣
e2=k ′2

> 0, (265)

on the outer boundary. Equation (265) indicates that, just
inside the outer boundary, R continues to increase along the
radial direction on the (x, y) = (e cos g, e sin g) plane until
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it reaches e = k ′. In this sense, the outer boundary circle
expressed by x2 + y2 = k ′2 can be regarded as a kind of
local maximum of R.

Note that von Zeipel frequently uses ∂ R
∂(e2)

, instead of ∂ R
∂e ,

for determining whether or not a particular point (or a curve)
of R makes a local extremum. It may seem strange be-
cause the considered phase space is described by the vari-
ables (x, y) = (e cos g, e sin g). But we suspect his use of

∂ R
∂(e2)

is justified for two reasons. First, the function form of

R in Eq. (Z76-252) contains the perturbed body’s eccentric-
ity only in the form of e2. Second, whether we use ∂ R

∂(e2)

or ∂ R
∂e would not matter for the purpose of locating local ex-

tremums of R. This is due to the identity

∂ R

∂e
= 2e

∂ R

∂
(
e2

) . (266)

Therefore, we see that ∂ R
∂(e2)

� 0 always leads to ∂ R
∂e � 0 as

long as e > 0. Thus we find that searching for the locations
where ∂ R

∂e = 0 is realized is equivalent to searching for the
locations where ∂ R

∂(e2)
= 0 is realized.

Along the y-axis Now von Zeipel moves on to the search
for local maxima or minima which may be located some-
where between the origin (x, y) = (0, 0) and the outer
boundary circle

(
x2 + y2 = k ′2). For this purpose, the fol-

lowing equations must be solved in general:

∂ R

∂
(
e2

) = 0,
∂ R

∂g
= 0. (Z80-267)

We should bear in mind that R ∼ R2 as long as α � 1.
It is clear that the differential operation ∂ R2

∂g eliminates the
first term of R2 in Eq. (Z76-252), and just leaves its second
term. The second term of R2 in Eq. (Z76-252) yields a
factor of sin 2g through the operation ∂ R2

∂g , so the roots of the

equation ∂ R
∂g = 0 in Eq. (Z80-267) occur when sin 2g = 0.

This means cos 2g = +1 or cos 2g = −1.
When cos 2g = +1, ∂ R

∂(e2)
becomes (in the second equa-

tion from the top on p. Z382)

∂ R

∂
(
e2

) = α2 ∂ R2

∂
(
e2

) + · · ·

= 3

4
α2 + O

(
α4

)
.

(268)

The quantity in the right-hand side of Eq. (268) is always
greater than zero when α � 1. This indicates that the first
equation of Eq. (Z80-267) does not have any solution. It
means that, along the axis that satisfies cos 2g = +1, R (or
R2) monotonically increases from the origin toward the outer
boundary without any local extremums.

On the other hand when cos 2g = −1, ∂ R
∂(e2)

becomes (in

the third equation on p. Z382)

∂ R

∂
(
e2

) = α2 ∂ R2

∂
(
e2

) + · · ·

= α2

(
−9

8
+ 15

8
k2 1(

1 − e2
)2

)
+ O

(
α4

)
.

(269)

The quantity in the right-hand side of Eq. (269) can be either
positive or negative depending on the value of k2. It leaves
a possibility for local extremums to occur. Then, von Zeipel
expresses the solution of the equation ∂ R

∂(e2)
= 0 as:

e2 = e2
0.2 = 1 −

√
5

3
k2 + c2α

2 + c4α
4 + · · · , (Z81-270)

where c2, c4, · · · are polynomials of k whose function form
he did not show. Equation (Z81-270) means that R can have
a pair of local extremums at the points (x, y) = (0, ±e0.2),
or in other words, at (e, g) = (e0.2, ±π

2 ). In p. Z382 von
Zeipel also introduces the equation

e2
0.2 = 0, (271)

together with a formal solution that satisfies Eq. (271) as

k2 = k0.2
2 = 3

5
+ K ′

2α
2 + K ′

4α
4 + · · · , (272)

where K ′
2, K ′

4 are some numerical coefficients.
Note that in von Zeipel’s original notation (p. Z382),

k0.2
2

in Eq. (272) is denoted as k ′2
0.2. However, k ′2

0.2 is
used later for a different purpose (Eq. (Z100-328) on p.
62 of this monograph). For avoiding the probable confusion
that readers might have, in this monograph we have altered

the notation from k ′2
0.2 to k0.2

2
in Eq. (272). Note also

that von Zeipel did not mention at all what K ′
2, K ′

4, · · · in
Eq. (272) are. Their function forms are not shown either.
We interpret they are some numerical coefficients similar to
those (K2, K4, · · · ) in Eq. (Z79-258).

From Eq. (Z81-270) it is straightforward to understand
that k2 < 3

5 is necessary for e2
0.2 to be positive4, as long as

4Actually, von Zeipel’s original logic behind these equations described
on p. Z382 does not seem quite straightforward. First, his equation

(272) means that, when the value of k2 approaches k0.2
2
, the two solutions

(x, y) = (0, ±e0.2) of the equation ∂ R
∂(e2)

= 0 would both approach the

origin (x, y) = (0, 0). We already learned the behavior of R at the origin
(p. 52). Then on p. Z382, von Zeipel mentions the equivalence of k2

0.2 in

Eq. (Z79-258) and k0.2
2

in Eq. (272). k2
0.2 is the threshold value of k2 that

determines the sign of R0.2 in Eq. (Z78-255), hence it determines the type
of local extremum at the origin (0, 0). The origin would become a local

minimum of R when k2 > k2
0.2. On the other hand, k0.2

2
is the threshold

value of k2 that determines the value of e0.2 in Eq. (Z81-270). e0.2 cannot

exist as a real number if k2 > k0.2
2
, and ∂ R

∂(e2)
would become positive all

along the direction of cos 2g = −1. Therefore the origin would become a

local minimum of R when k2 > k0.2
2
. From this functional compatibility

between k2
0.2 and k0.2

2
, von Zeipel concludes the equivalence

k0.2
2 ≡ k2

0.2, (273)

although his description on p. Z382 is very terse.
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α � 1. When k2 = 3
5 , we have e2

0.2 = 0, and the positions
of the local extremums converge into the origin (0, 0). When
k2 > 3

5 , we have e2
0.2 < 0, and e0.2 cannot be a real number.

Therefore, we find k2 < 3
5 as a condition for local extremums

to show up on the y-axis (but except at the origin). It is also
obvious that the value 3

5 is equivalent to k2
0.2 described in Eq.

(Z79-258) as long as α � 1.
Now von Zeipel starts his examination of the type of the

local extremums at (x, y) = (0, ±e0.2); in other words, at
(e, g) = (e0.2, ±π

2 ). Which type of local extremum would R
take at these points, local minima or maxima?

Type of the local extremum on the y-axis For examining
the characteristics of the points (e, g) = (e0.2, ±π

2 ) as local
extremums of R, von Zeipel focuses on the sign of the second
derivatives of R at cos 2g = −1. They are ∂2 R

∂g2 , ∂2 R
∂e∂g , and ∂2 R

∂e2 .

As for ∂2 R
∂g2 , from Eq. (Z76-252) we have

∂2 R

∂g2

∣∣∣∣
cos 2g=−1

= 15

4
e2 sin2 I, (274)

which is clearly larger than, or equal to, zero.
As for ∂2 R

∂e∂g , it is also clear that

∂2 R

∂e∂g

∣∣∣∣
cos 2g=−1

= 0. (275)

∂2 R
∂e2 is slightly complicated, and von Zeipel’s original de-

scription seems too terse. Let us try to add a complementary
description as to how we should deal with ∂2 R

∂e2 .
von Zeipel shows an identity on p. Z383 as

∂2 R

∂2e
≡ 2

∂ R

∂
(
e2

) + 4e2 ∂2 R

∂
(
e2

)2 . (276)

Adopting Eq. (276) for ∂2 R
∂e2 , we get

∂2 R

∂e2

∣∣∣∣
cos 2g=−1

= 3

4
(
1 − e2

)3

× (
3e6 − 9e4 + 9e2 + 5k2

(
3e2 + 1

) − 3
)
.

(277)

By substituting the eccentricity value (e = e0.2 of Eq.
(Z81-270)) at the considered points into Eq. (277), we get

∂2 R

∂e2

∣∣∣∣
cos 2g=−1,e=e0.2

= 9

5

√
15

k2
− 9. (278)

Equation (278) means that, at cos 2g = −1, ∂2 R
∂e2 mono-

tonically decreases as k2 increases. But it remains positive
while k2 < 3

5 . Here we must remember that, as mentioned
before, k2 < 3

5 is the necessary condition for e2
0.2 to exist as a

positive number (see Eq. (Z81-270)). Therefore in this range
of k2, we have the following:

∂2 R

∂e2

∣∣∣∣
cos 2g=−1,e=e0.2

> 0. (279)

In summary, the three second derivatives (274), (275),
and (279) indicate that R takes local minima on the (x, y)

plane when cos 2g = −1. Their coordinates are (x, y) =
(0, ±e0.2); in other words, (e, g) = (e0.2, ±π

2 ).
Taking into account all the results that have been obtained,

von Zeipel states the following proposition:

“That being so, we can state the following propo-
sition as demonstrated:

If α is small and k2
0.2 < k2 < 1, the function R

possesses one minimum value in the domain (Z43),
located at the point e = 0. — Instead, if α being
small, we have 0 < k2 < k2

0,2, then R has a
minimax at the origin and its only minimum value
in the domain (Z43) at the two symmetric points
g = ±π

2 , e = e0.2. — Finally, the constant value
that R takes on the circle e = k ′ is the largest
value in the domain (Z43); and there is no other
maximum value for R in this domain.” (p. Z383)

After these considerations, von Zeipel presents two
schematic plots of equi-R curves on the (e cos g, e sin g)

plane as his Figs. Z6 and Z7 for illustrating the circum-
stances. We transcribed them as our Fig. 13. Through his
figures, it is obvious that the topology of the equi-R con-
tours qualitatively changes across k2 = k2

0.2. Recalling the
fact that k2

0.2 = 3
5 when α � 1, it is evident that von Zeipel’s

schematic plots in Fig. 13 are exactly about what Lidov and
Kozai reached at the quadrupole level approximation. See
Fig. 8 of this monograph for comparison.

Fig. 13. Transcription of von Zeipel’s Figs. Z6 and Z7 on his p. Z384
(Credit: John Wiley and Sons. Reproduced with permission). They rep-
resent schematic trajectories of equi-R contours of the doubly averaged
inner CR3BP on the (e cos g, e sin g) plane. a: von Zeipel’s Fig. Z6,
showing the status when k2

0.2 < k2 < 1. b: von Zeipel’s Fig. Z7, show-
ing the status when 0 < k2 < k2

0.2.

5.6.3 When α is not so small In the subsequent sec-
tions from Z17 to Z21, von Zeipel deals with the doubly av-
eraged inner CR3BP when the semimajor axis ratio α = a

a′ is
not negligibly small. He takes care of this problem through
a kind of numerical method. His discussions in what fol-
lows begin with an examination of the behavior of R at the
origin (x, y) = (0, 0). Then he moves on to a considera-
tion of the dynamical characteristics of several asteroids that
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actually exist in the solar system. After that, he returns to
considering the behavior of R along the y-axis.

At the origin von Zeipel first goes on to consider whether
or not R takes a local minimum at the origin (0, 0), even
when α is not so small. This is the objective of his Section
Z17. For this purpose von Zeipel expands R2.0 and R0.2 us-
ing the Laplace coefficients, in a different way from what he
demonstrated in Eqs. (Z72-247), (Z77-254), and (Z78-255).
This is because von Zeipel thought the series expansion Eq.
(Z72-247) converges too slowly when α is not small. Nowa-
days, this is rather a famous fact in the context of compari-
son between expansions of the disturbing function using the
Legendre polynomials and that using the Laplace coefficient
(e.g. Farago and Laskar, 2010). The advantage of the former
expansion is that there is no restriction in the value range
of eccentricity in the secular form of the disturbing function,
whereas the latter requires truncation at some order of eccen-
tricity. As a result, von Zeipel’s expansions of R2.0 and R0.2

in this section seem limited to O
(
e2

)
. We do not get into the

detail of the elaborate formulations that von Zeipel devel-
ops in Section Z17, and we confine ourselves to introducing
only the major formulas that he showed. von Zeipel’s formu-
lations in this section rely largely on the legacy of celestial
mechanics developed in the nineteenth century, in particular,
by Tisserand and Jacobi.

von Zeipel first introduces a set of new coefficients ci,k and
ei,k , and shows how R2.0 and R0.2 are expressed by these. ci,k

and ei,k are defined as follows (pp. Z383–Z384):

[
1 + α2 − 2α (µ cos M + ν cos N )

]− 3
2

= c0.0 + 2c1.0 cos M + 2c0.1 cos N

+ 4c1.1 cos M cos N + · · · , (280)[
1 + α2 − 2α (µ cos M + ν cos N )

]− 5
2

= e0.0 + 2e1.0 cos M + 2e0.1 cos N

+ 4e1.1 cos M cos N + · · · . (281)

where

M = u + θ ′, N = u − θ ′, (282)

µ + ν = 1, µ − ν = k, (283)

and u is eccentric anomaly. Note that ei,k in Eq. (281) is
not directly related to eccentricity e. Note also that µ in Eq.
(283) is not Jupiter’s mass. ν in Eq. (283) is also a newly
defined parameter, and it does not have anything to do with
what showed up in earlier chapters.

Using eccentric anomaly u, von Zeipel obtains an expres-
sion of the doubly averaged disturbing function R as

R = 1

4π2

∫ 2π

0

∫ 2π

0

1

�
dldθ ′

= 1

4π2

∫ 2π

0

∫ 2π

0

1 − e cos u

�
dudθ ′, (Z83-284)

with

�2 = 1 + r2

− 2r
[
cos(w + g) cos θ ′ − sin(w + g) sin θ ′ cos I

]
.

(285)

Note that w is the true anomaly of the perturbed body.
Now von Zeipel puts g = 0 in order to obtain the expres-

sion of R2.0 that showed up in Eq. (Z77-254). We presume
that the substitution of g = 0 into Eq. (Z83-284) is justified,
because R2.0 serves as the amplitude of the x2-component
of R along the x-axis by its definition (Z77-254). Therefore
only R2.0 matters along the x-axis (g = 0, π), and only R0.2

matters along the y-axis
(
g = ±π

2

)
as long as e2 (hence x2

and y2) is small. By putting g = 0, von Zeipel obtains an
expression for � in Eq. (285) as

�2 = 1 + α2(1 − e cos u)2

− 2α
[
µ cos

(
u + θ ′) + ν cos

(
u − θ ′) − e cos θ ′] .

(286)

Then he defines a new variable

�2
0 = 1 + α2 − 2α

[
µ cos

(
u + θ ′) + ν cos

(
u − θ ′)] ,

(287)

and obtains the following expansion

1 − e cos u

�
= 1

�0
+ e

(
−cos u

�0
+ α2 cos u

�3
0

− α cos θ ′

�3
0

)
+e2

(
−3

2

α2 cos2 u

�3
0

+ α cos u cos θ ′

�3
0

+ 3

2

α4 cos2 u

�5
0

−3
α3 cos u cos θ ′

�5
0

+ 3

2

α2 cos2 θ ′

�5
0

)
+ · · · .

(288)

Now, we find that �−3
0 and �−5

0 appearing in Eq. (288) can
be expressed by the coefficients ci,k and ei,k defined in Eqs.
(280) and (281). von Zeipel eventually finds the expanded
form of R2.0 as follows:

R2.0 = − 3

4
α2

(
c0.0 + c1.1

) + 1

2
α

(
c1.0 + c0.1

)
+ 3

4
α2

(
1 + α2

) (
e0.0 + e1.1

)
− 3

2
α3

(
e1.0 + e0.1

)
.

(Z85-289)

A similar procedure is applied to R0.2. Since R0.2 serves
as the amplitude of the y2-component of R along the y-axis
by its definition (Z72-247), we should assume g = π

2 or
g = −π

2 for obtaining the expression of R0.2. By placing
g = π

2 and going through the same procedure, von Zeipel
reaches the following expression for R0.2 as

R0.2 = − 3

4
α2

(
c0.0 − c1.1

) + 3

4
αk

(
c1.0 − c0.1

)
− 1

4
α

(
c1.0 + c0.1

) + 3

4
α4

(
e0.0 − e1.1

)
− 3

2
α3k

(
c1.0 − c0.1

) + 3

4
α2k2

(
c0.0 − c1.1

)
.

(Z87-290)
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Now, he brings up the following recursion formulas be-
tween ci.k and ei.k by citing Jacobi’s Gesammelte Werke, vol.
6, p. 140 (Weierstrass, 1891):

3c0.0 + c1.1

= 3
(
1 + α2

) (
e0.0 − e1.1

) − 6α (µ − ν)
(
e1.0 − e0.1

)
,

(291)

3c0.0 − c1.1

= 3
(
1 + α2

) (
e0.0 + e1.1

) − 6α (µ + ν)
(
e1.0 + e0.1

)
.

(292)

Using Eqs. (291) and (292), von Zeipel simplifies Eqs.
(Z85-289) and (Z87-290) as follows:

R2.0 = −α2c1.1 + 1

2
α

(
c1.0 + c0.1

)
,

R0.2 = α2c1.1 − 1

4
α

(
c1.0 + c0.1

)
+ 3

4
αk

(
c1.0 − c0.1

) − 3

4
α2

(
1 − k2

) (
e0.0 − e1.1

)
.

(Z88-293)

Then von Zeipel expands ci.k and ei.k into a power series of
α assuming |α| < 1 (here he cites Poincaré (1907, p. 111)),
but not in the manner of Eq. (Z72-247) because of its slow
convergence when α is not small. Instead, he introduces new
coefficients bi.k defined as[

1 + α2 − 2α (µ cos M + ν cos N )
]− 1

2

= b0.0 + 2b1.0 cos M + 2b0.1 cos N

+4b1.1 cos M cos N + · · · ,

(294)

and calculates ci.k and ei.k using the recursion formulas pro-
vided by Jacobi (Gesammelte Werke, vol. 6, p. 142) as

ε = α + 1

α
,

c0.0 + c1.1 = ε
(
b0.0 − 3b1.1

) − 2
(
b1.0 + b0.1

)
α

(
ε2 − 4

) ,

c0.0 − c1.1 = ε
(
b0.0 + 3b1.1

) − 2k
(
b1.0 − b0.1

)
α

(
ε2 − 4k2

) ,

c1.0 + c0.1 = 2
(
b0.0 − 3b1.1

) − ε
(
b1.0 + b0.1

)
α

(
ε2 − 4

) ,

c1.0 − c0.1 = 2k
(
b0.0 + 3b1.1

) − ε
(
b1.0 − b0.1

)
α

(
ε2 − 4k2

) ,

e0.0 − e1.1 = ε
(
3c0.0 + c1.1

) + 2k
(
c1.0 − c0.1

)
3α

(
ε2 − 4k2

) .

(Z89-295)

Here von Zeipel obtains the expressions of b0.0, b1.0, b0.1,
b1.1 with the aid of Tisserand (1889, note that von Zeipel
cites pp. 444–447 (Sections 191 and 192 in Chapter XXVIII)
of this book, but no equivalent expression to Eq. (Z90-296)

is found there) as follows:

b0.0 = 1

2
b(0) +

∞∑
m=1

b(2m) Q(2m)

0.0 ,

b0.1 =
∞∑

m=1

b(2m−1) Q(2m−1)

0.1 ,

b1.0 =
∞∑

m=1

b(2m−1) Q(2m−1)

1.0 ,

b1.1 =
∞∑

m=1

b(2m) Q(2m)

1.1 ,

(Z90-296)

where b(i) are (according to von Zeipel) the Laplace coeffi-
cients. The definition of Qi. j are shown later.

Note that what von Zeipel calls the Laplace coefficients
b(i) in Eq. (Z90-296) seems slightly different from what we
now see in modern textbooks (e.g. Brouwer and Clemence,
1961, p. 495) because there is no subscript such as b(i)

s .
From the definition of bi.k in Eq. (294), we suspect that von
Zeipel’s b(i) is equivalent to b(i)

1
2

in modern textbooks: The

Laplace coefficients with the smallest subscript.
Next von Zeipel calculates the function Q(n)

i. j in Eq.
(Z90-296) which depends only on µ and ν. For this pur-
pose he employed the following relationships (Z(c)-297),
(Z(c)-297), (Z(c)-297) originally seen in Tisserand (1889,
Chapter XXVIII, p. 447, p. 452, and p. 456):

2Q(n)
i. j = R(n)

i. j − R(n−2)
i. j , (Z(c)-297)

R(n)
i, j = c(n)

i. j µ
iν j

× F2

(
i + j − n

2
,

i + j + n + 2

2
, j + 1, ν

)
,

(Z(d)-298)

c(n)
i, j =

�
(

n+i+ j
2

)
�

(
n−i+ j

2

)
[�( j)]2 �

(
n+i− j

2

)
�

(
n−i− j

2

) , (Z(e)-299)

where

�(s) = 1 · 2 · 3 · · · s = s!. (300)

Using the formulas (Z88-293), (Z89-295), (Z90-296),
(Z(c)-297), (Z(d)-298), (Z(e)-299), von Zeipel calculates the
actual numerical values of R2.0 and R0.2. He tabulated them
on an unnumbered table on pp. Z389–Z390. The table shows
the values of R2.0 and R0.2 having I0

(= cos−1 k
)

and α as pa-
rameters. The range of I0 is from 0 to 90◦ with an interval
of 10◦, and the range of α (or a in von Zeipel’s notation) is
from 0.4 and 0.9 with an interval of 0.1. Instead of just tran-
scribing the table in this monograph, we make visual plots of
their values in our Fig. 14.

Looking at the upper panel of Fig. 14, it is clear that
R2.0 > 0 is true everywhere in the given parameter range
(0.4 ≤ α ≤ 0.9 and 0 ≤ I0 ≤ π

2 ). von Zeipel also gave a
further guess about R2.0:
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Fig. 14. Dependence of the numerical values of R2.0 (upper) and R0.2
(lower) on I0 = cos−1 k and on α. The plots are based on the values
tabulated on an unnumbered table in von Zeipel (1910, pp. Z389–Z390).

“It is even likely that R2.0 remains > 0, whenever
0 < α ≤ 1.” (p. Z389)

Although von Zeipel placed the above statement here just
as a conjecture without a rigorous proof, it seems that this
conjecture is probably true. Indeed at each of the I0 val-
ues, R2.0 monotonically increases as α increases over the en-
tire range of I0. It is unlikely that R2.0 becomes negative
when α gets larger than 0.9. On the other hand when α be-
comes smaller than 0.4, the quadrupole level approximation(
α2 � 1

)
would be applicable, and R2.0 would remain posi-

tive according to Eq. (Z78-255).
In contrast to R2.0, R0.2 takes both positive and negative

values (see the lower panel of Fig. 14). Let us cite von
Zeipel’s description about the behavior of R0.2:

“It also appears that the equation R0.2 = 0 defines
a function k2

0.2 of a, increases with a (at least as
a ≤ 0.9) and takes the value k2

0.2 = + 3
5 for a = 0,

and probably the value k2
0.2 = +1 for a = 1. We

finally have R0.2 > 0 when k2
0.2 < k2 < 1, and

R0.2 < 0 when 0 < k2 < k2
0.2.” (p. Z389)

By interpolating the numerical values of R0.2, von Zeipel
calculated the values of I0.2 = cos−1 k0.2 that realize R0.2 =

Fig. 15. Dependence of von Zeipel’s I0.2 and Kozai’s i0 on α. Red open
circles denote the values of I0.2 = cos−1 k0.2 tabulated in von Zeipel
(1910, p. Z399). Black lines with + denote the numerically calculated
values of i0 in Kozai (1962, his Table I, the third column. It is transcribed
in our Table 1 on p. 15 of this monograph).

0 at each α. He tabulated them in an unnumbered table on
p. Z389. Here, we should recall the fact that the origin
(x, y) = (ξ, η) = (0, 0) changes its characteristics as a local
extremum of R according to the sign of R0.2. This is obvious
from the definition of R2.0 and R0.2 in Eqs. (Z77-254) and
(Z78-255). From the development form in Eq. (Z77-254)
this fact should remain true even when α is not so small. He
then states a theorem as follows:

“The function k0.2 being thus defined, we can state
the following theorem:

At the origin ξ = η = 0, the function R has a
minimum if k2

0.2 < k2 < 1, and a saddle point if
0 < k2 < k2

0.2.” (p. Z390)

In order to visually confirm von Zeipel’s result in com-
parison with modern knowledge, in Fig. 15 we plotted the
values of I0.2 that he tabulated as a function of α. For com-
parison, in Fig. 15 we also plotted Kozai’s limiting inclina-
tion i0 calculated through his numerical harmonic analysis
(see the third column of Kozai’s Table I in p. K592, as well
as Kozai’s Fig. 1 in p. K593. See also our Table 1 on p. 15 of
this monograph). As we have learned, both von Zeipel’s I0.2

and Kozai’s i0 represent the threshold value of the perturbed
body’s inclination whether or not the origin (0, 0) makes a
saddle point. The comparison seen in Fig. 15 evidently tells
us that von Zeipel’s I0.2 almost exactly matches Kozai’s i0

up to α = 0.9. This fact proves very well the correctness
of von Zeipel’s theory and the calculation for the existence
of local extremums in R even when α is not small. Hence,
the above theorem that von Zeipel states turns out not only
qualitatively true but also quantitatively accurate.

Right after stating the above theorem, by recalling the re-
sult presented in his Section Z11 where he described the
characteristics of the origin (x, y) = (0, 0) as a local ex-
tremum of R (see our Section 5.4, in particular p. 46), von
Zeipel states yet another theorem:
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“By comparing this result to that of no. Z11, we
can obviously express the theorem in question in
the following way:

Suppose that the eccentricity of the orbit of
an infinitely small mass located at the interior of
the perturbing planet is small at a given moment;
for this eccentricity to be always be small, it is
necessary and sufficient that I < I0.2.

In this statement we have neglected the perturb-
ing mass and the square of the eccentricity.” (p.
Z390)

Note that “no. Z11” in the above citation denotes von
Zeipel’s Section Z11. We added the prefix Z for clarity.
Similar expressions (such as “no. Z7” or “no. Z16”) appear
several times in the remaining part of this monograph when
we cite von Zeipel’s original descriptions.

Having von Zeipel’s previous theorem (p. 57) in mind,
it is now obvious that his above theorem is true too. When
I > I0.2, the origin (x, y) = (0, 0) becomes a saddle point,
and the perturbed body cannot always stay near the origin
with a small eccentricity. The origin (0, 0) becomes a local
minimum only when I < I0.2, and the perturbed body can
always stay near the origin with a small eccentricity if its
initial eccentricity is small. The two circumstances were
already depicted in von Zeipel’s schematic illustration that
we transcribed before (Fig. 13 of this monograph).

Actual asteroids in the solar system In Section Z18 von
Zeipel tries to evaluate how large an asteroid’s eccentricity
can increase when its inclination I exceeds I0.2. Although
we do not go into the contents of Section Z18 in this mono-
graph, readers with an interest might want to compare his
discussion with modern analytic studies on a similar topic
such as Kinoshita and Nakai (2007, their Eq. (31) on p. 71)
and Antognini (2015, his Eqs. (28)–(30) on p. 3613). After
that, in Section Z19 von Zeipel picks several asteroids that
were actually recognized by his time from an ephemeris. He
considers them as candidate objects that may have a large
secular oscillation of eccentricity due to their large inclina-
tion. In what follows, we present a brief summary of the
contents of his Section Z19.

As von Zeipel wrote (p. Z392), orbital elements of 665
asteroids are listed in Berliner Astronomisches Jahrbuch für
1911 (pp. (2)–(35)). Among them, he found that only six
asteroids have I0 that is larger than their I0.2. They are
(2) Pallas, (183) Istria, (473) Nolli, (531) Zerlina, (582)
Olympia, and (594) Mireille. He points out a possibility that
these asteroids have a secular variation of eccentricity with a
large amplitude. Citing his words:

”Among the asteroids, in the number of 665,
whose elements are in the Berliner Jahrbuch for
the year 1911, there are only six whose quantity

I0 = arccos
(√

1 − e2 cos I
)

exceeds the limit I0.2. Here are the planets in ques-
tion

(2), (183), (473), (531), (582), (594).

We thus have

I0 = 38◦.0 I0.2 = 32◦.3 for (594)

I0 = 36.7 I0.2 = 31.5 for (2)

while for the other four planets, the difference I0 −
I0.2 is less considerable.

For the two planets (594) and (2), the ampli-
tude of the secular perturbations of the eccentricity
must be considerable.” (p. Z392)

For demonstrating and confirming von Zeipel’s prediction,
we carried out a set of direct numerical integration of the
orbit propagation of these six asteroids in the framework of
CR3BP. Our numerical integration started from their orbital
elements that had been published in Berliner Astronomisches
Jahrbuch für 1911. We placed Jupiter on a circular orbit as
the perturber. The numerical integration scheme, stepsize,
and data output interval are all common to what was used to
draw Fig. 8 (see p. 24 of this monograph for details). The
total integration period is one million years, and the result is
shown as Fig. 16. We summarized the parameters k2, α, and
c2 for the six asteroids in Table 2. In this table, α = a

a′ is the
semimajor axes ratio between the asteroid and Jupiter. c2 is
what Lidov devised in Eq. (153).

As seen in Fig. 16, we can say that von Zeipel’s prediction
“the amplitude of the secular perturbations of the eccentric-
ity must be considerable” turns out to be largely correct, not
only for (2) Pallas and (594) Mireille but also for the other
four asteroids. Although the k2 values are larger than the
critical value

(
k2

0.2 = 3
5

)
of the quadrupole level approxima-

tion (see Table 2) for all the six asteroids, it seems that most
of the asteroids probably possess stationary points on their
disturbing potential along the axis of g = ±π

2 . This is be-
cause these asteroids have non-negligible α values, and we
cannot simply apply the thresholds that are valid only at the
quadrupole level approximation.

Incidentally, let us note that among the six asteroids that
von Zeipel picked, two of them (Pallas and Zerlina) are
now categorized in the Pallas family (e.g. Nesvorný, 2015).
Mireille may be one of the Pallas family members too (e.g.
Kozai, 1979, his Fig. 1). We believe that this is the reason
why their orbital elements are close to each other.

von Zeipel also briefly mentions the status of “the comet
Tempel” in this section as follows:

“Regarding the periodic comets, it must be men-
tioned that the quantity I0 − I0.2 is generally > 0.
It is only the comet Tempel that is [an] exception.
We have, in fact, for this comet

I0 = 25◦.9 I0.2 = 26◦.9.

” (p. Z392)

However currently, neither of the comets named “Tempel”
has that large inclination: 9P/Tempel 1 has I ∼ 10◦.5, and
10P/Tempel 2 has I ∼ 12◦.0 (from the JPL Small-Body
Database Search Engine). Therefore we do not go into the
above statement any further.
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Fig. 16. Numerically obtained trajectories of the six actual asteroids on the
(e cos g, e sin g) plane having Jupiter on a circular orbit as the perturber.
Upper, from the left: (2) Pallas, (183) Istria, (473) Nolli. Lower, from the
left: (531) Zerlina, (582) Olympia, (594) Mireille.

Table 2. Parameters k2, α, c2 of the six asteroids that von Zeipel chose as
examples in Section Z19. We calculated these values from the published
orbital elements on Berliner Astronomisches Jahrbuch für 1911.

name k2 α c2

(2) Pallas 0.6371525 0.532757 0.0116807

(183) Istria 0.7039341 0.536969 0.0250717

(473) Nolli 0.7316754 0.572902 0.0161331

(531) Zerlina 0.6540550 0.538855 0.0068172

(582) Olympia 0.7123067 0.503593 0.0126522

(594) Mireille 0.6207999 0.505205 0.0151757

Along the y-axis Back to the search for local extremums
of R, in Section Z20 von Zeipel focuses on demonstrating
that R possesses local minima at the two symmetric points
(x, y) = (0, ±e0.2), even when α is not small. In this section,
von Zeipel assumes k2 is small. He does not give general
demonstrations for arbitrary values of k2, writing as follows
at the beginning of this section:

“We have demonstrated at no. Z16 that the func-
tion R possesses minimum values at the two sym-
metric points

x = 0, y = ±e0.2

if a is small and if

R0.2 < 0. (Z92-301)

These minima, do they exist for any values of a
when the inequality (Z92) is satisfied?
I did not succeed in demonstrating it generally.
But I will now show that, [for] a having any values,
these minima on the axis of y exist, if k2 is small
enough.” (pp. Z392–Z393)

von Zeipel’s mathematical demonstration presented in
Section Z20 is rather brief and concise compared with those
in other sections with extreme details. Formulas presented in
Section Z20 show up mostly in their final form, and a large

part of their derivations is omitted. In some part of what fol-
lows we try to complement what von Zeipel presented in this
section. This is for facilitating the reader’s understanding of
his original intention.

Section Z20 starts from the expression of the doubly av-
eraged disturbing function R using a single integral, rather
than a double integral such as Eq. (Z44-225). von Zeipel
already carried out a discussion on the characteristics of R
expressed as a single integral as Eq. (Z51-241) in Section
Z14, Chapter III (p. 49 of this monograph). Now, changing
the integration variable in Eq. (Z51-241) from true anomaly
w to eccentric anomaly u, he formally expresses R as

R = 1

2πa

∫ 2π

0

r√
1 + r2

F(τ )du. (Z93-302)

Let us bear in mind that we are now searching local min-
ima along the axis where cos 2g = −1 is satisfied. Substi-
tuting g = ±π

2 into Eq. (Z48-237), von Zeipel obtains an
expression of τ (at g = ±π

2 ) as follows

τ 2 = 4r2(
1 + r2

)2

(
sin2 w + cos2 I cos2 w

)
= 4a2(

1 + r2
)2

[(
1 − e2

)
sin2 u + k2

1 − e2
(cos u − e)2

]
.

(303)

Note that in Eqs. (Z93-302) and (303) we use a instead of α

due to the same formal reason as we stated on p. 49.
Here, von Zeipel assumes that k is a small quantity of

the first-order. Then he introduces a finite, non-zero, non-
dimensional variable ρ as follows:

1 − e2 = ρk, (304)

which is equivalent to

e =
√

1 − ρk. (305)

Now von Zeipel states that τ 2 at g = ±π
2 in Eq. (303)

is a small quantity of the first-order. This is true because k2

is a small quantity of the second-order from his assumption
here, and 1 − e2 is a small quantity of the first-order due to
Eq. (304). Then, using Eq. (305) von Zeipel expands τ 2 at
g = ±π

2 into the series of k as follows (p. Z393):

τ 2 = 4α2�2

[
ρ sin2 u + (cos u − 1)2

ρ

]
k + · · · , (306)

where � is a function of u defined as

� = 1

1 + α2(1 − cos u)2
. (307)

Note that in Eqs. (306) and (307) we use α instead of a
for formal consistency, as � seems non-dimensional in von
Zeipel’s discussion in Section Z20.

