
Development of a Full-Multigrid
Gravity Solver for Athena++

Kengo TOMIDA

(Osaka University)

CfCA Users’ Meeting

2017/11/29

Features of Athena++
Already available Not public yet Being implemented Planned

HD/MHD

Curvilinear coordinate

SMR/AMR

Special Relativity

General Relativity

(Fixed metric)

MPI + OpenMP

Parallel IO (MPI/HDF)

User-defined functions

Support for Intel, GCC,

IBM, Cray, incl. KNL

Website / tutorial

Non-ideal MHD

(Ohmic, Hall, AD)

Radiation transfer

(Direct ray tracing)

Self-gravity (FFT on

uniform grid)

Chemical reactions

Shearing Box

4th-order scheme

Self-gravity (Multigrid

on uniform grid)

Particles (star / dust)

Self-gravity (Multigrid

on SMR/AMR)

Heterogeneous

parallelization

Developer’s guide

Code paper

General EOS

Post-processing

radiation transfer

(ALMA Science Proj.)

Hybrid PIC Plasma

Radiation transfer

(VTEF+implicit etc.)

Full General Relativity

(dynamic metric)

赤字： Features (being) developed at Osaka

青字： Osaka is involved

Development of Multigrid Solver

Some physics requires solutions to global/implicit PDE.

• Self-gravity

• Radiation transfer (FLD, Variable Eddington Factor)

• Conduction, Diffusion, Viscosity

We need a good parallel elliptic/parabolic PDE solver

• fast and scalable

• robust and accurate

• compatible with AMR

• flexible and versatile → C++ derived classes

But how “fast” should it be?

→ at least faster than the MHD part.

Hyperbolic vs Ellipitical Eqs
𝜕𝑼

𝜕𝑡
+ 𝛻 ∙ 𝑭 = 0

Complicated, but well established (Riemann solvers).

Information propagates at characteristic speeds

→ Finite Volume Method with local explicit update works well.

𝛻2𝜑 = 4𝜋𝐺𝜌
This is very simple, but one of the worst equations numerically.

• Information propagates instantaneously

→ Global, consistent solution is required

• Boundary conditions matter

→ Physically consistent boundaries are required

• Computationally cheap - but memory / network intensive

→ Difficult to achieve good performance / scalability

Hydrodynamics:

Gravity:

Poisson Solvers

Discretized equation (2D, NxN cells):
𝜑𝑗,𝑖+1 − 2𝜑𝑗,𝑖 + 𝜑𝑗,𝑖−1

∆𝑥2
+
𝜑𝑗+1,𝑖 − 2𝜑𝑗,𝑖 + 𝜑𝑗−1,𝑖

∆𝑦2
= 4𝜋𝐺𝜌𝑗,𝑖

𝐴𝝋 = 𝝆
It is hopeless to solve this equation directly: O(N6) (N9 in 3D).

Common numerical methods:

• Fast Fourier Transform (already implemented on Athena++)

+ Deterministic (i.e. require only one sweep) and robust

+ Computationally efficient

- Efficient only on uniform and 2N cells with periodic boundaries

- Require global communication including global transpose

- O(NlogN) - logN is actually not a small factor

• Tree solver (e.g. Wünsh et al. 2017 for FLASH)

• Iterative solvers

Basic Iterative Solvers

𝐴𝝋 = 𝝆 → (𝐿 + 𝐷 + 𝑈)𝝋 = 𝝆
D = diagonal, L = lower triangle, U = upper triangle

Jacobi iteration: 𝝋𝑘+1 = 𝐷−1 𝝆 − 𝐿 + 𝑈 𝝋𝑘

Gauss-Seidel iteration: 𝝋𝑘+1 = 𝐷−1 𝝆 − 𝐿𝝋𝑘+1 − 𝑈𝝋𝑘

Jacobi:

Update a target cell

using old information

Improvement: Red-Black Gauss-Seidel iteration

Step1:

Update red cells

using old information

⇒ Less dependent, isotropic scheme (but still slow)

Gauss-Seidel:

Use updated cells

and old information

Step 2:

Update red cells

using updated cells

Multigrid Concept

Iterative solvers = essentially smoothing (diffusion) of residual

Diffusion “timescale” 𝜏~λ2/𝐷 → small-scale noises diffuse faster

⇒ Accelerate convergence by applying different resolutions

2-level algorithm:

