Magnetic reconnection as a showcase of high-speed fluid dynamics

Seiji ZENITANI

National Astronomical Observatory of Japan

Magnetic reconnection

Earth's Magnetosphere

- MHD-scale phenomena
- Re-configuration of magnetic field lines
- Release of magnetic energy to plasma
 energy

Jet-driven structure in RX

• Magnetic reconnection generates a complex structure by interacting with outer environments.

• Example: a magnetic island ("plasmoid")

Plasma beta

10

10-

10

Solar Wind Acceleration Region

corona

Plasma Beta Model

 $\beta > 1$

C1 C2 SXT Cusps

$$\beta \equiv \frac{p_{\rm gas}}{p_{\rm mag}} = \frac{8\pi p}{B^2}$$

- $\beta << 1$ in Solar corona and other applications
- An indicator of high-speed fluid effects

Branches of fluid dynamics

Shock=Shock interaction

MHD simulation

- HLL solver, HLLD solver, 2nd-order TVD
- Domain: [0, 200] x [0, 150]
- 6000 x 4500 or 12000 x 9000 cells

 Extensive analysis on shock conditions (Minimum variance analysis; MVA-B)

TABLE I. Rankine-Hugoniot analysis. The subscripts 1 and 2 denote the upstream and downstream quantities. The locations (x, z) in the simulation domain [see also Fig. 1(b)], the shock normal vector \hat{n} , the shock velocity v_{sh} , the angle between \hat{n} and the upstream magnetic field B_1 , the upstream plasma beta, flow Mach numbers to fast, intermediate (Alfvén), and slow-mode speeds, and the temperature ratio. The asterisk sign (*) indicates unreliable results (see Sec. III F). The letter (S) indicates a slow shock, (F) is a fast shock, and (U) is unclassified.

No.	Location	(n_x, n_z)	$v_{\rm sh}$	$ \theta_{BN} $	β_1	\mathcal{M}_{f1}	\mathcal{M}_{i1}	\mathcal{M}_{s1}	\mathcal{M}_{f^2}	\mathcal{M}_{i2}	\mathcal{M}_{s2}	T_2/T_1	
1	(40.0, 1.35)	(-0.03, 1.00)	0.0	86.3	0.22	0.06	0.98	2.49	0.04	0.69	0.69	2.72	(S) Petschek shock
2	(55.0, 1.75)	(-0.04, 1.00)	-0.013	86.3	0.098	0.06	0.88	3.22	0.04	0.58	0.58	4.58	(S) Petschek shock
3	(61.2, 0)	(-1.00, 0.00)	-0.40	90	303	1.41			0.77			1.38	(F) Reverse shock
4	(51.0, 6.0)	(1.00, -0.04)	0.31	9.4	0.12	0.41	0.42	1.34	0.33	0.34	0.78	1.33	(S) Postplasmoid vertical shock
5	(80.0, 8.4)	(-0.18, 0.98)	-0.06	86.5	0.16	0.05	0.85	2.47	0.03	0.56	0.65	2.54	(S) Outer shell
6	(110.0, 6.5)	(0.24, 0.97)	0.19	84.9	0.21	0.06	0.76	1.99	0.05	0.53	0.64	2.06	(S) Outer shell
7	(101.2, 10.0)	(0.94, 0.33)	0.54	25.2	0.23	0.43	0.49	1.15	0.39	0.44	0.87	1.15	(S) Forward vertical shock
8	(110.0, 1.5)	(-0.06, -1.00)	0.10	87.8	1.1	0.12	4.5*	6.5*	0.12	3.9*	4.0*	1.55	(U) Intermediate shock?
9	(120.0, 1.9)	(0.13, -0.99)	0.13	87.1	0.49	0.09	2.0*	3.8*	0.08	1.7*	1.9*	1.86	(U) Slow shock?
10	(120.9, 1.0)	(0.64, -0.77)	0.50	46.8	2.63	1.22	3.00	3.40	0.88	2.66	3.06	1.18	(F) Oblique shock

Shock diamond

Shock diamond

• (a) Over-expanded flow (過膨張)

• (b) Under-expanded flow (不足膨張)

Shock diamonds in aeronautics

BBC online http://www.bbc.com/future/story/20130701-flying-the-worlds-fastest-plane

Shock diamonds in video game

Microsoft Flight Simulator X https://www.youtube.com/watch?v=S8QGaiE4yWc

Shock diamonds in astrophysics

2x10⁶ light years

PKS 0637-752 Godfrey+ 2012 ApJ

Hidden shock-diamonds

- At the shock crossing, we recognize
 - 1. Fast expansion wave (shock-diamond)
 - 2. Contact discon. \neq Slip line
 - 3. Slow expansion wave