Adopting Eqs. (306) and (307) to Eq. (Z93-302), von
Zeipel shows an expanded form of R in the series of k at
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g = ±π
2 as follows:

R = R0 +
(

Pρ + Q
1

ρ

)
k + · · · , (308)

where

R0 = 1

2π

∫ 2π

0
�

1
2 (1 − cos u) du, (309)

P = 1

4π

∫ 2π

0
�

3
2 cos udu

+ 3α2

8π

∫ 2π

0
�

5
2 sin2 u (1 − cos u) du,

(310)

Q = 3α2

8π

∫ 2π

0
�

5
2 (1 − cos u)3 du. (311)

At this point, von Zeipel claims that P defined in Eq.
(310) and Q defined in Eq. (311) are both positive. Let us
cite what von Zeipel wrote:

“Q is a positive quantity. In the expression of
P , the second term is obviously positive. The
first term is also positive because the quantity �

decreases with cos u. We therefore have P > 0,
Q > 0.” (p. Z394)

The fact that both P and Q are positive turns out to be
important later. But we think that his above statement “We
therefore have P > 0, Q > 0” needs more confirmation and
clarification. For this purpose, we have made a little more
exposition and put it in Appendix A.

Now, von Zeipel moves on to a consideration of a solution
of the following equation

∂ R

∂e

∣∣∣∣
g=± π

2

= 0. (312)

Using the relationship (304) between e and ρ together with
the expression of R in Eq. (308), he deforms the equation
(312) as (p. Z394):

−2

(
P − Q

ρ2

)
+ A1k + A2k2 + · · · = 0, (313)

where A1, A2, · · · are polynomials of ρ or ρ−1 whose actual
form he did not show. Right after stating Eq. (313), von
Zeipel tries to obtain the solution of Eq. (312). He writes:

“It [Eq. (313)] has a positive root developed in
powers of k, and being reduced to

√
Q : P , when

k = 0.
As a result, the equations

∂ R

∂e
= 0,

∂ R

∂g
= 0

are satisfied by putting

g = ±π

2
,

e = e0.2

= 1 − 1

2

√
Q

P
· k + E2k2 + E3k3 + · · · .

(Z94-314)

The semi-major axis a being fixed arbitrar-
ily, the series giving e0.2 converges if k is small
enough.” (p. Z394)

Here we see that the solution of Eq. (313), ρ = √
Q : P(= √

Q/P
)
, can exist as a real number owing to the fact that

both P and Q are positive, as previously shown. Note that
the second equation in (Z94-314) is a Taylor-series expan-
sion of the eccentricity e by k using the relationship (305).
See its similarity to, and difference from, Eq. (Z81-270) in
the α � 1 approximation. Note also that E2, E3, · · · in Eq.
(Z94-314) must be polynomials of P and Q, although von
Zeipel does not mention anything about them.

Now, von Zeipel moves on to a calculation of the second
derivatives of R at the points (e, g) = (e0.2, ±π

2 ), and tries
to show that these points are local minima of R when k is
small. From the definition of ρ in Eq. (304), at these points
(where ρ = √

Q/P) he obtains a relation (p. Z394):

∂2 R

∂e2
= −2

k

∂ R

∂ρ
+ 4e2

k2

∂2 R

∂ρ2

= 4

k

2Q

ρ3
+ · · ·

= 8P

k

√
P

Q
+ · · · > 0.

(315)

Note that in the second line of Eq. (315), the first term is at
the order of O

(
k−1

)
, and the remaining terms (specifically

writing, − 6Q
ρ2 − 2P + · · · ) are at the order of O

(
k0

)
.

von Zeipel also claims that (p. Z394)

∂2 R

∂e∂g
= 0, (316)

which is true from the general definition of R in Eq.
(Z72-247) when g = ±π

2 .
Then from Eqs. (Z48-237) and (Z93-302), he calculates

the following quantity at g = ±π
2 (pp. Z393–Z394):

∂2 R

∂g2
= 1

2π

∫ 2π

0

r

a

1√
1 + r2

8 sin2 I(
1 + r2

)2

×
(

∂ F

∂
(
τ 2

) r2 − 2
∂ F

∂
(
τ 2

) r2 sin2 w

+ ∂2 F

∂
(
τ 2

)
2

8 sin2 I(
1 + r2

)2 r2 sin2 w · r2 cos2 w

)
du.

(317)
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Note that the dimension of τ 2 is that of r−2 from Eq. (303).
This guarantees the consistency of the dimensions of the left-
and right-hand sides of Eq. (317)

Next, von Zeipel expands ∂2 R
∂g2 into a power series of k

by applying the following relationship between eccentric
anomaly and true anomaly to Eq. (317):

r2 sin2 w = a2
(
1 − e2

)
sin2 u, (318)

r2 cos2 w = a2 (cos u − e)2 . (319)

Note that in Eqs. (317), (318) and (319), we use a instead of
α due to the same formal reason as mentioned before (see p.
49 and p. 59 of this monograph).

Among the expanded terms, von Zeipel picks only those
that are independent of k. He eventually shows an inequality

∂2 R

∂g2
= 2Q + · · · > 0. (320)

The signs of the second derivatives of R presented as
Eqs. (315), (316), and (320) tell us that the points (e, g) =
(e0.2, ±π

2 ) are local minima of R for arbitrary values of α as
long as k is small. Here von Zeipel makes a statement on
the equivalence of the expansion of e0.2 in Eq. (Z94-314) to
that in Eq. (Z81-270) when α is small, although no rigorous
demonstration is given:

“For small values of α, the quantity e0.2 of the for-
mula (Z94) can obviously be expanded in powers
of α2. The development thus obtained coincides
with that given by the equation (Z81). Indeed, we
have seen in no. Z16, that such formula (Z81)
gives all the minima of the function R when α and
k are small.” (p. Z395)

As we learned in von Zeipel’s Chapters II and III, the
existence of a local minimum on the equi-potential sur-
face indicates a possibility to construct the Lindstedt series
around it. von Zeipel mentions the characteristics of the per-
turbed body’s orbit around the local minimum at (e, g) =
(e0.2, ±π

2 ). We literary cite his words:

“We can apply the results of this issue by calcu-
lating, according to no. Z10, the Lindstedt series,
which exists when the elements are in the vicin-
ity of the points (Z94). The corresponding orbits
belong to a certain class of comets in a stable mo-
tion. In these orbits, the semimajor axis is arbi-
trary; the eccentricity is close to unity; the distance
from the perihelion to the node is close to ±π

2 ; the
inclination is considerable; Finally, the parameter
a

(
1 − e2

)
is small, so that the two nodes are lo-

cated inside the orbit of Jupiter.” (p. Z395)

Note that in the above, “the parameter a
(
1 − e2

)
” denotes

the semilatus rectum � of the perturbed body. von Zeipel’s
above statement depicts the dynamical characteristics of “a
certain class of comets in a stable motion” trapped around
one of the stationary points, (e, g) = (e0.2, ±π

2 ).
The next section (Z21) is devoted to describing the dy-

namical characteristics of an example object that has such an

orbit described above: The comet 1P/Halley whose a ∼ 18
au and � ∼ 1.15 au (these values are due to von Zeipel).
However, we do not go into this subject right now. In-
stead, we will return to it later again (Section 5.8.1 on p.
77 of this monograph) after we have reviewed the case when
α > 1 (Sections Z22–Z23) and the case when the orbits of
the perturbed and perturbing bodies intersect (Sections Z24–
Z25). This is mainly because 1P/Halley satisfies the con-
dition α > 1 with respect to the most massive perturbing
planet, Jupiter. In this regard, we wonder why von Zeipel
brought up the subject on the motion of 1P/Halley in a sec-
tion that discusses the inner CR3BP where α < 1.

5.7 Secular disturbing function: Outer case
One of the biggest differences between von Zeipel’s work

and those of Lidov or Kozai is that, von Zeipel dealt with
the so-called outer version of the doubly averaged CR3BP
in his 1910 publication. We would dare to say that detailed
studies of the outer CR3BP did not seriously begin until the
1990s when the actual “outer” objects were recognized in the
solar system, such as the transneptunian objects (TNOs) per-
turbed by Neptune (e.g. Jewitt and Luu, 1993; Jewitt, 1999;
Thomas and Morbidelli, 1996; Lykawka, 2012). Therefore
the relevant publications are much fewer than those on the
inner CR3BP. In his Sections Z22 and Z23, von Zeipel fo-
cuses on describing the basic theoretical framework of the
doubly averaged outer CR3BP with particular emphasis on
the search for local extremums of the secular disturbing func-
tion. Calculations for locating local extremums of the doubly
averaged disturbing function for the outer CR3BP is substan-
tially more complicated than those for the inner CR3BP, as
we will see in what follows.

5.7.1 Expansion of R by α′ Similar to the inner prob-
lem that we described in Section 5.6 (p. 50 of this mono-
graph), von Zeipel’s treatment of the doubly averaged outer
CR3BP begins with an expansion of the disturbing function
with respect to the ratio of semimajor axis of the perturbed
and perturbing bodies. Now the variable for the expansion is
α′ = a′

a , which is smaller than 1.
As for the expansion using α′, von Zeipel again follows

what Tisserand (1889) did with the Hansen coefficients. The
resulting expansion form is as follows:

R =
∞∑

m=1

(
A(2m)

0.0 X−(2m+1),0
0

+ 2
m∑

i=1

A(2m)
i.i X−(2m+1),2i

0 cos 2ig
)
α′2m+1

,

(Z96-321)

where

X−(2m+1),2i
0

= (2m − 1)!

(2m − 2i − 1)!(2i)!

(
e2

4

)i (
1 − e2

)−2m+ 1
2

× F

(
i − m + 1, i − m + 1

2
, 2i + 1, e2

)
,

(Z95-322)
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are the Hansen coefficients. k(2m)
i, j and A(2m)

i, j are already
defined in Eqs. (Z73-250) and (Z74-249).

Then von Zeipel rewrites the expansion of R in Eq.
(Z96-321) as follows:

R = R′
3α

′3 + R′
5α

′5 + · · · , (Z97-323)

where

R′
3 = A(2)

0.0 X−3,0
0

= 1

4

(
1 − 3

2
sin2 I

) (
1 − e2

)−2+ 1
2 ,

R′
5 = A(4)

0.0 X−5,0
0 + 2A(4)

1.1 X−5,2
0 cos 2g

= 9

64

[(
1 − 5 sin2 I + 35

8
sin4 I

) (
1 + 3

2
e2

)
+15

4
sin2 I

(
1 − 7

6
sin2 I

)
e2 cos 2g

] (
1 − e2

)−4+ 1
2 .

(Z98-324)

In Eqs. (Z97-323) and (Z98-324), we should notice that
R’s leading term (R′

3) does not depend on g. The g-
dependence of R first shows up in the next order term (R′

5).
This is a stark difference from the inner problem, and it
makes the secular perturbation in the outer CR3BP subtler
than in the inner problem (e.g. Ito, 2016). Note also that
in the expression of R in Eq. (Z97-323), the lowest-order
term is of the order of O

(
α′3), not O

(
α′2). Compare Eq.

(Z97-323) with the corresponding expansions in the inner
problem (Eq. (Z75-251)) where the lowest-order term is at
the order of O

(
α2

)
except for a constant. This is another fac-

tor that makes the secular perturbation in the outer CR3BP
weaker than in the inner problem.

In von Zeipel’s original paper, he uses a′ instead of α′ = a′
a

throughout the discussion on the outer problem. He poses an
unnumbered equation on p. Z397 as

a′ = 1

a
. (325)

The numerator (1) in Eq. (325) denotes the value of the
semimajor axis of the perturber (Jupiter). Hence, his original
form of Eq. (Z97-323) is as follows:

R = R′
3a′3 + R′

5a′5 + · · · . (326)

However, we think that the use of a′ defined by Eq. (325)
is very confusing for the readers of this monograph, because
we have basically used a′ as the semimajor axis of the per-
turbing body. For avoiding the confusion, and maintaining
compatibility with the descriptions in the previous sections,
in what follows we use the variable α′ instead of von Zeipel’s
a′. We also need to be aware that in Eq. (326) (therefore
in Eq. (Z97-323)) von Zeipel uses the notation R for the
doubly averaged disturbing function without adding a super-
script dash. Only its expanded components on the right-hand
side

(
R′

3, R′
5, · · ·

)
have a superscript dash.

Similar to the discussion on the inner problem (see p. 62),
von Zeipel next expands R of Eq. (Z97-323) into a two-
variable Taylor series using the variables x2 = e2 cos2 g and

y2 = e2 sin2 g as follows:

R = R′
0.0 + R′

2.0x2 + R′
0.2 y2 + · · · . (Z99-327)

The coefficients R′
2.0 and R′

0.2 themselves are expanded into
a power series of α′ as

R′
2.0 = − 3

16

(
1 − 5k2

)
α′3

+ 45

256

(
1 − 14k2 + 21k4

)
α′5 + P ′

7α
′7 + · · · ,

R′
0.2 = − 3

16

(
1 − 5k2

)
α′3

+ 45

256

(
2 − 22k2 + 28k4

)
α′5 + Q′

7α
′7 + · · · ,

(Z100-328)

where P ′
2i+1 and Q′

2i+1 are certain polynomials in k2, al-
though von Zeipel did not give their actual forms.

von Zeipel did not show the specific form of the first term
in Eq. (Z99-327), R′

0.0. But we can calculate it by carrying
out the two-variable Taylor expansion. The result is:

R′
0.0 = −1 − 3k2

8
α′3 + 27 − 270k2 + 315k4

512
α′5 + · · · .

(329)

However, similar to the inner case (Eq. (256) on p. 52),
constant terms such as R′

0.0 do not matter in the following
discussions. This is because von Zeipel’s major concern was
to search for local extremums of R by calculating its partial
derivatives. Constant terms such as R′

0.0 in the disturbing
function will be all gone by the differentiation.

5.7.2 Search of local extremums In the rest of Sec-
tion Z22, von Zeipel tries to locate local extremums of R in
Eq. (Z99-327). The logical structure of this part is the same
as in Section Z16 (see p. 52 of this monograph). He picks
several possible regions where R can take local extremums:
At the origin, on the outer boundary, and along the y- and x-
axis on the (x, y) = (e cos g, e sin g) plane. Then he moves
on to checking out the type of the local extremums that he
discovered in these regions. Following von Zeipel, in this
subsection we assume α′ � 1,

Similar to the discussion on the inner problem, von Zeipel
begins with obtaining the solution of the pair of equations

R′
2.0 = 0, (330)

R′
0.2 = 0. (331)

In the inner problem where we have Eqs. (Z78-255) and
(257), we learned that only R0.2 can be zero, but R2.0 cannot.
On the other hand in the outer case, we will see that both
R′

2.0 and R′
0.2 can be zero. This fact makes the outer problem

more complicated than the inner problem.
von Zeipel denotes the root of Eq. (330) as k ′2

2.0, and the
root of Eq. (331) as k ′2

0.2. Then, using Eq. (Z100-328) he
expands k ′2

2.0 and k ′2
0.2 up to O

(
α′2) as

k ′2
2.0 = 1

5
+ 9

50
α′2 + · · · ,

k ′2
0.2 = 1

5
+ 12

50
α′2 + · · · .

(Z101-332)
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It is obvious that both k ′2
2.0 and k ′2

0.2 would approach 1
5 in the

limit of α′ → 0. Also, we see that

k ′2
2.0 < k ′2

0.2, (333)

although the difference is not large when α′ is small.

At the origin The equations (Z99-327), (Z100-328), and
(Z101-332) tell us the following fact as long as α′2 � 1:

R′
2.0 ≶ 0 ⇐⇒ k2 ≶ k ′2

2.0, (334)

R′
0.2 ≶ 0 ⇐⇒ k2 ≶ k ′2

0.2. (335)

Combining the facts of (334), (335), and (333), von Zeipel
claims that the doubly averaged disturbing function R in
Eq. (Z99-327) has a local extremum around the origin
(x, y) = (0, 0). He also mentions that the origin (0, 0) has
the following characteristics as long as α′ � 1 (p. Z399):

• (0, 0) is a local minimum when k ′2
0.2 < k2 < 1,

• (0, 0) is a saddle point when k ′2
2.0 < k2 < k ′2

0.2,

• (0, 0) is a local maximum when 0 ≤ k2 < k ′2
2.0.

We can accept these conclusions without any doubt because
of the expansion form shown in Eq. (Z99-327).

At the outer boundary von Zeipel then moves on to a
consideration of R on its outer boundary, e = k ′. In the inner
problem, the boundary circle is a kind of a local maximum of
R (see p. 52). Similarly, by calculating the partial derivative
∂ R

∂(e2)
and substituting e2 = k ′2 = 1 − k2 into it, on the

boundary circle he obtains for the outer case (p. Z399)

∂ R

∂
(
e2

) ∣∣∣∣∣
e2=k ′2

= ∂ R′
3

∂
(
e2

) ∣∣∣∣∣
e2=k ′2

α′3 + · · ·

= 3

4

(
k2

)− 5
2 α′3 + · · · > 0. (336)

As long as α′ is so small that we can ignore the higher-
order terms of α′, the right-hand side of Eq. (336) is always
positive. Hence ∂ R

∂(e2)
> 0 is true on the outer boundary. This

indicates that, just inside the outer boundary, R continues
to increase along the radial direction on the (e cos g, e sin g)

plane until it reaches e = k ′. In this sense, the outer boundary
x2 + y2 = k ′2 can be regarded as a kind of local maximum
of R, similar to the inner case.

Along the y-axis and x-axis Next, von Zeipel moves on
to search for R’s local extremums that may be located some-
where between the origin (x, y) = (0, 0) and the outer
boundary

(
x2 + y2 = k ′2). Similar to the discussion on the

inner case (see p. 53), it is necessary to find solutions that
satisfy both of the following equations

∂ R

∂
(
e2

) = 0,
∂ R

∂g
= 0, (Z102-337)

which is exactly the same as Eq. (Z80-267).

It is obvious that the operation ∂ R
∂g eliminates the entire R′

3

and the first term of R′
5 in Eq. (Z98-324), and just leaves the

second term of R′
5. The second term of R′

5 in Eq. (Z98-324)
yields a factor of sin 2g through the operation ∂ R

∂g , so the

roots of the equation ∂ R
∂g = 0 in Eq. (Z102-337) take place

when sin 2g = 0. This means cos 2g = +1 or −1.
From the function form of R in Eqs. (Z96-321) and

(Z98-324), ∂ R
∂(e2)

becomes as follows when cos 2g = +1:

∂ R

∂
(
e2

) = α′3 3

16

(
1 − e2

)− 7
2
(−1 + 5k2 + e2

)
− α′5 45

(
1 − e2

)− 13
2

2048

(−8 + 112k2 − 168k4 + 17e2

−98e2k2 − 63e2k4 − 10e4 − 14e4k2 + e6
)
. (338)

When cos 2g = −1, ∂ R
∂(e2)

becomes as:

∂ R

∂
(
e2

) = α′3 3

16

(
1 − e2

)− 7
2
(−1 + 5k2 + e2

)
+ α′5 45

(
1 − e2

)− 13
2

2048

(
16 − 176k2 + 224k4 − 13e2

−62e2k2 + 315e2k4 − 22e4 + 238e4k2 + 19e6
)
.

(339)

Note that von Zeipel’s original equation (an unnumbered
one on p. Z399) that corresponds to Eqs. (338) and (339)
is truncated at the order of α′3. Only the first terms in the
right-hand side of Eqs. (338) and (339) are presented as:

∂ R

∂
(
e2

) = a′3 ∂ R′
3

∂
(
e2

) + · · ·

= a′3 3

16

(
1 − e2

)− 7
2
(−1 + 5k2 + e2

) + · · · .

(340)

Note also that we have ourselves calculated and added
the terms of O

(
α′5) to this equation (we do not show their

specific forms here), and then derived Eqs. (338) and (339).
It is because the higher-order terms of α′ are necessary for
obtaining the expressions of e′

2.0 and e′
0.2 in what follows.

Next, von Zeipel expresses the solution of the equation
∂ R

∂(e2)
= 0. When cos 2g = +1, it becomes:

e2 = e′2
2.0

= 1 − 5k2 + 3

100

7 − 5k2

k2
α′2 + · · · . (Z103-341)

When cos 2g = −1, it becomes as follows:

e2 = e′2
0.2

= 1 − 5k2 + 3

200

41 − 125k2

k2
α′2 + · · · . (Z104-342)

Similar to the consideration in the inner case (see p. 53),
von Zeipel then proposes the equation

e′2
2.0 = 0, (343)
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for the case of cos 2g = +1 (equivalent to g = 0 or π ).
Although he does not show the function form of k2 that
satisfies Eq. (343), we can calculate the form as

k2 = 1

5
+ 9

50
α′2 + · · · ≡ k ′

2.0

2
. (344)

Equation (344) means that, when the value of k2 ap-

proaches k ′
2.0

2
, both the two solutions (e, g) = (e′

2.0, 0) and
(e′

2.0, π) of the equation

∂ R

∂
(
e2

) ∣∣∣∣∣
cos 2g=+1

= 0, (345)

would approach the origin at e = 0. In other words, the two
solutions (x, y) = (±e′

2.0, 0) on the (e cos g, e sin g) plane
would approach (x, y) = (0, 0). We have already seen the
behavior of R at the origin (0, 0) on p. 63.

Note that von Zeipel uses the notation k2 (p. Z400) for
expressing the solution of Eq. (343). However, we prefer to

use k ′
2.0

2
in this monograph. This is for distinguishing this

quantity from a similar one that shows up in the following
discussion on e′

0.2 (see the descriptions around Eqs. (347)
and (348)). It is also for maintaining a consistency with the
discussion on the inner problem (see p. 53).

At this point, von Zeipel mentions the equivalence of k ′2
2.0

in Eq. (Z101-332) and k ′
2.0

2
in Eq. (344). Let us cite what he

says. Note that in the quoted part below, we use his original

notation k2, instead of our own k ′
2.0

2
:

“The quantity e′2
2.0 is not always positive. Indeed,

it vanishes for a certain value of k2 adjacent to 1
5 .

Now let k2 [be] a root of the equation e′2
2.0 = 0. I

say that k2 inevitably coincides with the quantity
k ′2

2.0, which cancels the coefficient R′
2.0. Indeed,

when k2 passes the value k2, the two solutions

x = ±e′
2.0, y = 0

of equations

∂ R

∂x
= ∂ R

∂y
= 0

coincide with the solution already studied

x = y = 0.

It is therefore necessary that k2 cancels the coef-
ficient R′

2.0 and that, as a result, k2 coincides with
the quantity k ′2

2.0, given by the first [equation] of
formulas (Z101).” (p. Z400)

von Zeipel’s statement above and Eq. (344) thus tell us

that k2 (or k ′
2.0

2
in our notation) is a key parameter for con-

firming or denying the existence of local extremums of R on
the x-axis of the (e cos g, e sin g) plane.

Next he moves on to another, similar equation

e′2
0.2 = 0, (346)

for the case of cos 2g = −1 (equivalent to g = ±π
2 ). This

equation corresponds to Eq. (271) in the discussion on the
inner problem (see p. 53 of this monograph). Although von
Zeipel does not show the function form of k2 that satisfies
Eq. (346), we can again calculate the form as

k2 = 1

5
+ 12

50
α′2 + · · · ≡ k ′

0.2

2
. (347)

Equation (347) means that, when k2 approaches k ′
0.2

2
, both

the solutions (e, g) = (e′2
2.0, ±π

2 ) of the equation

∂ R

∂
(
e2

) ∣∣∣∣∣
cos 2g=−1

= 0, (348)

approach the origin e = 0. In other words, the two solutions
(x, y) = (0, ±e′

0.2) on the (e cos g, e sin g) plane would ap-
proach (x, y) = (0, 0). In addition, we can deduce the equiv-

alence of k ′2
0.2 in Eq. (Z101-332) and k ′

0.2

2
in Eq. (347) due

to the same reason as in the case of cos 2g = +1. Somehow,
however, von Zeipel’s statement about it is very short:

“In the same manner it is demonstrated that the
quantity k ′2

0.2, given by the second of the formulas
(Z101), is the only root of the equation

e′2
0.2 = 0.

It remains for us to examine whether the func-
tion R is [a] maximum, minimum or minimaxima
at the points (Z103) and (Z104).” (p. Z400)

von Zeipel’s above statement and Eq. (347) thus tell us

that k ′
0.2

2
is a key value for confirming (or denying) the exis-

tence of local extremums of R on the y-axis of the (x, y) =
(e cos g, e sin g) plane.

As a summary, let us itemize the conclusions that von
Zeipel obtained as follows:

• When k2 < k ′2
2.0, e′2

2.0 becomes positive, and R has two
local extremums at (x, y) = (±e′

2.0, 0).

• When k2 < k ′2
0.2, e′2

0.2 becomes positive, and R has two
local extremums at (x, y) = (0, ±e′

0.2).

• If α′ is small, we have k ′2
2.0 < k ′2

0.2 from Eq.
(Z101-332). And when k2 > k ′2

0.2, neither of e′2
2.0 or

e′2
0.2 can remain positive, and R has no local extremum

along the x- or y-axis.

Type of the local extremums Similar to the discussion on
the inner case (p. 54), von Zeipel next investigates the char-
acteristics of the points (x, y) = (±e′

2.0, 0) and (0, ±e′
0.2) as

local extremums of R (pp. Z400–Z401). For this purpose he
focuses on inspecting the sign of the three second derivatives
∂2 R
∂g2 , ∂2 R

∂e∂g , ∂2 R
∂e2 when cos 2g = ±1.

As for ∂2 R
∂g2 , from Eq. (Z98-324) we get straightaway its

general form as

∂2 R

∂g2
= −α′5 135

64

e2 sin2 I
(
1 − 7

6 sin2 I
)

(
1 − e2

) 7
2

cos 2g. (349)
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Fig. 17. Transcription of von Zeipel’s Figs. Z8, Z9, Z10 on his pp. Z401–Z402 (Credit: John Wiley and Sons. Reproduced with permission). They
represent schematic trajectories of equi-R contours of the doubly averaged outer CR3BP on the (e cos g, e sin g) plane. a: von Zeipel’s Fig. Z8 for the
case when k′2

0.2 < k2 < 1. b: His Fig. Z9 for the case when k′2
2.0 < k2 < k′2

0.2. c: His Fig. Z10 for the case when 0 < k2 < k′2
2.0.

From Eqs. (Z103-341) and (Z104-342), we know that k2 ∼
1−e2

5 both at e2 = e′2
2.0 and e′2

0.2 if α′ � 1. This means

sin2 I = 1 − cos2 I

= 1 − k2

1 − e2
∼ 4

5
,

(350)

and therefore

1 − 7

6
sin2 I ∼ 1

15
> 0. (351)

From Eqs. (349) and (351), we can conclude that

• When cos 2g = +1, ∂2 R
∂g2 < 0 at (x, y) = (±e′

2.0, 0).

• When cos 2g = −1, ∂2 R
∂g2 > 0 at (x, y) = (0, ±e′

0.2).

∂2 R
∂e∂g has the simplest form. From Eq. (Z98-324) we get

∂2 R

∂e∂g
= 0, (352)

when cos 2g = ±1. This is because all the terms of ∂2 R
∂e∂g

contain sin 2g as a factor which is zero when cos 2g = ±1.
∂2 R
∂e2 is more complicated. In addition, similar to the case of

the inner problem (p. 54), von Zeipel’s original description
seems very terse. Let us add a complementary description as
to how we should deal with ∂2 R

∂e2 .

We again adopt the identity (276) for ∂2 R
∂e2 of the outer

problem. The resulting ∂2 R
∂e2 in its general form turns out to be

rather complicated, and we have considered it in Appendix
B. Then we do the following:

• Substitute e2 = e′2
2.0 of (Z101-332) into ∂2 R

∂e2

∣∣∣
cos 2g=+1

• Substitute e2 = e′2
0.2 of (Z101-332) into ∂2 R

∂e2

∣∣∣
cos 2g=−1

As a result, we get

∂2 R

∂e2
= −3

√
5

(
5k2 − 1

)
2500k

7
2

α′3 + O
(
α′5), (353)

at both the points (x, y) = (±e′
2.0, 0) and (x, y) =

(0, ±e′
0.2). If we ignore the terms of O

(
α′5) in the right-

hand side, it is clear that ∂2 R
∂e2 in Eq. (353) monotonically

decreases with the increase of k2. And yet, it remains posi-
tive while k2 < 1

5 . We should recall that k2 < 1
5 is necessary

for e′2
2.0 and e′2

0.2 to remain positive (see Eqs. (Z103-341)
and (Z104-342)). Therefore we can conclude that

∂2 R

∂e2
> 0, (354)

at all the four points (x, y) = (±e′
2.0, 0) and (0, ±e′

0.2), if
α′ � 1. In Appendix B we show the actual expression of the
terms at O

(
α′5) in the right-hand side of Eq. (353) which

von Zeipel omitted. It turned out that the conclusion of Eq.
(354) remains true even if we include the O

(
α′5) terms.

Collecting all the results presented in Section Z22, von
Zeipel states the following proposition about the location of
local extremums of R in the outer case when α′ is small:

“If k ′2
0.2 < k2 < 1, the function R does not possess

maxima or minimaxima in the domain e < k ′, and
takes a single minimum at e = 0.
— If k ′2

2.0 < k2 < k ′2
0.2, the function R has no

maximum in the domain e < k ′ and possesses
only one minimaximum in this area, situated at the
origin e = 0, and only two minima at the points
g = ±π

2 , e = e′
0.2.

— Finally, if 0 < k2 < k ′2
2.0, the function R

possesses a single maximum in the domain e < k ′

situated at the origin e = 0, only two minimum
at the points g = ±π

2 , e = e′
0.2 and only two

minimaxima at the points g = 0 or π , e = e′
2.0.”

(p. Z402)

After these considerations, von Zeipel shows schematic
plots of equi-R curves on the (e cos g, e sin g) plane as his
Figs. Z8, Z9, and Z10 for illustrating the circumstances. We
transcribed them here as our Fig. 17. Through von Zeipel’s
figures, it is obvious that the topology of the equi-R contours
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qualitatively changes across k2 = k ′2
2.0 and k2 = k ′2

0.2.
Since the difference between k ′2

2.0 and k ′2
0.2 is generally slight

(see Eq. (Z101-332)), the parameter space that realizes the
second case

(
k ′2

2.0 < k2 < k ′2
0.2

)
is narrow (Fig. 17b). We

will present our own numerical demonstrations in Section
5.7.4 to reproduce his schematic plots.

5.7.3 When α′ is not so small In Section Z23, von
Zeipel deals with the doubly averaged outer CR3BP when
α′ (or a′ in his notation) is not negligibly small. In this re-
gard, Section Z23 comprises the counterpart of Z17 that is on
the inner problem. von Zeipel takes care of this task again
through a numerical method. The particular focus of this sec-
tion lies in showing that the doubly averaged disturbing func-
tion R presented as Eq. (Z99-327) takes a local minimum at
the origin (x, y) = (0, 0) under some condition, even when
α′ is arbitrary. His method to derive numerical values of R
seems to follow what was presented in Section Z17. Proba-
bly due to this reason, his presentation of the mathematical
procedures used in Section Z23 is brief and concise. Let us
show its summary in what follows.

Similar to Eqs. (294), (280), and (281) presented in his
Section Z17, von Zeipel first introduces new coefficients
b′i. j , c′i. j , e′i. j through the following definitions:

[
1 + α′2 − 2α′ (µ cos M + ν cos N )

]− 1
2

= b′0.0 + 2b′1.0 cos M + 2b′0.1 cos N

+ 4b′1.1 cos M cos N + · · · , (355)[
1 + α′2 − 2α′ (µ cos M + ν cos N )

]− 3
2

= c′0.0 + 2c′1.0 cos M + 2c′0.1 cos N

+ 4c′1.1 cos M cos N + · · · , (356)[
1 + α′2 − 2α′ (µ cos M + ν cos N )

]− 5
2

= e′0.0 + 2e′1.0 cos M + 2e′0.1 cos N

+ 4e′1.1 cos M cos N + · · · . (357)

The coefficients b′i. j , c′i. j , e′i. j defined for the outer prob-
lem in Eqs. (355), (356) and (357), and bi. j , ci. j , ei. j defined
for the inner problem in Eqs. (294), (280) and (281), are
connected through the following relationship:

α
1
2 bi. j = α′ 1

2 b′i. j
,

α
3
2 ci. j = α′ 3

2 c′i. j
,

α
5
2 ei. j = α′ 5

2 e′i. j
.

(Z105-358)

Then, von Zeipel expresses R′
2.0 and R′

0.2 in Eq. (Z99-327)

using b′i. j , c′i. j , e′i. j and α′ as follows:

R′
2.0 = −α′c′1.1 + 1

2
α′2

(
c′1.0 + c′0.1

)
,

R′
0.2 = α′c′1.1 − 1

4
α′2

(
c′1.0 + c′0.1

)
+ 3

4
α′2k

(
c′1.0 − c′0.1

)
− 3

4
α′3 (

1 − k2
) (

e′0.0 − e′1.1
)

.

(Z106-359)

Using the formulas (Z105-358), (Z106-359) and others,
von Zeipel calculates the actual numerical values of R′

2.0
and R′

0.2. He tabulated them on an unnumbered table (pp.
Z403–Z404). The table shows the values of R′

2.0 and R′
0.2,

using I0(= cos−1 k) and α′ as parameters. Similar to the
unnumbered table for the inner case (pp. Z389–Z390), the
range of I0 is from 0 to 90◦ with an interval of 10◦, and the
range of α′ is from 0.4 and 0.9 with an interval of 0.1. Instead
of transcribing the table in this monograph, we make visual
plots of their values in our Fig. 18.

Fig. 18. Dependence of the values of R′
2.0 (upper panel) and R′

0.2 (lower
panel) on I0 = cos−1 k and on α′. For magnifying the near-zero part of
R′

2.0 and R′
0.2, we placed inlets at the top right of both the panels. All

the plots are based on the tabulated numerical values on an unnumbered
table in von Zeipel (1910, pp. Z403–Z404).

The largest difference between the outer case and the inner
case is that both the components (R′

2.0 and R′
0.2) can be zero
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Table 3. Transcription of an unnumbered table in von Zeipel (1910, p.
Z403). The unit of I ′

2.0 and I ′
0.2 is the degree. See also Fig. 22 for a

visualization of the tabulated values.

α′ 0.0 0.4 0.5 0.6 0.7 0.8 0.9

I ′
2.0 63.43 61.43 60.34 59.06 57.56 55.95 54.1

I ′
0.2 63.43 60.89 59.67 58.38 57.25 56.6 57.2

in the outer case (Fig. 18). Meanwhile in the inner case,
one of the components (R2.0) always stays positive, and it is
likely that R2.0 never subceeds zero (Fig. 14). Let us cite von
Zeipel’s description of his own result:

“We see from the table that the equation R′
2.0 =

0 always has a root I0 = I ′
2.0 = arccos k ′

2.0 if
α′ ≤ 0.9, and the equation R′

0.2 = 0 also has a
root I0 = I ′

0.2 = arccos k ′
0.2 if α′ ≤ 0.9.” (p. Z403)

This statement is followed by his observation:

“It also appears that

R′
2.0 > 0 if k ′2

2.0 < k2 < 1
R′

2.0 < 0 if 0 < k2 < k ′2
2.0

R′
0.2 > 0 if k ′2

0.2 < k2 < 1
R′

0.2 < 0 if 0 < k2 < k ′2
0.2.”

