
Current Status of
the Athena++ code

Kengo TOMIDA (Princeton)

James Stone (Princeton)

and

The Athena++ Development Team

1/21/2015

CfCA Users’ Meeting

Before Starting…

Tomida, Okuzumi & Machida 2015

accepted by ApJ, arXiv: 1501.04102

3D nested-grid RMHD simulations of

protostellar collapse with ambipolar

diffusion and Ohmic dissipation

Non-ideal MHD effects remove magnetic

flux efficiently and enable early disk

formation even before a protostar forms.

The disk size in the early phase remain

small, which is consistent with recent

interferometric observations.

The Athena++ Project

2 Theoretical and Computational Astrophysics Networks:

• “Black Hole Accretion” (Princeton, Illinois and UC Berkeley)

• “From the ISM to the IMF: Multi-Scale, Multi-Physics Modeling

of Star Formation”

Collaboration between Princeton, UC Berkeley and Santa Cruz

i.e. collaboration between Athena and Orion

(Scientific) Goal: study the origin of core/initial mass function using

multi-scale simulations covering from galactic scale to cloud scale

(Computational) Goal: develop useful, efficient, scalable multi-

physics radiation MHD code with adaptive mesh refinement (AMR)

→We are now developing the Athena++ code from scratch

Why Writing It from Scratch?

Problems of Athena = old design :

• Not flexible grid configuration: uniform mesh spacing only

• The Array-of-Structure data structure is not suitable for

vectorization (Intel AVX = 4 double) ⇒ Structure-of-Array

• Many contributions → difficulty in maintenance

• No AMR: only static mesh refinement (SMR)

• Flat MPI parallelization

Note that, however, Athena was quite successful and efficient.

For example, for uniform grid ideal MHD on IBM Blue Gene/Q,

Athena (lightly tuned) achieved 128,000 cells / sec / core

and about 12% of the theoretical peak performance

(lightly tuned = optimized by myself)

Design Policy
• Conform the industry standards (C++11, MPI-2 or 3, etc.)

• No reliance on external libraries as much as possible

• Support many systems (Intel, GNU, Cray, IBM, and Xeon Phi)

• Hybrid parallelization with MPI and OpenMP

• Support parallel IO (MPI-IO) as well as conventional IO

• Performance and clarity are the top priorities

• Flexible coordinate systems, including SMR and AMR

• Support standard MHD algorithms based on Athena

PLM, PPM (MP5?)

Constrained Transport

• Many physics modules

Self-gravity

Radiation Transfer

Chemistry

 HLLE, HLLC, HLLD, Roe

 2nd and 3rd order time integrators

 Particles (dust / sink)

 Non-ideal MHD

 SR / GR (fixed metric at first)

AMR Design: Grid Structure

(A) Block (Patch) Based (B) Oct-Tree-Block Based (C) Cell(Tree)-Based

Pros High adaptivity

Uniform within block

Use of existing scheme

Simple relation btw blocks

Uniform within block

Use of existing scheme

Parallelization by space-

filling curve

Highest adaptivity

Logically beautiful

Parallelization by space-

filling curve

Cons Grids are not unique

Non-trivial grid generation

Complex parallelization

Lower adaptivity

(depending on patch size)

Performance Issue

Complicated grids

(non-trivial neighbor cell)

Hard to write,read,analyze

Examples Original: Berger & Colella 1989

Orion, PLUTO(Chombo), Enzo,

Athena SMR,…

FLASH(PARAMESH)

Nirvana, SFUMATO,…

RAMSES, ART

(Figures are from Matsumoto

-san’s presentation, thanks!)

AMR Design: Overlapping Blocks
Q: Should we solve the coarse region

overlapping with the finer block?

For type A, yes, it makes sense because

otherwise there is a “hole” in the coarse grid.

For type B, no, but many codes do.

Typical argument: the overlapping region is

small, so it is not expensive to solve it.

Wrong. Restriction operation requires MPI

communications of large data, and it has

dependency on finer levels, therefore it will

cause poor performance. Definitely NO.

AMR Design
Parallelization and load balancing:

Use a self-similar space-filling curve over all the grid levels.

Currently Z-ordering is implemented.

This ordering is also used to create

unique IDs to identify a block.

Hilbert-like curves will be considered

in the future, but they can be costly.

Time Stepping:

Currently we focus on the shared time stepping.

Adaptive time stepping is useful only for explicit schemes, and

there will be a problem in load balancing.

Input and Output:

MPI IO is implemented for restarting, which creates only one file.

HDF5 is being considered for analysis.

The figure is taken from presentation by Herman Haverkort

http://www.win.tue.nl/~hermanh/stack/dagstuhl08-talk.pdf

Computation / Communication
Overlap: Dynamic Scheduling

In order to get the maximum performance, we want to hide MPI

communication behind computation. But how?