Kelvin-Helmholtz instability

inside the plasmoid

- Plasmas are hit and reflected by the reconnection jet front
- KH instability due to the reflected flow

Comparison with astrophysical jet model

- Supersonic jets (Norman+ 1982)
- Very similar except reverse shock

Mizuta+ 2010 ApJ

Pseudo-shock (oblique diffuser)

• (a) Over-expanded flow

• (b) Under-expanded flow

• Shock-train decelerates the flow

A complete catalog of plasmoid structure (2015)

- A. reconnection inflow
- B. outflow jet
- C. post-plasmoid backward flow
- D. internal flow
- E. flapping jet (KH instability)
- F. current-sheet kinking (KH instability) (Wada & Nitta?)
- 1. Petschek slow shock (Petschek 1964)
- 2. outer shell = slow shock (Ugai 1995 PoP)
- 3. intermediate shock (Abe & Hoshino 2001 EPS)
- 4. fast shock (Forbes & Priest 1983 SoP)
- 5. loop-top front (Ugai 1987 GRL)
- 6. tangential discontinuity
- 7. post-plasmoid vertical slow shock (Zenitani+ 2010 ApJ)
- 8. outer vertical slow shock (Zenitani & Miyoshi 2011 PoP)
- 9. fast-mode wave front (Saito et al. 1995 JGR)

10. overexpanded shock-diamond (Zenitani+ 2010 ApJ)

11. contact discontinuity (Zenitani & Miyoshi 2011 PoP)

- 12. underexpanded shock-diamond
- 13. slow expansion wave
- 14. contact discontinuity
- 15. contact discontinuity
- 16. preshock?
- 17. contact discontinuity
- 18. vortex-driven shock
- 19. inner shell
- 20. pseudo shock

Flux transfer rate

Compressible effects? (shock dissipation, wave-drag etc.)

- Low-beta reconnection may be faster
- This deserves further investigation

Loading algorithms for relativistic particle distributions [SZ 2015b]

• Jüttner-Synge distribution function (Relativistic Maxwellian)

$$f'(\boldsymbol{u'}) = \frac{N}{4\pi T K_2(1/T)} \exp\left(-\frac{\Gamma(\gamma' - \beta u'_x)}{T}\right)$$

• Sobol (1976)'s algorithm for $\Gamma=$ 1, $\beta=$ 0

 $(\eta'')^2 - (\eta')^2 > 1$

- Proposed in a Russian proceeding
- Mathematical proof confirmed
- Generalized for $\Gamma \neq 1$, $\beta \neq 0$
- Some analysis

Loading algorithms for relativistic particle distributions

Part of Swisdak (2013) algorithm

Algorithm: Generate a random variate for f, a log-concave

distribution function **Require:** p_m is the mode of f p_{+} and p_{-} satisfy $f(p_{\pm}) = f(p_{m})/e$ $\lambda_+ \leftarrow -f(p_+)/f'(p_+), \lambda_- \leftarrow f(p_-)/f'(p_-)$ {can be re-written in terms of $(\log f)'$ $q_- \leftarrow rac{\lambda_-}{p_+-p_-}, \, q_+ \leftarrow rac{\lambda_+}{p_+-p_-}, \, q_m \leftarrow 1-(q_++q_-)$ repeat generate U and V, uniform variates on [0, 1] if $U \leq q_m$ then $Y \leftarrow U/q_m$ $X \leftarrow (1-Y)(p_- + \lambda_-) + Y(p_+ - \lambda_+)$ if $V \leq f(X)/f(p_m)$ then done end if else if $U \leq q_m + q_+$ then $E \leftarrow -\log\left(\frac{U-q_m}{q_+}\right)$ $X \leftarrow p_+ - \lambda_+ (1 - E)$ if $V \leq e^{E} f(X) / f(p_m)$ then done end if else $E \leftarrow -\log\left(\frac{U-(q_m+q_+)}{q_-}\right)$ $X \leftarrow p_- + \lambda_-(1-E)$ if $V \leq e^{E} f(X) / f(p_m)$ then done end if end if until done return X

Sobol=Zenitani algorithm

Summary

- We have investigated the MHD structure of the reconnection-plasmoid system in detail
- They are the outcome of <u>high-speed (compressible)</u> <u>fluid effects</u> in low-β regimes
 - (Adiabatic acceleration)
 - Recompression shock
 - Shock diamonds, pseudo-shock
- Analogy with jet physics
- Compressible effects may speed-up plasmoid-RX
- Zenitani & Miyoshi, *Phys. Plasmas* **18**, 022105 (2011)
- Zenitani, Phys. Plasmas (2015a) MHD plasmoid
- Zenitani, *Phys. Plasmas* (2015b) Algorithm for kinetic simulation

 $\beta \propto \mathcal{M}^{-2}$