電磁場優勢プラズマにおける 乱流磁気リコネクション

Makoto Takamoto

Theoretical Astrophysics Group Max-Planck-Institut für Kernphysik

collaborators: Tsuyoshi Inoue (NAOJ, Japan) Alexandre Lazarian (Wisconsin, USA)

I. Poynting Dominated Plasma of Astrophysical Phenomena

2. Magnetic Reconnection & Sweet-Parker model

ref) Sweet, (1958) Parker, (1957; 1963)

Sweet-Parker model

= steady reconnection model with uniform resistivity

Reconnection rate: $u_{in} \sim c_A / \sqrt{S}$ $S = L c_A / \eta$

In many astrophysical objects,

$$S = L c_A / \eta >> 1$$

$$u_{in} \sim c_A / \sqrt{S} \ll c_A$$

very slow

 $\delta/L = 1/\sqrt{S}$

too thin...

3D Turbulent Effects

ref) Lazarian & Vishniac, (1999), ApJ, 517, 700. Kowal et al. (2009), ApJ, 700, 63.

 $v_{\rm in}$ $\rho_{\rm out} v_{\rm out}$ 0 c_A c_A ho_{in}

Turbulent motions enhance magnetic field diffusion.

KERNPHYSIK FUR MAX-PLANCK-INSTITUT

Initial condition:
Harris Current Sheet 40
mesh number: 512*512*1024 (resolving MHD turbulence)
parameters:
I)injection velocity of turbulence
2)σ-parameter

3)resistivity

lacksquare

•Resistive Relativistic MHD approximation

ref) Takamoto & Inoue, (2011), ApJ ,735, 113

20 λ

- $k_B T/mc^2 = I$
- driven turbulence injected around central region

9

$$\frac{v_{\rm in}}{c_A} = \frac{\rho_{\rm out}}{\rho_{\rm in}} \frac{v_{\rm out}}{c_A} \frac{\delta}{L}$$

Incompressible:
$$\frac{\delta}{L} \simeq \min\left[\left(\frac{L}{l}\right)^{1/2}, \left(\frac{l}{L}\right)^{1/2}\right] \left(\frac{v_l}{c_A}\right)^2$$

(LV99)
 $\int \int \int \frac{1}{2} \left[\left(\frac{v_l}{c_A}\right)^2 - C\left(\frac{v_l}{c_A}\right)^2\right]$
compressible: $\frac{\delta}{L} \simeq \min\left[\left(\frac{L}{l}\right)^{1/2}, \left(\frac{l}{L}\right)^{1/2}\right] \left[\left(\frac{v_l}{c_A}\right)^2 - C\left(\frac{v_l}{c_A}\right)^2\right]$

2D Kinetic Reconnection

10. PIC Simulation Setup

Initial condition:

- •Harris Current Sheet $(B_x=B_0 \tanh[z/\lambda],$ $n = n_0/\cosh^2[z/\lambda]$ $\lambda = \lambda_i / 2$)
- total number of particles
 =10¹⁰
- M_i / m_e = 100
- $n_{background} / n_{sheet} = 0.0875$
- plasma $\beta = 0.02$
- I024MPI*6OpenMP=6144core
- 2D AMR-PIC code

ref) Fujimoto & Machida, (2006), JCP, 214, 550-566. Fujimoto, (2011), JCP, 230, 8508-8526.

II. Reconnection in Kinetic Region

16

- We investigated various kinds of relativistic reconnection in Poynting-dominated plasma
- •We found that the reconnection rate is highly enhanced (dissipation time ~ 20 - 30 Alfvén crossing time) —Turbulent Reconnection : vR/cA ~ 0.05
- Reconnection rate becomes independent of the Lundquist number (resistivity)
- Too strong turbulence reduces reconnection rate because of the compressibility!!