宇宙大規模構造の物質分布のバイスペクトル

Ryuichi Takahashi (Hirosaki U)

title: N体数値シミュレーションによる 全天重カレンズマップの作成

category B+

	max # of cores	memory
bulk	320	3TB
large	3440	33TB

data storage 100TB in work directory

Full-sky Weak Lensing Mock Catalogs for the Subaru HSC survey

constructed using CfCA XC30 & 50

with Hamana, T., Shirasaki, M. (NAOJ), Namikawa, T. (Stanford U),
Nishimichi, T. (IPMU), Osato, K. (U Tokyo) & Shiroyama, K. (Hirosaki U)

simulation data sets are publicly available (http://cosmo.phys.hirosaki-u.ac.jp/takahasi/allsky_raytracing)

(RT+ ApJ 2017)

Introduction

Weak Lensing Galaxy Surveys

distortion of background galaxy shapes

→ probe foreground matter distribution

	project	survey area (deg^2)	
completed	CHFTLenS	150	Path of light around dark matter
ongoing	Subaru HSC	1400	
	KiDS	1500	
	DES	4000	Distant
planned	LSST	20000	OBSERVED SKY
			(Wittman+ 2000)

CMB lensing

Weak lensing also deforms the CMB temperature and polarization maps.

The lensing signals were already detected by WMAP and Planck.

The lensing B-mode acts as contamination for primordial gravitational waves.

Introduction

Weak Lensing Galaxy Surveys

distortion of background galaxy shapes

→ probe foreground matter distribution

CMB lensing

Weak lensing also deforms the CMB temperature and polarization maps.

The lensing signals were already detected by WMAP and Planck.

The lensing B-mode acts as contamination for primordial gravitational waves.

HSC survey fields

a single full-sky map \rightarrow ~10-20 HSC survey regions

108 full-sky maps \rightarrow ~1000-2000 HSC survey regions

enough to calculate variances of observables accurately

white circles: foreground massive halo (M>6e+13Msun) positions

its radius: the halo virial radius

primordial B-mode is zero

Covariances for cosmic shear and galaxy-galaxy lensing in the response approach

(RT, Takada, Nishimichi+ 2019, MNRAS)

auto-correlation function of convergence field $\xi_{\kappa\kappa}(\theta)$ cross-correlation function of halo-convergence field $\xi_{h\kappa}(\theta)$

modeling the covariances accurately

$$Cov(\theta, \theta') = \langle (\xi(\theta) - \langle \xi(\theta) \rangle) (\xi(\theta') - \langle \xi(\theta') \rangle) \rangle$$

measured the covariances for various survey areas (54, 215, 860 deg²) & compared them with theoretical prediction

Super-sample covariance (SSC)

(Takada & Hu 2013)

mean density contrast in a survey region

density fluctuations grows faster (slower) and more (less) halos form

$$\xi(r; \delta_{\rm b}) \simeq \xi(r) \left(1 + \frac{\partial \xi(r)}{\partial \delta_{\rm b}} \delta_{\rm b} \right)$$

additional variance

$$(\Delta \xi(r))^2 \simeq \xi(r)^2 \left(\frac{\partial \ln \xi(r)}{\partial \delta_{\rm b}}\right)^2 \sigma_{\rm b}^2$$

with
$$\sigma_{\mathrm{b}}^{2}=\left\langle \left|\delta_{\mathrm{b}}\right|^{2}
ight
angle$$

We study the SSC for projected matter and halo density fields.

Bispectrum of convergence reconstructed from CMB lensing

(Namikawa, Bose, Bouchet, RT, Taruya 2018, submitted to PRD)

convergence bispectrum reconstructed from CMB lensing

$$B(\ell_1,\ell_2,\ell_3)=\langle\kappa(\vec{\ell_1})\kappa(\vec{\ell_2})\kappa(\vec{\ell_3})
angle$$

$$\qquad \qquad \vec{\ell} : {\sf multipole}$$
 with $\vec{\ell_1}+\vec{\ell_2}+\vec{\ell_3}=0$

compared to theoretical fitting formulae

Non-linear effects on CMB delensing

(Namikawa & RT 2019, appear in PRD)

effects of non-Gaussian density fluctuation on CMB lensing reconstruction

Related works using our mock

Mock shear catalog for Subaru HSC survey

dark matter mass distribution probed by weak lensing

Oguri+ (2018), Miyazaki+ (2018), Mandelbaum+ (2018)

constraints on mass-richness relation of redMaPPer clusters Murata+ (2018)

cosmic shear Hikage+ (2018)

- Shirasaki+ (2017), Shirasaki & Takada (2018)
 estimating an accurate covariance matrix of galaxy-galaxy lensing
 constructing ~2000 mock catalogs
- Namikawa, Chinone, Kusaka, Miyatake, Oguri, Katayama, ... in progress a cross correlation between CMB map (POLARBEAR) and shear map (HSC)

Galaxy bispectrum

In 3D galaxy distribution, three-point correlation function (or bispectrum) contains useful additional information to two-point correlation function (or power spectrum)

$$B(k_1,k_2,k_3) \sim \left\langle \tilde{\delta}(\vec{k}_1) \tilde{\delta}(\vec{k}_2) \tilde{\delta}(\vec{k}_3) \right\rangle \qquad \text{with } \vec{k}_1 + \vec{k}_2 + \vec{k}_3 = 0$$

bispectrum is exactly zero for Gaussian fluctuation, so it is sensitive to non-Gaussianity

purpose of this study

run a lot of N-body simulations (4000 realizations) to measure $B(k_1,k_2,k_3)$ covariance & compare it to theoretical predictions

with Taruya, Hashimoto (Kyoto U), Sugiyama, Takada (IPMU)

matter bispectrum in real space

Cosmic Dark Emulator

developed by T. Nishimichi (IPMU)

M. Takada, N. Yoshida, T. Oogi (IPMU), K. Osato, M. Oguri (U Tokyo)

M. Shirasaki, T. Hamana (NAOJ), RT (Hirosaki U)

(Nishimichi+ 2018, submitted to ApJ)

We ran cosmological N-body simulations to follow non-linear gravitational evolution. The emulator code is calibrated with the simulations for 100 cosmological models.

Emulator

input parameters

outputs (observables)

cosmological parameters $(\Omega_b,\Omega_{cdm},\Omega_{\Lambda},h,A_s,n_s)$ redshift halo mass etc.

convergence/tangential shear profile of halos halo mass function halo power spectrum in real/redshift space