Typical integration scheme is…

Block2

Predict

Block2

Correct

Block1

Predict

Block1

Correct

Block3

Predict

Block3

Correct

Block5

Predict

Block5

Correct

Block4

Predict

Block4

Correct

Block6

Predict

Block6

Correct

M
P

I-
S

e
n
d
-X

M
P

I…
…

M
P

I-
R

e
c
v
-X

M
P

I-
S

e
n
d
-Y

M
P

I-
R

e
c
v
-Y

M
P

I-
S

e
n
d
-Z

M
P

I-
R

e
c
v
-Z

proc1:

proc2:

↑ ↑

We can start

communications.

↑

We do not have to wait all the

communications here.

But the boundaries do not

necessarily arrive in this order
Active Zone

Note:

We receive X data

before starting Y.

Computation / Communication
Overlap: Dynamic Scheduling

So, we should not fix the ordering of the blocks and tasks

→ dynamic scheduling with task lists

fluid predict

field predict

fluid boundary1 X fluid boundary1 Y fluid boundary1 Z

field boundary1 X field boundary1 Y field boundary1 Z

fluid correct

field correct

fluid boundary2 X fluid boundary2 Y fluid boundary2 Z

field boundary2 X field boundary2 Y field boundary2 Z

If there is a task in the list whose dependency is clear, do it.

If not, go to the next block, and loop until all the tasks completed.

MPI communications are non-blocking (Isend/Irecv),

MPI_Test() is used to check if the communication is completed.

Inside MPI

We found MPI performance is improved by calling MPI_Iprobe.

How does this work? (Caution: this is implementation dependent)

Even with non-blocking (Isend/Irecv) communications, MPI does

NOT necessarily have a background process which transfers the

data between memories on different nodes.

Instead, it does some communication tasks when MPI-related

functions are called. Calling MPI functions give MPI chances to

advance the communication. I guess this works especially when

there are multiple messages at the same time.

MPI_Iprobe checks availability of a message, harmless & cheap.

For details, ask me, and read these articles:

http://stackoverflow.com/questions/20999299/why-does-mpi-iprobe-return-false-when-message-

has-definitely-been-sent

https://www.xsede.org/documents/271087/586927/Woodward.pdf

Uniform Grid Performance:
Serial Performance

pure hydro , HLLE, 2nd order primitive reconstruction, 64^3 cells

(note: this is the cheapest configuration)

IvyBridge Xeon E5-2670v2, 2.5GHz, 10 cores, DDR3 memory

GNU (-O3) : 1.16e6 cells / sec / core

Intel (-ipo -fast) : 1.41e6 cells / sec / core

XC30, Haswell Xeon E5-2697v3, 2.6GHz, 12 cores, DDR4

Cray (-O3 -h aggress -h vector3 -hfp3 –hwp) : 1.39e6 cells/s/core

Intel (-ipo -fast) : 2.52e6 cells / sec / core （！）

1. Haswell is faster (higher bandwidth, higher AVX throughput).

2. ≳ 20% of the theoretical peak performance is achieved.

3. Intel Compiler is fast (maybe better performance with AVX?)

… or is there any better compiler option for crayCC?

Uniform Grid Performance:
(Weak) Scalability (up to 6144 cores)

93%

95%

• Packed node performance

is about 70% of single core

← memory contention
(note: Haswell B/F = only 0.13)

• Athena++ is faster but still

(weakly) scales well.

• Dynamic scheduling works!

~15% improvement

1 block / process

Dynamic scheduling

8 small blocks / process

Static scheduling

Current Development Status

Hydro: 99%, almost done, being tested

MHD: 80%, debug and MPI parallelization in progress

OpenMP: 40%, currently only for hydro

AMR: 20%, design fixed, some features implemented

Self-Gravity: 1%, thinking about algorithm

Radiation: 50%, being imported from Athena

GR: 80%, hydro and MHD implemented, but w/ HLLE

Particles: 20%, serial implementation in progress

IO: 50%, table, VTK, parallel restarting done, HDF5?

Chemistry, non-ideal MHD, sink particles: 0%

Future Plan

• Version 1.0 (= fully parallelized uniform-grid MHD) will

be ready in one month or so

• Radiation and (fixed metric) GR are being implemented

• I promised that I will write AMR MHD before April 10th.

• Then self-gravity.

• The code will be delivered to collaborators at first

• A limited version (equivalent to current Athena but

faster) will be distributed publicly

• The full version (including new features) will be publicly

available later

Summary

Athena++: new AMR RMHD code

• Nothing fundamentally new, but redesigned thoroughly

• Highly optimized AND scalable (target > million cores)

• Many physics & various applications will be supported

• Some new techniques including dynamic scheduling

• Oct-Tree-Block based AMR without overlapping

A few remarks for XC30 users:

• Benchmark your code (not only scalability)

• Try Intel Compiler; it can be faster

• Choose or develop your code wisely