(p. Z403)

By interpolating the numerical values of R′
2.0 and R′

0.2, von
Zeipel calculated the numerical values of I ′

2.0 and I ′
0.2 which

satisfy the equations (330) and (331) at each α′. He tabulated
the result in an unnumbered table at the bottom of p. Z403.
We transcribed the unnumbered table as our Table 3 (we will
also visualize his results later).

From the results tabulated in our Table 3, von Zeipel
makes an observation as follows:

“We see that the quantity I ′
2.0−I ′

0.2 is positive when
0 < α′ < 0.74 · · · and negative if α′ > 0.74 · · · .”
(p. Z404)

Then, through the above observation, he subsequently
states the following theorem:

“The functions k ′2
2.0 and k ′2

0.2 being thus defined,
we can state, as demonstrated, the following theo-
rem:

At the origin x = y = 0, the function R
becomes minimum if k ′2 > k ′2

2.0 and if k ′2 > k ′2
0.2;

[R] becomes a saddle point if k ′2 is between k ′2
2.0

and k ′2
0.2; [and R] becomes maximum if k2 < k ′2

2.0

and k2 < k ′2
0.2.” (p. Z404)

As a natural consequence of the above theorem, von
Zeipel immediately states another theorem as follows:

“The necessary and sufficient condition for the ec-
centricity of the orbit of an infinitely small mass
located outside the disturbing planet to be always
small, if it is small at a given moment, is that the
inclination of the orbit is not located between the

two angles I ′
2.0 and I ′

0.2. (In this statement we have
neglected the disturbing mass and the square of the
eccentricity.)” (p. Z404)

As for the last sentence in parentheses “In this statement
we have neglected the disturbing mass and the square of the
eccentricity,” we interpret this that von Zeipel assumes that
the mass of the perturbing body (Jupiter) is much smaller
than the mass of the central object (Sun) in his setting. Also,
we are aware that the terms higher than the square of the
eccentricity

(
e2

)
have been neglected in this section, because

von Zeipel just uses the lowest-order components (R′
2.0x2

and R′
0.2 y2) in the two-variable Taylor expansion (Z99-327).

von Zeipel concludes Section Z23 by making the follow-
ing statement. This statement seems to be a summary of what
he discovered through the discussion in this section:

“Asteroids exterior at the disturbing planet thus
belong to two categories. In the first category, the
inclinations are smaller than I ′2

2.0 and I ′2
0.2; in the

second, they are larger than these quantities.
We have demonstrated at no. Z22 that the func-

tion R possesses minimum values at two symmet-
ric points

x = 0, y = ±e′
0.2

if α′ is small and if k2 < k ′2
0.2. It seems very likely

that these minima exist for appropriate values of
k ′2, as long as α′ < 0.74 · · · (value of α′ which
makes k ′

0.2 = k ′
2.0). If instead α′ > 0.74 · · · , it

is probable that the two symmetric minima are on
the axis of x , at least for the appropriate values
of k ′2 < k ′2

2.0. But for rigorously demonstrating
the existence of these minima and for determining
the position, it would be necessary to resort to
numerical calculations.” (pp. Z404–Z405)

It is not surprising for us to know that von Zeipel did not
actually carry out the “numerical calculations” for demon-
strating the existence of the local minima of R along the x-
axis when α′ is large. Such a numerical analysis must have
been formidable in his time. Since studies on the doubly
averaged outer CR3BP are less often encountered than the
inner one even in modern days, we have not found relevant
literature that confirms von Zeipel’s theorem (or conjecture)
stated above. Therefore in the next part of this monograph
(Section 5.7.4), we carry out a numerical confirmation of the
theorem and conjecture that von Zeipel stated for the outer
case when α′ is not negligibly small.

5.7.4 Numerical confirmation Here we carry out sev-
eral numerical experiments in order to confirm how accurate
(or inaccurate) von Zeipel’s theory is on the doubly averaged
outer CR3BP that has been presented in this monograph.
Naturally, the contents in what follows are not included in
von Zeipel’s original work.

Equi-potential contours (when α′ � 1) First, let us re-
produce the equi-potential contours given in von Zeipel’s
schematic Figs. Z8, Z9, and Z10 (transcribed as our Fig.
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Fig. 19. Equi-potential contours of the outer CR3BP plotted on the (x, y) = (e cos g, e sin g) plane. The top row (a, b, c): Results obtained from von
Zeipel’s analytic expansion of R presented as Eqs. (Z97-323) and (Z98-324). The middle row (d, e, f): Results obtained from the numerical quadrature
defined by Eq. (K09-54). The bottom row (g, h, i): Results obtained from the direct numerical integration of the equations of motion. The columns are
categorized by the parameter sets (α′, k2) that are used: (α′, k2) = (0.3, 0.2120) for the panels in the left column (a, d, g), (0.3, 0.2185) for the panels
in the middle column (b, e, h), and (0.3, 0.2400) for the panels in the right column (c, f, i). Note that the x- and y-ranges are both from −0.45 to +0.45
only in the top row (a, b, c), while they are from −0.32 to +0.32 in the middle and bottom rows (d, e, f, g, h, i).

17). We use the doubly averaged disturbing function R in
Eq. (Z97-323) that von Zeipel derived. As we learned, the
leading-order term of R (R′

3 in Eq. (Z98-324)) does not de-
pend on the variable g. R’s dependence on g shows up in
R′

5 and the higher-order terms. Therefore, to see the depen-
dence of R on g, we need to choose α′ which is small but
not too small. If we adopt too small a value of α′, the higher-
order terms would become extremely tiny, and the depen-
dence of R on g would vanish. For this reason we chose
α′ = 0.3 as an example here. This yields k ′2

2.0 ∼ 0.2162 and
k ′2

0.2 ∼ 0.2216 from Eq. (Z101-332).
We reproduced the equi-potential contours of R using Eqs.

(Z97-323) and (Z98-324), and presented the result as the
top three panels (a, b, c) of Fig. 19 labeled as “analytic
expansion” at the right edge. The three typical patterns of
equi-potential curves that we saw in von Zeipel’s original
drawing (Fig. 17) are well reproduced. When k2 < k ′2

2.0
(Fig. 19a), we see a local maximum of R at the origin
(x, y) = (0, 0) together with a pair of local minima along
the y-axis, as well as a pair of saddle points along the x-
axis. When k ′2

2.0 < k2 < k ′2
0.2 (Fig. 19b), we find the

origin being a saddle point of R, and a pair of local minima
along the y-axis shows up. When k ′2

0.2 < k2 (Fig. 19c), the
origin becomes a local minimum of R which is its only local
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extremum. These results are consistent with von Zeipel’s
statement given with his Figs. Z8–Z10 (our Fig. 17).

We would like readers to note that each of the panels
a, b, c in Fig. 19 has an individual and different contour
interval. They represent a fixed energy interval of the doubly
averaged disturbing potential in each of the systems. Hence,
regions with dense contours imply that the potential gradient
is steep there. Then, the results in these panels indicate that
the potential gradient around the origin (0, 0) is much less
steep than in other regions where the contour density is much
higher. Note also that we did not draw all the contours in
the outermost part of the plots (near the panel edge) mainly
because the contour intervals would become too narrow and
it would make the plots too busy.

Second, we draw equi-R curves using the same parameter
set

(
α′, k2

)
but through the numerical quadrature defined by

Eq. (K09-54). The result is presented as the middle three
panels (d, e, f) of Fig. 19 labeled as “numerical quadrature”
at the right edge. We clearly see that each of them has simi-
lar topological patterns as those in the top three panels (a, b,
c). There seems to be a slight difference in the locations of
local extremums on the x- and y-axis: The local extremums
in panels d, e, f in Fig. 19 are located closer to the origin
compared with the panels a, b, c. Readers should note that
we adopted the smaller plot ranges (from −0.32 to +0.32 for
both x and y) in the middle three panels d, e, f than those in
the top three panels a, b, c (from −0.45 to +0.45). This is to
show the detailed structure of the equi-R curves near the ori-
gin in the middle three panels. The slight difference between
the result of the numerical quadrature and that of the analytic
expansion is probably caused by the fact that the expression
of the analytic expansions in Eqs. (Z97-323) and (Z98-324)
does not include higher-order terms such as R′

7, R′
9, · · · . We

have confirmed that the locations of the local extremums ob-
tained from the analytic expansion become more similar to
those obtained from the numerical quadrature when we use
expansions of even higher-orders (Ito, 2016).

We also carried out a set of direct numerical integration of
the equations of motion for the outer CR3BP using the same
three parameter sets of

(
α′, k2

)
. The numerical integration

scheme is the same as what we used when drawing Fig. 8.
We placed a perturber on a circular orbit with the semimajor
axis a′ = 5.2042 au. The integration result is presented as
the bottom three panels (g, h, i) of Fig. 19 labeled as “nu-
merical integration” at the right edge. The nominal stepsize
of the integration is 20 days, and the total integration time is
1200 million years with a data output interval of 5000 years.
Note that here we set the ratio of the perturber’s mass and
the central mass as 9.5479194 × 10−5 which is close to 1

10 of
the mass ratio between Jupiter and the Sun. This is to avoid
the inclusion of short periodic oscillations in the plots, and
to clearly show the detailed structure of the equi-R contours.
The influence of the mass ratio is limited to the timescale of
the orbital evolution of the perturbed body, and it does not
affect the orbit’s secular topology (see the discussion in Sec-
tion 2.3 on p. 9 of this monograph).

In the panels g, h, i of Fig. 19 that show the result of
the direct numerical integration, the contour interval does

not represent fixed intervals of disturbing potential. We
placed the perturbed bodies initially along the x-axis on the
(e cos g, e sin g) plane. More specifically, we placed the per-
turbed bodies along the x-axis with an interval of initial ec-
centricity (e0) as �e0 = 0.02. The minimum of e0 in the
panel g is e0,min = 0.02, and the minimum of e0 in the pan-
els h and i is e0,min = 0.01. We also placed several more
perturbed bodies along the y-axis around the local minima
with the same interval �e0. As for the initial argument of
pericenter g, we basically selected g = 0 and π

2 , as well
as g = π and 3π

2 when necessary. As we see, the trajecto-
ries obtained from the numerical integration (g, h, i), those
obtained from the numerical quadrature (d, e, f), and those
obtained from the analytic expansion of the doubly averaged
disturbing function (a, b, c) agree well with each other. Note
that some of the trajectories on the bottom two panels (g and
h) are not completely closed. These trajectories are very
close to the separatrix where it principally takes an infinite
amount of time for the perturbed body to reach the saddle
points. It seems that the integration period that we chose for
the numerical orbit propagation to draw the panels g and h
was not long enough for the trajectories to be closed.

Values of k ′2
2.0, k ′2

0.2, I ′
2.0, I ′

0.2 (when α′ is not small) Now,
we move on to the case when α′ is not so small. First, let
us calculate the critical inclinations I ′

2.0 = cos−1 k ′
2.0 and

I ′
0.2 = cos−1 k ′

0.2, as well as their dependence on α′. They
were discussed on p. 67 of this monograph, and von Zeipel’s
calculation results are transcribed in our Table 3. He wrote
that the sign of I ′

2.0 − I ′
0.2 changes from positive to negative

at α′ ∼ 0.74 (see p. 67 of this monograph). As for the
inner CR3BP, we compared von Zeipel’s I0.2 with Kozai’s
limiting inclination i0 (see our Fig. 15 and the accompanying
discussion on p. 57). As for the outer CR3BP, we calculate
the critical inclination values that are equivalent to I ′

2.0 and
I ′
0.2 through numerical quadrature as follows.

For calculating I ′
2.0 and I ′

0.2, we need to obtain the values
of R along the x- and y-axis on the (e cos g, e sin g) plane.
Considering the symmetry of R, we carry out a series of
numerical quadrature defined in Eq. (K09-54) only on the
positive x-axis (g = 0) and the positive y-axis (g = π

2 )

using several parameter sets
(
α′, k2

)
. Then we observe the

behavior of R, and estimate the sign of ∂ R
∂x and ∂ R

∂y around
the origin (0, 0). As we saw in Section 5.7.3, there can be
four patterns in the appearance of local extremums.

Pattern 1.
The origin (0, 0) makes a local maximum, and there shows
up a pair of local minima on the y-axis, as well as a pair
of saddle points on the x-axis. This pattern is seen in the
left column panels (a, d, g) of Fig. 19. In this pattern,
R decreases both along the x- and y-directions from the
origin (0, 0). Therefore we have

∂ R

∂x

∣∣∣∣
x=y=0

< 0,
∂ R

∂y

∣∣∣∣
x=y=0

< 0. (360)

Pattern 2.
The origin (0, 0) makes a saddle point, and there shows up
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a pair of local minima only on the y-axis. This pattern is
seen in the middle column panels (b, e, h) of Fig. 19. In
this pattern, R decreases along the y-axis, and it increases
along the x-axis from the origin. So we have

∂ R

∂x

∣∣∣∣
x=y=0

> 0,
∂ R

∂y

∣∣∣∣
x=y=0

< 0. (361)

Pattern 3.
The origin (0, 0) makes a local minimum, and no other
local extremum exists. This pattern is seen in the right
column panels (c, f, i) of Fig. 19. In this pattern, R mono-
tonically increases from the origin along any directions.
Therefore we have

∂ R

∂x

∣∣∣∣
x=y=0

> 0,
∂ R

∂y

∣∣∣∣
x=y=0

> 0. (362)

Pattern 4.
There shows up a pair of local minima on the x-axis, and
the origin (0, 0) makes a saddle point. This pattern is what
von Zeipel predicted in his Section Z23 (see p. 67), but
no figure has been given yet. In this pattern, R would
decrease from the origin along the x-axis, and it would
increase along the y-axis. Therefore we would have

∂ R

∂x

∣∣∣∣
x=y=0

< 0,
∂ R

∂y

∣∣∣∣
x=y=0

> 0. (363)

Note that as long as the approximation is up to O
(
e2

)
as

von Zeipel assumed (see p. 55), the R values along the x- and
the y-axis are equivalent to R′

2.0 and R′
0.2 themselves in Eqs.

(Z99-327) and (Z100-328), respectively. In other words, we
have in this approximation

∂ R

∂x

∣∣∣∣
x=y=0

= ∂ R′
2.0

∂x

∣∣∣∣
x=y=0

, (364)

∂ R

∂y

∣∣∣∣
x=y=0

= ∂ R′
0.2

∂y

∣∣∣∣
x=y=0

. (365)

The purpose of our series of numerical quadrature is to
investigate which set of

(
α′, k2

)
realizes which of the above

patterns 1, 2, 3, 4 (or the conditions (360), (361), (362),
(363)). One of von Zeipel’s theoretical predictions that we
learned in Section 5.7.3 tells us the following:

• The condition (360) is satisfied while k2 is smaller than
both k ′2

2.0 and k ′2
0.2. (Pattern 1)

• When k ′2
2.0 < k ′2

0.2, if we fix α′ and gradually increase
the value of k2, we would reach a point where the status
of the system changes from the condition (360) to the
condition (361). The value of k2 at this point would
be equal to k ′2

2.0, and the limiting inclination I ′
2.0 is

calculated as I ′
2.0 = cos−1 k ′

2.0. (Pattern 2)

• If we further increase k2 from this point, we would
reach another point where the status of the system
changes from the condition (361) to the condition (362).
The value of k2 at this point would be equal to k ′2

0.2,
and the limiting inclination I ′

0.2 is calculated as I ′
0.2 =

cos−1 k ′
0.2. (Pattern 3)

• If k ′2
2.0 > k ′2

0.2 is realized when α′ is large (as von
Zeipel predicted), the condition (363) can take place in
a certain range of k2. (Pattern 4)

Bearing the above circumstances in mind, we calculated
the values of R along the x- and y-axis through the series
of numerical quadrature. As for the value of α′, we varied
it from α′ = 0 to 0.95 in steps of 0.05. As for the value of
k2, we started from k2 = 0.200 and increased it in steps of
0.001. We plotted the resulting values of R along the x- and
y-axis with several α′ and k2 in Fig. 20.

In Fig. 20, the panels in the left two columns depict R
along the x-axis just before (the column A) and just after
(the column B) ∂ R

∂x

∣∣
x=y=0

changes its sign. The panels in the
right two columns depict R along the y-axis just before (the

column C) and just after (the column D) ∂ R
∂y

∣∣∣
x=y=0

changes

its sign. For example, when α′ = 0.7 (see the seventh row
from the top), ∂ R

∂x

∣∣
x=y=0

seems negative while k2 ≤ 0.287
(the panel in the column A) but it seems to turn positive while
k2 ≥ 0.288 (the panel in the column B). Thus, we conclude
that the k ′2

2.0 value lies somewhere between 0.287 and 0.288

when α′ = 0.7. Similarly, ∂ R
∂y

∣∣∣
x=y=0

seems negative while

k2 ≤ 0.292 (the panel in the column C) but it seems to
turn positive while k2 ≥ 0.293 (the panel in the column
D). Thus, we conclude that the k ′2

0.2 value lies somewhere
between 0.292 and 0.293 when at α′ = 0.7.

Looking at the panels in the columns A and C of Fig. 20,
we can visually locate the local minima of R with our eyes.
However, we do not see any local extremums in the bot-
tom panel of the column A when (α′, k2) = (0.9, 0.343).
∂ R
∂x

∣∣
x=y=0

seems to remain negative throughout this panel.
From the analogy of other panels in this column, we may
want to imagine the existence of a local minimum some-
where along the x-axis beyond the range of this plot. How-
ever, we cannot actually identify the location of a local min-
imum in this case. This is because, in the large α′ range
such as α′ = 0.9, the line of orbit intersection takes place
relatively close to the origin, (0, 0). To better illustrate the
circumstance, we extended the x-range of this panel and re-
drew it as Fig. 21. In this figure, we see that the line of
orbit intersection happens just before x = 0.1, and R shows
a steep and rapid change beyond this point. Readers should
pay attention to the huge magnitude difference of R between
inside and outside this border. See Section 5.8 of this mono-
graph (p. 74) for more detail about the local extremums that
occur beyond the line of orbit intersection.

Using the numerical quadrature result that is partly pre-
sented in Fig. 20, we calculated k ′2

2.0 and k ′2
0.2, as well as

I ′
2.0(= cos−1 k ′

2.0) and I ′
0.2(= cos−1 k ′

0.2), all as functions
of α′. Our calculation result is summarized in Fig. 22 to-
gether with the values that von Zeipel presented for compar-
ison. Fig. 22a shows the dependence of k ′2

2.0 and k ′2
0.2 on

α′. We plotted von Zeipel’s k ′2
2.0 and k ′2

0.2 in the range of
0.4 ≤ α′ ≤ 0.9. We obtained them by converting his I ′

2.0

and I ′
0.2 tabulated in Table 3 into k ′2

2.0 and k ′2
0.2. Fig. 22b

shows the dependence of I ′
2.0 and I ′

0.2 on α′. von Zeipel’s I ′
2.0
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Fig. 20. Values of the doubly averaged outer disturbing function R obtained through the numerical quadrature (K09-54) along the positive x-axis (g = 0)

and along the positive y-axis (g = π
2 ) with several (α′, k2) sets. The rows are, from the top, for α′ = 0.1, 0.2, 0.3, . . . , 0.9. The left two columns (A

and B) are for R along the x-axis, and the right two columns (C and D) are for R along the y-axis. Note that the R values are magnified by 106 in all
the panels: Their original magnitude is as small as O(10−6) to O(10−4) in our calculation. See Fig. 21 for comparison.

Fig. 21. An extended plot of the bottom panel in the left-most column
(A) of Fig. 20. This shows the changing values of R along the x-axis
when (α′, k2) = (0.9, 0.343). The location of orbit intersection of the
perturbing body and the perturbed body at x ∼ 0.09 is indicated by an
arrow. Note that, unlike in Fig. 20, the vertical scale is not magnified
in this panel. This means that the magnitude of R is O(10−5) when
x �0.09, while it is O(1) when x �0.09.

and I ′
0.2 are extracted from Table 3 and plotted in this panel.

These panels clearly indicate that the agreement between von
Zeipel’s result and our numerical result is excellent, with just
a slight difference when α′ = 0.90. This figure exemplifies
the correctness of von Zeipel’s theory and his calculations on
the doubly averaged outer CR3BP, even when α′ is not small.
To our knowledge, this type of quantitative comparison has

never been done with the doubly averaged outer CR3BP over
this extensive range of α′.

Equi-potential contours (when α′ is not small) From the
results presented in Figs. 20, 21, and 22, we have confirmed
that von Zeipel’s theory seems valid and accurate in the
doubly averaged outer CR3BP, even when α′ is not small.
Let us further move on and make another confirmation in
this case. In what follows, our discussion goes along with
a new figure (Fig. 23). This figure is a counterpart of
Fig. 19 that we had made for the small α′ systems. The
new figure contains ten panels, showing various trajectories
of perturbed bodies in the outer CR3BP on the (x, y) =
(e cos g, e sin g) plane. We employed two methods to draw
the panels: Numerical quadrature of two kinds, and direct
numerical integration of the equations of motion.

We first set α′ = 0.6, and chose relatively small k2 values
(k2 = 0.2600 and k2 = 0.2650). The 2 × 2 panels in
the left two columns (a, b, e, f) of Fig. 23 show the equi-
potential contours in this parameter set. The panels a and b
are based on the result obtained from numerical quadrature,
and the panels e and f are based on the result obtained from
direct numerical integration of the equations of motion. The
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Fig. 22. a: Actual values of k′2
2.0 (the black solid line) and k′2

0.2 (the ma-
genta solid line) and their dependence on α′ estimated from our numeri-
cal quadrature. We also converted von Zeipel’s calculation result on I ′

2.0

and I ′
0.2 (see Table 3) into k′2

2.0 = cos2 I ′
2.0 (the filled red circle) and

k′2
0.2 = cos2 I ′

0.2 (the open blue square with a central dot), and plotted
them in this panel. b: The corresponding values of I ′

2.0 (the black solid

line) and I ′
0.2 (the magenta solid line) converted from k′2

2.0 and k′2
0.2 plot-

ted in the panel a. von Zeipel’s numerical estimate summarized in Table
3 is also plotted: I ′

2.0 (the filled red circle) and I ′
0.2 (the open blue square

with a central dot).

methods of numerical quadrature and numerical integration
are the same as what we used in Fig. 19. We placed a
perturber on a circular orbit with the semimajor axis a′ =
5.2042 au. In the numerical integration result shown in the
panels e and f, the nominal stepsize is 20 days, and the
total integration time is 200 million years with a data output
interval of 1000 years. The ratio of the perturber’s mass and
the central mass is 4.7739597 × 10−5 which is close to 1

20 of
the mass ratio of Jupiter and the Sun.

The left 2 × 2 panels (a, b, e, f) of Fig. 23 reproduce
well the topological characteristics of the equi-R curves that
von Zeipel predicted. From the preceding calculation result
presented in Fig. 20, when α′ = 0.6 we found k ′2

2.0 lies
somewhere in ]0.264, 0.265[, and k ′2

0.2 lies somewhere in
]0.274, 0.275[. Therefore, the plots with k2 = 0.260 (panels
a and e) correspond to the topological pattern of R when
k2 < k ′2

2.0 (Pattern 1 on p. 69). In this case the origin (0, 0)

makes a local maximum, and we see a pair of local minima

along the y-axis together with a pair of saddle points along
the x-axis. The topological pattern looks the same as that
observed in the α′ � 1 case (Figs. 19a, 19d, 19g), although
the locations of the local extremums along the x- and y-axis
seem slightly different. On the other hand, the plots with
k2 = 0.265 (panels b and f) correspond to the topological
pattern of R when k ′2

2.0 < k2 < k ′2
0.2 (Pattern 2 on p. 69). In

this case, we see a saddle point at the origin (0, 0) as well as a
pair of local minima along the y-axis. Again, the topological
pattern seems the same as that observed in the α′ � 1 case
(Figs. 19b, 19e, 19h).

So far, the predictions that von Zeipel made about the dy-
namical behavior of the perturbed body in the doubly av-
eraged outer CR3BP seem correct. However if we go on
and further increase α′, the situation changes drastically: We
find a limitation, not only of von Zeipel’s predictions, but of
the double averaging approximation itself—the influence of
mean motion resonance emerges.

As an example of our further investigation, we chose
two more parameter sets of (α′, k2) = (0.8, 0.2800) and
(α′, k2) = (0.8, 0.3130), and again carried out numerical
quadrature. The calculation results are presented in the up-
per two panels in the right two columns of Fig. 23 (the panels
c and d). From the preceding calculation result presented in
Fig. 20, when α′ = 0.8 we found k ′2

2.0 lies somewhere in
]0.313, 0.314[, and k ′2

0.2 lies somewhere in ]0.303, 0.304[.
Note that we have k ′2

2.0 > k ′2
0.2 at this large value of α′ (see

Fig. 22) which is a clear difference from the systems with
small α′ that satisfy the opposite condition, Eq. (333). This
collectively means that the value k2 = 0.280 employed in
the panel c is in the range of k2 < k ′2

0.2, while the value
k2 = 0.313 employed in the panel d is (although marginally)
in the range of k ′2

0.2 < k2 < k ′2
2.0.

From the analogy of the result in the small α′ systems
where k ′2

2.0 < k ′2
0.2 is satisfied, we may want to anticipate that

the topological pattern of the equi-R curves in the systems
with k ′2

2.0 > k ′2
0.2 would be obtained by a 90◦ rotation of

the case of k ′2
2.0 < k ′2

0.2. This anticipation is mostly correct,
and the circumstance is realized in our numerical quadrature:
Fig. 23c is close to a 90◦ topological rotation of Fig. 23a, and
Fig. 23d is close to a 90◦ topological rotation of Fig. 23b.
The truncation of equi-R curves by the red and blue lines in
the panels c and d (the lines representing orbit intersection)
produces an apparent difference between them. For example,
in the panel c we do not see any local minima along the
x-axis that are supposed to correspond to the local minima
observed in the panel a along its y-axis. Therefore, at this
point we may want to believe that the following conjecture
that von Zeipel stated at the end of his Section Z23 (p. 67 of
this monograph) is true:

“If instead α′ > 0.74 · · · , it is probable that the
two symmetric minima are on the axis of x , at
least for the appropriate values of k ′2 < k ′2

2.0.” (p.
Z405)

However, the motion of the perturbed body in the actual
(i.e. not averaged) CR3BP sometimes exhibits very differ-
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Fig. 23. Equi-potential contours of the doubly averaged outer CR3BP on the (x, y) = (e cos g, e sin g) plane when α′ is not small. The four panels in the
top row (a, b, c, d) are the results obtained from the numerical quadrature defined by Eq. (K09-54). The four panels in the middle row (e, f, g, h) are the
results obtained from the direct numerical integration of the equations of motion. The two panels in the bottom row (i, j) are the results obtained from
the numerical quadrature that assumes the 5:7 mean motion resonance between the perturbed and perturbing bodies with a fixed critical argument of
5λ′ − 7λ + 2g = π . The columns are categorized by the parameter set (α′, k2). We chose (α′, k2) = (0.6, 0.2600) for the leftmost column (the panels
a, e), (α′, k2) = (0.6, 0.2650) for the second left column (the panels b, f), (α′, k2) = (0.8, 0.2800) for the second right column (the panels c, g, i), and
(α′, k2) = (0.8, 0.3130) for the rightmost column (the panels d, h, j). Note that the x- and y-ranges are from −0.48 to +0.48 only in the 2 × 2 panels in
the left two columns (a, b, e, f), while they are from −0.30 to +0.30 in the 2 × 3 panels in the right two columns (c, d, g, h, i, j). The partial red circles
in each of the panels correspond to the negative sign in the first term of the left-hand side of Eq. (Z45-228), representing the location where the orbits of
the perturbed and perturbing bodies intersect each other at the ascending node of the perturbed body. The partial blue circles correspond to the positive
sign in the first term of the left-hand side of Eq. (Z45-228), representing the location where the orbits of the perturbed and perturbing bodies intersect
each other at the descending node of the perturbed body.

ent behavior from the averaged system. The panels g and h
of Fig. 23 are typical examples of this sort. These panels
are drawn through the results obtained from our direct nu-
merical integration of the equations of motion. The parame-
ters (α′, k2) used in the panels g and h are identical to those
used in the panels c and d, respectively. Here is the detail
of the numerical integration used to draw the panels g and
h: the nominal stepsize is 4 days, and the total integration
time is 30 million years with a data output interval of 500
years. The ratio of the perturber’s mass and the central mass
is 9.5479194 × 10−6 which is close to 1

100 of the mass ratio
of Jupiter and the Sun. The reason for the small mass ratio is
to avoid the occurrence of orbital instability of the perturbed
body due to close encounters with the perturber near the or-
bit intersection lines. This is necessary because now α′ is as
large as 0.8. We also chose a small value for the stepsize of

numerical integration (4 days) for the same reason.
As is very clear in both the panels g and h, stationary

points (local minima) show up along the y-axis. We do not
see them in the panels c or d that are obtained from the result
of numerical quadrature of the doubly averaged system. The
overall trajectory shapes are very different between the pan-
els c and g, and also between the panels d and h. In short,
the doubly averaged approximation does not seem to work
out in the system sampled here.

As far as we have investigated, the trajectory shape seen
in Figs. 23g and 23h are related to the existence of the
5:7 mean motion resonance between the perturbing and per-
turbed bodies. The perturbed body’s secular motion in R3BP
with mean motion resonance has been intensively studied
since the mid-twentieth century (see an extensive review by
Moons, 1996). Their relation to the Lidov–Kozai oscilla-
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tion, as well as several practical methods to draw equi-R
contours for resonant systems, has been further developed
(e.g. Kozai, 1985; Yoshikawa, 1989, 1990, 1991; Morbidelli,
2002; Gomes et al., 2005; Gallardo, 2006; Gomes, 2011).
For visualizing the influence of the mean motion resonance
in this case, we implemented a simple method devised by
Kozai (1985) which is based on a more general theory on the
secular motion of perturbed body in resonant dynamical sys-
tems (Giacaglia, 1968, 1969). The method of Kozai (1985)
enables us to reduce the degrees of freedom of a resonant
system to unity and draw its equi-R trajectory. This method
assumes that the critical argument σ of mean motion reso-
nance stays at a stable equilibrium, and always takes a single
fixed value without an amplitude. In general, the critical ar-
gument σ in CR3BP is defined as

σ = j1λ
′ + j2λ + j3g, (366)

where λ′ is the mean longitude of the perturbing body, and
λ is that of the perturbed body. We also have a relationship
j1 + j2 + j3 = 0, one of the so-called d’Alembert rules (e.g.
Hamilton, 1994; Murray and Dermott, 1999). It is needless
to say that σ is not a constant in general resonant systems:
Usually σ exhibits libration with a certain amplitude and pe-
riod. Kozai’s (1985) method does not consider the libration
amplitude of σ (i.e. it assumes the libration amplitude of σ to
be zero) for simplicity. This makes the calculation of doubly
averaged disturbing function easier.

By inspecting the time variation of the perturbed body’s
orbital elements in the systems presented in Figs. 23g and
23h, we confirmed that an argument 5λ′ − 7λ + 2g stays
around π , although it oscillates with a certain amplitude.
Therefore we presume that

σ = 5λ′ − 7λ + 2g = π, (367)

holds true in this case, and we carried out the numerical
quadrature (K09-54) under the constraint of Eq. (367), fol-
lowing Kozai’s (1985) method. We show the resulting equi-
potential trajectories in Figs. 23i and 23j. Although the ap-
proximation is crude, topological patterns of equi-potential
curves seen in Figs. 23i and 23j seem similar to those in Figs.
23g and 23h: The origin (0, 0) is a saddle point, and another
pair of saddle points shows up at y ∼ ±0.25. Hence we be-
lieve this model explains the situation. A more sophisticated
method for secular dynamics when mean motion resonance
is at work, including the influence of σ ’s time variation, will
better reproduce the behavior of perturbed bodies exhibited
in Fig. 23g and 23h. For recent, more advanced studies on
the perturbed body’s secular motion in R3BP with mean mo-
tion resonances, consult Gallardo et al. (2012), Brasil et al.
(2014), or Saillenfest et al. (2016, 2017a,b).

Incidentally, note that the influence of mean motion reso-
nance exists not only in the outer problem but also in the in-
ner problem, although we do not give any examples. Kozai
(1985) showed several examples along this line. However,
we suspect the influence of mean motion resonance is more
prominent in the outer problem than in the inner problem.
This is because of the subtlety of the secular perturbation

that causes the Lidov–Kozai oscillation in the outer problem
compared with that in the inner problem. We had mentioned
this point on p. 62 of this monograph.

As we have seen in this subsection, the conjectures that
von Zeipel made for the doubly averaged outer CR3BP are
largely justified through our numerical confirmation, except
when major mean motion resonance is at work. The influ-
ence of mean motion resonance such as seen in Figs. 23i and
23j is relatively more apparent near the origin (0, 0) where
the gradient of R is small. On the other hand the influence
seems weaker in regions further away from the origin, and
the trajectories of the perturbed bodies largely follow what
the doubly averaged disturbing function forecasts, particu-
larly near and beyond the lines of orbit intersection (i.e. the
red and blue curves in Figs. 23).

