1/21/2015
CfCA Users’ Meeting

Current Status of
the Athena++ code

Kengo TOMIDA (Princeton)

James Stone (Princeton)
and
The Athena++ Development Team

Model O

Before Starting...

Tomida, Okuzumi & Machida 2015
accepted by ApJ, arXiv: 1501.04102

3D nested-grid RMHD simulations of
protostellar collapse with ambipolar
diffusion and Ohmic dissipation

Non-ideal MHD effects remove magnetic
flux efficiently and enable early disk
formation even before a protostar forms.
The disk size in the early phase remain
small, which is consistent with recent
Interferometric observations.

8
6
4
2

The Athena++ Project

2 Theoretical and Computational Astrophysics Networks:
« “Black Hole Accretion” (Princeton, lllinois and UC Berkeley)
* “From the ISM to the IMF: Multi-Scale, Multi-Physics Modeling
of Star Formation”
Collaboration between Princeton, UC Berkeley and Santa Cruz
l.e. collaboration between Athena and Orion

(Scientific) Goal: study the origin of core/initial mass function using
multi-scale simulations covering from galactic scale to cloud scale

(Computational) Goal: develop useful, efficient, scalable multi-
physics radiation MHD code with adaptive mesh refinement (AMR)

—We are now developing the Athena++ code from scratch

Why Writing It from Scratch?

Problems of Athena = old design :

 Not flexible grid configuration: uniform mesh spacing only

* The Array-of-Structure data structure is not suitable for
vectorization (Intel AVX = 4 double) = Structure-of-Array

« Many contributions — difficulty in maintenance

 No AMR: only static mesh refinement (SMR)

* Flat MPI parallelization

Note that, however, Athena was quite successful and efficient.
For example, for uniform grid ideal MHD on IBM Blue Gene/Q,
Athena (lightly tuned) achieved 128,000 cells / sec / core

and about 12% of the theoretical peak performance

(lightly tuned = optimized by myself)

Design Policy

« Conform the industry standards (C++11, MPI-2 or 3, etc.)

* No reliance on external libraries as much as possible

« Support many systems (Intel, GNU, Cray, IBM, and Xeon Phi)
« Hybrid parallelization with MPIl and OpenMP

« Support parallel 10 (MPI-10) as well as conventional IO

* Performance and clarity are the top priorities

* Flexible coordinate systems, including SMR and AMR

« Support standard MHD algorithms based on Athena

> PLM, PPM (MP5?)

» Constrained Transport
* Many physics modules

» Self-gravity

» Radiation Transfer

» Chemistry

» HLLE, HLLC, HLLD, Roe
» 2nd and 3rd order time integrators

» Particles (dust / sink)
» Non-ideal MHD
» SR/ GR (fixed metric at first)

(Figures are from Matsumoto
-san’s presentation, thanks!)

AMR Design: Grid Structure

(A) Block (Patch) Based

(B) Oct-Tree-Block Based

(C) Cell(Tree)-Based

Pros High adaptivity Simple relation btw blocks Highest adaptivity
Uniform within block Uniform within block Logically beautiful
Use of existing scheme Use of existing scheme Parallelization by space-
Parallelization by space- filling curve
filling curve
Cons Grids are not unique Lower adaptivity Performance Issue
Non-trivial grid generation | (depending on patch size) Complicated grids
Complex parallelization (non-trivial neighbor cell)
Hard to write,read,analyze
Examples | Original: Berger & Colella 1989 FLASH(PARAMESH) RAMSES, ART

Orion, PLUTO(Chombo), Enzo,
Athena SMR,...

Nirvana, SFUMATO,...

AMR Design: Overlapping Blocks

Q: Should we solve the coarse region

overlapping with the finer block?

For type A, yes, it makes sense because

bt otherwise there is a “hole” in the coarse grid.

For type B, no, but many codes do.

I Typical argument: the overlapping region is

small, so It is not expensive to solve it.

L EEE Wrong. Restriction operation requires MPI

#+ communications of large data, and it has

H dependency on finer levels, therefore it will

cause poor performance. Definitely NO.

The figure is taken from presentation by Herman Haverkort
http://www.win.tue.nl/~hermanh/stack/dagstuhl08-talk.pdf

AMR Design

Parallelization and load balancing:
Use a self-similar space-filling curve over all the grid levels.

Currently Z-ordering Is implemented. =~ .=~ = .= . rm
This ordering is also used to create - —/'— —
unique IDs to identify a block. e
Hilbert-like curves will be considered = = = =
Z 2 27 T]

In the future, but they can be costly.

Time Stepping: { /-order 1 {Hilbert curveﬂ

Currently we focus on the shared time stepping.
Adaptive time stepping is useful only for explicit schemes, and
there will be a problem in load balancing.

Input and Output:
MPI IO is implemented for restarting, which creates only one file.
HDF5 is being considered for analysis.

Computation / Communication
Overlap: Dynamic Scheduling

In order to get the maximum performance, we want to hide MPI
communication behind computation. But how?

