宇宙大規模構造エミュレータとニュートリノの影響

西道啓博

(東大IPMU→1月より京大基研)

NUMERICAL COSMOLOGY W/ SUBARU

観測データ

- Direct sampling of LSS joint PDF unfeasible
- Analysis based on statistical measures (dimension reduction)
- forward modeling + MCMC
- 銀河の統計量

Forward modeling ここはよく

八ローの統計量

Forward modeling

分からない

機械学習

- Gravity only simulation is only an approximation
 - Model what we can
 - Marginalize over uncertainties in what we do not simulate (i.e., baryonic effects, small scale effects below resolution limit...)
- No deep learning needed
 - e.x., how P(k) depends on $\Omega_{\rm m}$

宇宙論パラメタ

WHAT WE WANT TO (HAVE TO) DO

Hyper Suprime Cam (HSC)

Weak lensing: convergence K (Oguri+'17)

Sloan Digital Sky Survey

Galaxy redshift survey: overdensity δ_g

<K K>

Free from bias —> Hikage+'18

 $<\delta_g \kappa>$

 $<\delta_g \delta_g>$

Degeneracy between bias and cosmology?

—> Miyatake, TN+ in prep

TABLE OF CONTENTS

- Dark Quest project
- Cosmology challenge
- Massive neutrino

DARK QUEST PROJECT

DARK QUEST SIMULATIONS

TN+'18 (arXiv:1811.09504)

DQ 1: to be made public after HSC cosmology analyses (~early this year)

- Ensemble of N=2048³ sims
 - 2 base resolutions
 - L = 1 Gpc/h and 2 Gpc/h
 - 100+1 6D-wCDM models
 - 28 HR (14 LR) fiducial runs
 - 1 run at every 100 LHD sample
 - density on 1024³ grid points
 - Rockstar halos + postprocess
 - Subhalos excluded
 - Spherical density profile (40 bins from 10kpc/h to 5Mpc/h)

Circles: 100 parameter sets to be covered

Centered at Planck 2015

EMULATOR STRATEGY

- Efficient sampling
 - Latin Hypercube designs
- Dimension reduction by
 - Fitting when a good fitting form is known/available
 - Principal Component Analysis
 - Data vector size: 50,000 -> 20
- Learning/prediction with Bayes
 - Gaussian Process Regression

 Ω_{m}

CROSS VALIDATION TEST EXAMPLE

Example plot at z = 0.55

TN+'18 (arXiv:1811.09504)

Spread in HMF among the 100 models

Gaussian Process Regression

Upper: Model fitting w/ Sheth-Tormen type function (2 free parameters)

Lower: Compress the $42 (=2 \times 21 \text{ redshifts})$ coefficients into 6 PCs

Training set

Validation set

Red shades: scatter of 28 fiducial runs

EMULATOR IMPLEMENTATION

TN+'18 (arXiv:1811.09504)

- Combine different modules to work together
- Utility modules can deal with different recipes to populate galaxies

ANALYSIS PLAN

TN+'18 (arXiv:1811.09504)

Put here (as) many (as you want) nuisance parameters to account for unknowns

(Theory) Large-scale bias

DARK EMULATOR: WHAT IT CAN DO

TN+'18

import darkemu

emu = darkemu.base_class()

Initialize cosmo_class
Initialize xilin emulator
Initialize xinl emulator
Initialize pklin emulator
Initialize propagator emulator
Initialize sigma_d emulator
Initialize cross-correlation emulator
Initialize auto-correlation emulator
Initialize hmf emulator
Initialize sigmaM emulator

OVERVIEW

In [14]:

 $(\omega_{\rm b}, \omega_{\rm c}, \Omega_{\rm de}, \ln(10^{10}A_{\rm s}), n_{\rm s}, w)$

cparam = np.array([0.02225,0.1198,0.6844,3.094,0.9645,-1.])emu.set_cosmology(cparam)

emu.get_nhalo(massbins[ii],massbins[ii+1],1.,z)

emu.get_xicross_mass(rs,Mh,z)

emu.get_xiauto_mass(rs,Mh,Mh,z)

Halo mass function

Halo-Matter Cross CF

Halo-Halo Auto CF

1 curve ~ 100 mili secs on a typical laptop computer

DARK EMULATOR: WHAT IT CAN DO

COSMOLOGY CHALLENGE

EFFECTIVE FIELD THEORY APPROACHES

continuity + Euler + Poisson eqs.