5.8 Cases of orbit intersection
We would say that, up to the previous subsection (Section

5.7) we have already written most of the things that we in-
tended to write in this monograph. From here until the end of
Section 5, we mention some of the additional features in von
Zeipel’s work that are worth noting. Compared with what
we have already reviewed, the later part (Sections Z24–Z29)
of von Zeipel’s paper seems under development and largely
remaining speculative, relying on rough approximations and
assumptions. von Zeipel’s descriptions get lame and very
terse, such as using a new function without giving its defi-
nition. Therefore, in what follows we do not present much
detail of von Zeipel’s mathematical expositions; we just in-
troduce his major conclusions.

von Zeipel’s Section Z24 (pp. Z405–Z413) is devoted to
a series of mathematical demonstration in order to show that
the doubly averaged disturbing function R for CR3BP can
have local minima in the third case that he mentioned in
his Section Z16 (p. Z378, also p. 51 of this monograph)—
when the two orbits intersect and they “behave like rings of
a chain.” This includes a comprehensive study of R in the
domain B or B ′ in Fig. 11, assuming that k ′ (= √

1 − k2
)

is
small and also α′ − 1 (or its absolute value) is small.

von Zeipel’s major goals in Section Z24 seem to be as
follows: First, expressing R in the domain B or B ′ of Fig.
11 using some holomorphic functions, and second, seeking
all the solutions of the equations ∂ R

∂e = ∂ R
∂g = 0 located in

the domain B or B ′. This section begins with an expression
of R in Eq. (Z93-302) using a single integral in the complex
domain. von Zeipel gives the expression

R = α′

2π
√−1

∫
|z=1|

r√
1 + r2

F(τ )
dz

z
, (Z110-368)

where
√−1 denotes the imaginary unit, and z is a complex

variable defined as

z = exp
√−1u, (Z109-369)

with eccentric anomaly u. The variable τ and the function
F(τ ) seen in Eq. (Z110-368) have already been defined and
used in Eqs. (Z48-237) and (Z54-244). von Zeipel assumes
a condition on α′ (or a′ in his notation) as

α′ = 1 + sk ′. (Z107-370)
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with a new parameter s in the range of

−1 < s < +1. (371)

He also places a condition on eccentricity e as

e = εk ′, (Z108-372)

with a new parameter ε in the range of

0 ≤ ε ≤ 1. (373)

Using the foregoing, von Zeipel shows that R in Eq.
(Z110-368) has the form

R = R1 log k ′2 + R2 + R3 + R4 + R5, (374)

or

R = R1 log k ′2 + R′, (Z130-375)

where R2, R3, R4, R5 and R′ are holomorphic functions
of orbital elements that are expressed by complex integrals.
Their actual forms are shown as Eq. (Z126) on p. Z409
(which we do not reproduce here). After going through com-
plicated calculations for obtaining actual but approximate
function forms of R1, R2, R3, R4, R5, von Zeipel eventu-
ally reaches the conclusion that R in Eq. (Z130-375) has a
minimum at g = 0 when k ′ is small (i.e. when α′ ∼ 1 due to
Eq. (Z107-370)). We cite what he says about it:

“The research of this issue were aimed at finding
all the solutions of equations

∂ R

∂e
= ∂ R

∂g
= 0 (Z132-376)

that exist in the domain B, assuming that k ′ is
small.

[· · · ]
Returning now to equations (Z132). For small

values of k ′ they possess a single solution at the
interior of domain 0 ≤ e ≤ k ′, −π

2 ≤ g ≤ +π
2 .

This solution, which can be written

e = e1 = k ′
(

1√
2

+ B
(
k ′, k ′ log k ′)) ; g = 0

(Z134-377)

where B(0, 0) = 0, corresponds to a minimum
value of the function R, since A(0) < 0, as we
saw on page Z371.

Consider the equation

s = e1

k ′ .

For small values of k ′ it has a single root

s = s1 = 1√
2

+ B1
(
k ′, k ′ log k ′)

where B(0, 0) = 0.” (pp. Z411–Z412)

Note that von Zeipel did not give any definitions of the
functions B and B1 in the above except their boundary con-
ditions (B(0, 0) = 0 and B1(0, 0) = 0). Note also that the
quantity A(0) in above once showed up in Section 5.5. See
Eqs. (Z54-244), (Z55-245), (Z56-246) in p. 50.

von Zeipel continues and states a theorem as follows:

”We can now state the following theorem as
shown:

For sufficiently small values of k ′, the function
R possesses neither maxima nor minimaxima in
the domain B. If |α′ − 1| > s1k ′, R has no minima
in this domain. If instead |α′ − 1| < s1k ′, the
function R possesses in the domain B only one
minimum situated at the point (Z134).” (p. Z412)

Right after stating the above theorem, von Zeipel admits
that he did not succeed in showing the existence of these
minima when α′ − 1 or k ′ gets large:

“If the parameters α′ and k ′ vary, the points

e = e1, g = 0 or π, (Z135-378)

where the function R is minima in the domain B
or B ′, move. But it did not succeed in pursuing
them analytically if α′ −1 and k ′ cease to be small.
My goal was only to direct the attention on the
existence of these minima [that are] quite remark-
able. Obviously it does not offer serious difficulty
[in] finding their positions by calculating numeri-
cal values given for the parameters α′ and k ′.” (p.
Z413)

As we have learned, the existence of local minima in R
means the existence of the Lindstedt series in their vicinity.
In solar system dynamics, the corresponding periodic orbits
would belong to a certain class of small bodies in a stable
motion. von Zeipel specifically depicts the characteristics of
the orbits in this state as follows:

“We can apply the result of this issue by calculat-
ing, according to no. Z7, Z8 and Z9, the series
of Lindstedt, which exist when the elements are in
the vicinity of the points (Z135). The correspond-
ing orbits belong to a certain class of comets in
stable motion. In these orbits, the semimajor axis,
eccentricity and inclination are more or less almost
constant; the perihelion distance to the node is still
close to 0 or π ; the line of nodes has a retrograde
motion; Finally, the orbits of the comet and of the
disturbing planet are situated relative to the other
like the rings of a chain.” (p. Z413)

Let us present a numerical demonstration of some typical
orbits that von Zeipel depicts as “rings of a chain.” Using the
numerical quadrature defined by Eq. (K09-54), we produced
equi-R contours of three CR3BP systems with different pa-
rameter sets: (α, k2) = (0.9, 0.400), (α′, k2) = (0.7, 0.600),
and (α′, k2) = (0.8, 0.313). We show the results in Fig. 24.
Here we intentionally chose large α or α′ in order to real-
ize the circumstance that von Zeipel considered. In addition
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Fig. 24. Equi-potential contours and trajectories of fictitious perturbed bodies that realize the circumstance of “rings of a chain.” a: An inner case
with (α, k2) = (0.9, 0.400). b: An outer case with (α′, k2) = (0.7, 0.600). c: An outer case with (α′, k2) = (0.8, 0.313). The solid black lines
(equi-potential contours) are drawn based on the numerical quadrature defined as Eq. (K09-54). The green dots are the actual trajectories of the
perturbed bodies obtained through direct numerical integration of the equations of motion, starting from several initial locations beyond the lines of
orbit intersection. The conditions of the numerical integration of the equations of motion are as follows: For the panels a and b, the nominal stepsize is
2 days, and the total integration time is 10 million years with a data output interval of 500 years. The ratio of the perturber’s mass and the central mass
is 3.0404326 × 10−6 which is close to the mass ratio of the Earth+Moon and the Sun. For the panel c, the nominal stepsize is 4 days, and the total
integration time is 30 million years with a data output interval of 500 years. The ratio of the perturber’s mass and the central mass is 9.5479194 × 10−6

which is close to 1
100 of the mass ratio of Jupiter and the Sun. The meanings of the red and the blue partial circles (the lines of orbit intersection), as

well as that of the black dashed circles at the outer boundary (although it is hard to see in the panels), are the same as in Fig. 8.

to the numerical quadrature, we carried out direct numerical
integration of the equations of motion of typical objects that
stay in the area corresponding to the domain B or B ′ in Fig.
11, and plotted the result. In all the three panels of Fig. 24,
the existence of periodic orbits along the direction of g = 0
and g = π in the domains B and B ′ is obvious. These orbits
literally possess the characteristics that von Zeipel mentions
on p. Z413: The eccentricity e and inclination I are more or
less constant, and the argument of pericenter g stays around
0 or π in the domains B and B ′. The longitude of ascending
node h has a retrograde motion (although we do not show
their time series here). Most importantly, these orbits in B
or B ′ realize the geometric state that von Zeipel described as
“the orbits of the comet and of the disturbing planet are sit-
uated relative to the other like the rings of a chain,” beyond
the lines of orbit intersection (the red and blue partial circles
drawn in Fig. 24).

Note that in the panels a and c in Fig. 24, we find tra-
jectories around a pair of stationary points along the axis
of g = ±π

2 . However, these trajectories and the stationary
points are located in the areas of A or A′ in Fig. 11, not B or
B ′. There, the orbits of the perturbed and perturbing bodies
do not compose “rings of a chain.” Therefore, they are out
of von Zeipel’s consideration.

In the current solar system we find some objects whose
orbits are approximately located in the domain B or B ′ in
Fig. 11. One of the examples is the comet 122P/de Vico
(1846 D1) mentioned in Bailey et al. (1992, Table 2 on their
p. 319). This comet has α′ ∼ 0.295, and its k2 value
is very small

(
k2 ∼ 0.000437

)
due to its large eccentricity

(e ∼ 0.963). Since its inclination is also large (i ∼ 85◦.38),
and since its argument of perihelion is relatively close to

zero (g ∼ 0.0746π), this comet’s orbit is expected to have
a state of “a ring of a chain” with respect to its main per-
turber, Jupiter. We once tried to draw its equi-R contours on
the usual (e cos g, e sin g) plane in the framework of CR3BP
having Jupiter as the perturber. However, it turned out that
the polar coordinates (e cos g, e sin g) is not quite suitable for
drawing trajectories of this comet because its eccentricity is
too large. The trajectory that this comet makes is located too
close to the outer boundary of the (e cos g, e sin g) plane, and
the equi-potential contours become very busy. Therefore,
instead, we used the rectangular coordinates (g, η) where
η = √

1 − e2, which is similar to Kozai’s (2g, η2) plane. Us-
ing these coordinates, in Fig. 25 we plotted equi-R contours
for this comet obtained through the numerical quadrature de-
fined in Eq. (K09-54). Here, we assume that Jupiter with the
present mass on a circular orbit with the present semimajor
axis is the only perturber.

We also carried out direct numerical integration of the
equations of motion of this comet in the framework of
CR3BP, and plotted its trajectory superposed on the equi-R
contours in Fig. 25. This figure evidently tells us that, for a
while this comet stays around the stationary point along the
g = 0 axis, which corresponds to the domain B in Fig. 11.
These are the very characteristics that von Zeipel described.
However as we see in Fig. 25, the cometary trajectory soon
(within about 2.3 million years) moves away toward another
stationary point centered at g = π

2 , which corresponds to
the area A in Fig. 11. There, the cometary orbit no longer
composes a chain ring with Jupiter’s orbit.

Readers must be aware that the motion of the comet
122P/de Vico described in Fig. 25 is a demonstration within
the framework of CR3BP. The actual motion of the comet in
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Fig. 25. The equi-potential contours and numerical trajectories of the
comet 122P/de Vico under the CR3BP framework plotted on the (g, η)

plane. The comet has the parameters of (α′, k2) ∼ (0.295, 0.000437).
The green dots are the trajectories of this comet obtained through di-
rect numerical integration of the equations of motion where we assume
Jupiter on a circular orbit with the current semimajor axis and the cur-
rent mass to be the perturbing body. As for the numerical integration,
the nominal stepsize is 4 days, and the total integration time is 5 mil-
lion years with a data output interval of 500 years. The initial start-
ing point of the numerical integration is shown as a filled black square
at (g, η) = (0.0746π, 0.271). The red and the blue curves are topo-
logically equivalent to the red and the blue partial circles presented on
the (e cos g, e sin g) plane, such as in Fig. 24. The black dashed line
near the bottom of the plot implies the upper boundary of the perturbed
body’s eccentricity, equivalent to the black dashed circles presented on
the (e cos g, e sin g) plane, such as in Fig. 24. The red and the blue curves
divide the plane into five domains which correspond to the domains A,
A′, B, B ′, and C designated in Fig. 11.

the actual solar system with many perturbers is much more
complicated than what is shown in Fig. 25, as Bailey et al.
(1992) showed by their numerical integration.

As far as we are aware, currently the modern standard of
the secular dynamical theory that can deal with orbit inter-
section of this kind is the work of Gronchi and Milani (1998,
1999). Some numerical demonstrations had existed before
their work, but just for several special cases (e.g. Quinn
et al., 1990; Bailey et al., 1992). Gronchi and Milani (1998)
showed that it is possible to define a generalized averaged
equation of motion even for a planet-crossing asteroid with
singularities. They actually obtained generalized solutions
that are unique and piecewise smooth with the help of an ap-
proximation proposed by Wetherill (1967) and the method of
Kantorovich of extraction of singularities (e.g. Demidovich
and Maron, 1966). Following this achievement, Gronchi and
Milani (1999) proved that there is a stable region of orbits of
the perturbed body for any values of a and k2 of an asteroid
(or comet) and for any number of perturbing bodies with pla-
nar and circular orbits. While von Zeipel tried to obtain an
expression of the disturbing function in each of the separated
domains A, B, C , · · · in Fig. 11, Gronchi and Milani’s ap-
proach is to obtain an expression of the disturbing function
that is common to all the regions. Although it is out of the
scope of this monograph, it would be interesting to quanti-

tatively compare their theory with von Zeipel’s to examine
their difference and similarity in detail.

5.8.1 Motion of 1P/Halley In the process of portray-
ing their theoretical framework, Gronchi and Milani (1999,
their Fig. 6 on p. 934) took one of the most famous comets—
1P/Halley—as an example, and discussed its motion under
the perturbation from major planets. According to one of
their equi-potential diagrams (the bottom right panel in their
Fig. 6), the motion of a 1P/Halley-like object has a stable
equilibrium point around g = π

2 with a large eccentricity, al-
though its equi-potential surface is irregularly shaped due to
the lines of orbit intersection with major planets. Here, we
want readers to recall that von Zeipel also carried out a quan-
titative demonstration on the secular motion of 1P/Halley
earlier in his Section Z21 (see p. 61 of this monograph).
Let us cite von Zeipel’s words about it:

“It might be interesting to apply the results of the
previous issue to a case in the nature,” (p. Z395).

Note that “the results of the previous issue” indicates his the-
oretical development on the doubly averaged inner CR3BP
(where α < 1, as we have seen in his Sections Z16–Z20).

von Zeipel begins his Section Z21 with a calculation of
1P/Halley’s eccentricity at one of its stationary points, e0.2,
using its orbital elements known at that time. He used the
CR3BP framework including Jupiter as the perturbing planet
on a circular orbit. He estimates 1P/Halley’s semimajor axis
as a = 17.9676 au according to Galle (1894), saying:

“The semi-major axis of the orbit of this comet is

17.9676.

This is the average distance [obtained from] all
the apparitions of the comet from 1378 until 1835.
(See J. G. Galle, List of elements of the previously
calculated comets.) Choosing the semimajor axis
of the orbit of Jupiter as unit length, we thus obtain

α = 17.9676 : 5.202800 = 3.45345.

” (p. Z395)

For calculating k and k ′ of 1P/Halley, von Zeipel used its
osculating orbital elements known at that time published in
Galle (1894, pp. 50–51) and Rosenberger (1835a,b). They
are tabulated on an unnumbered table on p. Z395 as

g = 110◦37′59′′,
h = 55◦9′47′′,
I = 162◦14′43′′,
e = 0.96738879,

(379)

with a notice of “equinox through 1835 November 15.94542
t. m. of Paris.” von Zeipel converts these orbital elements
into those on the solar system invariable plane, saying:

“By comparing the elements at the invariable plane
of the solar system and by taking the value of the
acute angle for the inclination, we obtained

I = 18◦47′44′′, g = 114◦27′26′′.
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We see that g is not very distant from 90◦.
[From] the values indicated for e and I , we give,
for k and k ′, the numbers as follows

k =
√

1 − e2 cos I = 0.239789,

k ′ =
√

1 − k2 = 0.970825,

” (p. Z396)

von Zeipel then moves on to the calculation of 1P/Halley’s
e0.2. For this purpose he did not use his own approximation
formula presented as Eq. (Z94-314). Instead, he resorted to
a numerical quadrature of R along the axis of g = π

2 . We
literally cite von Zeipel’s words:

“Since k is not very small, we have not employed
the development (Z94) to calculate e0.2. We have
preferred to determine this quantity by calculating,
by means of mechanical quadrature, a certain num-
ber of values of the function R on the axis, where
g = π

2 . The value of e, which renders R = mini-
mum, is the sought value of e0.2.

In these calculations, we used the formulas
(Z48), (Z51) and (Z53). The field of integration
was divided by 10◦ to 10◦. To calculate the com-
plete elliptical of the first kind, the tables of Leg-
endre were employed.” (p. Z396)

The resulting values of e and R are tabulated on an un-
numbered table on p. Z396. From the tabulated values, von
Zeipel draws the following conclusion:

“These numbers are found by means of interpola-
tion calculations that

e0.2 = 0.9537.

It is therefore a value very close to the actual
eccentricity of the orbit of Halley’s comet.” (p.
Z396)

Instead of transcribing von Zeipel’s table, we have made
a visual plot of the numbers tabulated in this table on an
(e, R) diagram (Fig. 26). We see a local minimum of R
in this figure, and the eccentricity value at that place seems
to match what von Zeipel estimated as e0.2 above (0.9537).
Although he did not explicitly state this, we guess that von
Zeipel wanted to claim that 1P/Halley’s argument of peri-
helion is currently located in the libration area centered at
(e, g) = (e0.2,

π
2 ). As a more straightforward demonstra-

tion, we carried out a set of numerical quadrature and di-
rect numerical integration of the equations of motion of this
comet, and drew the result on the (g, η) plane. We placed
Jupiter on a circular orbit with the current semimajor axis
and the current mass as the perturbing body. The result is
shown in Fig. 27. Under the CR3BP framework, we see that
1P/Halley’s g librates at g = π

2 as von Zeipel predicted. In
addition, the eccentricity value at the libration center that our
calculation indicates (the small magenta triangle in Fig. 27)
seems almost the same as what he calculated (e = 0.9537,
or η ∼ 0.301). Here again, we believe that the accuracy of
von Zeipel’s theory is confirmed.

Fig. 26. A visualization of von Zeipel’s unnumbered table on p. Z396 that
shows the dependence of comet 1P/Halley’s R on its eccentricity e along
the axis of g = π

2 . We simply connected the filled black circles (von
Zeipel’s tabulated values) by straight line segments.

Readers should be aware that, unlike 122P/de Vico,
1P/Halley is not in the state of “rings of a chain” with the
perturber (Jupiter) in this dynamical setting. As the pericen-
ter of this comet is inside the perturber’s orbit, and as the
apocenter of this comet is outside the perturber’s orbit, it ap-
parently seems that the orbit of this comet is located across
the line of orbit intersection. However as seen in Fig. 27,
the motion of this comet is confined in the domain A defined
in Fig. 11 with its argument of perihelion g librating around
π
2 . Therefore its orbit does not make a “chain” with the per-
turber’s orbit. For a perturbed body’s orbit to compose a ring
of a chain with perturber’s orbit, the perturbed body’s motion
must be confined in the domain B or B ′ with its argument of
perihelion g librating around 0 or π .

Note also that our numerical result shown in Fig. 27 is just
a numerical demonstration for confirming the validity and
accuracy of von Zeipel’s theoretical estimate on 1P/Halley’s
motion. In the actual solar system, close encounters with ma-
jor planets frequently change this comet’s orbital elements,
and its trajectory cannot remain regular. Even in the CR3BP
approximation that we used to draw Fig. 27 we see an irreg-
ular oscillation in its trajectory, and this comet could not stay
in the libration area centered at g = π

2 for more than one mil-
lion years. Hence, it is easy to imagine that the actual motion
of 1P/Halley in the actual solar system is much more com-
plicated and irregular. This has been demonstrated by many
previous studies (e.g. Chirikov and Vecheslavov, 1989; Lo-
hinger et al., 1995; Bailey and Emel’yanenko, 1996; Muñoz-
Gutiérrez et al., 2015; Boekholt et al., 2016). It is worth
noting that Kozai (1979, his Fig. 4 in p. 234) analyzed
1P/Halley’s orbital motion through an equi-potential dia-
gram, assuming four giant planets (Jupiter, Saturn, Neptune,
and Uranus) as perturbers on circular orbits.

5.9 Some other extensions
The last section in von Zeipel’s Chapter IV (Section Z25),

as well as his last chapter (Chapter V, Sections Z26–Z28),
are both short. They are devoted to describing some other
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Fig. 27. The equi-potential contours and numerical trajectories of the comet
1P/Halley under the CR3BP framework plotted on the (g, η) plane. The
comet has the parameters of (α′, k2) ∼ (0.292, 0.0558). The green dots
are the trajectories of this comet obtained through direct numerical inte-
gration of the equations of motion where we assume Jupiter on a circular
orbit with the current semimajor axis and the current mass to be the per-
turbing body. As for the numerical integration, the nominal stepsize is 1
day, and the total integration time is 1 million years with a data output
interval of 500 years. The initial starting point of the numerical inte-
gration is shown as a filled black square at (g, η) = (0.621π, 0.254).
We also plotted 1P/Halley’s e0.2 value that von Zeipel calculated as the
magenta filled triangle at (g, η) = ( π

2 , 0.301) based on his estimate,
e0.2 = 0.9537. The meanings of the red and the blue curves, that of
the black dashed line near the bottom, and the designation of the domains
A, A′, B, B ′, and C , are all common to those of Fig. 25. Note that the
range of the vertical axis (η) is narrower here than in Fig. 25. This is
because 1P/Halley’s eccentricity is smaller than de 122P/Vico.

extensions of his theory.

5.9.1 Secular motion near the e = k ′ circle Sec-
tion Z25 is about a treatment of the doubly averaged mo-
tion of a perturbed body near the outer boundary of the
(e cos g, e sin g) plane; in other words, near the circle e = k ′.
von Zeipel had mentioned this issue once in Section Z15 in
his Chapter III in a general form (see p. 50 of this mono-
graph). His discussion in Section Z25 eventually goes to-
ward a statement at the end of this section (pp. Z414–415.
We cite it later on p. 80) that, there exists a stable motion of
perturbed body with e ∼ k ′ on nearly a planar orbit. Below,
let us quickly follow von Zeipel’s argument.

As we have seen, perturbed body’s inclination I becomes
small when its eccentricity e approaches its largest value (k ′)
in the doubly averaged CR3BP. This is due to the conser-
vation of the quantity k2 = (

1 − e2
)

cos2 I . In order to deal
with the motion of perturbed bodies with large e and small I ,
von Zeipel brings up a different set of variables, (ξ ′, η′). Ac-
tually, he had already defined them in Section Z3 (his Chap-
ter I, pp. Z349–Z350. See also p. 42 of this monograph). See
Eqs. (196) and (197) in this monograph for the definitions of
ξ ′, η′ as well as those of x ′

1, x ′
2, x ′

3, y′
1, y′

2, y′
3. He first men-

tions the fact that the motion of the perturbed body near the
outer boundary e = k ′ on the (e cos g, e sin g) plane is trans-
lated into the motion around the origin (0, 0) on the (ξ ′, η′)
plane. At the same time, von Zeipel reminds readers of the

fact that the outer boundary e = k ′ on the (e cos g, e sin g)

plane behaves like a local maximum of the doubly averaged
disturbing function R, particularly when α is small (see p.
53 of this monograph) or when α′ is small (see p. 63 of this
monograph). He came to the conclusion that on the (ξ ′, η′)
plane, the origin (0, 0) becomes a local maximum. Let us
cite his original description about this:

“By studying the function R for small values of α

in no. Z16 and for small values of α′ at no. Z22,
we have already remarked that, in both cases, the
function R increases if, g remaining constant, the
eccentricity e increase toward the value k ′. The
formula (Z42) shows that the inclination I de-
creases toward zero when the eccentricity e in-
creases toward k ′. For values of e close to k ′, it is
therefore advantageous to introduce the variables
of no. Z3. Among the variables ξ ′, η′ of this no.
Z3 and Keplerian variables, we obviously have the
following relations

ξ ′2 + η′2 = 2
√

a
√

1 − e2 − 2
√

a
√

1 − e2 cos I

= 2
√

a
(√

1 − e2 − k
)

η′ : ξ ′ = tan g.

Therefore if, g remaining constant, the eccen-
tricity e increases towards k ′, the corresponding
point ξ ′, η′ approaches the origin on a straight line.

It is therefore necessary to conclude that the
function R, regarded as a function of variables ξ ′

and η′ of no. Z3, has a maximum value at point
ξ ′ = η′ = 0, if α is small enough or if α′ is small
enough.” (p. Z413)

Note that η′ : ξ ′ means η′
ξ ′ in the above.

von Zeipel then reminds readers of the condition for R to
be holomorphic (regular) over the entire region of e ≤ k ′.
This condition was already presented around Figs. Z1–Z5
on his p. Z369 (see Fig. 11 of this monograph, Eq. (227),
and the discussions presented on pp. 47–49), but von Zeipel
repeats it again here. Let us cite his words:

“We already know that R is holomorphic in the
neighborhood of ξ ′ = η′ = 0 as soon as

0 < α <
1

1 + k ′

or else

0 < α′ < 1 − k ′,

(Z136-380)

(see Chapter III).” (p. Z413)

The first inequality of Eq. (Z136-380) corresponds to the
circumstance that is depicted in Fig. 11a for the inner prob-
lem. The second inequality corresponds to the circumstance
depicted in Fig. 11e for the outer problem.

Now, von Zeipel assumes that R can be Taylor-expanded
using ξ ′2 and η′2 around the origin (ξ ′, η′) = (0, 0), similar
to the case when he expanded R using x2 = e2 cos2 g and
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y2 = e2 sin2 g (see Eq. (Z77-254) or Eq. (Z99-327)). Let us
cite his words again:

“Then, given the properties of symmetry of the dis-
turbing function exhibited at no. Z4, it is necessary
that R is of the form

R = R′′
0.0 + R′′

2.0ξ
′2 + R′′

0.2η
′2 + · · · .

From what has been said earlier, the inequalities

R′′
2.0 < 0, R′′

0.2 < 0 (Z137-381)

exist as soon as, k ′ having been arbitrarily fixed but
< 1, we choose α or α′ small enough.” (p. Z413)

So far, von Zeipel’s statement has been about the case
when α or α′ (a or a′ in his notation) is small. Then, would
the two inequalities in Eq. (Z137-381) both hold true even
when α (or α′) is not small? He questions this issue right
after the previously quoted part:

“One may wonder if these inequalities [in Eq.
(Z137-381)] always take place at the same time
as one or other of the inequalities [in Eq.]
(Z136-380).” (p. Z414)

To answer to this question, von Zeipel first considers the
second inequality of Eq. (Z137-381), R′′

0.2 < 0. Although
we do not reproduce his specific calculations, in the end he
concludes that R′′

0.2 < 0 is always satisfied if either of the
inequalities in Eq. (Z136-380) is satisfied, i.e. in the cases
of Fig. 11a or Fig. 11e. Note that von Zeipel develops
this consideration (on p. Z414) without showing the actual
function form of R(ξ ′2, η′2).

As for the first inequality of Eq. (Z137-381), R′′
2.0 < 0,

von Zeipel admits the difficulty of its proof when α or α′

is not small. Instead, he considers this inequality from its
dynamical aspect. Here is how he describes his thought:

“It seems to be more difficult to rigorously discuss
the sign of the coefficient R′′

2.0 when α or α′ is no
longer a relatively small quantity. But, see what
would happen if the coefficient R′′

2.0 could be posi-
tive, given one or other of the inequalities (Z136).
Then the function R has a minimaxima value at the
point ξ ′ = η′ = 0. As a result, an orbit infinitely
less inclined to the orbit of the disturbing planet
and [yet] can never meet the orbit of this planet,
could, by the effect of secular perturbations, ob-
tain a finite inclination. It seems very unlikely. I
therefore thought that it would probably be use-
less to examine the sign of the coefficient R′′

2.0 by
means of numerical calculations [that would be]
inevitably quite long.” (p. Z414)

From the above considerations, at the end of Section Z25
von Zeipel makes a prediction on the existence of a class of
cometary orbits. His words are as follows:

“It must be concluded from these studies and those
of no. Z12 that there exist orbits of comet[s] in sta-
ble motion, whose inclinations are small, and for

which the distance from the perihelion to the node
possesses a positive mean motion (of the value +σ

from no. Z7). In these orbits the eccentricity is
approximately constant (= k ′) as well as the semi-
major axis. Finally, the nodes rotate in the oppo-
site direction to the motion of the comet. Among
these orbits, two classes are distinguished. In one
[of them], the two nodes are located at the inside of
the orbit of the disturbing planet, [and] in the other,
the nodes are located, on the contrary, outside the
orbit [of the disturbing planet].” (pp. Z414–Z415)

For confirming von Zeipel’s statement and prediction de-
scribed above, particularly when α or α′ is not small, we
carried out direct numerical integration of the equations of
motion of two hypothetical perturbed bodies that are in the
above category. One of them composes an inner CR3BP
(α = 0.6), and the other composes an outer CR3BP (α′ =
0.394). The numerical results are presented in Fig. 28
together with the equi-potential contours for these objects
obtained through the numerical quadrature defined by Eq.
(K09-54). Note that in Fig. 28, we chose the conventional
coordinates (x, y) = (e cos g, e sin g) in this monograph, not
(ξ ′, η′). This is for emphasizing how close the actual trajec-
tories of the perturbed bodies (colored in green) are from
their maximum eccentricity boundaries, e = k ′. If we use
the coordinates (ξ ′, η′), all the numerical trajectories would
concentrate on the vicinity of the origin (0, 0) of the plane,
and would be very hard to distinguish.

By looking at Fig. 28, we can say that our numerical cal-
culation reproduces well the orbital characteristics of the per-
turbed bodies that von Zeipel described. In both the panels a
(the inner case) and b (the outer case), the perturbed body’s
motion is stable for a long time with a large, nearly constant
eccentricity (e ∼ k ′) and a small, nearly constant inclina-
tion. The argument of pericenter g circulates. Therefore we
can conclude that von Zeipel’s prediction above (the possible
existence of a stable motion of a perturbed body with a large,
nearly constant eccentricity on nearly a planar orbit with the
circulating argument of pericenter) is correct, even when α

or α′ is as large as that shown in Fig. 28.
In the actual solar system, there is a category of small ob-

jects that possesses the characteristics that von Zeipel men-
tioned above. For example, as pointed out in the caption of
Fig. 28, the perturbed body used in the system b is a proxy
of an actual TNO (transneptunian object), 2000 PH30. In
the system b, we placed a Neptune-like planet on a circu-
lar orbit as the perturbing body so that they make an outer
CR3BP. Therefore the value α′ = 0.394 adopted here is
close to the semimajor axis ratio between Neptune and 2000
PH30. This object has the parameter k2 ∼ 0.733, therefore
k ′ = √

1 − k2 ∼ 0.516. Hence the ratio between e and k ′ of
the perturbed body is quite large: e

k ′ > 0.972. This indicates
that this object’s eccentricity is very close to the theoretical
maximum in the CR3BP framework.

TNOs that possess both a large semimajor axis and a
large eccentricity are collectively called the scattered TNOs
(e.g. Gladman et al., 2008; Gomes et al., 2008; Lykawka
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Fig. 28. The equi-potential contours and numerical trajectories of perturbed bodies in two CR3BP systems whose eccentricities are close to their maximum,
k′. a: A fictitious body in an inner CR3BP system whose α = 0.6 and k2 = 0.75. This means k′ = √

1 − k2 = 0.5. The ratio of the perturber’s mass
and the central mass is 9.5479194 × 10−5 which is close to 1

10 of the mass ratio of Jupiter and the Sun. This system models a main belt asteroid orbiting
inside Jupiter’s orbit. In this system, the perturbed body’s initial inclination is zero because e = k′ is satisfied at the beginning. Thus its inclination
remains zero (i.e. the planar orbit) throughout the calculation period because both the perturbed body’s orbit and the perturbing body’s orbit stay in the
same plane. b: A fictitious body in an outer CR3BP system whose α′ = 0.394 and k2 = 0.733. This means k′ = √

1 − k2 ∼ 0.516. The ratio of the
perturber’s mass and the central mass is the same as in the panel a. This system models a TNO orbiting outside Neptune’s orbit. In fact, the perturbed
body in the system b is a proxy of an actual TNO, 2000 PH30 whose orbital elements are a = 77.07718637 au, e = 0.50203455, and I = 8◦.048740
according to astorb.dat provided by Lowell Observatory as of September 28, 2018 (see Supplementary Information 3 for its specific website). The
value α′ = 0.394 adopted here is close to the semimajor axis ratio between Neptune and this object. In both the panels, the green dots near the outer
boundary (e = k′) indicate the trajectories of perturbed bodies obtained through direct numerical integration of the equations of motion. Parameters for
the numerical integration are common to both a and b: the nominal stepsize is 4 days, the total integration time is 8 million years with a data output
interval of 500 years. The meanings of the red and the blue circles, as well as the black dashed circles near the outer boundaries, are common to those
in Fig. 25 and in Fig. 27. As usual, equi-potential contours of the perturbed body obtained through the numerical quadrature defined by Eq. (K09-54)
are drawn in the black solid lines in both panels.

and Mukai, 2007a,b, 2008; Lan and Malhotra, 2019). Since
many of the scattered TNOs have a much larger inclination
than 2000 PH30, this object may perhaps be an exception
among this group. However, it is still interesting to know
that there is at least one transneptunian object that fulfills
von Zeipel’s prediction, and possibly many more. If we dare
define this as von Zeipel’s “unintentional prediction” of a
class of TNOs, we could say that it was achieved more than
30 years before Kenneth Edgeworth’s prediction of a small
body population beyond Neptune’s orbit (Edgeworth, 1943,
1949). The number of objects in this category will surely
increase along with the progress of ongoing and future ob-
servational surveys (e.g. LSST Science Collaboration, 2009;
Yoshida et al., 2011; Bannister et al., 2016), which will fur-
ther illuminate the foresight of von Zeipel on this subject.
See p. 101 for a further discussion on this subject.

5.9.2 Two or more perturbers von Zeipel’s final
chapter is very short, entitled “Chapitre V. Généralisations.
Applications aux orbites instables,” and includes four sec-
tions (Z26–Z29) over just four pages. This chapter is about a
generalization of von Zeipel’s theory in order to incorporate
N perturbing planets (N ≥ 2), assuming that their eccentric-
ities and inclinations are so small that we can ignore them.
Although it may be practically a useful extension for actual
problems in solar system dynamics, we think von Zeipel’s
descriptions in this chapter are too short to accomplish his

original intention. It is also hard for us to confirm the va-
lidity or accuracy of his discussion just from the description
he put in this chapter. Therefore, what follows is our own
interpretation of what he intended to claim.

Let us begin by telling readers an incidental but interesting
fact. According to the ADS records as of September 15,
2019, the only citation of von Zeipel (1910) in the modern
literature was made by Bailey and Emel’yanenko (1996).
And, the reason why they cited von Zeipel’s work is due to
the subject in his Chapter V. The description in Bailey and
Emel’yanenko (1996) reads:

“It is well known that if NP planets are assumed
to be on coplanar circular orbits, the problem of
the motion of a small body under the influence of
the secular part of the disturbing function is inte-
grable (Zeipel 1910; Moiseev 1945; Kozai 1962;
Vashkov’yak 1981a,b), and may be reduced to a
description of the integrable curve in the (e, ω)

plane.” (Bailey and Emel’yanenko, 1996, the left
column on p. 1095, the beginning of Section 5)

From what we have seen, we learned that the addition
to CR3BP of a perturbing planet orbiting on a planar and
circular orbit (e′ = I ′ = 0) would not increase the degrees
of freedom after averaging, and the system would remain
integrable. This principle would not be different even when
N perturbing planets are included. The only issue would be
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how to specifically calculate the secular perturbation from
the multiple perturbers. At the beginning of his Section Z26,
von Zeipel states the issue as follows:

“In what preceded, we have assumed that there
was one disturbing planet, and that the eccentricity
of its orbit was zero. But it is possible to generalize
[this study] by assuming that the number of dis-
turbing planets is any N and that their masses as
well as the eccentricities and inclinations of their
orbits are small.” (p. Z415)

After some preparation such as extending the variables
and secular equations of motion for the N -perturber system,
von Zeipel claims that the doubly averaged disturbing func-
tion R that contains perturbations from multiple perturbing
planets is composed by a sum of multiple disturbing func-
tions. Let us cite his original description:

“. . . By neglecting these first modules, which is
equivalent to neglecting the eccentricities and the
inclinations, the function R has the form

R = R(0) =
N∑

i=1

βi

ai
Ri . (Z140-382)

The βi are the masses of the planets, the mass of
Jupiter being chosen as the unit; the ai are the zero-
order secular parts of the semimajor axes of the
orbits of the planets; finally Ri are obtained by the
formula (Z44) by putting only

a

ai
instead of a.