1. Coarsen (restrict) the grid to the coarse level

2. Apply diffusion (RBGS smoothing) on the coarse level

3. Project (prolongate) the result onto the fine level

4. Apply diffusion (RBGS smoothing) on the fine level

5. Repeat until the solution converges

Configuration of our Multigrid:

V(1,1) Cycle = 1 smoothing before restriction, 1 after prolongation

Restriction: volume-weighted average

Prolongation: trilinear or triquadratic interpolation

Multigrid Poisson Solver

Red-Black Gauss-Seidel Smoothing

Restriction

Prolongation

Solve Coarsest Level (exact or iterative)

Note: # of communications

GSRB: 2 boundary communications

Restriction/Prolongation: 1 communication

h

2h

4h

8h

V-Cycle MG solver can be applied as an iterative solver

• Reduces error in all the wavelengths

• Computationally efficient: O(N) (but O(NlogN) if communication dominates)

• Typically one sweep reduces the error by a factor of ~10

• Need a good initial guess to get fast convergence

• Memory and network intensive

(especially latency as it requires a lot of small messages)

Full Multigrid Method

h

2h

4h

8h

Initial restriction

FMG interpolation

(=higher order

prolongation)

FMG solver: starting from the coarsest level, and use the result

of the V-cycle MG solver as the initial guess on the finer grid.

• One FMG sweep is sufficient to achieve ~ discretization error

• Extremely efficient: cost ~ 2 full V-cycles

• Higher order interpolation is needed

(trilinear for normal prolongation, triquadratic for FMG)

FMG Convergence

3D sinusoidal waves, 163→10243 / wavelength

Second-order convergence is achieved with one FMG sweep.

Parallel Multigrid

In Athena++, the domain is decomposed into MeshBlocks.

At somepoint, a MeshBlocks is derefined into 1x1x1 cell

→ collect data using MPI_Allgather and apply Multigrid,

Gauss-Seidel smoother is cheap → network latency matters

Using Athena++’s dynamic scheduling with TaskList, we

interleave (overlap) communication and computation

(This works only with more than one MeshBlocks/process)

h

2h

4h

8h

↑ Parallel

↓ Serial

Performance

Multigrid performs sufficiently good at least up to 4096 cores

Small MeshBlocks are slow, but it is OK with many MeshBlocks

within 1 node

memory

contention

Cray XC30 @ NAOJ

Flat MPI

Note: FFT is O(NlogN)

8.6e9 DOF

0.2sec/step

↓

Molecular Cloud Formation

Left: with self-gravity Right: without self-gravity

Caution: this is not a fair comparison - the density is twice higher.

1024x512x512, <n>=10 or 5 / cc, v=20km/s, B=5μG, θ=11°

After ~5Myr the maximum density reaches >106/cc and collapses.

The accumulated mass is so large that self-gravity is significant.

→ to follow formation of cloud cores, we need SMR / AMR.

(see Iwasaki-san’s talk for details) Only 20% additional cost!

Next Step: SMR/AMR

(Matsumoto 2007, SFUMATO)

Basically, we will follow

SFUMATO’s approach→

On SMR/AMR grids, the Full

Approximation Scheme (FAS)

must be adopted.

Mass conservation formula
(Feng et al., JCoPh, 2017, 352, 463)

consistently discretize the level

boundary so that the fluxes on

the coarse and fine levels match

→ no need of correction,

possibly improve convergence

Mass Conservation Formula

(Feng et al. JCoPh, 2017, 352, 463)

■：Coarse active cells

●：Fine active cells

〇：Ghost cells

□：Zombie cells

Ghost cells 〇 are set by quadratic

interpolation using active cells ■●.

Zombie cells are calculated so that

the fluxes between levels match.

Note that the double zombie cell □
has two different values – but it is

OK as this cell appears only as a

boundary value between the levels.

Summary

Multigrid works!
• Full Multi Grid method works very well
• Achieved sufficiently high performance
• Flexible interface using derived classes: can be applied to

other physics such as radiation transfer
• Heterogeneous parallelization will improve performance

Athena++
• Planning next public release soon
• Non-ideal MHD, shearing box, chemistry, higher order etc…
• Even more physics: gravity, full GR, radiation, …
• Method paper in progress