Baumann+'12, Carrasco, Herzberg, Senatore'12 ...

Foreman, Perrier, Senatore'16

- Neglecting the stress tensor would be a reasonable approximation for a CDMdominated universe at least at early times
- EFT estimates the functional form for the corrections from viscosity and anisotropic stress in an empirical manner
- Introduce free parameters and determine them by simulations

$$\text{FoB} = \left[\sum_{\alpha,\beta} \delta\theta_{\alpha} \left(\bar{S} \right)_{\alpha\beta}^{-1} \delta\theta_{\beta} \right]^{1/2}$$

RegPT (2-loop) SPT (2-loop)

RegPT+ (2-loop)

FoB

IR-resummed EFT (2-loop)

Standard

COSMOLOGY CHALLENGE

Osato, TN, Bernardeau, Taruya '18 (arXiv:1810.10104)

- N=2048³, L=1024Mpc/h
- 10 realizations with suppressed variance
- Matter power in real space
- renorm + 1 free param

Renorm

EFT

 $\frac{1}{0.36}$ (3 free params)

RESPRESSO (idealistic)

COSMOLOGY CHALLENGE (CONTINUED)

TN, Takada, Senatore, Zaldarriaga++ in prep

- N=3072³, L=3840Mpc/h
- 24 realizations done
- Sub halos in redshift space
 - http://www-utap.phys.su/tokyo.ac.jp/ ~nishimichi/data/PTchallenge/

COSMOLOGY CHALLENGE (CONTINUED)

Distribute galaxies and analyze the data as a mock catalog

- Standard HOD with different assumptions
 - Different satellite profiles
 - Off-centering of "central" galaxies
 - Residual RSD in projected correlation function
 - Baryonic effects by modifying the mass profile around halos
- Assembly bias by introducing a second parameter
- —> (Almost) ready for HSC g-g lens +
 BOSS clustering analysis

MASSIVE NEUTRINOS

HOW TO TREAT NEUTRINOS

- Neutrinos cannot cluster on small scales due to free-streaming
 - -> neutrino PT stays in linear regime (as long as they are light)
 - -> short-range force (to other fluid) negligible
- Neutrinos were relativistic at early epoch
- Would like to add other relativistic sources for consistency

Ignore massive and massless neutrinos, photon and metric PT

Taken from Fildler+'17 (arXiv:1702.03221)

CODE DEVELOPMENT

- Neutrinos cannot cluster on small scales due to free-streaming
 - -> neutrino PT stays in linear regime (as long as they are light)
 - -> short-range force (to other fluid) negligible
- Add linear neutrino PT to PM force in Gadget2
- Added other sources for more consistency:

Linearized newtonian growth equation for transfer function

Massive neutrino
Massless neutrino
Photon
Metric

$$\frac{\mathrm{d}^2 T_{cb}(k)}{\mathrm{d}(\ln a)^2} + \left[1 + \frac{\mathrm{d}\ln \mathcal{H}}{\mathrm{d}\ln a}\right] \frac{\mathrm{d}T_{cb}(k)}{\mathrm{d}\ln a} = \frac{3}{2} \left[\Omega_{cb}(a) T_{cb}(k) + S_{\mathrm{other}}(k)\right]$$
 Expansion history External sources

- Prepare tabulated transfer function S_{other}(k,a) & H(a) by CAMB
 - Gadget modified for arbitrary S and H.

EARLY RESULTS

- Our product runs
 - CDM+baryon: 2048^3 particles
 - Neutrinos (+others): 4096^3 grid
 - To be joined into emulator!

Nonlinear matter power

Biased tracers

SUMMARY

Emulator

- Efficient sampling + dimension reduction + gaussian process
- A few to several % accuracy achieved
- Ready for practical application to HSC data

Cosmology challenge

- Assessing the ultimate accuracy on cosmological parameters with analytic and numerical approaches
- New set of big mock catalogs available

Massive neutrinos

- Implemented in to the PM force with linear approximations
- Other relativistic sources taken care at the same time
- Analysis underway for biased tracers