” (p. Z416)

As a result of his consideration and approximation, it turns
out that we can again use Eq. (Z12-220) as the equations of
motion of the multiple perturber system. The only difference
from the single perturber system is that we would have to
replace R in Eq. (Z12-220) for R(0) in Eq. (Z140-382).
Consequently, it would be possible to construct the Lindstedt
series if R(0) possesses the local extremum.

In Section Z27 von Zeipel studies the characteristics of
R(0) in Eq. (Z140-382), and tries to locate its local ex-
tremums if any. He first mentions the fact that, when there
are N perturbers, the phase space (x, y) = (e cos g, e sin g)

is divided into pieces by N pairs of circles. The N pairs of
circles are expressed by the following equations:(

x ± ai

2a

)2
+ y2 =

(
1 − ai

2a

)2
i = 1, 2, · · · N .

(Z141-383)

This is topologically different from the single perturber sys-
tem where the phase space is divided just by a pair of circles
expressed as Eq. (Z45-228).

Although von Zeipel did not show any figures that demon-
strate the phase space division by N perturbers represented
by Eq. (Z141-383), Gronchi and Milani’s (1999) Fig. 1 on
their p. 929 is an exact example of how the multiple circles

(Z141-383) divide the phase space. von Zeipel insists that
each of the divided domains has a corresponding disturbing
function. Literary citing his words:

“By means of these circles, the domain (Z46) will
be divided into a certain number of parts (D j ). In
any of these domains (D j ) [there] corresponds to a
function R j , holomorphic in this domain and on its
boundaries (except the circle e = k ′), and giving
the value of R(0) in this domain.” (p. Z416)

von Zeipel continues his discussion in the subsequent sec-
tion (Z28). He particularly focuses on the search for, and
evaluation of, local extremums of R(0) in each of the di-
vided domains. He begins the study in this section with a
description of the behavior of R(0) at the coordinate origin,
(ξ, η) = (0, 0). Citing his words:

“Now consider the maximum and minimum values
of the function R(0).

At the origin ξ = η = 0, the function R(0) can
be minima, maxima or minimaxima according to
the values of parameters a and k. It is obvious that
R(0) is always minimum at the origin if k2 is close
enough to unity.” (p. Z417)

In the analogy of what von Zeipel has demonstrated over
the past chapters, we find the above statement correct. Note
that the variables (ξ, η) were defined earlier in his Chapter I
(p. Z349; see Eqs. (189) and (190)). If we use the ordinary
Delaunay elements, they are expressed as follows:

ξ =
√

2(L − G) cos g, (384)

η = −
√

2(L − G) sin g. (385)

From the definitions in Eqs. (384) and (385), we anticipate
that R(0)’s behavior on the (ξ, η) plane is topologically the
same as that on the (x, y) = (e cos g, e sin g) plane.

In the second and the third paragraphs of Section Z28,
von Zeipel gives a description of a system where all the
disturbing planets are located outside the perturbed body.
This kind of system can be regarded as an extension of the
inner CR3BP. We cite his description:

“Consider first the orbits where a is smaller than
the semimajor axis of the orbit of Jupiter. Given
the dominant mass of this planet, it is clear, look-
ing at the tables giving R2.0, R0.2, R′

2.0 and R′
0.2,

that the function R(0) is minima at the origin ξ =
η = 0 if

k2
0.2 < k2 < 1

and minimaxima if

0 < k2 < k2
0.2.

The proposition on the page Z390 and the re-
mark on [the] revolution of planetary system of the
page Z392 are still valid for the parts of the solar
system at the interior of the orbit of Jupiter. Only,
by the effect of other planets, the limit I0.2 (of the
page Z389) will be a little high.” (p. Z417)
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Later in this monograph (p. 99) we will briefly state what
we think he meant by “the remark on [the] revolution of
planetary system of the page Z392”.

In von Zeipel’s above statement, the last sentence on the
change of the limiting inclination I0.2 “Only, by the effect
of other planets, the limit I0.2 (of the page Z389) will be a
little high” draws our particular attention. Let us interpret it
as follows. Consider a typical inner CR3BP system, Sun–
asteroid–Jupiter. Then, the addition of yet another disturb-
ing planet orbiting exterior to Jupiter’s orbit (such as Saturn)
would change the shape of the total disturbing potential that
the perturbed asteroid feels. It means that the condition for
the equilibrium points to occur could be less easily achieved.
Let us choose an asteroid with α = 0.65 as an example of
perturbed body. According to our Fig. 15 (p. 57), its limiting
inclination I0.2 is roughly 27◦.6 (equivalent to k2

0.2 ∼ 0.785).
Now, consider yet another disturbing planet orbiting exte-
rior to Jupiter’s orbit. The α value of the perturbed asteroid
with respect to this new, exterior perturber (referred to as αe)
would then become smaller than 0.65 (i.e. αe < α). This
means that the limiting inclination with respect to the new
exterior perturber (referred to as I e

0.2) would be larger than
I0.2. If we place the two perturbers (Jupiter and the exterior
planet) at the same time in this system, the total perturba-
tion from the two perturbers would be a combination of the
two CR3BPs that have a limiting inclination of I0.2(α) and
I e
0.2(α

e), respectively. And, since I e
0.2 > I0.2, the resulting

limiting inclination of the perturbed asteroid in the two per-
turber system would be larger than I0.2. This is our interpre-
tation of von Zeipel’s above sentence.

In the following paragraph of Section Z28, von Zeipel
gives a description of a system where all the disturbing plan-
ets are located inside the orbit of the perturbed body. This
kind of system can be regarded as an extension of the outer
CR3BP. At the same time, he also considers a system where
the orbit of the perturbed body is located just outside the or-
bit of one of the disturbing planets (so that the influence of
other disturbing planets gets relatively smaller). His remarks
about this are as follows:

“Consider then the values of a, which are larger
than the semimajor axis of the orbit of Jupiter. If a
is between certain limits, especially if a is larger
than the semimajor axis of the orbit of the last
planet (Neptune) or slightly larger than the semi-
major axis of the orbit of Uranus, Saturn or Jupiter,
then R(0) can be maximum for small values of k2.
Conversely, if a is a bit smaller than the semimajor
axis of the orbit of Saturn, R(0) is minimaximum
for small values of k2.” (p. Z417)

We already learned that, the doubly averaged disturbing
function for the outer CR3BP takes a local maximum at the
origin (x, y) = (0, 0) when k2 is small enough (see Fig. 17
or Fig. 19 of this monograph). von Zeipel’s first conclusion
in the above paragraph (“· · · if a is larger than the semimajor
axis of the orbit of the last planet (Neptune) · · · then R(0)

can be maximum for small values of k2”) seems consistent
with this fact. On the other hand, the last sentence of the

above paragraph (“Conversely, if a is a bit smaller than the
semimajor axis of the orbit of Saturn, R(0) is minimaximum
for small values of k2”) seems similar to the discussion that
we had at the inner CR3BP where R takes a saddle point at
the origin (0, 0) when k2 is small enough.

As a consequence of the above considerations, von Zeipel
reaches a specific conjecture, and writes:

“We can conclude from this that, in the solar sys-
tem, there may be orbits which are always not very
eccentric and have inclinations close to 90◦. These
orbits may exist somewhat outside the orbit[s] of
Jupiter, Saturn or Uranus. But above all, they
might be outside the last planet of the system.” (p.
Z417)

As we saw in Section 5.7 of this monograph about the
doubly averaged outer CR3BP, this kind of orbit—not very
eccentric, with a large inclination (if not nearly 90◦), and lo-
cated somewhat outside the outermost perturbing body—can
stably exist if k2 is small enough. An orbit of this kind would
be confined near the origin (0, 0) of the (e cos g, e sin g)

plane. For example, the CR3BP systems employed in Figs.
23a and 23e with (α′, k2) = (0.6, 0.2600) predict the exis-
tence of stable orbits of perturbed bodies whose inclination
is nearly 60◦ around the origin where e = 0.

If we turn our attention to the actual solar system, we rec-
ognize a certain number of objects in this category—small
e, large I , located somewhat outside the orbit of perturbing
planets, and whose k2 is small. We chose several small ob-
jects of this kind and listed them in Table 4. As seen in this
table, we may want to classify the candidate objects in two
categories. The first category comprises objects with very
small k2 and large inclination, but with moderate eccentric-
ity. The ten objects in the upper part of Table 4 denoted as
“small k2” correspond to these. See the caption of Table 4
for details of our empirical determination criteria. The sec-
ond category contains objects with a very small eccentricity,
but with a mildly high inclination, therefore their k2 is not so
small. The six objects in the lower part of Table 4 denoted as
“small e and large I ” correspond to these. Existence of these
two orbital characteristics may imply something about how
these objects were formed and how their orbits have been
dynamically evolved. But here, let us just emphasize that a
substantial number of small bodies in the actual solar system
satisfy the orbital conditions that von Zeipel has depicted, at
least partially. We believe this corroborates the correctness
of his theory. These objects are either Centaurs or TNOs
by definition, and their discoveries were made many decades
later than von Zeipel’s era—Centaurs were not discovered
until 1977 when (2060) Chiron was found, and TNOs were
not discovered until 1992 when 1992 QB1 was found, except
for Pluto which was discovered in 1930. As the number of
objects in these categories increases along with the progress
of observational surveys, the validity of von Zeipel’s theory
will be more rigorously verified and substantiated.

The next section (Z29) that closes von Zeipel’s work
(1910) is composed of a very brief consideration on the sec-
ular motion of a comet, 2P/Encke. This section seems to be
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Table 4. Osculating orbital elements a, e, I and the parameter k2 of several small objects in the actual solar system that can match von Zeipel’s description
in his Section Z28: Not very eccentric, with an inclination close to 90◦, and located somewhat outside the orbit of perturbing planet. The data is taken
from the file astorb.dat provided by Lowell Observatory as of September 28, 2018. We chose and put the objects into two categories. The objects in
the first category are those with very small k2 with a large inclination and moderate eccentricity. They are denoted as “small k2” on the left-end of the
table. Our empirical determination criteria for this category is k2 < 0.2. The objects in the second category have a very small eccentricity but with a
mildly high inclination; therefore their k2 is not quite small (denoted as “small e and large I ”). Our determination criteria for this category is e �0.08
and I (or π − I ) ranges from 40◦ to 50◦. The orbit type (Centaur or TNO) is based on the categorization by the JPL Small-Body Database Browser:
Centaurs are defined as objects with orbits between Jupiter and Neptune (5.5 au < a < 30.1 au), and TNOs are defined as objects with orbits outside
Neptune (a > 30.1 au). The ratio of the semimajor axes between each small object and its major perturbing planet (in the framework of the outer
CR3BP) is denoted as α′. This is either α′

J = aJ
a , α′

S = aS
a , α′

U = aU
a , or α′

N = aN
a , where aJ, aS, aU, aN are the semimajor axes of Jupiter, Saturn,

Uranus and Neptune, respectively. Note that, for each small object, we just put the value of α′ for the closest perturbing planet. For example, we only
showed the value of α′ = α′

S = 0.82219 for 2008 YB3, not α′
J, α′

U, or α′
N. This is because Saturn’s orbit is closer to this object than any of the other

three planetary orbits. Near the right-end of the table, “arc (d)” denotes the number of days spanned by the observational data arc for the object, and
nobs indicates the number of observations used to determine the orbital elements. We included these two columns to gauge the accuracy (or inaccuracy)
of the orbit determination for each object. Here is a note on the symbol (∗1) for the orbit type of 2015 KG157: This object’s orbital elements have been
determined from just twelve sets of observations (nobs = 12) spanning just two days (arc = 2). Consequently, they contain a non-negligible amount of
uncertainties. In fact, on the JPL Small-Body Database Browser its semimajor axis is denoted as a = 5.928588171390333±2.3908 au (as of November
14, 2018) which is slightly different from the value listed on astorb.dat, and its orbital type is categorized as Centaur. Similar uncertainties lie in the
orbital elements of 2006 HU122 and 2016 FM59 whose observational arcs are short. Note also that some of the TNOs in the table may be in the category
of resonant TNOs if their orbits are accurately determined. For example, 2014 XZ40’s orbital location is similar to that of Plutinos (those in the 2:3 mean
motion resonance with Neptune), and that of 2006 HU122 is rather close to the 4:7 mean motion resonance with Neptune. We would need a long-term
direct numerical integration for accurately characterizing their dynamical categorization. For a better understanding of what kind of orbits these objects
actually have, in Supplementary Information 5 we put figures for the orbital diagrams of all the objects listed in this table.

object type a (au) e I (deg) k2 α′ arc (d) nobs

sm
al

lk
2

outside Jupiter

2015 KG157 (∗1) 5.39893316 0.42080926 72.904103 0.07112 0.96363 (α′
J) 2 12

2007 VW266 5.44387890 0.39031355 108.310551 0.08366 0.95568 (α′
J) 38 59

2010 CR140 Centaur 5.62365608 0.40883143 74.667719 0.05823 0.92513 (α′
J) 1418 43

2012 YO6 Centaur 6.31511335 0.47807149 106.886748 0.06509 0.82383 (α′
J) 142 47

2014 JJ57 Centaur 6.99082311 0.29313977 95.922691 0.00973 0.74420 (α′
J) 2815 30

outside Saturn

2008 YB3 Centaur 11.62121366 0.44058710 105.059221 0.05440 0.82219 (α′
S) 3236 502

outside Uranus

2011 MM4 Centaur 21.14652789 0.47287733 100.490295 0.02574 0.90882 (α′
U) 2552 144

2007 BP102 Centaur 23.96197862 0.25905974 64.680786 0.17062 0.80204 (α′
U) 3396 51

outside Neptune

2011 KT19 TNO 35.58572066 0.33046594 110.102428 0.10523 0.84614 (α′
N) 1779 132

2008 KV42 TNO 41.58639205 0.49226472 103.398712 0.04068 0.72404 (α′
N) 3610 55

sm
al

le
an

d
la

rg
e

I

outside Jupiter

2016 LN8 Centaur 5.76477817 0.04542763 43.360457 0.52751 0.90248 (α′
J) 6290 94

outside Neptune

2014 XZ40 TNO 39.65156553 0.05013667 44.564654 0.50632 0.75937 (α′
N) 77 10

2013 SA87 TNO 41.67277625 0.07141871 40.868092 0.56895 0.72254 (α′
N) 1400 53

2004 DF77 TNO 43.55225696 0.02231651 43.670818 0.52293 0.69136 (α′
N) 17 4

2006 HU122 TNO 44.84803376 0.08128279 46.907861 0.46364 0.67139 (α′
N) 1 3

2016 FM59 TNO 45.12950220 0.05981495 131.522580 0.43788 0.66720 (α′
N) 3 9

an exposition of his theory on the doubly averaged restricted
systems with more than one perturbing body stated in this
chapter. However the description in this section is too con-
cise, and it does not seem to contain much quantitative ma-
terial that we should deal with in this monograph. Therefore
we do not go into the contents of this section.

6. Summary and Discussion
Since we are in the final part of this monograph, we bring

up several issues to conclude our study. In Sections 6.1, 6.2,
and 6.3, we try to organize and compare the achievements
presented in the works of Kozai, Lidov, and von Zeipel. Af-
ter that, in Section 6.4 we introduce von Zeipel’s earlier pub-
lications that can be regarded as a preparatory step toward
his 1910 paper. Finally in Sections 6.5 and 6.6, we express
our opinion as to how the secular dynamical effect discussed
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Table 5. A comparison of the achievements shown in Kozai’s, Lidov’s, and
von Zeipel’s work. Some symbols have superscript numbers that have
the following meanings: 1: There are some descriptions, but they are
very terse and do not seem complete. 2: Mentioned in Lidov (1963b,c)
just for a limited case when i = π

2 . 3: Described in Lidov (1963b,c) for
a limited case. 4: Orbital variation of the satellites of Uranus is discussed
in Lidov (1963b,c). 5: Described in Lidov (1963b,c) briefly. 6: Drawn
by hand, but topologically correct. 7: I0 and I0.2 of several asteroids such
as (2) Pallas or (531) Zerlina are calculated and discussed. 8: Motions
of 1P/Halley and 2P/Encke are quantitatively discussed. 9: Detailed
mathematical exposition is presented, but without tables or figures. 10:
Mathematical exposition is presented without tables or figures.

Kozai Lidov von Zeipel

General features and treatment of CR3BP

Hamiltonian formalism © — ©
Gauss’s form of equations — © —

single averaging — © —

double averaging © © ©
conservation of

(
1 − e2

)
cos2 i © © ©

conservation of total energy © © ©
numerical quadrature © — ©

direct numerical integration — © —

Doubly averaged inner CR3BP

libration of g around ± π

2 © © ©
conservation of c2-like variable — © —

solutions in special cases �1 © —

time-dependent analytic solution © �2 —

equi-potential contours © �3 ©6

treatment when α is not small © — ©
mention of actual objects © �4 ©7

oblateness of central mass — �5 —

Doubly averaged outer CR3BP

libration of g around ± π

2 — — ©
libration of g around 0 or π — — ©

equi-potential contours — — ©6

treatment when α′ is not small — — ©
mention of actual objects — — ©8

Other features and treatment

Treatment of orbit intersection — — ©9

Multiple perturbing bodies — — �10

in this monograph should be referred to, in comparison with
several historical examples.

For comparing the works of the three authors, we have
made a list of similarities and differences between the works
of Kozai, Lidov, and von Zeipel in Table 5. In this table, the
open circles (©) denote “achieved and clearly presented”
by the work. The long hyphens (—) denote “not achieved
or mentioned.” The open triangles (�) denote “partially
achieved or just mentioned, or mentioned in relevant pub-
lications.” We admit that our evaluation for these three cate-
gories (©, —, �) are subjective, and sometimes ambiguous.

For example, we graded “numerical integration of orbits” in
Lidov’s work as ©, but it can be arguable whether or not the
numerical integration presented in Lidov’s work is worth a
discussion in the context of modern celestial mechanics.

6.1 Achievements of Kozai’s work
Kozai’s work has been recognized as a classic in this line

of study. As we learned, he began with a general Hamil-
tonian formalism of the inner CR3BP, and derived the sec-
ular disturbing function through the double averaging pro-
cedure. Through the analysis of the doubly averaged dis-
turbing function, Kozai showed the possibility of libration of
the perturbed body’s argument of pericenter g around ±π

2
under a certain condition. He clarified the condition to be
� = (

1 − e2
)

cos2 i < 3
5 at the quadrupole level approxima-

tion. As we have seen, Kozai’s � is equivalent to Lidov’s
c1 and von Zeipel’s k2. Kozai did not mention any param-
eters equivalent to Lidov’s c2 whose sign explicitly tells us
whether or not the perturbed body’s argument of pericenter
librates at the quadrupole level approximation.

One important accomplishment in Kozai’s work is that he
employed diagrams with equi-potential contours of the dou-
bly averaged disturbing function as a fundamental subject
of discussion. Kozai’s aim of exploiting the equi-potential
diagrams was to show the global structure of possible trajec-
tories that the perturbed body draws, and to visually confirm
the existence of equilibrium points. Using the equi-potential
diagrams, Kozai found that the argument of perihelion g of
(1373) Cincinnati librates around g = π

2 . It seems that Kozai
reached this conclusion just from the topological pattern of
the equi-potential contours and the initial location of this as-
teroid (Fig. K7 on p. K597), not following the time variation
of its orbital elements. Nowadays we see this kind of equi-
potential diagram ubiquitously in the literature, not only in
CR3BP studies, but in other dynamical studies where a sys-
tem’s degrees of freedom can be somehow reduced to unity.
In this regard, Kozai was a pioneer.

For calculating the equi-potential contours, Kozai car-
ried out the numerical quadrature defined by Eq. (K09-54).
Kozai called the quadrature “numerical harmonic analysis”
(p. K593, the left column, four lines below Eq. (K17). Also
in the caption of his Fig. K1). It is not hard to imagine that
carrying out numerical quadrature in the early 1960s was
a formidable task when the use of high-speed digital com-
puters was extremely limited. However, Kozai completed
the numerical work using digital computers available in the
United States while he was a long-term visiting scholar at
Smithsonian Astrophysical Observatory, Cambridge, Mas-
sachusetts (Kozai 2017, personal communication). Although
we have not confirmed if Kozai’s work is the very first one
that quantitatively exploits equi-potential diagrams in celes-
tial mechanics, we are convinced that Kozai was one of the
first to recognize the importance and usefulness of the equi-
potential contours in this line of study.

Incidentally, note that Shevchenko (2017, his Section
3.2.4 on p. 39) calls the equi-potential diagrams “the Lidov–
Kozai diagram.” We do not agree with his opinion mainly be-
cause there is no such equi-potential contour plot in Lidov’s
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original paper (1961). There is an equi-potential diagram in
his later papers (Lidov, 1963b,c) but it was just used for a
special case. Moreover, as we have seen in this monograph,
von Zeipel had already drawn this kind of equi-potential dia-
grams much earlier (see Figs. 11 and 13 in this monograph)
even though they look somewhat schematic.

We should also recall that Kozai derived explicit expres-
sions of high-order analytic expansions of the doubly aver-
aged disturbing function for the inner CR3BP up to O

(
α8

)
,

which is reproduced as Eq. (K23-71). This is not achieved
in Lidov’s work or in von Zeipel’s work. Using Kozai’s an-
alytic expansion, we can draw equi-potential curves of per-
turbed bodies accurately without going through numerical
quadrature, even when α is not small.

Yet another unique achievement seen only in Kozai’s work
is that he derived a time-dependent analytic solution for
orbital elements as function of time by employing Weier-
strass’s elliptic functions ℘ (see p. 18 of this monograph).
The equi-potential trajectories calculated from the doubly
averaged disturbing function show us the dynamical struc-
ture of perturbed bodies at a glance, but they do not give us
information about their time variation, such as e(t) or g(t).
Having the time-dependent analytic solution that Kozai con-
structed, we can calculate approximate time variation of per-
turbed body’s orbital elements, even though the approxima-
tion is limited to the quadrupole level.

6.1.1 Later developments Kozai’s work has been
checked, confirmed, and developed by numerous authors in-
cluding Kozai himself since its publication in 1962. We can
pick the following developments as for Kozai’s four remarks
on future prospects that we mentioned in Section 3.8.

As for the issue (i) on the effect of perturber’s non-zero
eccentricity e′, its influence has turned out to be quite signif-
icant. It is now well known as the eccentric Lidov–Kozai
(or Kozai–Lidov) oscillation (e.g. Naoz, 2016; Sidorenko,
2018). It can substantially change the long-term orbital mo-
tion of the perturbed body, sometimes invoking sudden or-
bital flips as we demonstrated in Fig. 4 (p. 11).

As for the issue (ii) on the incorporation of the indirect
perturbation from other planets, Kozai himself succeeded in
incorporating the effect of other planets by assuming that
they have circular orbits (Kozai, 1979). This was possible
because the inclusion of perturbers on planar and circular
orbits would not increase the total degrees of freedom of
the system after the averaging procedure. The same subject
was studied by Vashkovjak (1976) and Vashkov’yak (1981c).
Kozai’s method was followed, and used by many later studies
(e.g. Nakai and Kinoshita, 1985; Ito and Tanikawa, 1999,
2001; Ito and Miyama, 2001).

As for the issue (iii) on the inclusion of planetary oblate-
ness on the motion of satellites, Lidov (1963b,c) studied it
shortly later than Kozai. Kozai extended his theory by him-
self by including the oblateness of central body such as J2,
J3, and J4 (Kozai, 1969b). Much later, Kinoshita and Nakai
(1991) worked on the point that Kozai raised: Possible de-
crease and disappearance of the threshold value of perturbed
body’s

(
1 − e2

)
cos2 i due to planetary oblateness. Kinoshita

and Nakai quantitatively formulated the influence of Ura-
nian J2 on the secular motion of its fictitious satellites. They
found that when the Uranian satellites are located inside the
region where the perturbation caused by planetary oblateness
is dominant, their argument of pericenter does not librate,
and stationary points do not occur.

As for the issue (iv) on the motion of satellites for which
the orbital period of the Sun may not be regarded as short,
we presume that the subject is in the realm of the singly aver-
aged three-body system such as Moiseev or Lidov dealt with.
Although the single averaging procedure is not very popular
now, mostly because they can be replaced for direct numer-
ical integration in many cases, there is still a certain flow of
studies along this line in modern celestial mechanics (e.g.
Domingos et al., 2013; Elshaboury and Mostafa, 2013; Nie
et al., 2019). There are even studies of singly averaged hy-
perbolic (Sorokovich, 1982) and parabolic (Mamedov, 1989)
restricted three-body problems.

Efforts to obtain the time-dependent analytic solutions of
perturbed body’s orbital elements in the doubly averaged
CR3BP using elliptic functions, as Kozai demonstrated, has
been continued and extended. However Weierstrass’s ellip-
tic functions ℘ that Kozai employed are not used anymore
in this respect. A major extension of this line of work was
achieved by a pair of Japanese celestial mechanists, Hiroshi
Kinoshita and Hiroshi Nakai, both of who worked close to
Kozai. Kinoshita and Nakai (1991) succeeded in deriving
an analytic solution for this problem using Jacobi’s elliptic
function that can be used when the perturbed body’s g cir-
culates. Kinoshita and Nakai (1999) later gave another type
of analytic solution expressed by Jacobi’s elliptic function
that can be used when the perturbed body’s g librates around
π
2 . Finally Kinoshita and Nakai (2007) reached a general
analytic solution that can be used either when the perturbed
body’s g librates or when it circulates. We should note that
Vashkov’yak (1999) had also reached a general solution of
this kind independently, through a slightly different way, for
the motion of distant satellites of Uranus.

So far, these analytic solutions are derived from the dou-
bly averaged disturbing function of the inner CR3BP at the
quadrupole level approximation, and their practical useful-
ness does not seem to be as significant as direct numerical in-
tegration. However, the way of deriving the time-dependent
analytic solutions in these works seems to be inherited from
dynamical studies of comets with very large perihelion dis-
tances under the galactic tide. More specifically speaking,
the dynamical evolution of small bodies that compose the
Oort Cloud (Oort, 1950, 1951) under the galactic tide has
been often discussed and calculated using analytically ob-
tained approximate solutions (e.g. Heisler and Tremaine,
1986; Fouchard et al., 2005; Higuchi et al., 2007). These
works can be regarded as an extension of Kozai’s work. Note
also that, in a small body system that is under the pertur-
bation from the galactic tide, the quantity

√
1 − e2 cos Ig

becomes constant after averaging over small body’s mean
anomaly if we only take the vertical component of the galac-
tic tide (where Ig denotes orbital inclination of the small
body with respect to the galactic plane). This is due to the
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rotational invariance of the averaged galactic tidal potential
around the normal of the galactic plane (e.g. Saillenfest et al.,
2019). This point is similar to the doubly averaged CR3BP
that we have considered in this monograph. Breiter and Rata-
jczak (2005, their p. 1222) presents a concise review of the
historic development of this line of studies.

At the end of this subsection, we would like readers to
pay attention to a critical study that highlights incorrect ap-
plications of Jacobi’s elimination of the nodes in several past
works (Naoz et al., 2013a). Naoz et al. pointed to a descrip-
tion in Kozai (1962, p. K592) as an example of the false
arguments. Citing their paragraphs:

“Since the total angular momentum is conserved,
the ascending nodes relative to the invariable plane
follow a simple relation, h1(t) = h2(t)−π . If one
inserts this relation into the Hamiltonian, which
only depends on h1 − h2, the resulting ‘simplified’
Hamiltonian is independent of h1 and h2. One
might be tempted to conclude that the conjugate
momenta H1 and H2 are constants of the motion.
However, that conclusion is false. This incorrect
argument has been made by a number of authors.
· · ·
[In a footnote] For example, Kozai (1962, p. 592)
incorrectly argues that ‘as the Hamiltonian F de-
pends on h and h′ as a combination h − h′, the
variables h and h′ can be eliminated from F by the
relation (5). Therefore, H and H are constant’.”
(Naoz et al., 2013a, their Appendix C on p. 2171)

Consult Naoz et al.’s Appendix C for the details of their
reasoning. Fortunately, the final conclusion described in
Kozai (1962) is correct because Kozai used the test particle
approximation (i.e. restricted three-body problem) in the
most part of his discussion.

6.2 Achievements of Lidov’s work
Compared with Kozai’s work whose objective was to es-

tablish a secular dynamical theory of asteroids, Lidov’s work
had the motivation to construct a secular dynamical the-
ory of Earth-orbiting artificial satellites. In his works pub-
lished between 1961 and 1963, Lidov did not start from the
Hamiltonian formalism. His works started from the classical
Gauss’s form of equations where the time derivatives of or-
bital elements are expressed by three components of perturb-
ing forces. Note that Lidov used the Hamiltonian formalism
in his later works (e.g. Lidov and Ziglin, 1974, 1976).

Similar to the line of studies previously presented by Moi-
seev, Lidov first went through the single averaging procedure
of disturbing forces. He then moved on to the double averag-
ing procedure, and finally reached the doubly averaged dis-
turbing function. Lidov just dealt with the inner CR3BP, and
his approximation was at the quadrupole level. Although it
does not have any influence on his conclusion, Lidov’s for-
mulation included the effect of the perturber’s eccentricity
ek as a constant factor multiplied with perturbing forces (see
Eq. (L55-149) on p. 34 of this monograph).

Unlike Kozai, Lidov did not present time-dependent ana-

lytic solutions of orbital elements in specific forms, except
for a very special case when the perturbed body’s orbit is
vertically inclined, i = π

2 (see Section 4.10 of this mono-
graph). Instead, he showed a general guideline as to how we
can obtain time-dependent solutions for orbital elements by
quadrature (see Eqs. (L60-156) and (L61-158), and the dis-
cussion there). An interesting point is that Lidov described
a practical computation method of a satellite’s orbital evolu-
tion based on his theory. He even tried to confirm the accu-
racy of his analytic theory by carrying out direct numerical
integration of equations of motion. Although this part of Li-
dov’s work (his Sections 8, 9, 10) in his 1961 paper may be
already obsolete from a modern viewpoint, it typically ex-
emplifies the practical importance of his work in the field of
artificial Earth satellites at that time.

An achievement seen only in Lidov’s work, and not in
Kozai’s or in von Zeipel’s work, is that Lidov introduced a
parameter c2 in Eq. (L59-154), not only c1 = (

1 − e2
)

cos2 i
in Eq. (L58-152). Using the combination of c2 and c1, Lidov
showed that it is possible to predict whether or not the ar-
gument of pericenter of a particular perturbed body librates
around ±π

2 at the quadrupole level approximation. Kozai’s
parameter � is equivalent to Lidov’s c1, and Kozai also
showed a condition for an asteroid’s argument of pericenter
to librate, � ≤ 3

5 (Eq. (78) of this monograph). However as
we saw, having c1 (or �) that is smaller than 3

5 is not a suffi-
cient condition for the libration of the perturbed body’s argu-
ment of pericenter to occur. Whether or not the argument of
pericenter librates depends on how large the (averaged) to-
tal potential energy is; in other words, which equi-potential
contour the perturbed body moves along. For this purpose
Lidov devised a parameter c2, a combination of the total po-
tential energy and the vertical component of the perturbed
body’s angular momentum, although he did not leave any
specific derivations as to how he devised the expression of
c2 shown in Eq. (L59-154). As a result, Lidov succeeded in
explicitly showing that the condition c2 < 0 is necessary for
the perturbed body’s argument of pericenter to librate around
±π

2 (see p. 35 of this monograph). Actually this is not only
the necessary condition but also the sufficient condition, re-
calling the fact that c1 < 3

5 is automatically fulfilled when
c2 < 0. We showed a visualization of the theoretically pos-
sible range of (c1, c2) on the Lidov diagram (Fig. 10). Al-
though the function form of c2 in Eq. (L59-154) is valid only
at the quadrupole level approximation, it is principally pos-
sible to find a dependence of c2 (or other equivalent parame-
ters) on α at a higher-order approximation, such as O

(
α4

)
or

O
(
α6

)
. It is also the case for c1, as Kozai has already done

on his � (see Eq. (K25-82) on p. 17 of this monograph).
Let us also mention that in Lidov’s work, solutions that

take place on the borders of the Lidov diagram (Fig. 10) are
elaborately illustrated and quantitatively explained (see Sec-
tion 4.8). Lidov’s detailed and precise characterization of the
solutions in the special and extreme cases, together with his
visualization realized in the Lidov diagram, provides us with
a comprehensive understanding of the dynamical structure of
CR3BP at the quadrupole level approximation. We believe
this part significantly enhances the value of Lidov’s work in
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comparison with other similar studies.

6.2.1 Later developments in Russia The Soviet
Union (currently Russian) academic community has devel-
oped a rich flow of three-body problem studies. Lidov’s
work on this subject in the 1960s has been later extended
to a great deal in this community. Let us cite a few exam-
ples from the early days: Orlov (1965a,b) extended Lidov’s
framework, and obtained approximate solutions of doubly
averaged CR3BP using the disturbing function with higher-
order terms through a canonical perturbation method. Orlov
(1972) extended his own study and calculated the short-term
periodic perturbation from the Sun on the motion of plane-
tary satellites. Gordeeva (1968) obtained an analytic solution
of a variable ε = 1 − e2 in the doubly averaged CR3BP at
the quadrupole level approximation using a complete ellip-
tic integral and the Jacobi elliptic function. Let us cite an
example from recent days: Prokhorenko (2001) gave a geo-
metric interpretation, as well as a topological illustration, of
the class of orbits that appear on the Lidov diagram utilizing
cylindrical and spherical coordinates. Prokhorenko has pur-
sued this line of study in detail and published many papers
(e.g. Prokhorenko, 2002a,b, 2010, 2014).