Typical integration scheme is...

procl:

proc2:

Active Zone

Blockl
Predict

Block?2 :-BlockS l

1 I
Predict J_F_’[e_‘i'_cf_

MPI-Recv-X
MPI-Send-Y

Block4

Predict | Predict | Predict | |

—_ = = — |_______J

- - T /T T T T 7
{BlockS | Block6 !

T T

We can start
communications.

Note:
We receive X data
before starting Y.

MPI-Send-Z

| Block2 y Block3 |

| Correct I Correct l
e I ——

| Block5 1 Block6 H
" Correct 'LCorrect

!

We do not have to wait all the
communications here.

But the boundaries do not
necessarily arrive in this order

Computation / Communication
Overlap: Dynamic Scheduling

So, we should not fix the ordering of the blocks and tasks
— dynamic scheduling with task lists

fluid boundaryl Y fluid Boundaryl Z
U/ U/

boundaryl X field boundaryl Y field boundaryl Z
U/ A4

fluid predict

ct fluid boundary2 X fluid boundary2 Y iboundary2 Z
U/

field correct ietd-boeundary daryZ field boundary2 Z
W -

If there Is a task In the list whose dependency is clear, do it.

If not, go to the next block, and loop until all the tasks completed.

MP| communications are non-blocking (Isend/Irecv),

MPI_Test() is used to check if the communication is completed.

Inside MPI

We found MPI performance is improved by calling MPI_Iprobe.
How does this work? (Caution: this is implementation dependent)

Even with non-blocking (Isend/Irecv) communications, MPI does
NOT necessarily have a background process which transfers the
data between memories on different nodes.

Instead, it does some communication tasks when MPI-related
functions are called. Calling MPI functions give MPI chances to
advance the communication. | guess this works especially when
there are multiple messages at the same time.

MPI _Iprobe checks availability of a message, harmless & cheap.

For details, ask me, and read these articles:
http://stackoverflow.com/questions/20999299/why-does-mpi-iprobe-return-false-when-message-
has-definitely-been-sent

https://www.xsede.org/documents/271087/586927/Woodward.pdf

Uniform Grid Performance:
Serial Performance

pure hydro , HLLE, 2nd order primitive reconstruction, 643 cells
(note: this Is the cheapest configuration)

lvyBridge Xeon E5-2670v2, 2.5GHz, 10 cores, DDR3 memory
GNU (-O3) : 1.16e6 cells / sec / core
Intel (-ipo -fast) : 1.41e6 cells / sec / core

XC30, Haswell Xeon E5-2697v3, 2.6GHz, 12 cores, DDR4
Cray (-O3 -h aggress -h vector3 -hfp3 —hwp) : 1.39e6 cells/s/core
Intel (-ipo -fast) : 2.52e6 cells / sec/ core (!)

1. Haswell is faster (higher bandwidth, higher AVX throughput).

2. = 20% of the theoretical peak performance is achieved.

3. Intel Compiler is fast (maybe better performance with AVX?)
... or is there any better compiler option for crayCC?

Uniform Grid Performance:
(Weak) Scalability (up to 6144 cores)

1.8e+006 | i
1 block / process 93%
=

Ia‘—___‘-‘----h-h_‘—Eb_____''"'""'“"“'“----—-——E;—_

16e+006 - Dynamic scheduling e A
8 small blocks / process 95%

S 4ev006 | e T -
; Static scheduling Packed node performance
g is about 70% of single core
s 120000 — memory contention
S (note: Haswell B/F = only 0.13)
g v | Stancard 843 —— ¢ Athenat+ Is faster but still

Somiord 500e —a— (weakly) scales well.

TaskList 6x32"3 —a— . .

Athena 4.2 643 « Dynamic scheduling works!

800000 ~15% improvement
10 | T ’1&10 | o ”’IIDIOO | T ”’IIIJOOD

Mumber of Processes

Current Development Status

Hydro: 99%, almost done, being tested

MHD: 80%, debug and MPI parallelization in progress
OpenMP: 40%, currently only for hydro

AMR: 20%, design fixed, some features implemented
Self-Gravity: 1%, thinking about algorithm

Radiation: 50%, being imported from Athena

GR: 80%, hydro and MHD implemented, but w/ HLLE
Particles: 20%, serial implementation in progress

10: 50%, table, VTK, parallel restarting done, HDF5?

Chemistry, non-ideal MHD, sink particles: 0%

Future Plan

 Version 1.0 (= fully parallelized uniform-grid MHD) will

e ready in one month or so

» Radiation and (fixed metric) GR are being implemented
* | promised that | will write AMR MHD before April 10th.

* Then self-gravity.

* The code will be delivered to collaborators at first

A limited version (equivalent to current Athena but
faster) will be distributed publicly

* The full version (including new features) will be publicly
available later

Summary

Athena++: new AMR RMHD code

* Nothing fundamentally new, but redesigned thoroughly
* Highly optimized AND scalable (target > million cores)
* Many physics & various applications will be supported
« Some new techniques including dynamic scheduling

* Oct-Tree-Block based AMR without overlapping

A few remarks for XC30 users:

* Benchmark your code (not only scalability)
* Try Intel Compiler; it can be faster

* Choose or develop your code wisely

