部分電離プラズマ中の 無衝突衝撃波

大平 豊 (青山学院大学)

----内容-----

超新星残骸の周りの水素原子

電離過程を取り入れたプラズマ粒子 ハイブリッドシミュレーション

まとめ

Ref: Ohira, MNRAS (2014), Ohira, PRL (2013), Ohira, ApJ (2012)

超新星残骸の周りの水素原子 超新星残骸周りのガスの電離度は~0.5 Ηα **SN1006** Ghavamian et al. ApJ 2000, 2002 超新星残骸は、銀河宇宙線の起源 タイプ la 型 or ll型? ISMの中 or スーパーバブルの中? 宇宙線のエネルギースペクトル Winkler et al. ApJ 2003 標準的な衝撃波加速理論はdN/dE∝E-2 銀河宇宙線や超新星残骸の観測は X ray dN/dE∝E^{-2.1}-E^{-2.4} 加速機構への注入問題 銀河宇宙線の観測からは、E_{CR}~0.1E_{SN} どのようにして加速過程に入るかは謎 無衝突衝撃波の構造 衝撃波の速度構造や磁場構造は謎 Cassam-Chenai et al. ApJ 2008

ハイブリッドシミュレーション

イオン
$$\frac{d\vec{x_i}}{dt} = \vec{v_i}$$
, $m_i \frac{d\vec{v_i}}{\partial t} = e\left(\vec{E} + \frac{\vec{v_i}}{c} \times \vec{B}\right)$

電子 $0 = \frac{d}{dt}(m_{\rm e}n_{\rm e}\vec{u_{\rm e}}) = -en_{\rm e}\left(\vec{E} + \frac{\vec{u_{\rm e}}}{c} \times \vec{B}\right) - \vec{\nabla}p_{\rm e}$

$$n_{i} = n_{e}$$

マクスウェル $0 = \frac{\partial \vec{E}}{\partial t} = c \vec{\nabla} \times \vec{B} - 4\pi e n_{i} (\vec{u}_{i} - \vec{u}_{e})$
テ $\vec{u}_{e} = \vec{u}_{i} - \frac{c}{4\pi e n_{i}} \vec{\nabla} \times \vec{B}$
 $\frac{\partial \vec{B}}{\partial t} = c \vec{\nabla} \times \vec{E}$, $\vec{E} = -\frac{\vec{u}_{i}}{c} \times \vec{B} - \frac{\vec{B} \times (\vec{\nabla} \times \vec{B})}{4\pi e n_{i}} - \frac{\vec{\nabla} p_{e}}{e n_{i}}$

u_iとn_iは粒子の x_iとv_iから 求める.

水素原子の電離過程 (H, p, e-)

Charge exchange with proton $H + p \rightarrow p + H$ Collisional ionization with proton $H + p \rightarrow p + e^- + p$ Collisional ionization with electron $H + e^- \rightarrow p + e^- + e^-$ Collisional ionization with hydrogen atom $H + H \rightarrow p + e^- + H$

ハイブリッドコート	、内での電	[離 (1)
<u>水素についての電離の計算(H_A)</u>	<u>こついて)</u>	
①同じセルにいる粒子を特定する H _B , p _A , p _{B,} e ⁻ _A , e ⁻ _B 電子は、陽子と同じ数	とする	P _B H _B
②H _A との相対速度を計算する	電子Maxwell 分布 <v<sub>e-> = <v<sub>p> , T_e</v<sub></v<sub>	- 5とする = 0.01T _{sh} を仮定
$ v_{HA} - v_{HB} , v_{HA} - v_{pA} , v_{HA} - v_{pB} , v_{rel,HAe} = ((4/\pi)v_{th,e}^2 + v_{HA}^2)^{1/2}$		
③散乱断面積 σ _{CE} , σ _{CI,p} , σ _{CI,H} and σ _{CIe-} から、反応確率を求める P _{CI,HAHB} , P _{CI,HAPA} , P _{CE,HAPA} ,, P _{CI,HAe-}		
④乱数により、どの粒子と、どの反応でH _A 水素が電離するか、 または電離しないかを決める. 電荷交換反応の場合、反応した陽 子が水素原子になる		

シミュレーションパラメター

 $L_x \times L_v \sim 2 - 6 \times 10^4 \text{ c/}\omega_{pp} \times 400 \text{ c/}\omega_{pp}$ Δx = Δy = 0.5 - 1 c/ $\omega_{_{\rm DD}}$, Δt = 0.004 - 0.0125 $\Omega_{_{\rm CD}}{}^{-1}$ ~ 10^{-4} ν^{-1} 16個の水素原子と16個の陽子 / 1セル $\beta_{p} = \beta_{H} = 0.5$, $n_{p} = n_{H}$, $B_{0} // e_{v}$ $V_{d} = 10 - 30 V_{A}$, $V_{d} = 1 - 2 \times 10^{3}$ km/s 2次元のシミュレーション平面 **B**_v プラズマ + 水素原子 + 磁場

位相空間図 (M_A=10, V_d=2000km/s)

下流の高温水素原子が上流へしみ出す。上流で電離してピックアップイオンになる。

エネルギースペクトル

下流からしみ出した水素原子は、上流でのピックアップと、 二回目の衝撃波加熱により、初期の10倍にまで加速される。 水素原子は、衝撃波加速の注入に重要!

磁場と密度(上流領域)


```
|B| ≥ ρ_pは相関 → Fast mode
δB / B<sub>0</sub> ~ 0.5
```

(Drury & Falle, 1986 Drury instability? ^{Chalov 1988)} 拡散する粒子が必要。 でも、Pickup ionは磁化している。

 $P_{\perp}/P_{\parallel} > 1$ は、slow mode と Alfven mode を励起する。

新しい不安定性

Ohira, MNRAS, 2014

音波不安定性の物理機構

V_d = 1000 km/s と 2000 km/s の比較

V_d = 1000 km/s と 2000 km/s の比較

v [km /s]

まとめ

SNRの周りの星間ガスは必ずしも完全電離状態ではない。

部分電離プラズマ中を伝搬する無衝突垂直衝撃の ハイブリッドシミュレーションを世界で初めて行った。

下流の高温水素原子が衝撃波上流へしみ出す。

上流へしみ出した水素原子は、上流で電離してPickup ionになる。

Pickup ionは、衝撃波構造を変える。

Pickup ion は上流でプラズマ不安定性を励起する。

不安定性によってできたδρが、衝撃波下流で磁場を増幅する

しみ出した水素原子は加速される。

今後の予定: 3D and M_A = 100