At this point, we feel obliged to mention the series of
works achieved by Mikhail A. Vashkov’yak who has been
intensively working on this problem for a long time. Sub-
jects of Vashkov’yak’s publications that stem from and ex-
tend Lidov’s work range over a large variety. Let us cite
several examples: Extension of Orlov’s work using so-
called the numerical–analytic method (Vashkov’yak, 2005a;
Vashkov’yak and Teslenko, 2009; Vashkov’yak, 2010), anal-
ysis and classification of families of orbits on the (e, ω) and
(α, c1) planes including the cases of α > 1 (Vashkov’yak,
1981a,b), obtaining special solutions in the singly averaged
CR3BP (Vashkov’yak, 2005b; Vashkov’yak and Teslenko,
2005, 2008), addition of more than one perturber on planar
and circular orbits (Vashkovjak, 1976; Vashkov’yak, 1981c),
construction of analytic solutions of doubly averaged system
using elliptic integrals and elliptic functions (Vashkov’yak,
1999), a study of the orbital evolution of certain types of ar-
tificial Earth satellites for searching suitable orbits of space
VLBI (Vashkov’yak and Lidov, 1990), and more. In addi-
tion, the preprint (Vashkov’yak, 2008) that we cited earlier
(p. 26) provides a unique and extensive review of the past
and modern studies of the averaged CR3BP. Readers of this
monograph are strongly encouraged to read Vashkov’yak
(2008) for gaining a comprehensive understanding of the his-
torical development of the subject.

It seems that Lidov’s work attracted the world’s attention
from the early days, and it has been developed not only
by the Soviet (Russia) community but also by the western
academic community. Several examples: Kovalevsky (1964,
1966) achieved a similar accomplishment to Orlov as early
as Orlov (1965a,b). Lorell (1965) categorized regions in the
Lidov diagram and tabulated the type of motions of satellites
in a great detail. Felsentreger (1968), while categorizing the
lunar satellite orbits, devised a version of the Lidov diagram
when the perturbing body exerts a gravitational effect due to

its equatorial bulge (J2). Although it is not an early work,
Antognini exactly reproduced the Lidov diagram using the
variables � (equivalent to c1) and CKL (equivalent to 5

2 c2)
with additional information on the period values of the g-
oscillation (Antognini, 2015, his Fig. 1 on p. 3614).

Let us also mention that Lidov himself kept working on
the subject and left many publications. For example, he dealt
with the doubly averaged CR3BP when α is large (Lidov
and Ziglin, 1974). Also, his work on the doubly averaged
general (non-restricted) 3BP is now famous for the term
“happy coincidence” (see p. 8 of this monograph). Let us
cite the corresponding paragraph:

“Let us note, that the integrability of the non-
restricted problem under consideration is, in a way,
a happy coincidence. If one would like take into
account the following terms in the expansion by
the parameter |r01|/|r2|, then H will be dependent
on g2, and the problem will no more be integrable.
A similar situation takes place already in the re-
stricted three body problem.” (Lidov and Ziglin,
1976, the second line from the bottom on p. 475).

In Lidov and Ziglin’s three-body system with point masses
(m0, m1, m2), r01 denotes the radial vector of the mass m1

relative to the mass m0, r2 denotes the radial vector of the
mass m2 relative to the barycenter of m0 and m1, H is doubly
averaged disturbing Hamiltonian (their Eq. (13) on p. 474),
and g2 is argument of pericenter of the mass m2.

Talking about the term “happy coincidence,” readers of
this monograph might be interested in a paradoxical remark
that Lithwick and Naoz (2011) made about it:

“The fact that the exterior body’s argument of peri-
apse does not appear to quadrupole order has been
called ‘a happy coincidence’ because it makes the
system integrable (Lidov & Ziglin 1976; Laskar &
Boué 2010). However, it is perhaps more of an un-
happy coincidence in view of the fact that it has
misled some researchers into neglecting the role
of the planet’s eccentricity.” (Lithwick and Naoz,
2011, their footnote 2 on p. 2)

6.2.2 c2-like parameter in later work We presume
that the discovery and use of the parameter c2 is Lidov’s
unique achievement which is not seen in the works by Kozai,
Moiseev, or von Zeipel. The combination of c1 and c2 is
still employed in modern solar system dynamics. We see
examples in studies of the identification of object groups
possibly with a common dynamical origin, such as among
the near-Earth asteroids or meteoroids (e.g. Ryabova, 2006;
Ohtsuka et al., 2006, 2007; Babadzhanov et al., 2015, 2017).

In association with this subject, we would like to note that
some later authors independently “discovered” c2-like pa-
rameters as a flag of libration of perturbed body’s argument
of pericenter. For example, Kinoshita and Nakai (2007, their
pp. 68–69) showed that the separatrix between the libration
and circulation regions on the equi-potential diagram is ex-
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pressed by the quantity

Cse = 2(3h − 1), (386)

where h is equivalent to Lidov’s c1. Kinoshita and Nakai
claimed that the libration of perturbed body’s argument of
pericenter (ω) happens when both the conditions

h < 0.6, C < Cse, (387)

are satisfied (their condition (b) on p. 69). C in Eq. (387) is
equivalent to W ∗

O(α2)
in Eq. (72), the factor 1

16
G
a′

(
a
a′

)2
being

stripped off. It is easy to show that their condition C < Cse

in Eq. (387) is equivalent to Lidov’s condition, c2 < 0. The
specific form of C in Kinoshita and Nakai (2007, their Eq.
(6) on p. 68) is as follows:

C = (
2 + 3e2

) (
3 cos2 i − 1

) + 15e2 sin2 i cos 2ω, (388)

while Lidov’s c2 can be rewritten from Eq. (L59-154) as

30c2 = 12e2 − 15e2 sin2 i + 15e2 sin2 i cos 2ω. (389)

Subtracting Eq. (389) from Eq. (388), and using the defini-
tion of c1 in Eq. (L58-152), we get

C − 30c2 = 4 − 6
(
cos2 i

(
e2 − 1

) + 1
)

= 2 (3c1 − 1) .
(390)

Since 2 (3c1 − 1) in Eq. (390) is equivalent to Cse defined in
Eq. (386), we can rewrite Eq. (390) as

C − Cse = 30c2. (391)

From Eq. (391) we see that the condition C ≶ Cse is
equivalent to c2 ≶ 0. Incidentally, note that in von Zeipel
(1910, p. Z390) we found a quantity equivalent to Kinoshita
and Nakai’s C in Eq. (388). von Zeipel used the symbol
h to indicate this quantity. Care must be taken with the
confusing fact that von Zeipel’s h is different from Kinoshita
and Nakai’s h: von Zeipel’s h is equal to Kinoshita and
Nakai’s C , and Kinoshita and Nakai’s h is the same as von
Zeipel’s k2 (and Lidov’s c1).

Let us mention another example of the rediscovery of c2.
It seems that Nagasawa et al. (2008, their Fig. 16 on p. 506)
independently devised an equivalent plot to the Lidov dia-
gram. They employed a pair of variables C (equivalent to
C in Eq. (388)) and h (equivalent to Lidov’s c1) as parame-
ters, and drew the possible motion area of the perturbed body
on the (

√
h, C) plane in the doubly averaged CR3BP. They

explicitly showed the form of C as a function of h on the
boundaries of the diagram: C = 10−6h on the upper bound-
ary of the diagram, C = 6h − 2 on the boundary between
circulation and libration (which is equivalent to Eq. (386)),
and C = −20 − 24h + 12

√
15h on the lower boundary. See

the caption of their Fig. 16 for more detail. Nagasawa et al.
also obtained an explicit form of the attainable maximum ec-
centricity as a function of C and h (see their Eq. (13) on p.
506. A similar relationship is presented in Antognini (2015,
his Eqs. (29) and (31) on p. 3613)).

6.2.3 Citations of Lidov’s work As we have seen,
Lidov’s achievements on doubly averaged CR3BP at the
quadrupole level approximation is practically equivalent to
Kozai’s work. Nevertheless, it seems that Lidov’s work had
not been cited as frequently as Kozai’s. We guess this is
mainly because of the disparity of popularity of the jour-
nals that published their papers. The first publication (as
far as we found on ADS) that cites both Lidov (1962) and
Kozai (1962) at the same time is Lowrey (1971). This is
a paper on the orbital evolution of a meteorite named Lost
City, where Kozai’s work is cited as “Kozai [1962] found
that the argument of perihelion of the minor planet (1373)
Cincinnati librates about 90◦ . . . ,” while Lidov’s work is in-
troduced as “Lidov [1962] has obtained two simple formu-
las that are surprisingly successful in predicting the over-all
variations,” together with the definition of c1 and c2 (Lowrey,
1971, p. 4086). Nevertheless for the next 33 years since
Lowrey (1971), it seems that not only the practical equiva-
lence of these two works but Lidov’s work itself has been
largely forgotten, inconspicuous, and perhaps even ostra-
cized, judging from the frequency of citations seen on ADS.
However, after the publication of a paper about the secular
dynamics of irregular satellites of the giant planets (Ćuk and
Burns, 2004) which cites Lidov (1962) and Kozai (1962) at
the same time for the first time in the twenty-first century,
Lidov’s work began rapidly gaining attention. Nowadays,
more and more people have come to know the equivalence
of Lidov’s work and Kozai’s work. Consequently, the cita-
tion frequency of Lidov’s work has been soaring. Inspired by
a figure in Shevchenko (2017, his Fig. 1 of Preface on p. vi)
and by a figure in Takahashi (2015c, his Fig. 2 on p. 366),
we have produced a pair of plots concerning the time series
of the citation frequency of Lidov’s and Kozai’s publications
between 1961 and 2018 using the citation database stored
in ADS and in WoS (Fig. 29). Note that the vertical axis
of the plots in the figure has a logarithmic scale. Therefore,
from these plots, we clearly see that the citation frequencies
of Kozai’s work, and also Lidov’s work, have exponentially
increased in the recent era.

In Fig. 29, we also find that Lidov’s work was cited a
non-negligible number of times in the twentieth century. We
can particularly see this fact on the citation database stored
on WoS (the lower panel of Fig. 29). Consider the fact
that citation databases such as ADS or WoS are not always
complete for old literature published in the 1960s or earlier.
Also, recall that the total number of publications at that time
was much smaller than the present. Then, we should say
that Lidov’s work has been rather well recognized in the
academic community since then. As seen in his obituary
that we mentioned on p. 26, Michail L’vovich Lidov’s social
status was (and still is) very high in the former Soviet Union
and in the Russian Federation. Therefore, we may find many
more publications that cites his work if we were to survey
literature published in the Soviet-related domestic academic
community, and in particular, those written in Russian.

According to the rapid increase of attention to Lidov’s
work, more and more people began using the prefix “Lidov–
Kozai,” not just “Kozai,” for designating this subject. As far
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Fig. 29. Time series of citation frequencies of Kozai’s publications (cyan
bars) and Lidov’s publications (red bars) between 1961 and 2018 based
on ADS (upper panel) and WoS (lower panel) as of May 1, 2019. As
for the citation data for “Kozai,” we bunched the citation frequencies of
two publications: The main paper (Kozai, 1962) and a meeting abstract
by the same author with the same title published in the same issue of
the same journal (abstracts of papers presented at the 111th Meeting of
the American Astronomical Society at Yale University, New Haven, Con-
necticut, August 26–29, 1962, on p. 579 of The Astronomical Journal,
67, 1962). Similarly, as for the citation data for “Lidov,” we bunched the
citation frequencies of closely relevant publications: The original publi-
cation (Lidov, 1961), its English translations (Lidov, 1962, 1963a), and
the papers with the same subject (Lidov, 1963b,c).

as we have done searches on ADS and WoS, Michtchenko
et al. (2006, in their abstract) seems to be the first publication
that used the prefix “Lidov–Kozai” (as “the Lidov–Kozai
resonance”). On the other hand, the prefix “Kozai–Lidov”
showed up first in S̆idlichovský (2005, in their abstract, as
“Kozai–Lidov resonance”). Recently, we even find publica-
tions that use the prefix “Lidov–Kozai” but cite only Lidov
(1961), not Kozai (1962), such as Ulivieri et al. (2013).

6.2.4 Interrelation to Kozai’s work Here, we would
like to mention some interrelation between Lidov’s work and
Kozai’s work. These two works have been so far presumed
to have been independently carried out. However, this may
not be entirely true.

Lidov’s work (including its English translations) on this
subject, as well as Kozai’s work, were mainly published
between 1961 and 1964. Let us itemize some major relevant
events that happened during this period along a timeline:

• Sometime in 1961, Lidov (1961) was published in
Iskusstvennyye Sputniki Zemli. Note that the publica-

tion of this paper could be earlier or later than the inter-
national conference in Moscow that we mention below.
We could not identify the exact publication date.

• On November 20–25, 1961, there was a conference on
general and applied problems of theoretical astronomy
in Moscow. Grebenikov (1962) made a detailed report
of this conference. Lidov participated in it and gave a
presentation on the subject that we have discussed in
this monograph. Kozai was also invited to this confer-
ence as a part of the US delegation (at that time Kozai
was working at the Smithsonian Astrophysics Obser-
vatory, Massachusetts, USA), and gave a talk about the
motion of close artificial satellites. Kozai and Lidov met
each other at this conference, and had a short conver-
sation (Kozai 2017, personal communication). It was
their first and their last direct encounter.

• On May 28–30, 1962, an IUTAM (International Union
of Theoretical and Applied Mechanics) symposium on
the dynamics of satellites was held in Paris. This time
Lidov did not attend the conference, but his presenta-
tion was delivered by a delegate (Shevchenko, 2017,
his footnote 4 on p. 7). Meanwhile, Kozai partici-
pated in the symposium and gave a presentation on the
gravitational potential of the Earth derived from satel-
lite motions. Note also that L. I. Sedov who worked on
the spacecraft Luna-3’s peculiar motion (see p. 29 of
this monograph) was present at this symposium. In Obi
et al. (1979) we find a group photo of the symposium
participants including both Kozai and Sedov.

• On August 26–29, 1962, Kozai’s work on this subject
was (presumably) first unveiled as a paper presented
at the 111th Meeting of the American Astronomical
Society. See the caption of Fig. 29 for more details.

• On August 29, 1962, Kozai (1962) was received by The
Astronomical Journal.

• In October 1962, the first English translation of Lidov
(1961) was published in Planetary and Space Science
(Lidov, 1962).

• In November 1962, Kozai (1962) was published in The
Astronomical Journal.

• In August 1963, the second English translation of Lidov
(1961) was published in AIAA Journal Russian Supple-
ment (Lidov, 1963a).

• Sometime in 1963, two proceedings volumes were pub-
lished. One of them (Subbotin et al., 1963) was the
proceedings volume of the 1961 Moscow conference
that contains Lidov (1963b) and Kozai (1963b), both
of which were written in Russian. The other one
(Roy, 1963) was the proceedings volume of the 1962
Paris symposium that contains Lidov (1963c) and Kozai
(1963a), both of which were written in English.
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• Sometime in 1964, the Moscow 1961 conference pro-
ceedings were translated into English and published
(Lidov, 1964; Kozai, 1964)5.

It seems that, at some later point Lidov recognized Kozai’s
work when he extended his study on this subject. For exam-
ple, Lidov and Ziglin (1974) cites Kozai (1962). Also, Lidov
uses the Hamiltonian formalism in his later publication such
as Lidov and Ziglin (1974, 1976), similar to Kozai. Mean-
while Kozai had recognized Lidov’s work earlier, and cited
Lidov’s presentation given at the 1962 Paris symposium in
Kozai (1962, p. K591) as “A lunar problem with high incli-
nation was similarly studied by Lidov (1962),” with the cor-
responding reference of “Lidov, M. L. 1962, Paper presented
at the International Symposium on Dynamics of Satellites,
Paris” (p. K598). In addition, the AIAA version of the En-
glish translation of Lidov’s work seems to be officially “re-
viewed” by Kozai. A footnote in Lidov (1963a) says:

“Translated from Iskusstvennye Sputniki Zemli
(Artificial Earth Satellites) (Academy of Science
Press, Moscow, 1961), No. 8, pp. 5–45. Translated
by Jean Findlay, Green Bank, West Va. Reviewed
by Yoshide Kozai, Smithsonian Astrophysical Ob-
servatory, Cambridge, Mass.” (p. 1985)

Therefore, it is possible that the five extra paragraphs found
at the leading part of Lidov (1963a) that we mentioned in
Section 4.2 (p. 28 of this monograph), which the original
version (Lidov, 1961) and the other translation (Lidov, 1962)
do not contain, may have been added by the reviewer, Kozai.
Note that Kozai’s first name is wrongly typed in the above:
“Yoshide” should be “Yoshihide”.

Bearing these circumstances in mind, we collectively
judge that Lidov’s work and Kozai’s work thus interacted
with each other, unlike the common view that they were in-
dependently carried out without any interaction. Some peo-
ple may have been already aware of the personal interrela-
tion between Lidov and Kozai before we did. For example,
Tremaine and Yavetz (2014) presents a description of the his-
tory of the Lidov–Kozai oscillation study:

“The nonlinear trajectories of the linear instabili-
ties we have described are known as Kozai, Kozai–
Lidov, or Lidov–Kozai oscillations. Although

5According to the foreword of the proceedings volume, the translation
from Russian into English in this volume was achieved by a machine trans-
lation. This is quite a surprising fact if we consider the publication year
(1964). Let us literally cite the entire foreword:

“This document is a machine translation of Russian text which
has been processed by the AN/GSQ–16 (XW–2) Machine
Translator, owned and operated by the United States Air
Force. The machine output has been fully post-edited. Am-
biguity of meaning, words missing from the machine’s dic-
tionary, and words out of the context of meaning have been
corrected. The sentence word order has been rearranged for
readability due to the fact that Russian sentence structure does
not follow the English subject–verb–predicate sentence struc-
ture. The fact of translation does not guarantee editorial accu-
racy, nor does it indicate USAF approval or disapproval of the
material translated.”

Laplace had all of the tools needed to investigate
this phenomenon, it was only discovered in the
early 1960s by Lidov in the Soviet Union and
brought to the West by Kozai.” (at the beginning
of their Section IV, in the left column of p. 776)

We are not sure if Tremaine and Yavetz knew that Lidov
and Kozai met each other at the conference in Moscow in
1961. But the above description literally claims that Lidov
recognized the dynamical phenomenon first, and then Kozai
spread it over the western community after that. However
recall that, in this monograph, we are not going to judge
which should be called the first and which should be the
second between Lidov and Kozai. We do not think this
kind of discussion has a significant meaning anymore, as
we now know that von Zeipel had recognized this dynamical
mechanism much earlier than Lidov or Kozai did. We are not
yet familiar with what Laplace did along this line of work as
Tremaine and Yavetz pointed out, but we will continue to
investigate this historical theme.

6.2.5 Choice of terms At the end of this subsection
let us deviate from Lidov’s work, and think more generally
about the terms that people use for describing the secular dy-
namical phenomena that we deal with. In this monograph,
we have basically used the term “the Lidov–Kozai oscilla-
tion,” because we want to emphasize the oscillating nature
of the phenomenon. However, as readers are well aware, dif-
ferent people make different choice of words on this same
phenomenon other than oscillation. So it may be interesting
to consider how people have collectively called this secular
dynamics in the past literature.

To this end, we carried out a simple search on the ab-
stracts of all bibliographic sources registered on ADS (i.e.
refereed and non-refereed publications in astronomy and
physics) using a series of keywords, “Kozai —” and “Lidov
—”. Here, “—” is either of the following words: mecha-
nism, resonance, cycle, oscillation, effect, dynamics, pertur-
bation, or libration. Note that this is not an AND (logical
conjunction) search: We just used fixed, consecutive phrases
such as “Kozai mechanism”, not “Kozai” AND “mechanism”.
Thus we are supposed to count the number of the ADS ab-
stracts that contain the phrase “∗Kozai mechanism∗” where
∗ denotes the wildcard match. Naturally, the search re-
sult would include “Lidov–Kozai mechanism”. Similarly,
a phrase search “Lidov mechanism” on ADS is equivalent
to the search of “∗Lidov mechanism∗” which would also
find “Kozai–Lidov mechanism”. We applied the same pro-
cedure to other words (resonance, cycle, oscillation, · · · ).
We are aware that this kind of simple search overlooks rel-
evant expressions such as “Lidov–Kozai secular dynamics”
or “Kozai–Lidov resonant effect”. However, although it is a
crude statistical method, through this search we can find a
general tendency as to which term the authors of past litera-
ture have preferred for describing this secular dynamics.

We summarized our search result in Table 6. Note that the
resulting statistics would be different if we do the same kind
of search through the full text of the literature. But as the full
text search of all the literature is practically impossible, we
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Table 6. Result of our abstract search through ADS as of May 1, 2019. Let
us explain how the table should be read by taking the line for the word
mechanism as an example. On this line, the first number (157) means that
we found 157 abstracts containing the expression “∗Kozai mechanism∗”.
This includes the abstracts that contain expressions such as “Lidov–Kozai
mechanism”. The second number (66) means that we found 66 abstracts
containing the expression “∗Lidov mechanism∗”. This includes the ab-
stracts that contain expressions such as “Kozai–Lidov mechanism”. The
total number of the abstracts that contain the expression “∗Kozai mech-
anism∗” or “∗Lidov mechanism∗” is thus 157 + 66 = 223, as indicated
in the right-hand column. Note that our search targets were all bibli-
ographic sources in astronomy and physics registered on ADS. These
include non-refereed publications such as conference abstracts, proceed-
ings, and the arXiv e-prints. Note also that we carried out the same search
using several other words as well (circulation, state, phenomenon, behav-
ior, motion), and ended up with a null result.

word in “—” Kozai — Lidov — total

mechanism 157 66 223

resonance 157 10 167

cycle 103 18 121

oscillation 76 43 119

effect 39 13 52

perturbation 7 6 13

dynamics 9 3 12

libration 7 0 7

just have to presume that the abstracts overall represent the
common preference in the academic world.

Among the words tabulated in the leftmost column of Ta-
ble 6, particularly the most popular ones (mechanism, reso-
nance, cycle, oscillation, and effect), we prefer to use oscil-
lation in this monograph. Mechanism, which is seen most
frequently for expressing the subject, generally emphasizes
(in our opinion) an internalized dynamical structure rather
than the apparent, manifested characteristics it realizes. We
think that the accomplishment of Lidov and Kozai should
be acknowledged in the first place by their quantitative and
accurate recognition of the apparent, overt phenomenon it-
self (oscillation), followed by the detailed inspection of what
causes it (mechanism). Resonance is also common accord-
ing to the statistics shown in Table 6, but we think this
term is not entirely appropriate for denoting this subject. It
is because a resonance in general is supposed to work be-
tween a frequency that one object (or phenomenon) pos-
sesses and another frequency that another object (or phe-
nomenon) possesses. For example, mean motion resonance
between Jupiter and an asteroid, spin-orbit resonance be-
tween planetary rotation and its revolution, secular resonance
between a forced orbital frequency and an intrinsic (proper)
orbital frequency, and so forth. But in the considered prob-
lem (CR3BP) that practically has only two objects, the per-
turber’s motion does not have any frequencies after averag-
ing: All of its orbital elements become constant or vanish. If
we purposely search any resonance-related argument in the
system, it would be the relation g = ±π

2 seen in the libra-
tion of perturbed body’s argument of pericenter. However,
this involves just one variable of just an object. Therefore

we would like to avoid using the word resonance here. Ef-
fect sounds okay, but we think this word’s meaning can be
too broad for the purpose. Cycle sounds as fine as oscilla-
tion, and we could bring this word up as our best preference
instead. The only concern of ours is that we are not quite
sure if we can safely use the term cycle for a non-cyclic phe-
nomenon such as what emerges when the eccentricity of the
perturbing body is in effect (see Fig. 4 of this monograph).
In the end, the word oscillation sounds relatively better for us
and more appropriate than others. This word describes an ex-
ternally manifested characteristic of the phenomenon. Also,
we can probably use oscillation for non-cyclic phenomena,
such as seen in Fig. 4, more safely than cycle.

However, there is obviously a large uncertainty and de-
grees of freedom in the choice of terms here. Although we
will continue preferring the term oscillation in this mono-
graph, readers can choose other appropriate words at their
discretion as long as the selected word does not introduce
unnecessary mix-up or misunderstanding.

6.3 Achievements of von Zeipel’s work
Published more than fifty years before the works of Lidov

and Kozai, we can regard von Zeipel’s work as a pioneering
manifestation of the application of the Lindstedt series to
the theoretical framework of the doubly averaged CR3BP.
Standing on the fundamentals of celestial mechanics that had
been established by his time, von Zeipel clearly manifested,
in the form of the Lindstedt series, the existence of stationary
points and periodic trajectories that show up in perturbed
body’s motion in the doubly averaged CR3BP.

After making a general and detailed mathematical prepa-
ration for how he deals with the Lindstedt series, von Zeipel
moves on to considering the actual doubly averaged disturb-
ing function for CR3BP. One of the interesting aspects of
his work is that he focuses on the topology of the disturb-
ing potential’s surface. He first searches local extremums
of the doubly averaged disturbing function R by calculating
the first derivatives of R such as ∂ R

∂(e2)
. Then he calculates

the second derivatives such as ∂2 R
∂(e2)2 to confirm whether the

discovered local extremum is a local minimum, a local max-
imum, or a saddle point. As a result, von Zeipel found that
the doubly averaged disturbing function for the inner CR3BP
(α < 1) possesses a pair of local minima along the axis of
g = ±π

2 when k2 = (
1 − e2

)
cos2 I < 3

5 in the limit of
α � 1 (Section 5.6 of this monograph). Evidently, this re-
sult is equivalent to those found by Lidov and Kozai years
later. Although handwritten, von Zeipel drew a pair of equi-
potential diagrams for two possible modes: One is for the
case when perturbed body’s argument of pericenter g cir-
culates from 0 to 2π , and the other is for the case when g
librates around g = ±π

2 (Fig. 13 of this monograph). In
the limit of α � 1, he gave an explicit function form of per-
turbed body’s eccentricity at the equilibrium points (e0.2 in
Eq. (Z81-270)). In von Zeipel’s work, there is no mention
on parameters relevant to Lidov’s c2.

von Zeipel extended his theory to a more general inner
CR3BP where α is not very small. Based on a set of for-
mulas presented in Tisserand’s work, von Zeipel obtained
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numerical values of R as a function of α and I0 ≡ cos−1 k
(Fig. 14 of this monograph). This enabled him to estimate
numerical values of the smallest inclination I0.2 and its de-
pendence on α for the local minima of R to show up along
the axis of g = ±π

2 . His result turned out almost identical to
what Kozai later obtained (Fig. 15 of this monograph).

What makes von Zeipel’s work unique and different from
Kozai’s or Lidov’s is the fact that he dealt with not only
the inner CR3BP but also the outer CR3BP where α > 1
(Section 5.7 of this monograph). Similar to the way he
studied the inner problem, von Zeipel paid attention to the
topology of the disturbing potential’s surface, and searched
local extremums of the doubly averaged disturbing func-
tion R for the outer CR3BP by calculating its first and sec-
ond derivatives. As a result, he found that in the limit of
very small α′ (= α−1

)
, R possesses various local extremums

when k2 < 1
5 : The origin (e cos g, e sin g) = (0, 0) can be a

local maximum, a local minimum, or a saddle point. Also,
a pair of local minima along the axis of g = ±π

2 can show
up. In addition, a pair of saddle points along the axis of
g = 0 or g = π can take place. von Zeipel also left a
triplet of handwritten equi-potential diagrams for three pos-
sible modes (Fig. 17 of this monograph). In the limit of
α′ � 1, von Zeipel gave explicit function forms of per-
turbed body’s eccentricity at the equilibrium points (e′

2.0 in
Eq. (Z103-341) and e′

0.2 in Eq. (Z104-342)) in the same way
as he did for the inner problem.

Similar to his treatment of the inner problem, von Zeipel
then extended his theory to a more general outer CR3BP
where α′ is not very small. As a result, he obtained numerical
values of R as a function of α′ and I0 (Fig. 18 of this
monograph). This enabled him to estimate the numerical
values of the smallest inclinations (I ′

2.0 and I ′
0.2) and their

dependence on α′ for the local extremums of R to show up.
His results agree well with our numerical confirmation (Fig.
22 of this monograph), although influence of mean motion
resonance was not taken into account in his work.

As we mentioned on p. 61 of this monograph, studies of
the outer CR3BP lagged behind those of the inner problem
until the 1990s, when people came to seriously realize the
existence of TNOs and extrasolar planets. After the discov-
eries of these objects, we find many more serious studies on
the outer CR3BP. But in von Zeipel’s era, the only “outer”
objects that satisfied the condition α > 1 were just some
comets, while many more “inner” objects (main belt aster-
oids) were recognized. In this regard, we are impressed by
the fact that von Zeipel dealt with the outer problem in an
equivalent manner and depth to the inner problem.

von Zeipel applied his theory to the actual asteroids in the
solar system. Among the 665 asteroids that were recognized
at that time, he chose six of them as candidates that may have
a large secular oscillation of eccentricity because they have
large inclinations (p. 58 of this monograph). Although none
of the six asteroids turns out to be a g-librator (Fig. 16), we
found, from a modern viewpoint, that two of the six asteroids
that von Zeipel picked ((2) Pallas and (531) Zerlina) belong
to the Pallas family. The other four asteroids also have simi-
lar orbital elements. Therefore in hindsight, we may want to

say that von Zeipel unintentionally approached the theoret-
ical recognition of asteroid families earlier than Kiyotsugu
Hirayama (Hirayama, 1918, 1922) who is regarded the first
to advocate the concept of asteroid families based on the the-
ory of proper orbital elements. However, we are sure that von
Zeipel’s interest was just confined to finding unusual aster-
oids having a large secular oscillation of eccentricity and in-
clination, and that finding or recognizing family-like groups
of small bodies was not his priority6.

von Zeipel also discussed the motion of two actual comets
in the solar system: 1P/Halley (Section Z21. See our Section
5.8.1 of this monograph), and 2P/Encke (Section Z29). The
discussion on the motion of 1P/Halley is particularly quanti-
tative and detailed. von Zeipel made an accurate calculation
of the location of the equilibrium points of the doubly aver-
aged disturbing function for 1P/Halley (Figs. 26 and 27 of
this monograph), although his treatment was limited to the
framework of a doubly averaged CR3BP where Jupiter on a
circular orbit serves as the only perturber.

von Zeipel further extended his theory for investigating
more subjects, and came to further quantitative conclusions.
One of them is the calculation of the doubly averaged dis-
turbing function of CR3BP when the orbits of the perturbed
and perturbing bodies act like rings in a chain. As we men-
tioned in Section 5.8 of this monograph, it seems that this
subject had not been seriously investigated until Gronchi and
Milani (1998, 1999) worked on it. Another extension is a
treatment of the motion of the perturbed body using a differ-
ent set of canonical variables when its eccentricity is close to
the maximum, k ′ (Section 5.9.1 of this monograph). Here,
von Zeipel stated that a perturbed body’s orbit with a large
eccentricity and small inclination outside the perturber’s or-
bit can stably exist. Again in a modern viewpoint, we might
want to regard this statement as his unintentional prediction
of the existence of the scattered TNOs (with a small inclina-

6According to Kiyotsugu Hirayama, there had been several attempts to
detect asteroidal groups prior to his, such as Kirkwood (1877, 1890, 1891),
Tisserand (1891b), or Mascart (1899, 1902). Hirayama judged that they did
not meet with success, writing:

“Anyhow these attempts were not successful, if they were not
a complete failure. This was mainly due to the reason that the
actual orbits were taken for comparison, whereas these orbits
are varied remarkably by the action of the planets. The variation
is in fact very slow, but the effect steadily accumulates during a
long interval of time.” (Hirayama, 1922, the first paragraph on
his p. 56)

From a modern viewpoint, we interpret that the preceding attempts failed
because they did not use the proper elements when comparing asteroidal
orbits. In this regard, readers may want to add von Zeipel to the list of
failures, as he too did not bring asteroidal proper elements in his calculation.
However, we would like to emphasize that what von Zeipel used was not
“the actual orbits” (as Hirayama wrote in the above) of asteroids either: In
von Zeipel’s Section Z18 where he dealt with six asteroids as candidates
of g-librator (see p. 58 of this monograph), he calculated their I0 and
I0.2 through his own secular dynamical theory. Thus, although we admit
that he did not reach the discovery of asteroid families at the depth that
Hirayama achieved, we claim that von Zeipel’s calculation on this matter
should be better known and recognized in the community as a part of the
establishment process of asteroid family studies. Readers can find a number
of good reviews (e.g. Yoshida and Sugiyama, 1997; Yoshida and Nakamura,
2011; Knežević, 2016; Yoshida, 2019) as for historical background of the
concept of asteroid family with a focus on Hirayama’s work.
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tion). Yet another example of his theoretical extensions are
the outline of the method to deal with systems with multi-
ple perturbing bodies (Section 5.9.2 of this monograph). To
date, this approximation has been refined and made more so-
phisticated, and is extensively used in modern solar system
dynamics as we mentioned in Section 5.9.2.

6.4 Earlier studies by von Zeipel
Earlier in this monograph (p. 46), we wrote that von

Zeipel’s work in 1910, particularly the subject in its Chapter
II, can be regarded as a prototype study that was later devel-
oped into a more sophisticated canonical perturbation theory.
From a broader historical perspective, we understand that
von Zeipel (1910) occupies an important midpoint in the ma-
jor flow of celestial mechanics that showed remarkable de-
velopment from the late nineteenth century to the early twen-
tieth century. The flow was established by the giants of that
era (examples of major publications: Tisserand, 1889, 1891a,
1894, 1896; Picard, 1891, 1893, 1896; Poincaré, 1892, 1893,
1899, 1905, 1907, 1909, 1910; Birkhoff, 1913, 1915, 1922,
1926). And, von Zeipel himself undoubtedly belongs to the
giants due to his own outstanding achievements.

Although we wrote about von Zeipel’s essential contribu-
tion to the historical flow of celestial mechanics, we are sure
that very few people have been aware of his work published
in 1910. And, we are surer that even fewer people know that
there are two more studies by von Zeipel published earlier
than 1910: von Zeipel (1898, 1901). We regard these publi-
cations as being forerunners of later, more complete products
(e.g. von Zeipel, 1905, 1910, 1915, 1916a,b, 1917a,b). In the
present subsection, we make a brief summary of von Zeipel’s
achievement in the two early papers. He may have published
more work along these lines prior to 1898, but so far we have
not found any others than these two.

6.4.1 von Zeipel (1898) von Zeipel dealt with the full
three-body problem in both his 1898 and 1901 papers, and
regarded the restricted problem as an extreme case. The first
paper (von Zeipel, 1898) is entitled “Sur la forme géńerale
des éléments elliptiques dans le problème des trois corps,”
written in French and published in Bihang till Kongl Svenska
Vetenskaps–Akademiens Handlingar. This paper begins with
a series of equations that defines the system that he considers,
without any descriptions on the purpose or background of
his intentions. Literally citing the first part of the paper, we
see that von Zeipel deals with the general three-body system
described in the Jacobi coordinates:

“It is assumed that the masses m1 and m2 are small
with respect to the mass m0 and that m1 and m2

are of the same order of magnitude. The motion
of m1 is referred to a system of coordinates whose
origin is situated in m0 and whose axes retain the
same directions. The coordinates of m1 in this
system are x1, y1, z1. The center of gravity of the
masses m0 and m1 is the origin of another system
of coordinates, the axes of which are parallel to the
axes of the first. The coordinates of m2 in the latter
system are x2, y2, z2. If the masses m1, m2, m3

attract according to Newton’s law, the equations of

motion are [. . . ],” (p. 3)

After this, a description of the standard canonical equations
of motion using the three-body Hamiltonian follows.

von Zeipel’s intention in his 1898 paper is to show that, as
long as the orbits in a three-body system are roughly circular
(i.e. both the bodies have small eccentricity), it is possible
to construct approximate solutions for their orbital variation
in the form of trigonometric series without generating terms
that secularly increase. Although von Zeipel does not use
the word Lindstedt at all in this paper, it is obvious that this
series is nothing but the Lindstedt series. Also, from his
assumption that the eccentricities of the bodies are small, we
presume that he tried to construct the Lindstedt series around
the origin (0, 0) on the (e cos g, e sin g) plane.

In this paper von Zeipel utilizes the result given in Tis-
serand (1889) for obtaining the function form of the aver-
aged Hamiltonian (referred to as [F1]) when the eccentrici-
ties of both the bodies are small (Eq. (5) on his p. 12). Go-
ing through similar mathematical procedures that we have
seen in Section 5.4 of this monograph, von Zeipel searches
conditions for the series to exist—conditions that the orbital
elements are expressed in trigonometric series that do not
contain secularly increasing terms.

von Zeipel eventually found that the series he seeks exists
if the pair of solutions of a quadratic equation become un-
equal and negative. The quadratic (actually, a quartic) equa-
tion that he mentions appears on his p. 23 as follows:

α(1)4 +
{

a(1)

11 c(1)

11 + 2a(1)

12 c(1)

21 + a(1)

22 c(1)

22

}
α(1)2

+
∣∣∣∣ a(1)

11 a(1)

12

a(1)

21 a(1)

22

∣∣∣∣ ∣∣∣∣ c(1)

11 c(1)

12

c(1)

21 c(1)

22

∣∣∣∣ = 0. (α)

An equivalent equation shows up again on his p. 47 as:

x4 + {a11c11 + 2a12c12 + a22c22} x2

+
∣∣∣∣ a11 a12

a21 a22

∣∣∣∣ ∣∣∣∣ c11 c12

c21 c22

∣∣∣∣ = 0, (α)

with the coefficients defined as:

aik = ∂2[F1]

∂ξi∂ξk
, cik = ∂2[F1]

∂ηi∂ηk
, (i, k = 1, 2) (392)

together with other variables defined as:

ξk =
√

2 (�k − Hk) cos gk, (393)

ηk = −
√

2 (�k − Hk) sin gk, (394)

�k = βk Lk, Hk = βk Gk, (395)

where Lk, Gk, gk (k = 1, 2) are Delaunay elements with

β1 = µ0

µ1
, β2 = µ1

µ2

m2

m1
, (396)

µ1 = m0 + m1, µ2 = m0 + m1 + m2, (397)

and µ0 = m0. von Zeipel only showed approximate forms
of the coefficients a11, c11, a22, · · · on his p. 50. Exhibiting
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specific function forms of these coefficients is a major sub-
ject of his next paper (von Zeipel, 1901). Here he just yields
his final result—a pair of solutions of Eq. (α) as:

x2
1 = −A2

{(
5 cos2 J0 − 1 + 2

m

m ′
√

α cos J0

)2

−25 sin4 J0

}
+ · · · , (398)

x2
2 = −A2

{(
5 cos2 J0 − 1

) m

m ′
√

α + 2 cos J0

}2
+ · · · ,

(399)

where J0 is the initial mutual inclination of the orbits of the
two bodies, A is a positive coefficient that is a function of α2

where α is the ratio of semimajor axis, a
a′ or a1

a2
. We presume

that m and m ′ are the masses of the inner and outer bodies,
respectively, although von Zeipel did not leave any specific
definitions of them in this paper.

Using x1 in Eq. (398) and x2 in Eq. (399), the condition
for the Lindstedt series to exist that von Zeipel mentioned
(“the pair of solutions of a quadratic equation become un-
equal and negative”) is expressed as:

x2
1 < 0, x2

2 < 0, x2
1 �= x2

2 . (400)

Then, he makes a conclusion when α is very small as:

“We can conclude that

x2
1 < 0 if cos2 J0 >

6

10
x2

2 < 0 for all the values of J0

x2
1 �= x2

2 when cos2 J0 �= 2

3

We have

cos2 J0 = 6

10
for

|J0| = 39◦14′ · · ·
When

|J0| > 39◦14′ · · ·
and [when] α is a small quantity, the series of the
previous section are in default.” (p. 50)

von Zeipel thus claims that the initial mutual inclination

J0 cannot exceed cos−1
√

6
10 ∼ 39◦14′ for the Lindstedt se-

ries to exist. Note that for von Zeipel at that time, the non-
existence of the Lindstedt series literally meant the dynami-
cal instability of the entire three-body system.

At the end of his 1898 paper, von Zeipel leaves a para-
graph that closes the paper as follows:

“The same thing has been shown before in other
ways. Tisserand has generalized the method of De-
launay for the Moon by making a series of trans-
formations, each of which eliminates a part of the
disturbing function. In these methods of demon-
stration, Mr. Poincaré has always used the partial
differential equation of Hamilton–Jacobi.” (p. 51)

We are not completely sure what von Zeipel meant by “the
same thing” (“la même chose”) here, but we presume that he
describes the historic use of canonical transformation in per-
turbation theories ever since Delaunay. This is particularly
true when we mention the elimination of fast-oscillating vari-
ables from the disturbing function by averaging.

The critical value of the initial mutual inclination that von
Zeipel found in this paper, J0 = cos−1

√
6

10 , is evidently
equivalent to what Kozai and Lidov found in the doubly
averaged inner CR3BP. We have not confirmed whether or
not von Zeipel’s third condition, cos2 J0 = 2

3 (that would
realize x2

1 = x2
2 ), really causes a problem in this study. But

we can at least say that von Zeipel was already aware of

the critical value of cos−1
√

6
10 ∼ 39◦14′ at the end of the

nineteenth century—more than sixty years before the works
of Lidov and Kozai came out.

Although von Zeipel dealt with the non-restricted three-
body problem with point masses m0, m1, m2 in his 1898
paper, it seems that he did not give deep consideration on
the mass ratio such as m1

m2
. His solutions x2

1 in Eq. (398) and

x2
2 in Eq. (399) contain terms with the mass ratio m

m ′ as a
coefficient. But these terms are ignored when he calculates
J0 by taking the limit of α = a

a′ → 0.

6.4.2 von Zeipel (1901) The next paper (von Zeipel,
1901) is entitled “Recherches sur l’existence des séries de M.
Lindstedt,” written in French, and again published in Bihang
till Kongl Svenska Vetenskaps–Akademiens Handlingar. It
seems that now von Zeipel pays particular attention to the
influence of the ratio of the semimajor axes of the two bodies(
α = a

a′
)

on the critical inclination values, when α is not so
small. The example used in this study is the Sun–Jupiter–
Saturn system where α ∼ 0.5431.

For better facilitating an understanding of what von Zeipel
did in his 1901 publication, let us take a look at a short in-
troductory article, Callandreau (1902), which briefly summa-
rizes what is done in von Zeipel (1901). Let us cite the article
in its entirety, since it is very short. Note that Callandreau
(1902) was originally written in French, and the following
English translation is ours:

“Mr. v. Zeipel thus states the conclusions of his
work: If the inclination of the orbit of an asteroid
exceeds a certain limit (about 30◦, slightly variable
with the ratio of the axes), the series of Mr. Lind-
stedt does not exist. We cannot avoid the secular
terms, and the orbit is likely unstable . . . . Perhaps
this is the cause of this surprising fact that, among
about 500 small planets, there is only one, Pallas,
whose inclination exceeds 30◦. It was first neces-
sary to make the study of the series possible, no
matter how great the mutual inclination of the or-
bits [is]; Mr. v. Zeipel took advantage of the work
of Jacobi and Tisserand.”

As is seen in its title, von Zeipel frequently uses the term
“Lindstedt series” in his 1901 paper. This paper begins with
the conclusion of his previous work (1898) as follows. Note
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that the partial use of the italic characters in the following is
by the original author (von Zeipel):

“By means of Mr. Lindstedt’s series, one can, as
we know, give the coordinates of the three bodies
a form, where time never leaves the signs [of] sin
and cos.

In an earlier Mémoire (On the general form
of elliptical elements in the problem of three bod-
ies. Bihang Till K. Svenska Vetenskapsakademiens
handlingar. Band 24. Afd I. N:o 8) I gave a new
exhibition of the series in question by a little gen-
eralizing the known theory of Mr. Poincaré for the
periodic and asymptotic solutions in the problems
of the dynamics.

By eliminating the nodes, as did Jacobi, it was
possible to study the series, no matter how great
the mutual inclination of the orbits is. So I found
(loc. cit.) as necessary and sufficient conditions
for the existence of the series of Lindstedt:

1:0 that the orbits are roughly circular.

2:0 that the roots of the equation of the fourth
degree

σ 4 − (
a1,1c1,1 + 2a1,2c1,2 + a2,2c2,2

)
σ 2

+
∣∣∣∣ a1,1 a1,2

a2,1 a2,2

∣∣∣∣ ∣∣∣∣ c1,1 c1,2

c2,1 c2,2

∣∣∣∣ = 0

(Zb1-401)

where

aik =
∂2

[
f m2

�

]
∂ξi∂ξk

∣∣∣∣∣∣
ξr =ηr =0

,

cik =
∂2

[
f m2

�

]
∂ηi∂ηk

∣∣∣∣∣∣
ξr =ηr =0

,

(i, k = 1, 2)

(Zb2-402)

are real and unequal.” (p. 3)

Note that in the above, we renamed the equation numbers
in the original publication from (1) to (Zb1-401), and from
(2) to (Zb2-402), for avoiding potential confusions. Note
also that the small subscript r placed together with the partial
derivatives in the right-hand side of Eq. (Zb2-402) as ξr =
ηr = 0 means, although von Zeipel (1901) did not explicitly
explain, that we must substitute ξr = ηr = 0 (where r = 1
and 2) after completing the partial differentiation (see p. 22
and p. 47 of von Zeipel, 1898).

Readers might find that Eq. (Zb1-401) is close to Eq. (α)

in von Zeipel (1898). But there are differences:

• The variable x in Eq. (α) has been replaced for the
variable σ in Eq. (Zb1-401).

• The subscripts of the coefficients in Eq. (Zb1-401) have
a comma such as a1,1 instead of a11 in Eq. (α).

• The sign of the second term in the left-hand side is pos-
itive in Eq. (α), while it is negative in Eq. (Zb1-401).

Among the above-mentioned differences, the third one
is the most significant. It changes the condition for the
existence of the Lindstedt series that expresses the periodic
solutions which von Zeipel seeks. More specifically saying,

• von Zeipel (1898, p. 23) depicts the condition as, right
after Eq. (α), “The two values of α(1)2 are unequal and
< 0”. This means that all solutions α(1) (or x on p. 47)
would need to be imaginary.

• von Zeipel (1901, p. 3) depicts the same condition
as “the roots of the equation of the fourth degree (Eq.
(Zb1-401)) are real and unequal.” Here, the roots des-
ignate σ in Eq. (Zb1-401).

Although we can show that there is no practical contra-
diction between the above two7, we have no idea why von
Zeipel made this change between the two publications.

He then moves on to stating the objective of the entire
paper. von Zeipel wrote as follows:

“In the case where the ratio α of the two major
axes is very small, the discussion of the equation
(Zb1-401) was very simple. We found in this case
(loc. cit. p. 50), as the upper limit of the inclina-
tion, the value 39◦.14 . . .

In this Mémoire I want to give the analytic form
of the coefficients ai,k and ci,k in detail. I also want
to apply the formulas in a special case by choosing,
for α, the ratio of the major axes of the orbits of
Jupiter and Saturn. The calculation shows that the
second condition is no longer fulfilled when the
inclination J0 exceeds a certain limit, depending
on the two ratios m1

m2
and a1

a2
.

We will see, that the limit in question is quite
low.” (p. 4)

When he expands the direct part of the disturbing function(
1
�

)
in this publication, von Zeipel again assumes that the

eccentricity of both the two bodies are small. We find his
assumption in the following description in his §1:

“To find the form of the coefficients ai, j and ci,k

7Although the above mentioned two conditions are not identical in gen-
eral, we can practically see that both of them are satisfied in this case. Let
us symbolically denote Eq. (α) and Eq. (Zb1-401) respectively as follows:

x4 + 2px2 + q = 0, (403)

σ 4 − 2pσ 2 + q = 0. (404)

Then, their solutions would respectively have the following form:

x2 = −p ±
√

p2 − q, (405)

σ 2 = +p ±
√

p2 − q. (406)

Here, let us recall a statement in von Zeipel (1898, p. 23) which claims that
q > 0 and that the discriminant p2 − q > 0. This means that

√
p2 − q

is always real and smaller than |p|. Therefore, both of the above two
conditions (x2 < 0 as for Eq. (α), and σ 2 > 0 as for Eq. (Zb1-401))
are satisfied by means of Eqs. (405) and (406), as long as von Zeipel’s
statement is reliable.
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Table 7. A reproduction of an unnumbered table in von Zeipel (1901, p.
22). Note that this table is presented as an equation numbered (32) in
von Zeipel’s original paper, not as a table. Note also that von Zeipel’s
definition yields the relations a1,2 = a2,1 and c1,2 = c2,1. This is based
on the symmetry of second derivatives (see Eq. (Zb2-402)).

J0 = 0 J0 = 30◦ J0 = 45◦

a1,1 +32′′.96 +21′′.70 +15′′.64

c1,1 +32′′.96 +11′′.27 +1′′.78

a2,2 +43′′.80 +19′′.83 +8′′.39

c2,2 +43′′.80 +17′′.16 +6′′.94

a1,2 −7′′.58 −3′′.32 −1′′.29

c1,2 −7′′.58 +1′′.91 +3′′.64

as functions of m1, m2 and J0, we want to develop
the function 1

�
in the increasing powers of eccen-

tricities e1 and e2. In this development it suffices to
write only of the terms of the second degree, as in
formulas (Zb2-402) one must place ξr = ηr = 0,
i.e. e1 = e2 = 0 after differentiation.” (p. 5)

As von Zeipel states above, in his 1901 paper he first aims
at expressing the coefficients ai,k and ci,k in Eq. (Zb1-401)
using orbital elements. After that, he calculates their numer-
ical values by substituting the actual orbital elements of ob-
jects such as Jupiter or Saturn. von Zeipel’s eventual purpose
in this paper is to know the dependence of the critical value
of the initial mutual inclination J0 on the semimajor axis ra-
tio, α. In von Zeipel’s theory, as developed at this point, con-
struction of the Lindstedt series would be impossible when
J0 exceeds the critical value.

The remaining part of his 1901 paper is full of detailed
mathematical expositions where von Zeipel expands the dis-
turbing function in a way that is already familiar to us. In
the procedure, he employs the same technique that was later
used in his 1910 paper—use of the Laplace-like coefficients
bi, j , ci, j , ei, j . We already browsed through how he achieved
it in Section 5.6.3 of this monograph.

After going through a large amount of algebra, von Zeipel
reached a set of numerical values of the coefficients on his
p. 22. We reproduced these as our Table 7. Using the co-
efficients, von Zeipel finally attains the solution σ of the
quadratic equation (Zb1-401) for three values of initial mu-
tual inclination (J0 = 0, 30◦, 45◦) under the actual mean mo-
tions (n1, n2) and masses (m1, m2) of Jupiter and Saturn. Let
us rewrite his results that are summarized as an equation (on
his p. 22) in a slightly different format:

J0 = 0 : σ = ±47′′.68, ±29′′.07

J0 = 30◦ : σ = ±18′′.26, ±15′′.43

J0 = 45◦ : σ = ±1′′.19
√−1, ±8′′.84

(Zb33-407)

where
√−1 denotes the imaginary unit.

From Eq. (Zb33-407) we know that the existence of the
Lindstedt series is assured when J0 = 0 and 30◦ because all
four σ are real and unequal. However, this is not the case
when J0 = 45◦ because two of the four σ are imaginary

(σ = ±1′′.19
√−1). von Zeipel depicts this outcome as

follows. Note that the partial use of italic characters in the
following is by the original author (von Zeipel):

“By thus increasing the mutual inclination of the
orbits of Jupiter and Saturn, the series of Mr. Lind-
stedt still exist, while J0 reaches the value 30◦. But
J0 exceeding a limit slightly less than 45◦, the se-
ries in question cease to exist. Then it is no longer
possible to avoid the secular terms, and the orbits
are probably unstable.” (p. 23)

von Zeipel then moves on to a special case when one of the
planetary masses is zero—the restricted three-body problem.
Citing his description about it:

“If the outer planet is Jupiter, the inner planet has
the mean diurnal motion n1 = 742′′, 2 (because
of the value used for α and the diurnal motion
n1 = 299′′, 1 of Jupiter). If, moreover, the mass
m1 of this planet is = 0, so that it is an asteroid,
the roots of equation (Zb1-401) are

σ


±m2n1

√
a(2)

1,1c(2)

1,1

±m2n1

√
a(2)

2,2c(2)

2,2

= ±m2n1
α2

2

(
c1,0 − c0,1

)
The two first roots become imaginary when J0

exceeds the limit 31◦.1 . . . , because, then, c(2)

1.1
going through zero becomes negative.” (p. 23)

Here, m2 is the mass of the perturbing body, and n1 is the
mean motion of the perturbed body. a(2)

1,1, a(2)

2,2, c(2)

1,1, c(2)

2,2 are
equivalent to a1,1, a2,2, c1,1, c2,2 respectively, when m1 = 0
by von Zeipel’s definitions (Eq. (13) on his p. 14, although
we do not reproduce them here). c1,0 and c0,1 are respectively
equivalent to the numerical coefficients c1.0 and c0.1 that we
studied before (Section 5.6.3 of this monograph).

von Zeipel’s above conclusion on the critical value of J0

in the restricted case (J0 ∼ 31◦.1) must be consistent with
what he obtained in his 1910 paper. The ratio of mean
motions between the inner and the outer bodies in the above
example is 742.2

299.1 , which yields the ratio of the semimajor axes
α = a

a′ = 0.545587. Remember that we have made a plot
of the quantity equivalent to J0 (which we have designated
as I0.2 or i0 in this monograph) as Fig. 15. There, we saw
that I0.2 takes a value just above 30◦ when α ∼ 0.55. This
is fairly well consistent with von Zeipel’s statement, J0 ∼
31◦.1. Recalling that the method that he employed for this
purpose was common between his 1901 and 1910 papers,
the agreement is no surprise. The surprise is the fact that the
dependence of the limiting inclination value (J0 or I0.2) on
the ratio of the semimajor axes α was already discussed, and
its precise numerical estimate was accomplished in 1901, the
first year of the twentieth century.

The largest difference between the conclusions of von
Zeipel’s 1901 paper and 1910 paper is that, by the 1910 work
he had made substantial progress in his theory, and showed
that a perturbed body’s periodic orbit can stably exist around
a disturbing potential’s local minima or maxima even when
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the initial mutual inclination is larger than the critical value.
In his 1910 paper, he proved that we can construct the Lind-
stedt series providing the doubly averaged disturbing func-
tion possesses local minima or maxima. This is what we
demonstrated in Section 5 of this monograph. Let us remark
that, after his 1901 paper, von Zeipel completed his PhD the-
sis entitled “Recherches sur les solutions périodiques de la
troisièm sorte dans le problème des trois corps,” at Uppsala
University (von Zeipel, 1904). Then he moved to the Paris
Observatory and stayed there for about two years (from June
1904 through September 1906) to study celestial mechan-
ics more deeply under the supervision of Henri Poincaré and
Paul Painlevé before his 1910 paper came out (McGehee,
1986; Barrow-Green, 1996).

At the end of his 1901 paper, von Zeipel made the follow-
ing concluding statement. Note again that the partial use of
the italic characters is due to him:

“We have previously found (see my Mémoire On
the general form etc. p. 50) that for a planet
very close to the Sun, the corresponding limit was
39◦2 . . . .

We can therefore state the following theorem:
If the inclination of the orbit of an asteroid ex-

ceeds a certain limit (about 30◦, slightly variable
with α), the series of Mr. Lindstedt (the absolute
orbit of Gyldén) does not exist. Secular terms can-
not be avoided, and the orbit is likely unstable.

Although the series of Mr. Lindstedt are only
semi-convergent, it is possible to see in this theo-
rem, the cause of this surprising fact, that among
about 500 small planets there is only one (Pallas)
whose inclination exceeds 30◦.” (p. 23)

The above conjecture on the inclination distribution of
small planets (“petite planètes” in the original expression.
Most of them were the main belt asteroids at his time) is
probably associated with a description in his 1910 paper
(Section Z19 in Chapter IV. See p. 58 of this monograph).
Nowadays, more and more asteroids are being recognized
with inclination larger than 30◦, although they do not consti-
tute the majority of the population (e.g. Ivezić et al., 2001;
Warner et al., 2009; Novaković et al., 2011). Also, it is
now widely believed that the orbital distribution of asteroids
is sculptured not only by the secular three-body dynamics
but also by complicated processes including the radial mi-
gration of major planets (e.g. Morbidelli et al., 2010; Walsh
et al., 2011; Lykawka and Ito, 2013, 2017, 2019; Roig and
Nesvorný, 2015). Therefore from a modern viewpoint, von
Zeipel’s above statement may not be totally accurate.

However, we should also note that von Zeipel’s statement
is true about some part of the actual solar system structure.
One of the typical examples is the irregular satellites of the
jovian giant planets (e.g. Jewitt, 2005; Sheppard, 2006; Bot-
tke et al., 2010). In particular, Nesvorný et al. (2003) car-
ried out numerical simulations and an analytic estimate for
explaining the orbital inclination distribution of the irregu-
lar satellites of the jovian giant planets that are rather con-
centrated near ecliptic. As a result, Nesvorný et al. found

that the satellite orbits that are highly inclined with respect to
ecliptic can become unstable due to “Kozai resonance.” As
we learned, this radially stretches the orbits of the satellites
until they get out of planetary Hill spheres, collide with other
massive satellites, or hit the mother planet. We consider this
as a typical manifestation of von Zeipel’s conjecture.

Another example is the near-Earth asteroids with a small
perihelion distance. These objects are sometimes called
near-Sun asteroids (e.g. Emel’yanenko, 2017) or near-Sun
comets (e.g. Jones et al., 2018). Using the latest, self-
consistent stationary dynamical model of the near-Earth as-
teroid distribution, Granvik et al. (2016, 2018) showed that
the actually observed near-Earth asteroids with a small per-
ihelion distance (such as q = a(1 − e) < 0.2 au) are much
fewer than that predicted by conventional dynamical mod-
els. This result can be interpreted as a consequence of catas-
trophic disruption of the asteroids by the thermal effect when
they approach the Sun very closely. Also, many of these as-
teroids are known to be in the “Lidov–Kozai state” that en-
hances their eccentricity and inclination (e.g. Ohtsuka et al.,
2006, 2007, 2008, 2009; Urakawa et al., 2014), which is pos-
sibly causing their thermal metamorphism and disintegration
in the end (e.g. German, 2010; Delbo et al., 2014; Ito et al.,
2018). It is also worth a mention that the distribution of the
argument of perihelion of the Apollo near-Earth asteroids
(Earth-crossing objects with a semimajor axis a > 1.0 au
and perihelion distance q < 1.017 au) shows a non-uniform
distribution, which can be attributed to the “Kozai effect”
arising from Jovian perturbation (JeongAhn and Malhotra,
2014). An orbital alignment pattern that was recently rec-
ognized among the main belt comet population (Kim et al.,
2018) may have relevance to this. Therefore, we would say
that von Zeipel’s conjecture that the secular three-body dy-
namical mechanism he found has reduced the number of
“small planets” with a large inclination is partially true.

6.5 Consideration on historical examples
Going through von Zeipel’s series of works, we became

strongly impressed by how accurate his theories and calcu-
lations are on the motion of perturbed bodies in the doubly
averaged CR3BP whether it is the inner problem or the outer
one. We should recall the fact that electronic computers did
not exist at all in his era. Therefore his “numerical” calcu-
lations must have been done manually. Nevertheless his nu-
merical results show a beautiful agreement with much later
studies that exploited high-speed digital computers, as we
have confirmed (see Figs. 15, 22, 26, and 27).

In addition, we should recall that during von Zeipel’s era,
observational evidence on the small solar system bodies was
still very limited. In Berliner Astronomisches Jahrbuch für
1911 that von Zeipel cited, only about 650 main belt aster-
oids, a handful of Jupiter Trojans, and just one near-Earth
asteroid ((433) Eros) were listed. The number of comets that
were recognized at that time was about 400 (this number
comes from our own estimate using the list of comets and
dates of their first observations registered in the JPL Small-
Body Database Search Engine). The asteroid (1373) Cincin-
nati that Kozai brought up as an example of the g-librators
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was not discovered until 1935. There was no artificial satel-
lite like Luna-3 whose dynamical behavior became a motiva-
tion of Lidov’s work. Discoveries of Centaurs did not come
until the 1970s. It is needless to mention TNOs or extrasolar
planets that were not discovered until the 1990s.

Recognizing the limitations of scientific knowledge and
tools at his time, we are impressed by how strongly moti-
vated von Zeipel was on advancing celestial mechanics to-
ward the foundation of theories that can deal with the orbital
motion of the small solar system bodies in a comprehensive
way. We surmise that his eventual motivation was oriented
toward an understanding of the origin and evolution of the
entire solar system. In vindication, let us pick some of his
occasional statements on the dynamical evolution of the so-
lar system bodies in his publications. One example is von
Zeipel’s (1901, p. 23) statement on the fact that most as-
teroids (recognized at his time) have a smaller inclination
than 30◦ together with a conjecture on this. We mentioned
it in Section 6.4.2 of this monograph. As another example,
let us take up a paragraph placed at the end of Section Z19
of von Zeipel (1910) that describes possible dynamical pro-
cesses that he thought took place in the early solar system.
This paragraph appears after he presented the calculation re-
sults of I0 and I0.2 for several actual asteroids (p. 58 of this
monograph). Citing the entire paragraph:

“We shall here make an important remark from
the point of view of the evolution of the planetary
system. Let us suppose that there is resistance in
space against the motion. It is well known that
it will have the effect of making the eccentrici-
ties (and the major axes) smaller and smaller, fi-
nally reducing them to zero. But then, by virtue
of what preceded, the combined effect of the re-
sistance and of secular perturbations of an outer
planet will also inevitably diminish the inclina-
tions, and lower them more or less below the limit
I0.2. Then, if the resistance is greater against the
retrograde motion, the particles that turn [around
the Sun] in the reverse direction will be drawn ear-
lier towards the Sun than the others. There will
thus come a time when the originally chaotic neb-
ula will have, at the interior of a disturbing and
dominant mass (Jupiter), the present aspect of our
solar system.” (p. Z392)

We can presume that, through the above paragraph, von
Zeipel intended to give an explanation on the current status
of the solar system where most of the bodies are on prograde
and only slightly or moderately inclined orbits. At present, it
is known that the solar system formation was a combination
of many physical processes that interacted with each other.
The couple of secular orbital change and nebula gas dynam-
ics that von Zeipel mentioned in the above must have been
at work too, at least partially, on forming some part of the
current solar system status. Moreover, it is becoming better
known that the secular orbital oscillation that von Zeipel dis-
cussed efficiently works on shaping some sort of extrasolar
planetary systems in combination with tidal interactions with

central star and scatterings between planets (e.g. Wu, 2003;
Fabrycky and Tremaine, 2007; Narita et al., 2009; Hébrard
et al., 2011). Thus, one may want to say that von Zeipel’s
statements on the solar system evolution based on his own
theory hold true to a certain extent even today.

At this point, we would like to express the following opin-
ion. Considering the fact that von Zeipel far preceded Li-
dov and Kozai, we believe it is perfectly reasonable to call
the theoretical framework and its outcome that we have dis-
cussed, “the von Zeipel–Lidov–Kozai oscillation,” instead of
using the term Lidov–Kozai or Kozai–Lidov. To reinforce
our opinion, let us pick up some historical examples for ref-
erence: Rodrigues’ formula, Laplace–Runge–Lenz vector,
Yarkovsky effect, and Kuiper belt.

Rodrigues’ formula Rodrigues’ formula is a famous for-
mula that generates the Legendre polynomial Pn(x). It is
one of the typical examples whose name changed as its ear-
lier pioneer got recognized later. The formula is expressed
as follows (e.g. Stegun, 1965, p. 334):

Pn(x) = 1

2nn!

dn

dxn

(
x2 − 1

)n
. (408)

According to Askey (2005, pp. 105–106), this formula first
appeared in Rodrigues (1816) as Olinde Rodrigues’ doctoral
dissertation. However, Ivory (1824) and Jacobi (1827) made
equivalent discoveries of this formula later. And, somehow
the formula was called the Ivory–Jacobi formula for decades.
Much later, Eduard Heine paid attention to Rodrigues’ work
as the pioneer, and began calling the formula Rodrigues’
formula (Heine, 1878). See also Simon (2015, p. 135) for
a summary of the history of this formula.

Laplace–Runge–Lenz vector A vectorial quantity called
the Laplace–Runge–Lenz vector is a constant vector appear-
ing in the motion of a body under the potential of 1

r , where
r is the distance from the force center (e.g. Goldstein, 1980;
Vilasi, 2001). The vector is often denoted as AAA or eee, and it
shows up in the Keplerian problem too. Using the standard
notation in celestial mechanics (e.g. Boccaletti and Pucacco,
1996, p. 132), it is expressed as follows:

eee = vvv × hhh

µ
− rrr

r
, (409)

where vvv is the velocity vector of the body on a Keplerian
orbit, rrr is its position vector, hhh is its angular momentum
per unit mass, and µ is a factor including the mass and
the gravitational constant. Although nowadays it seems that
the majority of the literature calls this quantity the Laplace–
Runge–Lenz vector, this is another example of quantities
whose name has changed as the study of history goes fur-
ther back. Readers can consult Goldstein (1975, 1976) and
Alemi (2009) for a detailed and complicated historical back-
ground as to who derived this vector first, and how it has been
called. After some length of period in the mid-twentieth cen-
tury during which this quantity was referred to as the Runge–
Lenz vector (e.g. Redmond, 1964; Dahl, 1968; Collas, 1970;
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Heintz, 1974), Goldstein (1975) found that Pierre-Simon de
Laplace correctly identified this vector in a much earlier
era than Runge and Lenz. Goldstein (1976) discovered an
even earlier history where this vector was also identified by
William Rowan Hamilton, as well as by Jakob Hermannn
and Johann I. Bernoulli. Goldstein’s (1976) recommenda-
tion was to call this vector the Hermann–Bernoulli–Laplace
vector. Subramanian (1991) went even further and called
it the Hermann–Bernoulli–Laplace–Hamilton–Runge–Lentz
vector. Note that this quantity is also known as the eccentric-
ity vector in solar system dynamics (e.g. Murray and Der-
mott, 1999). This name came from the original publication
of Hamilton in 1845, according to Goldstein (1976).

Yarkovsky effect The Yarkovsky effect is a momentum
transfer mechanism that works on rotating bodies. It is
caused by the anisotropic absorption and emission of ther-
mal energy. It works effectively on small bodies in the so-
lar system, causing their radial orbit migration over a long
timescale (e.g. Bottke et al., 2001, 2002b, 2006; Vokrouh-
lický et al., 2015). The story of the discovery and re-
discovery of this effect is now rather popular, but let us
briefly summarize it. Ivan Osipovich Yarkovsky, a Polish
civil engineer working in Russia, published a private “pam-
phlet” about his idea on this effect at the end of the 19th
century. However, the effect was practically forgotten until
Ernst Julius Öpik (who read the pamphlet around 1909) re-
called it just from his memory. Öpik (1951, Section 9. The
Yarkovsky Effect on p. 194) made a quantitative estimate on
how the effect works in a course of studies of the collision
probability of small particles with planets, and named it the
Yarkovsky effect. Nearly at the same time, Vladimir Vyach-
eslavovich Radzievskii gave a study on the same effect in his
publication (Radzievskii, 1952). In the 1990s, detailed and
quantitative studies followed along with the actual detection
of this effect in asteroidal motion (e.g. Farinella et al., 1998;
Farinella and Vokrouhlický, 1999; Vokrouhlický, 1998a,b;
Chesley et al., 2003). In a word, we can practically say that
most of the quantification of this effect was accomplished
by the people in a much later era than Yarkovsky. How-
ever, the effect has been just called as the Yarkovsky ef-
fect; not the Öpik effect or the Radzievskii effect, or the
Öpik–Radzievskii effect, nor anything else. Note also that
there is another aspect of the Yarkovsky effect that influences
the spin rate of small bodies through their irregular shape,
which is now referred to as the YORP effect (e.g. Rubincam,
2000; Vokrouhlický et al., 2003). “YORP” is an abbrevia-
tion of four people (Yarkovsky, O’Keefe, Radzievskii, Pad-
dack), and again, Yarkovsky’s name comes first. See Beek-
man (2005, 2006) for an elaborate review of the life of Ivan
Osipovich Yarkovsky, as well as how Yarkovsky came up
with the idea of this effect.

As for Rodrigues’ formula and the Laplace–Runge–Lentz
vector, the earlier pioneer(s) had been forgotten or were
not recognized for a long time despite their achievement.
The formula and the vector were once named and called
after the “re”-discoverers, until someone drew attention to
the achievements of the original discoverers and an appro-

priate renaming was made. As for the Yarkovsky effect,
the original achievement was just about a rough, concep-
tual idea. Yarkovsky’s original aim was to reinforce his hy-
pothesis about the existence of ether, which is, in hindsight,
plainly wrong in the context of modern science. Therefore,
we should say that Öpik was so humble that he mentioned
Yarkovsky’s original work and even named the effect after
Yarkovsky. In this regard, we may say that the Poynting–
Robertson effect, working on small dust grains through ra-
diation pressure from the Sun (Poynting, 1904; Robertson,
1937), has had a similar history. Although Poynting (1904)
presented a quantitative description of this drag effect, the
original description of Poynting was rather incomplete (e.g.
Klačka et al., 2014). Öpik even wrote as follows:

“8. The Poynting–Robertson effect. [· · · ] A secu-
lar decrease of the major axis and of the eccentric-
ity of the orbit of the particle results. The effect is
connected with Poynting’s name (1903), although
his reasoning was based on a misconcept of ab-
solute motion, and his predicted effect amounted
to only one-third of the correct value. Improve-
ment in the theory was introduced by Larmor. The
problem has been more recently revived by H. N.
Russell and thoroughly investigated by Robertson
(21). For the sake of brevity we will refer to it be-
low as the Robertson effect. ” (Öpik, 1951, the
first paragraph on his p. 191–192)

Poynting’s theory was later substantially rewritten and so-
phisticated not only by Robertson (1937) but also by many
other authors (e.g. Burns et al., 1979; Klačka et al., 2014;
Burns et al., 2014) until it acquired the modern, correct for-
mulation. And yet, the drag effect keeps the name of the
historical pioneer (Poynting) first.

Kuiper belt The previous examples that we browsed
through (Rodrigues’ formula, the Laplace–Runge–Lenz vec-
tor, and the Yarkovsky effect) all have their pioneer’s name
first. We think they are excellent examples that illustrate
how these kinds of discoveries should be named. On the
other hand, we might want to add another, arguable exam-
ple: the Kuiper belt. The name came from a famous Dutch–
American astronomer, Gerard Peter Kuiper. The point is
that, Kuiper himself did not particularly claim the existence
of the small body population in the Neptune–Pluto region
(30 au < r < 50 au) of the present solar system (Kuiper,
1951a,b). And yet, the small body population has been often
called the “Kuiper belt” (see Green, 1999, 2004a,b, for criti-
cal reviews). Today it is generally recognized that many pio-
neers, other than Kuiper, had anticipated the existence of the
small body population in this region (e.g. Edgeworth, 1943,
1949; Cameron, 1962; Whipple, 1964a,b). One of the earli-
est predictions was already made right after the discovery of
Pluto, which was stated as follows:

“Is it not likely that in Pluto there has come to light
the first of a series of ultra-Neptunian bodies, the
remaining members of which still await discovery
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but which are destined eventually to be detected?”
(Leonard, 1930, his p. 124)

Note that the partial use of the italic characters is due to the
original author (Leonard). Note also that Leonard considered
Pluto and these bodies to be as massive as the four terrestrial
planets, as was the case in that era.

As the perception that there are more pioneers than Kuiper
spread, the small body population is more commonly and
collectively referred to as transneptunian objects (TNOs)
without including Kuiper’s name. See Davies et al. (2008)
for a detailed historic background on this issue. Also, recall
that von Zeipel had predicted in the CR3BP framework the
possible existence of the stable orbits of small bodies out-
side the perturbing planet near the boundary of e = k ′ with
a small inclination (see Section 5.9.1 of this monograph, p.
80, in particular the citation from von Zeipel’s pp. Z414–
Z415). He also made a prediction for the possible orbits
of small bodies with a small eccentricity and a large incli-
nation, located somewhat outside the outermost perturbing
planet when two or more perturbing planets are at work (see
Section 5.9.2 of this monograph, p. 83, in particular the ci-
tation from von Zeipel’s p. Z417). If we regard Neptune as
the outermost perturbing planet, these small bodies would be
nothing but transneptunian objects.

6.6 von Zeipel–Lidov–Kozai oscillation
We hope that now readers understand the reason why we

advocate using the term “von Zeipel–Lidov–Kozai” for what
we have discussed. The earliest pioneer’s name, von Zeipel,
should be included and put first. Also, the correctness and
completeness of von Zeipel’s series of works have the same
merit as the later works by Lidov and Kozai, and even better
in some aspects. This is what we have rendered throughout
this monograph. It is certainly possible that someone in
the future discovers even earlier literature than von Zeipel’s
work along this line of study. But until then, let us use the
prefix “von Zeipel–Lidov–Kozai” for commemorating this
pioneer and his revelations on this subject. We believe it
is proper, fair, and more justifiable than using the currently
common terms such as Lidov–Kozai or Kozai–Lidov.

Currently, a front line of the hierarchical three-body prob-
lem (including R3BP) is the motion of a perturbed body
when the perturbing body has a non-zero eccentricity, e′ > 0
(e.g. Naoz, 2016). In general, the inclusion of perturber’s
non-zero eccentricity in the (restricted) three-body problem
increases the system’s degrees of freedom. This is because
it makes the disturbing potential non-axisymmetric, and the
vertical component of perturbed body’s angular momentum(∝ √

1 − e2 cos i
)

would not remain constant anymore even
in the doubly averaged system8 unless we truncate the dis-
turbing function at the quadrupole level so that “the happy

8As described in Lithwick and Naoz (2011, Appendix A on their p. 7),
we can regard that perturbing body’s argument of pericenter g′ takes the
form of g′ = π − h in the disturbing function of the (restricted) three-
body problem when e′ > 0. h is the longitude of ascending node of the
perturbed body. Therefore h remains in the disturbing function even after
the combination h − h′ is eliminated through Jacobi’s elimination of the

nodes. Hence h’s conjugate momentum, H =
√

µa
(
1 − e2

)
cos i , could

not remain constant even after the double averaging operation.

coincidence” takes place. It turned out that the perturbed
body’s dynamical behavior can be significantly different in
this case as we already demonstrated in Section 2.4 of this
monograph. This phenomenon is now called the eccentric
Lidov–Kozai oscillation, and it can give us answers to many
questions in solar system dynamics that the classic frame-
work (assuming e′ = 0) could not, such as the origin of ob-
jects on retrograde orbits (e.g. Ford et al., 2000; Katz et al.,
2011; Naoz et al., 2011, 2013a; de la Fuente Marcos et al.,
2014). Inclusion of the general relativity into the framework
of the eccentric Lidov–Kozai oscillation is also going on (e.g.
Naoz et al., 2013b; Will, 2017; Sekhar et al., 2017). The ec-
centric Lidov–Kozai oscillation in the outer problem is also
formulated, and applied to solar system dynamics (e.g. Naoz
et al., 2017; Zanardi et al., 2017; Vinson and Chiang, 2018;
de Elı́a et al., 2019). Here again, we insist that this line of or-
bital phenomenon should be called, consistent with our dis-
cussion, the eccentric von Zeipel–Lidov–Kozai oscillation.
Note that the use of the term cycle is not valid any longer
here, because the motion of the perturbed body is not exactly
cyclic with a rigid period when e′ > 0.

Let us say one thing in passing at the end of this mono-
graph. Readers might want to remember the fact that a short
but important publication by von Zeipel on the singularities
in N -body dynamics (von Zeipel, 1908) had been practically
forgotten for a long time, until Richard McGehee made a
clarification of von Zeipel’s fundamental contribution to sin-
gularity theory (McGehee, 1986; Diacu and Holmes, 1996).
We hope that this monograph becomes a trigger for the com-
munity to reinstate von Zeipel’s yet another epoch-making
accomplishment on an issue that ubiquitously shows up in
celestial mechanics and dynamical astronomy.
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and P. Michel (2001), Probable asteroidal origin of the Tunguska cosmic
body, Astronomy and Astrophysics, 377, 1081–1097, [ https://doi.org/10.
1051/0004-6361:20011054 ].

Fatou, P. (1931), Sur le mouvement d’un point matérial ans un champ de
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Préliminaires and Chapitre I. See also http://henripoincarepapers.
univ-lorraine.fr/chp/text/gylden-1892-05-02.html.

Gylden, H. (1893), Nouvelles recherches sur les séries employés dans
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high-inclination asteroids, Icarus, 216, 69–81, [ https://doi.org/10.1016/
j.icarus.2011.08.016 ].

Obi, S., Y. Kozai, A. Fujii, and S. Murayama (1979), From my photo album:
Dr. Yoshihide Kozai, Star Watching Note, 5, 64–67, [ https://iss.ndl.go.
jp/books/R100000002-I000000033843-00 ], originally in Japanese.

Ohtsuka, K., T. Sekiguchi, D. Kinoshita, J.-I. Watanabe, T. Ito, H. Arakida,
and T. Kasuga (2006), Apollo asteroid 2005 UD: split nucleus of (3200)
Phaethon?, Astronomy and Astrophysics, 450, L25–L28, [ https://doi.org/
10.1051/0004-6361:200600022 ].

Ohtsuka, K., H. Arakida, T. Ito, T. Kasuga, J.-I. Watanabe, D. Kinoshita,
T. Sekiguchi, D. J. Asher, and S. Nakano (2007), Apollo asteroids 1566
Icarus and 2007 MK6: Icarus family members?, The Astrophysical Jour-
nal, 668, L71–L74, [ https://doi.org/10.1086/522589 ].

Ohtsuka, K., H. Arakida, T. Ito, M. Yoshikawa, and D. J. Asher (2008),
Apollo asteroids (1999) YC: Another large member of the PGC?, Mete-
oritics and Planetary Science Supplement, 43, 5055, [ http://ads.nao.ac.
jp/abs/2008M%26PSA..43.5055O ].

Ohtsuka, K., A. Nakato, T. Nakamura, D. Kinoshita, T. Ito, M. Yoshikawa,
and S. Hasegawa (2009), Solar radiation heating effects on 3200
Phaethon, Publications of the Astronomical Society of Japan, 61, 1375–
1387, [ https://doi.org/10.1093/pasj/61.6.1375 ].

Oort, J. H. (1950), The structure of a cloud of comets surrounding the
solar system and a hypothesis concerning its structure, Bulletin of the
Astronomical Institutes of the Netherlands, 11, 91–110, [ http://ads.nao.
ac.jp/abs/1950BAN....11...91O ].

Oort, J. H. (1951), Origin and development of comets, The Observatory, 71,
129–144, [ http://ads.nao.ac.jp/abs/1951Obs....71..129O ].

Öpik, E. J. (1951), Collision probabilities with the planets and the distribu-
tion of interplanetary matter, Proceedings of the Royal Irish Academy,
54A, 165–199, [ https://www.jstor.org/stable/20488532 ].

Orlov, A. A. (1965a), The approximative analytical representation of space
motions in the Hill’s problem, Bulletin of the Institute of Theoretical
Astronomy, 10, 360–378, originally in Russian.

Orlov, A. A. (1965b), Lunisolar perturbations in the motion of artificial earth
satellites, in XV-th International Astronautical Congress Proceedings 1,
edited by Łunc, M., E. A. Brun, G. N. Duboshin, and W. F. Hilton,
141–157, Gautier–Villars, Państwowe Wydawnictwo Naukowe–Polish
Scientific Publishers, Paris, Warszawa, proceedings of the congress held
in Warszawa, 1964, originally in Russian,

Orlov, A. A. (1972), On the short periodic solar perturbations in the mo-
tion of planetary satellites, Publication of the State Institute of Astron-
omy named after P. K. Sternberg, Moscow State University named after
Lomonosov M. V., 43, 30–37, originally in Russian.
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Picard, E. (1896), Traité d’analyse, tome 3. Des singularités des
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Tisserand, F. (1889), Traité de Mécanique Céleste, tome I. Pertur-
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K. Tanikawa (2016), The Three-body Problem from Pythagoras to Hawk-
ing, Springer International Publishing, Cham, Switzerland, [ https://doi.
org/10.1007/978-3-319-22726-9 ].

Vashkovjak, M. A. (1976), On the stability of circular ‘asteroid’ orbits in an
N -planetary system, Celestial Mechanics, 13, 313–324, [ https://doi.org/
10.1007/BF01228649 ], the author is equivalent to M. A. Vashkov’yak,
but he employs the expression of “Vashkovjak” in this paper.

Vashkov’yak, M. A. (1981a), Evolution of the orbits in the restricted circu-
lar twice-averaged three-body problem I. Qualitative investigation, Cos-
mic Research, 19, 1–10, [ http://ads.nao.ac.jp/abs/1981CosRe..19....1V ],
originally in Russian.

Vashkov’yak, M. A. (1981b), Evolution of the orbits in the restricted cir-
cular twice-averaged three-body problem II. Quantitative characteristics,
Cosmic Research, 19, 99–109, [ http://ads.nao.ac.jp/abs/1981CosRe..19.
..99V ], originally in Russian.

Vashkov’yak, M. A. (1981c), Evolution of the orbits of asteroids not belong-
ing to the main belt, Cosmic Research, 19, 357–365, [ http://ads.nao.ac.
jp/abs/1981KosIs..19..528V ], originally in Russian.

Vashkov’yak, M. A. (1999), Evolution of the orbits of distant satellites
of Uranus, Astronomy Letters, 25, 476–481, [ http://ads.nao.ac.jp/abs/
1999AstL...25..476V ], originally in Russian.

Vashkov’yak, M. A. (2005a), A numerical–analytical method for studying
the orbital evolution of distance planetary satellites, Astronomy Letters,
31, 64–72, [ https://doi.org/10.1134/1.1854797 ], originally in Russian.

Vashkov’yak, M. A. (2005b), Particular solutions of the singly averaged
Hill problem, Astronomy Letters, 31, 487–493, [ https://doi.org/10.1134/
1.1958113 ], originally in Russian.

Vashkov’yak, M. A. (2008), Orbital evolution of the outer satellites of
giant planets. Methods of analysis and results, [ http://library.keldysh.ru/
preprint.asp?id=2008-20&lg=e ], Keldysh Institute preprints, 2008–20.

Vashkov’yak, M. A. (2010), Constructive analytical solution of the evolu-
tion Hill problem, Solar System Research, 44, 527–540, [ https://doi.org/
10.1134/S0038094610060067 ], originally in Russian.

Vashkov’yak, M. A., and M. L. Lidov (1990), Evolution of certain types of
satellite orbits, Cosmic Research, 28, 689–692, [ http://ads.nao.ac.jp/abs/
1991CosRe..28..689V ], originally in Russian.

Vashkov’yak, M. A., and N. M. Teslenko (2005), On the stability of particu-
lar solutions of the singly averaged Hill problem, Astronomy Letters, 31,
844–852, [ https://doi.org/10.1134/1.2138772 ], originally in Russian.

Vashkov’yak, M. A., and N. M. Teslenko (2008), On the periodically evolv-
ing orbits in the singly averaged Hill problem, Astronomy Letters, 34,
280–288, [ https://doi.org/10.1134/S1063773708040087 ], originally in
Russian.

Vashkov’yak, M. A., and N. M. Teslenko (2009), Refined model for the
evolution of distance satellite orbits, Astronomy Letters, 35, 850–865,
[ https://doi.org/10.1134/S1063773709120056 ], originally in Russian.
Erratum is available in https://doi.org/10.1134/S1063773710040092.

Vilasi, G. (2001), Hamiltonian Dynamics, World Scientific, Singapore,
[ https://doi.org/10.1142/9789812386311 0004 ].

Vinson, B. R., and E. Chiang (2018), Secular dynamics of an exterior
test particle: The inverse Kozai and other eccentricity–inclination res-
onances, Monthly Notices of the Royal Astronomical Society, 474, 4855–
4869, [ https://doi.org/10.1093/mnras/stx3091 ].
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Vokrouhlický, D., D. Nesvorný, and W. F. Bottke (2003), The vector
alignments of asteroid spins by thermal torques, Nature, 425, 147–151,
[ https://doi.org/10.1038/nature01948 ].
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för Matematik, Astronomi och Fysik, 4 (32), 1–4, a Japanese translation
is available from http://th.nao.ac.jp/∼tanikawa/list04/list045.html.

von Zeipel, H. (1910), Sur l’application des séries de M. Lindstedt à l’étude
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Appendix A. von Zeipel’s P, Q and Their Signs
In p. Z394 (Section 5.6.3 of this monograph, p. 60), von

Zeipel gives a statement on the functions P and Q, “We
therefore have P > 0, Q > 0.” It is easy to understand
the reason why Q > 0. By its definition in Eq. (307), the
function � is always positive. Then we see the integrand on
the right-hand side of Eq. (311), �

5
2 (1 − cos u)3, is always

positive. Hence we know Q is always positive.
As for P , we see that the second term of P on the right-

hand side of Eq. (310) is always positive because the in-
tegrand of this term, �

5
2 sin2 u (1 − cos u), is positive. As

for the first term, it is enough to consider only the range
u = [0, π ] due to the symmetry of the integrand, �

3
2 cos u.

In addition, we can easily see the following:

• cos u changes its sign at u = π
2 , but its behavior is

point-symmetric around (u, cos u) = ( π
2 , 0).

• �
3
2 monotonically decreases as u from � = 1 (at u =

0). This is because ∂�
3
2

∂u is always negative unless α =
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0. More specifically writing:

∂�
3
2

∂u
= −3�

5
2 α2 sin u (1 − cos u) . (A.1)

• Nevertheless, �
3
2 remains positive in u = [0, π ].

The above facts indicate that the first half of the integral

in question
(∫ π

2
0 �

3
2 cos udu

)
is positive, and the second

half of the integral in question
(∫ π

π
2

�
3
2 cos udu

)
is negative.

And, the former’s absolute value is larger than the latter’s.
Therefore their sum∫ π

0
�

3
2 cos udu =

∫ π
2

0
�

3
2 cos udu +

∫ π

π
2

�
3
2 cos udu,

(A.2)

becomes positive, irrespective of α’s value. This proves that
the first term of P in Eq. (310) is always positive. For
illustrating the circumstance, we made a plot of �

3
2 , cos u,

and �
3
2 cos u in Fig. 30 using α = 0.6 as an example.

Fig. 30. An example plot of �
3
2 , cos u, and �

3
2 cos u that shows their

dependence on u. α = 0.6 in this plot.

Appendix B. von Zeipel’s ∂2 R
∂e2 in the Outer Problem

Here we show the actual expressions of the second deriva-
tive of the doubly averaged disturbing function R for the
outer CR3BP by eccentricity e up to O

(
α′5) when cos 2g =

±1. This is omitted in our Eq. (353) on p. 65. Our cal-
culation is based on the expressions of R′

3 and R′
5 in Eq.

(Z98-324). When cos 2g = +1, the derivative is

∂2 R

∂e2
= ∂2

∂e2

(
R′

3α
′3 + R′

5α
′5
)∣∣∣∣

cos 2g=+1

= 1

1024
(
1 − e2

) 15
2

{[−1536e10

+ (−11520k2 + 5760
)

e8 + (
32640k2 − 7680

)
e6

+ (−28800k2 + 3840
)

e4

+5760k2e2 + 1920k2 − 384
]
α′3

+ [−270e8 + (
5040k2 + 3285

)
e6

+ (
28350k4 + 47250k2 − 5400

)
e4

+ (
99225k4 − 47250k2 + 2025

)
e2

+7560k4 − 5040k2 + 360
]
α′5

}
.

(B.1)

When cos 2g = −1, it is

∂2 R

∂e2
= ∂2

∂e2

(
R′

3α
′3 + R′

5α
′5
)∣∣∣∣

cos 2g=−1

= 1

1024
(
1 − e2

) 15
2

{[−1536e10

+ (−11520k2 + 5760
)

e8 + (
32640k2 − 7680

)
e6

+ (−28800k2 + 3840
)

e4

+5760k2e2 + 1920k2 − 384
]
α′3

+ [
5130e8 + (85680k2 − 1935)e6

+ (141750k4 + 25650k2 − 10800)e4

+ (163485k4 − 103410k2 + 6885)e2

+10080k4 − 7920k2 + 720
]
α′5

}
.

(B.2)

As we see, the terms at O
(
α′3) are common between

Eq. (B.1) and Eq. (B.2). Now substituting e = e′
2.0 of

Eq. (Z103-341) into Eq. (B.1), ∂2 R
∂e2 becomes as follows at(±e′

2.0, 0
)

up to O
(
α′5):

∂2 R

∂e2

∣∣∣∣
(±e′

2.0,0)

= −3
√

5
(
5k2 − 1

)
2500k

7
2

α′3

+ 9
√

5
(
425k4 − 210k2 + 49

)
5000000k

11
2

α′5.

(B.3)

Similarly, substituting e = e′
0.2 of Eq. (Z104-342) into Eq.

(B.2), ∂2 R
∂e2 becomes as follows at

(
0, ±e′

0.2

)
:

∂2 R

∂e2

∣∣∣∣
(0,±e′

0.2)

= −3
√

5
(
5k2 − 1

)
2500k

7
2

α′3

+ 9
√

5
(
1375k4 − 520k2 + 81

)
5000000k

11
2

α′5.

(B.4)

The first terms on the right-hand side of Eqs. (B.3) and
(B.4) remain positive while k2 < 1

5 . It is also easy to confirm
that the second terms of both the equations are positive in
the entire region of 0 ≤ k2 ≤ 1 (see Fig. 31 for a simple
illustration). Therefore, the conclusion we stated (hence von
Zeipel stated) as Eq. (354), i.e. ∂2 R

∂e2 > 0, stands true even

when the terms of O
(
α′5) are taken into account.

Fig. 31. Red: the second term in Eq. (B.3). Blue: the second term in
Eq. (B.4). α′ = 1 is assumed for both the terms. See Supplementary
Information 6 for more expository figures.
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inclination asteroids, Icarus, 216, 69–81, [ https://doi.org/10.1016/j.
icarus.2011.08.016 ].

Obi, S., Y. Kozai, A. Fujii, and S. Murayama (1979), From my photo album:
Dr. Yoshihide Kozai, Star Watching Note, 5, 64–67, [ https://iss.ndl.go.
jp/books/R100000002-I000000033843-00 ], originally in Japanese, 小
尾信弥・古在由秀・藤井旭・村山定男編, 私のアルバムから古在由
秀さん,星の手帖, 5,夏号, 64–67, 1979.

Ohtsuka, K., T. Sekiguchi, D. Kinoshita, J.-I. Watanabe, T. Ito, H. Arakida,
and T. Kasuga (2006), Apollo asteroid 2005 UD: split nucleus of (3200)
Phaethon?, Astronomy and Astrophysics, 450, L25–L28, [ https://doi.
org/10.1051/0004-6361:200600022 ].

Ohtsuka, K., H. Arakida, T. Ito, T. Kasuga, J.-I. Watanabe, D. Kinoshita,
T. Sekiguchi, D. J. Asher, and S. Nakano (2007), Apollo asteroids 1566
Icarus and 2007 MK6: Icarus family members?, The Astrophysical
Journal, 668, L71–L74, [ https://doi.org/10.1086/522589 ].

Ohtsuka, K., H. Arakida, T. Ito, M. Yoshikawa, and D. J. Asher (2008),
Apollo asteroids (1999) YC: Another large member of the PGC?, Mete-
oritics and Planetary Science Supplement, 43, 5055, [ http://ads.nao.ac.
jp/abs/2008M%26PSA..43.5055O ].

Ohtsuka, K., A. Nakato, T. Nakamura, D. Kinoshita, T. Ito, M. Yoshikawa,
and S. Hasegawa (2009), Solar radiation heating effects on 3200
Phaethon, Publications of the Astronomical Society of Japan, 61, 1375–
1387, [ https://doi.org/10.1093/pasj/61.6.1375 ].

Oort, J. H. (1950), The structure of a cloud of comets surrounding the solar
system and a hypothesis concerning its structure, Bulletin of the Astro-
nomical Institutes of the Netherlands, 11, 91–110, [ http://ads.nao.ac.jp/
abs/1950BAN....11...91O ].

Oort, J. H. (1951), Origin and development of comets, The Observatory,
71, 129–144, [ http://ads.nao.ac.jp/abs/1951Obs....71..129O ].

Öpik, E. J. (1951), Collision probabilities with the planets and the distribu-
tion of interplanetary matter, Proceedings of the Royal Irish Academy,
54A, 165–199, [ https://www.jstor.org/stable/20488532 ].

Orlov, A. A. (1965a), The approximative analytical representation of

space motions in the Hill’s problem, Bulletin of the Institute of
Theoretical Astronomy, 10, 360–378, originally in Russian, A.
A. Orlov, Pribli�ennoe analitiqeskoe predstavlenie
prostranstvennyh dvi�eni� v zadaqe Hilla, Akademi�
Nauk So�za Soveckih Cocialistiqeskih Respublik,
B�lleten~ Instituta Teoretiqesko� Astronomii, TOM X,
no. 5 (118),Izdatel~stvo NAUKA, Moskva, Leningrad, 1961.

Orlov, A. A. (1965b), Lunisolar perturbations in the motion of artificial
earth satellites, in XV-th International Astronautical Congress Proceed-
ings 1, edited by Łunc, M., E. A. Brun, G. N. Duboshin, and W. F.
Hilton, 141–157, Gautier–Villars, Państwowe Wydawnictwo Naukowe–
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3. URLs of the relevant websites
In the main body of the monograph, we limited the use of URLs (Uniform Resource Locators) minimum due

to the following two reasons. First, there is a technical limitation about the use of hyperlink (embedded URLs
in the text) in the LATEX typesetting process by the publisher. Also, we wanted to avoid clutter by having many
complicated URLs that often become sources of distractions. Instead, for the readers’ convenience, here we made
a list of the URLs of the websites that are mentioned or cited in the main body of the monograph.

Orbit databases

� The JPL Horizons web-interface cited in p. 10, 11, 24, 25, and 38
https://ssd.jpl.nasa.gov/horizons.cgi

� The JPL Small-Body Database Search Engine cited in p. 58 and 98
https://ssd.jpl.nasa.gov/sbdb_query.cgi

� The JPL Small-Body Database Browser cited in p. 84
https://ssd.jpl.nasa.gov/sbdb.cgi

� The Asteroid Orbital Elements Database (astorb.dat) cited in p. 81 and 84
https://asteroid.lowell.edu/main/astorb

� Minor Planet Circulars (MPC) 9770 (1985 July 2) cited in p. 23
https://www.minorplanetcenter.net/iau/ECS/MPCArchive/1985/MPC_19850702.pdf

Obituaries for Yoshihide Kozai (mentioned in p. 11)

Here we just picked several obituaries published in English. Note that there are many others published in
Japanese (and probably in other languages) that we did not mention here.

� American Astronomical Society (AAS)
https://aas.org/obituaries/yoshihide-kozai-1928-2018-obituary-needed

� International Astronomical Union (IAU)
https://www.iau.org/administration/membership/individual/1985/

� The Planetary Society
http://www.planetary.org/blogs/guest-blogs/2018/0227-yoshihide-kozai-1928-2018.html

� The Japan Academy
http://www.japan-acad.go.jp/en/news/2018/021301.html

� National Astronomical Observatory of Japan (NAOJ)
https://www.nao.ac.jp/en/notice/20180213-kozai.html

� Asian Scientist
https://www.asianscientist.com/2018/02/academia/yoshihide-kozai-astronomy-japan/

� The Asahi Newspaper
http://www.asahi.com/ajw/articles/AJ201802150020.html
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4. How we mention Hugo von Zeipel’s name
As we wrote in p. 39 of the monograph, Hugo von Zeipel’s name is sometimes mentioned just as “Zeipel.” This

manner may reflect the fact that the German language surname von has been a part of names of the noble families
in the Nordic countries such as Sweden, and that use of von is currently prohibited in new names. Regarding this
subject, let us cite a sentence from a webpage in Svenska Wikipedia about von:

“In Sweden, von is strongly associated with the nobility, and since 1901 it cannot be used in
new names.” (translated from https://sv.wikipedia.org/wiki/Von as of June 11, 2019. The origi-
nal Swedish expression is “I Sverige är von starkt associerat med adeln och sedan 1901 kan det inte
användas i nya namn.”)

On the other hand, we find a heading “Zeipel, von” in Nordisk familjebok, 33 (1922), 710–712 (http://runeberg.
org/nfcm/0387.html and http://runeberg.org/nfcm/0388.html). As an additional complication for us, he wrote his
own name as “H. v. Zeipel” in all of his publications that we are aware of: von appears just in the form of “v.”.

As such, speakers of the non-European languages like us are not familiar with von, and it is difficult to un-
derstand the usage of the word correctly. We wondered which way is more appropriate to refer to him, “Zeipel”
or “von Zeipel”, and eventually sent a query about it to Uppsala University where he served as a professor in
astronomy for a long time. Then we received an answer as follows:

“The correct way to write is ‘von Zeipel’. It is no longer possible to be honored in Sweden. However,
it does not change the fact that noble families still use ‘von’.” (The Communications Department of
Uppsala University, April 19, 2019)

We believe the above answer is more authentic and reliable than any other information as to how we should
mention Hugo von Zeipel’s name. Therefore, by following the above instruction, we decided to use “von Zeipel”
throughout the monograph.
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5. Orbit diagrams of the objects in Table 4
In Table 4 of the main body of the monograph (p. 84), we made a list of osculating orbital elements a, e, I and

the parameter k2 of several small objects in the actual solar system that can match von Zeipel’s description in
his Section Z28: “Not very eccentric, with an inclination close to 90ı, and located somewhat outside the orbit of
perturbing planet.” For better facilitating an understanding of what kind of orbits these objects have, we generated
orbital diagrams of all the 16 objects in this table as supplementary figures (Figs. S1 through S7).

First, similar to Fig. 12 of the main body of the monograph, we made secular orbital configuration diagrams
on the .e cosg; e sing/ plane (Figs. S1). The meanings of the color circles (black, red, and blue) remain the
same as in the main body: The red and blue circles represent the conditions where the orbits of the perturbed
body and the perturbing planet intersect each other at the ascending node (red) and at the descending node
(blue) of the perturbed body. The black circles represent the theoretically largest eccentricity of the small body
(k0 D

p
1 � k2; see Eq. (Z43-224)). The black points denote the current orbital locations of each object.

As is evident in Fig. S1, seven out of the ten objects in the “small k2” category in Table 4 are in the “rings
in a chain” state (see the locations of the black points). In other words, these objects are located in the region
of possible orbit intersection with the planets: Four objects (2007 VW266, 2010 CR140, 2012 YO6, 2008 KV42)
stay inside the domain B 0 defined by von Zeipel in Fig. 11 of the monograph, and three objects (2008 YB3, 2011
MM4, 2011 KT19) stay inside the domain B . The remaining three objects are marginally located on boarders:
2015 KG157 is between the domains A and B 0, 2014 JJ57 is between C and B , and 2007 BP102 is between C

and B 0. This circumstance implies that the objects in the “small k2” category are likely dynamically unstable due
to strong perturbation from the perturbing planets. On the other hand, all the six objects in the “small e and large
I ” category (2016 LN8, 2014 XZ40, 2013 SA87, 2004 DF77, 2006 HU122, and 2016 FM59) stay in the middle
of the domain C without a possibility of orbit intersection. This is realized by the very small eccentricity of these
objects, which indicates a possibility of their dynamical stability.

Next, we made a set of orbit diagrams of each of the objects in the actual .x; y; z/ space. Figs. S2–S5 are
for the objects in the “small k2” category, and Figs. S6–S7 are for those in the “small e and large I ” category.
The unit of axes is au. The epoch and reference frame are based on J2000.0. For all the objects, we made three
kinds of orbital diagrams projected onto three planes: the .x; y/, .x; z/, and .y; z/ planes. The orbits of the
perturbed bodies are drawn in red in all the panels. The orbits of the major perturbing planet (which each of the
perturbed bodies is located “somewhat outside”) are indicated in blue. We easily see the difference of orbital
shapes between the objects in the “small k2” category (Figs. S2–S5) and those in the “small e and large I ”
category (Figs. S6–S7). In particular, the circular orbital shape of the latter objects is clear at a glance.
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6. Supplementary figures for Appendix B
In Appendix B of the main body (p. 113), after placing Eqs. (B.3) and (B.4) we stated “It is also easy to

confirm that both the second terms are positive in the entire region of 0 � k2 � 1”. Here we plot the actual
values of the second terms (Fig. S8a) together with their derivatives by k (Fig. S8b). We clearly see that the
second terms remain positive throughout the entire range of k2, although their derivatives remain negative.

We have also made comparisons of magnitudes of the first and the second terms of Eqs. (B.3) and (B.4). More
specifically, we plotted the dependence of the first and the second terms (multiplied by the factor ˛02) on k2 at
different values of ˛0 .0:05; 0:30; 0:60; 0:95/ in the panels c, d, e, and f. The factor ˛02 accounts for the order
difference between the first and the second terms of Eqs. (B.3) and (B.4). We see both the terms remain positive
in the range of 0 � k2 �

1
5

as we wrote in Appendix B. In addition, we find the magnitude difference between
the first and the second terms become smaller as ˛0 gets larger. When ˛0 is as large as 0.95, we see that the second
terms are larger than the first term over almost entire range of k2 (Fig. S8f). This is another exemplification that
shows the importance to incorporate the ˛05 terms in the discussion here.
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Fig. S8. Panel a: (red) the second term in Eq. (B.3), (blue) that in Eq. (B.4), putting ˛0 D 1. This panel is
equivalent to Fig. 31 of the main body (p. 113). Panel b: (red) the derivative of the second term in Eq. (B.3),
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putting ˛0 D 1. Note that in b we plotted the quantities obtained by inverting the sign of the derivatives, because
the derivatives remain negative. Panels c–f: Comparison between the first term (black) and the second terms (red
and blue) when ˛0 D 0:05 (c), ˛0 D 0:30 (d), ˛0 D 0:60 (e), and ˛0 D 0:95 (f).
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7. Other relevant information

7.1 Lidov–Kozai oscillation in hydrodynamical disks

Theory of the Lidov–Kozai oscillation, or what should be called the von Zeipel–Lidov–Kozai oscillation from
now on, is not just confined to the point mass systems such as the classical three-body problem. For the past
decade it has also been applied to dynamical studies in hydrodynamical disks (e.g. Xiang-Gruess and Papaloizou,
2013; Martin et al., 2014; Trani et al., 2016; Lubow and Ogilvie, 2017; Franchini et al., 2019). Objectives of
these studies extend from accretion processes in protoplanetary disks to dynamics of stellar disks in the galactic
center. This is yet another exemplification of the substantial and ubiquitous importance of this mechanism in
collective astronomy and planetary science.

7.2 More about the c2-like parameter in later studies

In Section 6.2.2 of the main body (p. 88), we mentioned several examples of later “discovery” of Lidov’s
c2-like parameters. In the proofread stage of this monograph, we found that Froeschlé (1970) had brought in a
pair of parameters equivalent to Lidov’s c1 and c2. After introducing a set of variational equations for orbital
elements in the doubly averaged three-body problem (equivalent to Lidov’s Eq. (L54-147)), he states as follows:

“This system has the following first integrals:

a D Ct;�
1 � e2

�
cos2 i D A2;

e2
�
5 sin2 i sin2 ! � 2

�
D K;

(9)

where A2, K are constants which depends on the initial conditions.” (Froeschlé, 1970, p. 121)

Here A2 D c1 and K D 5c2 are obvious, but there is no citation to Lidov’s work in Froeschlé (1970). Therefore
we do not know if Froeschlé devised the function form of K by himself or borrowed it from previous litera-
ture. Note also that Innanen et al. (1997, p. 1916) developed a slightly similar discussion after placing a set of
variational equations (their Eq. (5)) that are equivalent to Lidov’s Eq. (L54-147).

7.3 No asteroids named after Moiseev or Lindstedt yet

On the course of preparing this monograph we noticed that, in addition to the asteroid (3040) Kozai that is
named after Yoshihide Kozai, there are some more asteroids that are named after the great celestial mechanists and
dynamical astronomers that we mentioned in this monograph: (2021) Poincare, (3663) Tisserand, (4236) Lidov,
(8688) Delaunay, and (8870) von Zeipel. However, it seems that there are no asteroids named after Nikolay
Dmitriyevich Moiseev or Anders Lindstedt yet. Considering their substantial contributions to the development
of celestial mechanics and dynamical astronomy, this fact is rather unexpected. We presume that some of the
readers of this monograph own the privilege to name asteroids. We hope those readers propose “Moiseev”
and “Lindstedt” for asteroid names along with the standard procedure of International Astronomical Union for
commemorating these two great pioneers.
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